1
|
Morris PD, Anderton RA, Marshall-Goebel K, Britton JK, Lee SMC, Smith NP, van de Vosse FN, Ong KM, Newman TA, Taylor DJ, Chico T, Gunn JP, Narracott AJ, Hose DR, Halliday I. Computational modelling of cardiovascular pathophysiology to risk stratify commercial spaceflight. Nat Rev Cardiol 2024; 21:667-681. [PMID: 39030270 DOI: 10.1038/s41569-024-01047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/21/2024]
Abstract
For more than 60 years, humans have travelled into space. Until now, the majority of astronauts have been professional, government agency astronauts selected, in part, for their superlative physical fitness and the absence of disease. Commercial spaceflight is now becoming accessible to members of the public, many of whom would previously have been excluded owing to unsatisfactory fitness or the presence of cardiorespiratory diseases. While data exist on the effects of gravitational and acceleration (G) forces on human physiology, data on the effects of the aerospace environment in unselected members of the public, and particularly in those with clinically significant pathology, are limited. Although short in duration, these high acceleration forces can potentially either impair the experience or, more seriously, pose a risk to health in some individuals. Rather than expose individuals with existing pathology to G forces to collect data, computational modelling might be useful to predict the nature and severity of cardiovascular diseases that are of sufficient risk to restrict access, require modification, or suggest further investigation or training before flight. In this Review, we explore state-of-the-art, zero-dimensional, compartmentalized models of human cardiovascular pathophysiology that can be used to simulate the effects of acceleration forces, homeostatic regulation and ventilation-perfusion matching, using data generated by long-arm centrifuge facilities of the US National Aeronautics and Space Administration and the European Space Agency to risk stratify individuals and help to improve safety in commercial suborbital spaceflight.
Collapse
Affiliation(s)
- Paul D Morris
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK.
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | - Ryan A Anderton
- Medical Department, Spaceflight, UK Civil Aviation Authority, Gatwick, UK
| | - Karina Marshall-Goebel
- The National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston, TX, USA
| | - Joseph K Britton
- Aerospace Medicine Specialist Wing, Royal Air Force (RAF) Centre of Aerospace Medicine, Henlow, UK
| | - Stuart M C Lee
- KBR, Human Health Countermeasures Element, NASA Johnson Space Center, Houston, TX, USA
| | - Nicolas P Smith
- Victoria University of Wellington, Wellington, New Zealand
- Auckland Bioengineering Institute, Auckland, New Zealand
| | - Frans N van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Karen M Ong
- Virgin Galactic Medical, Truth or Consequences, NM, USA
| | - Tom A Newman
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Daniel J Taylor
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Tim Chico
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Julian P Gunn
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Andrew J Narracott
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - D Rod Hose
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Ian Halliday
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Li Y, Wang J, Li Y, Li D, Xu Y, Li Y. The Impact of Starting Positions and Breathing Rhythms on Cardiopulmonary Stress and Post-Exercise Oxygen Consumption after High-Intensity Metabolic Training: A Randomized Crossover Prospective Study. Healthcare (Basel) 2024; 12:1889. [PMID: 39337230 PMCID: PMC11431213 DOI: 10.3390/healthcare12181889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The exploration of optimizing cardiopulmonary function and athletic performance through high-intensity metabolic exercises (HIMEs) is paramount in sports science. Despite the acknowledged efficacy of HIMEs in enhancing cardiopulmonary endurance, the high metabolic stress imposed on the cardiopulmonary system, especially for amateurs, necessitates a scaled approach to training. Objective: The aim of this study is to ascertain whether adjustments in the initiation posture and the adoption of an appropriate breathing strategy can effectively mitigate the cardiopulmonary stress induced by HIMEs without compromising training efficacy. Methods: Twenty-two subjects were recruited into this study. The post-exercise heart rate (PHR) and post-exercise oxygen consumption rate (POCR) were collected within 30 min after exercise. A two-way ANOVA, multi-variable Cox regression, and random survival forest machine learning algorithm were used to conduct the statistical analysis. Results: Under free breathing, only the maximum POCR differed significantly between standing and prone positions, with prone positions showing higher stress (mean difference = 3.15, p < 0.001). In contrast, the regulated breathing rhythm enhanced performance outcomes compared to free breathing regardless of the starting position. Specifically, exercises initiated from prone positions under regulated breathing recorded a significantly higher maximum and average PHR than those from standing positions (maximum PHR: mean difference = 13.40, p < 0.001; average PHR: mean difference = 6.45, p < 0.001). The multi-variable Cox regression highlighted the starting position as a critical factor influencing the PHR and breathing rhythm as a significant factor for the POCR, with respective variable importances confirmed by the random survival forest analysis. These results underscore the importance of controlled breathing and starting positions in optimizing HIME outcomes. Conclusions: Regulated breathing in high-intensity exercises enhances performance and physiological functions, emphasizing the importance of breathing rhythm over starting position. Effective training should balance exercise volume and technique to optimize performance and minimize stress, reducing overtraining and injury risks.
