1
|
Li Z, Qi J, Fu S, Luan J, Wang Q. Effects of nanographene oxide on adipose-derived stem cell cryopreservation. Cell Tissue Bank 2024; 25:805-830. [PMID: 38844606 DOI: 10.1007/s10561-024-10140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/17/2024] [Indexed: 09/06/2024]
Abstract
Cryoinjury mitigation is key in cell cryopreservation. Here, we aimed to assess the effectiveness of nanographene oxide (nano-GO) for improving cryoprotectant agents (CPAs) in human adipose stem cell (hADSC) cryopreservation. For in vitro experiments, nano-GO (5 μg/mL) was added to the CPAs in the control, and passage (P) 2 hADSCs were collected and cryopreserved for around two weeks. We compared cytotoxicity, cell viability, immunophenotypes, proliferation, cell apoptosis, and tri-lineage differentiation. In vivo, studies used lipoaspirate to create non-enriched or hADSC-enriched fat tissues by combining it with PBS or hADSCs cryopreserved with the aforementioned CPAs. Each nude mouse received a 0.3 mL subcutaneous injection of the graft. At 12 weeks, the grafts were harvested. Histology, adipocyte-associated genes and protein, vascular density and angiogenic cytokines, macrophage infiltration, and inflammatory cytokines were analyzed. Nano-GO CPA contributed to increased cell viability, improved cell recovery, and lowered levels of early apoptosis. Nano GO at concentrations of 0.01-100 μg/mL caused no cytotoxicity to hADSCs. The absence of nano GOs in the intracellular compartments of the cells was confirmed by transmission electron microscopy. The fat grafts from the CPA-GO group showed more viable adipocytes and significantly increased angiogenesis compared to the PBS and CPA-C groups. Adding hADSCs from the CPA-GO group to the graft reduced macrophage infiltration and MCP-1 expression. Nano-GO plays an anti-apoptotic role in the cryopreservation of hADSCs, which could improve the survival of transplanted fat tissues, possibly via improved angiogenesis and lower inflammatory response in the transplanted adipose tissue.
Collapse
Affiliation(s)
- Zifei Li
- Facial and Cervical Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 33 Badachu Road, Shijingshan, Beijing, 100144, People's Republic of China
| | - Jun Qi
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Badachu Road, Shijingshan Dist., Beijing, 100144, People's Republic of China
| | - Su Fu
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Badachu Road, Shijingshan Dist., Beijing, 100144, People's Republic of China
| | - Jie Luan
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Badachu Road, Shijingshan Dist., Beijing, 100144, People's Republic of China.
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Badachu Road, Shijingshan Dist., Beijing, 100144, People's Republic of China.
| |
Collapse
|
2
|
Dey MK, Devireddy RV. Adult Stem Cells Freezing Processes and Cryopreservation Protocols. Methods Mol Biol 2024; 2783:53-89. [PMID: 38478226 DOI: 10.1007/978-1-0716-3762-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. Cryopreservation has shown the most promise but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. The purpose of this chapter is to present a general overview of cryopreservation storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage.