Collapse
Affiliation(s)
- Yuanyuan Li
- Physical Education Department, Shandong Pharmaceutical and Food Vocational College, Weihai 264210, China;
| | - Jiarong Wang
- Faculty of Educational Studies, University Putra Malaysia, Selangor 43400, Malaysia;
| | - Yuanning Li
- Faculty of Sports Science, Yanshan University, Qinhuangdao 066000, China;
| | - Dandan Li
- College of Physical Education and Sports, Beijing Normal University, Beijing 100084, China;
| | - Yining Xu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Yi Li
- China Volleyball College, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
3
|
Munster DW, Lewandowski BE, Nelson ES, Prabhu RK, Myers JG. Modeling the impact of thoracic pressure on intracranial pressure. NPJ Microgravity 2024; 10:46. [PMID: 38600142 PMCID: PMC11006658 DOI: 10.1038/s41526-024-00385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
A potential contribution to the progression of Spaceflight Associated Neuro-ocular Syndrome is the thoracic-to-spinal dural sac transmural pressure relationship. In this study, we utilize a lumped-parameter computational model of human cerebrospinal fluid (CSF) systems to investigate mechanisms of CSF redistribution. We present two analyses to illustrate potential mechanisms for CSF pressure alterations similar to those observed in microgravity conditions. Our numerical evidence suggests that the compliant relationship between thoracic and CSF compartments is insufficient to solely explain the observed decrease in CSF pressure with respect to the supine position. Our analyses suggest that the interaction between thoracic pressure and the cardiovascular system, particularly the central veins, has greater influence on CSF pressure. These results indicate that future studies should focus on the holistic system, with the impact of cardiovascular changes to the CSF pressure emphasized over the sequestration of fluid in the spine.
Collapse
Affiliation(s)
- Drayton W Munster
- NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH, 44135, USA.
| | - Beth E Lewandowski
- NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH, 44135, USA
| | - Emily S Nelson
- NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH, 44135, USA
| | - R K Prabhu
- Universities Space Research Association, 21000 Brookpark Road, Cleveland, OH, 44135, USA
| | - Jerry G Myers
- NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH, 44135, USA
| |
Collapse
|
4
|
Sy MR, Keefe JA, Sutton JP, Wehrens XHT. Cardiac function, structural, and electrical remodeling by microgravity exposure. Am J Physiol Heart Circ Physiol 2023; 324:H1-H13. [PMID: 36399385 PMCID: PMC9762974 DOI: 10.1152/ajpheart.00611.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Space medicine is key to the human exploration of outer space and pushes the boundaries of science, technology, and medicine. Because of harsh environmental conditions related to microgravity and other factors and hazards in outer space, astronauts and spaceflight participants face unique health and medical challenges, including those related to the heart. In this review, we summarize the literature regarding the effects of spaceflight on cardiac structure and function. We also provide an in-depth review of the literature regarding the effects of microgravity on cardiac calcium handling. Our review can inform future mechanistic and therapeutic studies and is applicable to other physiological states similar to microgravity such as prolonged horizontal bed rest and immobilization.
Collapse
Affiliation(s)
- Mary R Sy
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Jeffrey P Sutton
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
5
|
Computational modeling of orthostatic intolerance for travel to Mars. NPJ Microgravity 2022; 8:34. [PMID: 35945233 PMCID: PMC9363491 DOI: 10.1038/s41526-022-00219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/15/2022] [Indexed: 11/12/2022] Open
Abstract
Astronauts in a microgravity environment will experience significant changes in their cardiopulmonary system. Up until now, there has always been the reassurance that they have real-time contact with experts on Earth. Mars crew however will have gaps in their communication of 20 min or more. In silico experiments are therefore needed to assess fitness to fly for those on future space flights to Mars. In this study, we present an open-source controlled lumped mathematical model of the cardiopulmonary system that is able simulate the short-term adaptations of key hemodynamic parameters to an active stand test after being exposed to microgravity. The presented model is capable of adequately simulating key cardiovascular hemodynamic changes—over a short time frame—during a stand test after prolonged spaceflight under different gravitational conditions and fluid loading conditions. This model can form the basis for further exploration of the ability of the human cardiovascular system to withstand long-duration space flight and life on Mars.
Collapse
|
6
|
Latscha R, Koschate J, Bloch W, Werner A, Hoffmann U. Cardiovascular Regulation During Acute Gravitational Changes with Exhaling on Exertion. Int J Sports Med 2022; 43:865-874. [PMID: 35668644 PMCID: PMC9448415 DOI: 10.1055/a-1810-6646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During gravitational changes or changes in the direction of action in relation to
the body, fluid displacements can be observed. In special cases different
breathing maneuvers (e. g., exhaling on exertion; Ex-Ex) are used to
counteract acute fluid shifts. Both factors have a significant impact on
cardiovascular regulation. Eight healthy male subjects were tested on a tilt
seat, long arm human centrifuge, and parabolic flight. The work aims to
investigate the effect of exhaling on exertion on the cardiovascular regulation
during acute gravitational changes compared to normal breathing. Possible
interactions and differences between conditions (Ex-Ex, normal breathing) for
the parameters
V’O2
,
V’E
, HR, and SV were analysed over a
40 s period by a three-way ANOVA. Significant (p≤0.05) effects
for all main factors and interactions between condition and time as well as
maneuver and time were found for all variables. The exhaling on exertion
maneuver had a significant influence on the cardiovascular response during acute
gravitational and positional changes. For example, the significant increase of
V’O2 at the end of the exhalation on exertion maneuver indicates an
increased lung circulation as a result of the maneuver.
Collapse
Affiliation(s)
- Rina Latscha
- Innere Medizin, Universitätsspital Basel, Basel, Switzerland
| | - Jessica Koschate
- Health Services Research - Geriatric Medicine, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Wilhelm Bloch
- Institute for Cardiovascular Research and Sports Medicine, Department for Molecular and Cellular Sport Medicine, German Sport University Cologne, Köln, Germany
| | - Andreas Werner
- Institute for Physiology and Center of Space Medicine and Extreme Environments, Charite Universitatsmedizin Berlin, Berlin, Germany.,Branch I 1, Aviation Physiology Diagnostic and Research, German Air Force - Centre of Aerospace Medicine, Königsbrück, Germany
| | - Uwe Hoffmann
- Exercise Physiology, German Sport University Cologne, Köln, Germany
| |
Collapse
|
7
|
Ballambat RP, Zuber M, Khader SMA, Ayachit A, Ahmad KAB, Vedula RR, Kamath SG, Shuaib IL. Influence of postural changes on haemodynamics in internal carotid artery bifurcation aneurysm using numerical methods. Vis Comput Ind Biomed Art 2022; 5:11. [PMID: 35394268 PMCID: PMC8993999 DOI: 10.1186/s42492-022-00107-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Cerebral intracranial aneurysms are serious problems that can lead to stroke, coma, and even death. The effect of blood flow on cerebral aneurysms and their relationship with rupture are unknown. In addition, postural changes and their relevance to haemodynamics of blood flow are difficult to measure in vivo using clinical imaging alone. Computational simulations investigating the detailed haemodynamics in cerebral aneurysms have been developed in recent times not only to understand the progression and rupture but also for clinical evaluation and treatment. In the present study, the haemodynamics of a patient-specific case of a large aneurysm on the left side internal carotid bifurcation (LICA) and no aneurysm on the right side internal carotid bifurcation (RICA) was investigated. The simulation of these patient-specific models using fluid–structure interaction provides a valuable comparison of flow behavior between normal and aneurysm models. The influences of postural changes were investigated during standing, sleeping, and head-down (HD) position. Significant changes in flow were observed during the HD position and quit high arterial blood pressure in the internal carotid artery (ICA) aneurysm model was established when compared to the normal ICA model. The velocity increased abruptly during the HD position by more than four times (LICA and RICA) and wall shear stress by four times (LICA) to ten times (RICA). The complex spiral flow and higher pressures prevailing within the dome increase the risk of aneurysm rupture.