Collapse
Affiliation(s)
- Mohan Kumar Dey
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Ram V Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
3
|
Non-toxic freezing media to retain the stem cell reserves in adipose tissues. Cryobiology 2020; 96:137-144. [PMID: 32687840 DOI: 10.1016/j.cryobiol.2020.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Subcutaneous adipose tissue is a rich source of stromal vascular fraction (SVF) and adipose-derived stromal/stem cells (ASCs) that are inherently multipotent and exhibit regenerative properties. In current practice, lipoaspirate specimens harvested from liposuction surgeries are routinely discarded as a biohazard waste due to a lack of simple, cost effective, and validated cryopreservation protocols. The aim of this study is to develop a xenoprotein-free cryoprotective agent cocktail that will allow for short-term (up to 6 months) preservation of lipoaspirate tissues suitable for fat grafting and/or stromal/stem cell isolation when stored at achievable temperatures (-20 °C or -80 °C). Lipoaspirates donated by three consenting healthy donors undergoing elective cosmetic liposuction surgeries were suspended in five freezing media (FM1: 10% DMSO and 35% BSA; FM2: 2% DMSO and 43% BSA; FM3: 10% DMSO and 35% lipoaspirate saline; FM4: 2% DMSO and 6% HSA; and FM5: 40% lipoaspirate saline and 10% PVP) all suspended in 1X DMEM/F12 and frozen using commercially available freezers (-20 °C or -80 °C) and stored at least for a 1 month. After 1 month of freezing storage, SVF cells and ASCs were isolated from the frozen-thawed lipoaspirates by digestion with collagenase type I. Cell viability was evaluated by fluorescence microscopy after staining with acridine orange and ethidium bromide. The SVF isolated from lipoaspirates frozen at -80 °C retained comparable cell viability with the tested freezing media (FM2, FM3, FM4) comparable with the conventional DMSO and animal serum media (FM1), whereas the FM5 media resulted in lower viability. In contrast, tissues frozen and stored at -20 °C did not yield live SVF cells after thawing and collagenase digestion. The surface marker expression (CD90, CD29, CD34, CD146, CD31, and CD45) of ASCs from frozen lipoaspirates at -80 °C in different cryoprotectant media were also evaluated and no significant differences were found between the groups. The adipogenic and osteogenic differentiation potential were studied by histochemical staining and gene expression by qRT-PCR. Oil Red O staining for adipogenesis revealed that the CPA media FM1, FM4 and FM5 displayed robust differentiation. Alizarin Red S staining for osteogenesis revealed that FM1 and FM4 media displayed superior differentiation in comparison to other tested media. Measurement of adipogenic and osteogenic gene expression by qRT-PCR provided similar outcomes and indicated that FM4 CPA media comparable with FM1 for adipogenesis and osteogenesis.
Collapse
|
4
|
Vakhshori V, Bougioukli S, Sugiyama O, Tang A, Yoho R, Lieberman JR. Cryopreservation of Human Adipose-Derived Stem Cells for Use in Ex Vivo Regional Gene Therapy for Bone Repair. Hum Gene Ther Methods 2018; 29:269-277. [PMID: 30280937 DOI: 10.1089/hgtb.2018.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of an ex vivo regional gene therapy clinical pathway using adipose-derived stem cells (ASCs) may require cryopreservation for cell culture, storage, and transport prior to clinical use. ASCs isolated from five donors were transduced with a lentiviral vector containing BMP-2. Three groups were assessed: transduction without cell freezing (group 1), freezing of cells for 3 weeks followed by transduction (group 2), and cell transduction prior to freezing (group 3). Nontransduced cells were used as a control. The cluster of differentiation (CD) marker profiles, cell number, BMP-2 production, and osteogenic potential were measured. The CD marker profile (CD44, CD73, CD90, and CD105) was unchanged after cryopreservation. Cell number was equivalent among cryopreservation protocols in transduced and nontransduced cells. There was a trend toward decreased BMP-2 production in group 3 compared to groups 1 and 2. Osteogenic potential based on Alizarin red concentration was higher in group 2 compared to group 3, with no difference compared to group 1. Freezing ASCs prior to transduction with a lentiviral vector containing BMP-2 has no detrimental effect on cell number, BMP-2 production, osteogenic potential, or immunophenotype. Transduction prior to freezing, however, may limit the BMP-2 production and potential osteogenic differentiation of the ASCs.
Collapse
Affiliation(s)
- Venus Vakhshori
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| | - Sofia Bougioukli
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| | - Osamu Sugiyama
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| | - Amy Tang
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| | - Robert Yoho
- Cosmetic surgery private practice, Visalia, California
| | - Jay R Lieberman
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| |
Collapse
|
5
|
Shaik S, Wu X, Gimble J, Devireddy R. Effects of Decade Long Freezing Storage on Adipose Derived Stem Cells Functionality. Sci Rep 2018; 8:8162. [PMID: 29802353 PMCID: PMC5970158 DOI: 10.1038/s41598-018-26546-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022] Open
Abstract
Over the last decade and half, the optimization of cryopreservation for adipose tissue derived stromal/stem cells (ASCs) especially in determining the optimal combination of cryoprotectant type, cooling rate, and thawing rate have been extensively studied. In this study, we examined the functionality of ASCs that have been frozen-stored for more than 10 years denoted as long-term freezing, frozen within the last 3 to 7 years denoted as short-term freezing and compared their response with fresh ASCs. The mean post-thaw viability for long-term frozen group was 78% whereas for short-term frozen group 79% with no significant differences between the two groups. The flow cytometry evaluation of stromal surface markers, CD29, CD90, CD105, CD44, and CD73 indicated the expression (above 95%) in passages P1-P4 in all of the frozen-thawed ASC groups and fresh ASCs whereas the hematopoietic markers CD31, CD34, CD45, and CD146 were expressed extremely low (below 2%) within both the frozen-thawed and fresh cell groups. Quantitative real time polymerase chain reaction (qPCR) analysis revealed some differences between the osteogenic gene expression of long-term frozen group in comparison to fresh ASCs. Intriguingly, one group of cells from the short-term frozen group exhibited remarkably higher expression of osteogenic genes in comparison to fresh ASCs. The adipogenic differentiation potential remained virtually unchanged between all of the frozen-thawed groups and the fresh ASCs. Long-term cryopreservation of ASCs, in general, has a somewhat negative impact on the osteogenic potential of ASCs, especially as it relates to the decrease in osteopontin gene expression but not significantly so with respect to RUNX2 and osteonectin gene expressions. However, the adipogenic potential, post thaw viability, and immunophenotype characteristics remain relatively intact between all the groups.
Collapse
Affiliation(s)
- Shahensha Shaik
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Xiying Wu
- La Cell LLC, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jeffrey Gimble
- La Cell LLC, Tulane University School of Medicine, New Orleans, LA, USA
- Center for Stem Cell Research & Regenerative Medicine and Departments of Medicine, Structural & Cellular Biology, and Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ram Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
6
|
Adipose-Derived Mesenchymal Stem Cells in the Use of Cartilage Tissue Engineering: The Need for a Rapid Isolation Procedure. Stem Cells Int 2018; 2018:8947548. [PMID: 29765427 PMCID: PMC5903192 DOI: 10.1155/2018/8947548] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have shown much promise with respect to their use in cartilage tissue engineering. MSCs can be obtained from many different tissue sources. Among these, adipose tissue can provide an abundant source of adipose-derived mesenchymal stem cells (ADMSCs). The infrapatellar fat pad (IFP) is a promising source of ADMSCs with respect to producing a cartilage lineage. Cell isolation protocols to date are time-consuming and follow conservative approaches that rely on a long incubation period of 24–48 hours. The different types of ADMSC isolation techniques used for cartilage repair will be reviewed and compared with the view of developing a rapid one-step isolation protocol that can be applied in the context of a surgical procedure.
Collapse
|
7
|
Shaik S, Devireddy R. Cryopreservation Protocols for Human Adipose Tissue Derived Adult Stem Cells. Methods Mol Biol 2018; 1773:231-259. [PMID: 29687394 DOI: 10.1007/978-1-4939-7799-4_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. Cryopreservation has shown to be most promising but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. The purpose of this chapter is to present a general overview of cryopreservation storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage.
Collapse
Affiliation(s)
- Shahensha Shaik
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| | - Ram Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
8
|
Abstract
The creation of single and multilayered adult stem cells (ASCs) sheets is presented. The stem cell sheets preserve the cell-cell and cell-extracellular matrices and are developed by utilizing a thermally reversible methylcellulose (MC) coated tissue culture polystyrene (TCPS) dish. This technique is an improvement and a simplification of earlier noninvasive cell retrieval methods based on the use of a temperature-responsive poly(N-isopropylacrylamide) (PIPAAm) coated TCPS dishes. The optimal combination of MC-water-salt was determined to be 12-14% of MC (mol. wt. of 15,000) in water with 0.5× PBS (~150 mOsm). This solution exhibited a gel formation temperature of ~32 °C. The addition (evenly spread) of 1 ml of 3 mg/ml rat tail type-I (pH adjusted to 7.5) over the MC coated surface at 37 °C improves ASC adhesion and proliferation on the methylcellulose system. Upon confluence, a continuous monolayer ASC sheet was formed on the surface of the MC hydrogel system. When the grown cell sheet was removed from the incubator and exposed to room temperature (~30 °C), it spontaneously and gradually detached from the surface of the thermoresponsive hydrogel, creating an ASC sheet.