Collapse
Affiliation(s)
- Raghuvir Pai Ballambat
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mohammad Zuber
- Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shah Mohammed Abdul Khader
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Anurag Ayachit
- Department of Radiology and Imaging, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kamarul Arifin Bin Ahmad
- Department of Aerospace Engineering, Faculty of Engineering, Universitist Putra Malaysia, 43499, Kuala Lumpur, Malaysia
| | - Rajanikanth Rao Vedula
- Department of Radiology and Imaging, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sevagur Ganesh Kamath
- Department of Cardio-Vascular and Thoracic Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ibrahim Lutfi Shuaib
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, George Town, Malaysia
| |
Collapse
|
8
|
Seven Mathematical Models of Hemorrhagic Shock. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6640638. [PMID: 34188690 PMCID: PMC8195646 DOI: 10.1155/2021/6640638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/02/2021] [Indexed: 11/17/2022]
Abstract
Although mathematical modelling of pressure-flow dynamics in the cardiocirculatory system has a lengthy history, readily finding the appropriate model for the experimental situation at hand is often a challenge in and of itself. An ideal model would be relatively easy to use and reliable, besides being ethically acceptable. Furthermore, it would address the pathogenic features of the cardiovascular disease that one seeks to investigate. No universally valid model has been identified, even though a host of models have been developed. The object of this review is to describe several of the most relevant mathematical models of the cardiovascular system: the physiological features of circulatory dynamics are explained, and their mathematical formulations are compared. The focus is on the whole-body scale mathematical models that portray the subject's responses to hypovolemic shock. The models contained in this review differ from one another, both in the mathematical methodology adopted and in the physiological or pathological aspects described. Each model, in fact, mimics different aspects of cardiocirculatory physiology and pathophysiology to varying degrees: some of these models are geared to better understand the mechanisms of vascular hemodynamics, whereas others focus more on disease states so as to develop therapeutic standards of care or to test novel approaches. We will elucidate key issues involved in the modeling of cardiovascular system and its control by reviewing seven of these models developed to address these specific purposes.
Collapse
|
9
|
Kourtidou-Papadeli C, Frantzidis CA, Gilou S, Plomariti CE, Nday CM, Karnaras D, Bakas L, Bamidis PD, Vernikos J. Gravity Threshold and Dose Response Relationships: Health Benefits Using a Short Arm Human Centrifuge. Front Physiol 2021; 12:644661. [PMID: 34045973 PMCID: PMC8144521 DOI: 10.3389/fphys.2021.644661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
Purpose Increasing the level of gravity passively on a centrifuge, should be equal to or even more beneficial not only to astronauts living in a microgravity environment but also to patients confined to bed. Gravity therapy (GT) may have beneficial effects on numerous conditions, such as immobility due to neuromuscular disorders, balance disorders, stroke, sports injuries. However, the appropriate configuration for administering the Gz load remains to be determined. Methods To address these issues, we studied graded G-loads from 0.5 to 2.0g in 24 young healthy, male and female participants, trained on a short arm human centrifuge (SAHC) combined with mild activity exercise within 40–59% MHR, provided by an onboard bicycle ergometer. Hemodynamic parameters, as cardiac output (CO), stroke volume (SV), mean arterial pressure (MAP), systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) were analyzed, as well as blood gas analysis. A one-way repeated measures ANOVA and pairwise comparisons were conducted with a level of significance p < 0.05. Results Significant changes in heart rate variability (HRV) and its spectral components (Class, Fmax, and VHF) were found in all g loads when compared to standing (p < 0.001), except in 1.7 and 2.0g. There were significant changes in CO, cardiac index (CI), and cardiac power (CP) (p < 0.001), and in MAP (p = 0.003) at different artificial gravity (AG) levels. Dose-response curves were determined based on statistically significant changes in cardiovascular parameters, as well as in identifying the optimal G level for training, as well as the optimal G level for training. There were statistically significant gender differences in Cardiac Output/CO (p = 0.002) and Cardiac Power/CP (p = 0.016) during the AG training as compared to standing. More specifically, these cardiovascular parameters were significantly higher for male than female participants. Also, there was a statistically significant (p = 0.022) gender by experimental condition interaction, since the high-frequency parameter of the heart rate variability was attenuated during AG training as compared to standing but only for the female participants (p = 0.004). Conclusion The comprehensive cardiovascular evaluation of the response to a range of graded AG loads, as compared to standing, in male and female subjects provides the dose-response framework that enables us to explore and validate the usefulness of the centrifuge as a medical device. It further allows its use in precisely selecting personalized gravity therapy (GT) as needed for treatment or rehabilitation of individuals confined to bed.