Collapse
Affiliation(s)
- Anoosha Forghani
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Ram Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
9
|
Zanata F, Shaik S, Devireddy RV, Wu X, Ferreira LM, Gimble JM. Cryopreserved Adipose Tissue-Derived Stromal/Stem Cells: Potential for Applications in Clinic and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 951:137-146. [PMID: 27837560 DOI: 10.1007/978-3-319-45457-3_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adipose-Derived Stromal/Stem Cells (ASC) have considerable potential for regenerative medicine due to their abilities to proliferate, differentiate into multiple cell lineages, high cell yield, relative ease of acquisition, and almost no ethical concerns since they are derived from adult tissue. Storage of ASC by cryopreservation has been well described that maintains high cell yield and viability, stable immunophenotype, and robust differentiation potential post-thaw. This ability is crucial for banking research and for clinical therapeutic purposes that avoid the morbidity related to repetitive liposuction tissue harvests. ASC secrete various biomolecules such as cytokines which are reported to have immunomodulatory properties and therapeutic potential to reverse symptoms of multiple degenerative diseases/disorders. Nevertheless, safety regarding the use of these cells clinically is still under investigation. This chapter focuses on the different aspects of cryopreserved ASC and the methods to evaluate their functionality for future clinical use.
Collapse
Affiliation(s)
- Fabiana Zanata
- Federal University of Sao Paulo, Sao Paulo, SP, Brazil
- Center for Stem Cell Research & Regenerative Medicine, Tulane University, New Orleans, LA, USA
| | - Shahensha Shaik
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Ram V Devireddy
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Xiying Wu
- La Cell LLC, New Orleans BioInnovation Center, Suite 304, 1441 Canal Street, New Orleans, LA, 70112, USA
| | | | - Jeffrey M Gimble
- Center for Stem Cell Research & Regenerative Medicine, Tulane University, New Orleans, LA, USA.
- La Cell LLC, New Orleans BioInnovation Center, Suite 304, 1441 Canal Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
10
|
Liu X, Zhao G, Shu Z, Niu D, Zhang Z, Zhou P, Cao Y, Gao D. Quantification of Intracellular Ice Formation and Recrystallization During Freeze–Thaw Cycles and Their Relationship with the Viability of Pig Iliac Endothelium Cells. Biopreserv Biobank 2016; 14:511-519. [PMID: 27532801 DOI: 10.1089/bio.2015.0111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xiaoli Liu
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Gang Zhao
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Zhiquan Shu
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Dan Niu
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Zhiguo Zhang
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
- Center for Reproductive Medicine, The Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ping Zhou
- Center for Reproductive Medicine, The Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunxia Cao
- Center for Reproductive Medicine, The Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dayong Gao
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Shah FS, Li J, Zanata F, Curley JL, Martin EC, Wu X, Dietrich M, Devireddy RV, Wade JW, Gimble JM. The Relative Functionality of Freshly Isolated and Cryopreserved Human Adipose-Derived Stromal/Stem Cells. Cells Tissues Organs 2016; 201:436-444. [PMID: 27310337 DOI: 10.1159/000446494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 11/19/2022] Open
Abstract
The capability of multipotent mesenchymal stem cells to maintain cell viability, phenotype and differentiation ability upon thawing is critical if they are to be banked and used for future therapeutic purposes. In the present study, we examined the effect of 9-10 months of cryostorage on the morphology, immunophenotype, colony-forming unit (CFU) and differentiation capacity of fresh and cryopreserved human adipose-derived stromal/stem cells (ASCs) from the same donors. Cryopreservation did not reduce the CFU frequency and the expression levels of CD29, CD73, CD90 and CD105 remained unchanged with the exception of CD34 and CD45; however, the differentiation capacity of cryopreserved ASCs relative to fresh cells was significantly reduced. While our findings suggest that future studies are warranted to improve cryopreservation methods and agents, cryopreserved ASCs retain sufficient features to ensure their practical utility for both research and clinical applications.
Collapse
Affiliation(s)
- Forum S Shah
- LaCell LLC, Tulane University, New Orleans, La., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kuehlfluck P, Moghaddam A, Helbig L, Child C, Wildemann B, Schmidmaier G. RIA fractions contain mesenchymal stroma cells with high osteogenic potency. Injury 2015; 46 Suppl 8:S23-32. [PMID: 26747914 DOI: 10.1016/s0020-1383(15)30051-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The gold standard for treatment of non-union is the transplantation of autologous bone from iliac crest. As an alternative, material can be harvested by femoral reaming with the Reamer-Irrigator-Aspirator(®) (RIA)-System. This material might be a source for human mesenchymal stroma cells (MSCs) with osteogenic potency. The aim of this study was the characterisation of cells harvested with the RIA system and the comparison of their properties with cells isolated from bone marrow ("BM") and fat tissue ("adipose"). The RIA material was separated into the liquid aspiration fraction ("liquid") and the solid RIA fraction. From the solid RIA fraction the cells were cultured either directly ("native") or after collagenase digestion and filtration ("filtrate"). Stem cell characteristics were analysed and the osteogenic potential was investigated in vitro and in vivo. MATERIALS & METHODS Fat tissue and bone marrow were harvested from nine patients (three women, six males, with a mean of 48.1 years) with atrophic non-union RIA material. The cells were isolated and characterised by flow cytometry, three lineage differentiation capacities and colony-forming unit fibroblast assay. Gene expression profiles were performed and osteogenic differentiation in vivo was analysed. RESULTS All three RIA fractions contained mesenchymal stromal cells (MSCs) as demonstrated by CFU-F assay, three linage differentiation and surface marker analysis. The RIA-MSCs exhibited a significantly higher osteogenic potential in vitro compared to adipose-MSCs, whereas no difference was seen compared to BM-MSCs. Quantitative RT-PCR analysis revealed an expression of osteogenic markers in all isolated cells. The implantation of MSCs with β-TCP scaffolds into the mice muscle showed significantly higher bone formation for the filtrate RIA-MSC, native RIA-MSC and BM-MSC groups compared to the adipose-MSC group. The filtrate RIA-MSCs formed twice as much new bone in vivo compared to BM-MSCs. CONCLUSION The present study showed high potency of cells isolated by reaming. Even in the irrigation fluid, which is normally discarded, cells with the characteristics of stromal stem cells were isolated. In comparison to adipose-MSCs and BM-MSCs, the RIA-MSCs showed a similar or even better osteogenic potential in vitro and in vivo and this supports their usability in orthopaedic surgery.
Collapse
Affiliation(s)
- Pamela Kuehlfluck
- Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraβe 200a, D-69118 Heidelberg, Germany, HTRG - Heidelberg Trauma Research Group
| | - Arash Moghaddam
- Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraβe 200a, D-69118 Heidelberg, Germany, HTRG - Heidelberg Trauma Research Group
| | - Lars Helbig
- Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraβe 200a, D-69118 Heidelberg, Germany, HTRG - Heidelberg Trauma Research Group
| | - Christopher Child
- Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraβe 200a, D-69118 Heidelberg, Germany, HTRG - Heidelberg Trauma Research Group
| | - Britt Wildemann
- Julius Wolff Institute, Berlin-Brandenburg Center for Regenerative Therapies, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Gerhard Schmidmaier
- Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraβe 200a, D-69118 Heidelberg, Germany, HTRG - Heidelberg Trauma Research Group.
| | | |
Collapse
|
13
|
Successful isolation of viable adipose-derived stem cells from human adipose tissue subject to long-term cryopreservation: positive implications for adult stem cell-based therapeutics in patients of advanced age. Stem Cells Int 2015; 2015:146421. [PMID: 25945096 PMCID: PMC4402176 DOI: 10.1155/2015/146421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/28/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022] Open
Abstract
We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2–1159 days) from patients of varying ages (26–62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.