Collapse
Affiliation(s)
- Chrysoula Kourtidou-Papadeli
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece.,Aeromedical Center of Thessaloniki, Thessaloniki, Greece
| | - Christos A Frantzidis
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece
| | - Sotiria Gilou
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christina E Plomariti
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christiane M Nday
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Lefteris Bakas
- Laboratory of Aerospace and Rehabilitation Applications "Joan Vernikos" Arogi Rehabilitation Center, Thessaloniki, Greece
| | - Panagiotis D Bamidis
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece
| | - Joan Vernikos
- Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece.,Thirdage llc, Culpeper, VA, United States
| |
Collapse
|
10
|
Goswami N, Blaber AP, Hinghofer-Szalkay H, Convertino VA. Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation. Physiol Rev 2019; 99:807-851. [PMID: 30540225 DOI: 10.1152/physrev.00006.2018] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review presents lower body negative pressure (LBNP) as a unique tool to investigate the physiology of integrated systemic compensatory responses to altered hemodynamic patterns during conditions of central hypovolemia in humans. An early review published in Physiological Reviews over 40 yr ago (Wolthuis et al. Physiol Rev 54: 566-595, 1974) focused on the use of LBNP as a tool to study effects of central hypovolemia, while more than a decade ago a review appeared that focused on LBNP as a model of hemorrhagic shock (Cooke et al. J Appl Physiol (1985) 96: 1249-1261, 2004). Since then there has been a great deal of new research that has applied LBNP to investigate complex physiological responses to a variety of challenges including orthostasis, hemorrhage, and other important stressors seen in humans such as microgravity encountered during spaceflight. The LBNP stimulus has provided novel insights into the physiology underlying areas such as intolerance to reduced central blood volume, sex differences concerning blood pressure regulation, autonomic dysfunctions, adaptations to exercise training, and effects of space flight. Furthermore, approaching cardiovascular assessment using prediction models for orthostatic capacity in healthy populations, derived from LBNP tolerance protocols, has provided important insights into the mechanisms of orthostatic hypotension and central hypovolemia, especially in some patient populations as well as in healthy subjects. This review also presents a concise discussion of mathematical modeling regarding compensatory responses induced by LBNP. Given the diverse applications of LBNP, it is to be expected that new and innovative applications of LBNP will be developed to explore the complex physiological mechanisms that underline health and disease.
Collapse
Affiliation(s)
- Nandu Goswami
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Andrew Philip Blaber
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Helmut Hinghofer-Szalkay
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Victor A Convertino
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| |
Collapse
|
11
|
Dziuda Ł, Krej M, Śmietanowski M, Sobotnicki A, Sobiech M, Kwaśny P, Brzozowska A, Baran P, Kowalczuk K, Skibniewski FW. Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure. Sci Rep 2018; 8:7793. [PMID: 29773912 PMCID: PMC5958117 DOI: 10.1038/s41598-018-26173-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/08/2018] [Indexed: 01/28/2023] Open
Abstract
Lower body negative pressure (LBNP) is a method derived from space medicine, which in recent years has been increasingly used by clinicians to assess the efficiency of the cardiovascular regulatory mechanisms. LBNP with combined tilt testing is considered as an effective form of training to prevent orthostatic intolerance. We have developed a prototype system comprising a tilt table and LBNP chamber, and tested it in the context of the feasibility of the device for assessing the pilots' efficiency. The table allows for controlled tilting in the range from -45 to +80° at the maximum change rate of 45°/s. The LBNP value can smoothly be adjusted down to -100 mmHg at up to 20 mmHg/s. 17 subjects took part in the pilot study. A 24-minute scenario included -100 mmHg supine LBNP, head up tilt (HUT) and -60 mmHg LBNP associated with HUT, separated by resting phases. The most noticeable changes were observed in stroke volume (SV). During supine LBNP, HUT and the combined stimulus, a decrease of the SV value by 20%, 40% and below 50%, respectively, were detected. The proposed system can map any pre-programed tilt and LBNP profiles, and the pilot study confirmed the efficiency of performing experimental procedures.