Collapse
|
14
|
Wang J, Zhao G, Zhang P, Wang Z, Zhang Y, Gao D, Zhou P, Cao Y. Measurement of the biophysical properties of porcine adipose-derived stem cells by a microperfusion system. Cryobiology 2014; 69:442-50. [PMID: 25445459 DOI: 10.1016/j.cryobiol.2014.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 11/28/2022]
Abstract
Adipose-derived stem cells (ADSCs), which are an accessible source of adult stem cells with capacities for self-renewal and differentiation into various cell types, have a promising potential in tissue engineering and regenerative medicine strategies. To meet the clinical demand for ADSCs, cryopreservation has been applied for long-term ADSC preservation. To optimize the addition, removal, freezing, and thawing of cryoprotective agents (CPAs) applied to ADSCs, we measured the transport properties of porcine ADSCs (pADSCs). The cell responses of pADSCs to hypertonic phosphate-buffered saline and common CPAs, dimethyl sulfoxide, ethylene glycol, and glycerol were measured by a microperfusion system at temperatures of 28, 18, 8, and -2°C. We determined the osmotically inactive cell volume (Vb), hydraulic conductivity (Lp), and CPA permeability (Ps) at various temperatures in a two-parameter model. Then, we quantitatively analyzed the effect of temperature on the transport properties of the pADSC membrane. Biophysical parameters were used to optimize CPA addition, removal, and freezing processes to minimize excessive shrinkage of pADSCs during cryopreservation. The biophysical properties of pADSCs have a great potential for effective optimization of cryopreservation procedures.
Collapse
Affiliation(s)
- Jianye Wang
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Gang Zhao
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, China.
| | - Pengfei Zhang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhen Wang
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Dayong Gao
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, China
| | - Ping Zhou
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, China
| | - Yunxia Cao
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, China
| |
Collapse
|
15
|
Seawright A, Ozcelikkale A, Dutton C, Han B. Role of cells in freezing-induced cell-fluid-matrix interactions within engineered tissues. J Biomech Eng 2014; 135:91001. [PMID: 23719856 DOI: 10.1115/1.4024571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 05/16/2013] [Indexed: 01/09/2023]
Abstract
During cryopreservation, ice forms in the extracellular space resulting in freezing-induced deformation of the tissue, which can be detrimental to the extracellular matrix (ECM) microstructure. Meanwhile, cells dehydrate through an osmotically driven process as the intracellular water is transported to the extracellular space, increasing the volume of fluid for freezing. Therefore, this study examines the effects of cellular presence on tissue deformation and investigates the significance of intracellular water transport and cell-ECM interactions in freezing-induced cell-fluid-matrix interactions. Freezing-induced deformation characteristics were examined through cell image deformetry (CID) measurements of collagenous engineered tissues embedded with different concentrations of MCF7 breast cancer cells versus microspheres as their osmotically inactive counterparts. Additionally, the development of a biophysical model relates the freezing-induced expansion of the tissue due to the cellular water transport and the extracellular freezing thermodynamics for further verification. The magnitude of the freezing-induced dilatation was found to be not affected by the cellular water transport for the cell concentrations considered; however, the deformation patterns for different cell concentrations were different suggesting that cell-matrix interactions may have an effect. It was, therefore, determined that intracellular water transport during freezing was insignificant at the current experimental cell concentrations; however, it may be significant at concentrations similar to native tissue. Finally, the cell-matrix interactions provided mechanical support on the ECM to minimize the expansion regions in the tissues during freezing.
Collapse
Affiliation(s)
- Angela Seawright
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
16
|
Frazier TP, Gimble JM, Devay JW, Tucker HA, Chiu ES, Rowan BG. Body mass index affects proliferation and osteogenic differentiation of human subcutaneous adipose tissue-derived stem cells. BMC Cell Biol 2013; 14:34. [PMID: 23924189 PMCID: PMC3750383 DOI: 10.1186/1471-2121-14-34] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/02/2013] [Indexed: 01/04/2023] Open
Abstract
Background Obesity is associated with a higher risk of developing cancer and co-morbidities that are part of the metabolic syndrome. Adipose tissue is recognized as an endocrine organ, as it affects a number of physiological functions, and contains adipose tissue-derived stem cells (ASCs). ASCs can differentiate into cells of multiple lineages, and as such are applicable to tissue engineering and regenerative medicine. Yet the question of whether ASC functionality is affected by the donor’s body mass index (BMI) still exists. Results ASCs were isolated from patients having different BMIs (BMI-ASCs), within the ranges of 18.5-32.8. It was hypothesized that overweight BMI-ASCs would be more compromised in early adipogenic and osteogenic potential, and ability to form colonies in vitro. BMI was inversely correlated with ASC proliferation and colony forming potential as assessed by CyQUANT proliferation assay (fluorescence- based measurement of cellular DNA content), and colony forming assays. BMI was positively correlated with early time point (day 7) but not later time point (day 15) intracytoplasmic lipid accumulation as assessed by Oil-Red-O staining. Alizarin red staining and RT-PCR for alkaline phosphatase demonstrated that elevated BMI resulted in compromised ASC mineralization of extracellular matrix and decreased alkaline phosphatase mRNA expression. Conclusions These data demonstrate that elevated BMI resulted in reduced ASC proliferation, and potentially compromised osteogenic capacity in vitro; thus BMI is an important criterion to consider in selecting ASC donors for clinical applications.
Collapse
Affiliation(s)
- Trivia P Frazier
- Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Thirumala S, Goebel WS, Woods EJ. Clinical grade adult stem cell banking. Organogenesis 2012; 5:143-54. [PMID: 20046678 DOI: 10.4161/org.5.3.9811] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/14/2009] [Indexed: 12/17/2022] Open
Abstract
There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed.
Collapse
Affiliation(s)
- Sreedhar Thirumala
- General Biotechnology LLC; Indiana University School of Medicine; Indianapolis, IN USA
| | | | | |
Collapse
|
18
|
Freimark D, Sehl C, Weber C, Hudel K, Czermak P, Hofmann N, Spindler R, Glasmacher B. Systematic parameter optimization of a Me2SO- and serum-free cryopreservation protocol for human mesenchymal stem cells. Cryobiology 2011; 63:67-75. [DOI: 10.1016/j.cryobiol.2011.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/05/2011] [Accepted: 05/10/2011] [Indexed: 11/30/2022]
|
19
|
Gimble JM, Bunnell BA, Chiu ES, Guilak F. Concise review: Adipose-derived stromal vascular fraction cells and stem cells: let's not get lost in translation. Stem Cells 2011; 29:749-54. [PMID: 21433220 DOI: 10.1002/stem.629] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Subcutaneous fat has emerged as an alternative tissue source for stromal/stem cells in regenerative medicine. Over the past decade, international research efforts have established a wealth of basic science and preclinical evidence regarding the differentiation potential and regenerative properties of both freshly processed, heterogeneous stromal vascular fraction cells and culture expanded, relatively homogeneous adipose-derived stromal/stem cells. The stage has been set for clinicians to translate adipose-derived cells from the bench to the bedside; however, this process will involve "development" steps that fall outside of traditional "hypothesis-driven, mechanism-based" paradigm. This concise review examines the next stages of the development process for therapeutic applications of adipose-derived cells and highlights the current state of the art regarding clinical trials. It is recommended that the experiments addressing these issues be reported comprehensively in the peer-review literature. This transparency will accelerate the standardization and reproducibility of adipose-derived cell therapies with respect to their efficacy and safety.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. There are three primary storage techniques, freezing (cryopreservation), drying (anhydrobiosis), and freeze drying (lyophilization), each with its own advantages and disadvantages. Cryopreservation has shown the most promise but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. Preservation by desiccation is an alternative that attempts to reproduce a naturally occurring preservative technique, namely, the phenomenon of anhydrobiosis and requires the use of high (and possibly, toxic) concentration of CPAs as well as disaccharides (sugars). Lyophilization works by first cryopreserving (freezing) the material and then desiccating (drying) it by the process of sublimation or the conversion of ice (solid) to water vapor (gas phase). The purpose of this chapter is to present a general overview of these storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage and drying storage.