Collapse
Affiliation(s)
- Łukasz Dziuda
- Department of Flight Simulator Innovations, Military Institute of Aviation Medicine, ul. Krasińskiego 54/56, 01-755, Warszawa, Poland.
| | - Mariusz Krej
- Department of Flight Simulator Innovations, Military Institute of Aviation Medicine, ul. Krasińskiego 54/56, 01-755, Warszawa, Poland
| | - Maciej Śmietanowski
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, ul. Banacha 1B, 02-097, Warszawa, Poland
| | - Aleksander Sobotnicki
- Department of Research and Development, Institute of Medical Technology and Equipment, ul. Roosevelta 118, 41-800, Zabrze, 41-800, Poland
| | - Mariusz Sobiech
- Department of Research and Development, Institute of Medical Technology and Equipment, ul. Roosevelta 118, 41-800, Zabrze, 41-800, Poland
| | - Piotr Kwaśny
- ETC-PZL Aerospace Industries Sp. z o.o., Aleja Krakowska 110/114, 02-256, Warszawa, Poland
| | - Anna Brzozowska
- ETC-PZL Aerospace Industries Sp. z o.o., Aleja Krakowska 110/114, 02-256, Warszawa, Poland
| | - Paulina Baran
- Department of Flight Simulator Innovations, Military Institute of Aviation Medicine, ul. Krasińskiego 54/56, 01-755, Warszawa, Poland
| | - Krzysztof Kowalczuk
- Department of Simulator Studies and Aeromedical Training, Military Institute of Aviation Medicine, ul. Krasińskiego 54/56, 01-755, Warszawa, Poland
| | - Franciszek W Skibniewski
- Department of Flight Simulator Innovations, Military Institute of Aviation Medicine, ul. Krasińskiego 54/56, 01-755, Warszawa, Poland
| |
Collapse
|
12
|
Effect of postural changes on normal and stenosed common carotid artery using FSI. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2014; 37:139-52. [PMID: 24519000 DOI: 10.1007/s13246-014-0246-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Gravity associated with postural changes has a strong bearing on haemodynamics of blood flow in arteries. Its effect on stenosed cases has not been widely investigated. In the present study, variation observed in blood flow during postural changes is investigated for different conditions like standing, sleeping and head-down position. A fluid structure interaction study is carried out for idealized normal and 75% eccentric and concentric stenosed common carotid normal artery. The results clearly indicate the effects of altered gravity on flow conditions. It was found to be very significant during head-down position and demonstrated very high arterial blood pressure in stenosed common carotid when compared with normal carotid.
Collapse
|
13
|
Keith Sharp M, Batzel JJ, Montani JP. Space physiology IV: mathematical modeling of the cardiovascular system in space exploration. Eur J Appl Physiol 2013; 113:1919-37. [PMID: 23539439 DOI: 10.1007/s00421-013-2623-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 03/03/2013] [Indexed: 01/03/2023]
Abstract
Mathematical modeling represents an important tool for analyzing cardiovascular function during spaceflight. This review describes how modeling of the cardiovascular system can contribute to space life science research and illustrates this process via modeling efforts to study postflight orthostatic intolerance (POI), a key issue for spaceflight. Examining this application also provides a context for considering broader applications of modeling techniques to the challenges of bioastronautics. POI, which affects a large fraction of astronauts in stand tests upon return to Earth, presents as dizziness, fainting and other symptoms, which can diminish crew performance and cause safety hazards. POI on the Moon or Mars could be more critical. In the field of bioastronautics, POI has been the dominant application of cardiovascular modeling for more than a decade, and a number of mechanisms for POI have been investigated. Modeling approaches include computational models with a range of incorporated factors and hemodynamic sophistication, and also physical models tested in parabolic and orbital flight. Mathematical methods such as parameter sensitivity analysis can help identify key system mechanisms. In the case of POI, this could lead to more effective countermeasures. Validation is a persistent issue in modeling efforts, and key considerations and needs for experimental data to synergistically improve understanding of cardiovascular responses are outlined. Future directions in cardiovascular modeling include subject-specific assessment of system status, as well as research on integrated physiological responses, leading, for instance, to assessment of subject-specific susceptibility to POI or effects of cardiovascular alterations on muscular, vision and cognitive function.
Collapse
Affiliation(s)
- M Keith Sharp
- Biofluid Mechanics Laboratory, Department of Mechanical Engineering, University of Louisville, Louisville, KY, USA
| | | | | |
Collapse
|
14
|
Shi Y, Lawford P, Hose R. Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed Eng Online 2011; 10:33. [PMID: 21521508 PMCID: PMC3103466 DOI: 10.1186/1475-925x-10-33] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 04/26/2011] [Indexed: 11/16/2022] Open
Abstract
Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models, and this application is also addressed. As an example of 0D cardiovascular modelling, a small selection of simple models have been represented in the CellML mark-up language and uploaded to the CellML model repository http://models.cellml.org/. They are freely available to the research and education communities. Conclusion Each published cardiovascular model has merit for particular applications. This review categorises 0D and 1D models, highlights their advantages and disadvantages, and thus provides guidance on the selection of models to assist various cardiovascular modelling studies. It also identifies directions for further development, as well as current challenges in the wider use of these models including service to represent boundary conditions for local 3D models and translation to clinical application.
Collapse
Affiliation(s)
- Yubing Shi
- Medical Physics Group, Department of Cardiovascular Science, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | | | | |
Collapse
|
15
|
Simulated stand tests and centrifuge training to prevent orthostatic intolerance on Earth, moon, and Mars. Ann Biomed Eng 2010; 38:1119-31. [PMID: 20131096 DOI: 10.1007/s10439-010-9943-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
One proposed method to overcome postflight orthostatic intolerance is for astronauts to undergo inflight centrifugation. Cardiovascular responses were compared between centrifuge and gravitational conditions using a seven-compartment cardiovascular model. Vascular resistance, heart rate, and stroke volume values were adopted from literature, while compartmental volumes and compliances were derived from impedance plethysmography of subjects (n=8) riding on a centrifuge. Three different models were developed to represent the typical male subject who completed a 10-min postflight stand test ("male finisher"), "non-finishing male" and "female" (all non-finishers). A sensitivity analysis found that both cardiac output and arterial pressure were most sensitive to total blood volume. Simulated stand tests showed that female astronauts were more susceptible to orthostatic intolerance due to lower initial blood pressure and higher pressure threshold for presyncope. Rates of blood volume loss by capillary filtration were found to be equivalent in female and male non-finishers, but four times smaller in male finishers. For equivalent times to presyncope during centrifugation as those during constant gravity, lower G forces at the level of the heart were required. Centrifuge G levels to match other cardiovascular parameters varied depending on the parameter, centrifuge arm length, and the gravity level being matched.
Collapse
|
16
|
Effects of Gravity on The Pressure of Blood Flow in a Tapered Vessel: Based on a 3D FSI Mathematical Model With Posture Change. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2009.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Deserranno D, Kassemi M, Thomas JD. Incorporation of myofilament activation mechanics into a lumped model of the human heart. Ann Biomed Eng 2007; 35:321-36. [PMID: 17219084 DOI: 10.1007/s10439-006-9234-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Accepted: 11/14/2006] [Indexed: 11/25/2022]
Abstract
The success and usefulness of lumped cardiovascular models are directly dependent on the physiological fidelity of their formulation. In most existing lumped formulations for the heart, the compliance of the chamber is modeled based on its electrical analog, the capacitor. This has traditionally resulted in the use of a pre-described time-varying stiffness modulus for simulating the cardiac contractions. Unfortunately, such a time-varying stiffness does not include any physiological contractile machinery and thus no dependency on fiber sarcomere length and intracellular calcium concentrations, key mechanisms responsible for proper cardiac function. In this paper a lumped cardiovascular model is presented that is based on the incorporation of detailed myofilament activation for simulating the ventricular calcium binding and cross-bridging mechanism. Upon validation against experimental data, it is shown that the new myofilament activation-based model considerably increases the physiological validity and internal consistency of the cardiovascular simulations in comparison to the traditional variable compliance-based models. It is also shown, through specific case studies, that the present model can serve as a quick response tool for testing various hypotheses concerning the impact of the calcium binding and crossbridge kinetics on the overall performance of the cardiovascular system.
Collapse
Affiliation(s)
- Dimitri Deserranno
- National Center for Space Exploration Research, NASA Glenn Research Center, 21000 Brookpark Rd MS 110-3, Cleveland, OH 44135, USA.
| | | | | |
Collapse
|
18
|
Ha RR, Qian J, Ware DL, Zwischenberger JB, Bidani A, Clark JW. An Integrative Cardiovascular Model of the Standing and Reclining Sheep. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s10558-005-5341-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|