Collapse
|
21
|
Thirumala S, Wu X, Gimble JM, Devireddy RV. Evaluation of polyvinylpyrrolidone as a cryoprotectant for adipose tissue-derived adult stem cells. Tissue Eng Part C Methods 2010; 16:783-92. [PMID: 19839742 DOI: 10.1089/ten.tec.2009.0552] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to test the hypothesis that human adipose tissue-derived adult stem cells (ASCs) can be effectively cryopreserved and stored in liquid nitrogen using a freezing medium containing a high-molecular-weight polymer, polyvinylpyrrolidone (PVP), as the cryoprotective agent (CPA) instead of dimethylsulfoxide (DMSO). To this end we investigated the postfreeze/thaw viability and apoptotic behavior of passage 1 ASCs cryopreserved in 15 different media: (i) the traditional media containing Dulbecco's modified Eagle's medium (DMEM) with 80% fetal calf serum (FCS) and 10% DMSO; (ii) DMEM with 80% human serum (HS) and 10% DMSO; (iii) DMEM with various concentrations (1%, 5%, 10%, 20%, and 40%) of PVP as the sole CPA; (iv) DMEM with PVP (5%, 10%, and 20%) and HS (10%); (v) DMEM with PVP (5%, 10%, and 20%) and FCS (10%); and (vi) DMEM with PVP (10%) and FCS (40% and 80%). Approximately 1 mL (10(6) cells/mL) of passage 1 ASCs were frozen overnight in a -80 degrees C freezer and stored in liquid nitrogen for 2 weeks before being rapidly thawed in a 37 degrees C water bath (1-2 min of agitation), resuspended in culture media, and seeded in separate wells of a six-well plate for a 24-h incubation period at 37 degrees C. After 24 h, the thawed samples were analyzed by bright-field microscopy and flow cytometry. The results suggest that the absence of DMSO significantly increases the fraction of apoptotic and/or necrotic ASCs. However, the percentage of viable cells obtained with 10% PVP and DMEM was comparable with that obtained in freezing media with DMSO and serum (HS or FCS), that is, approximately 70% + or - 8% and approximately 83% + or - 8%, respectively. Slightly enhanced cell viability was observed with the addition of serum (either HS or FCS) to the freezing media containing PVP as the CPA. Adipogenic and osteogenic differentiation behaviors of the frozen thawed cells were also assessed using histochemical staining and optical density measurements and the expression of adipogenic-associated genes was analyzed using reverse transcription-polymerase chain reaction. Our results suggest that after thawing, ASC viability and adipogenic and osteogenic differentiation abilities can be maintained even when ASCs are frozen in the absence of serum but with 10% PVP in DMEM.
Collapse
Affiliation(s)
- Sreedhar Thirumala
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
22
|
James AW, Levi B, Nelson ER, Peng M, Commons GW, Lee M, Wu B, Longaker MT. Deleterious effects of freezing on osteogenic differentiation of human adipose-derived stromal cells in vitro and in vivo. Stem Cells Dev 2010; 20:427-39. [PMID: 20536327 DOI: 10.1089/scd.2010.0082] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human adipose-derived stromal cells (hASCs) represent a multipotent stromal cell type with a proven capacity to undergo osteogenic differentiation. Many hurdles exist, however, between current knowledge of hASC osteogenesis and their potential future use in skeletal tissue regeneration. The impact of frozen storage on hASC osteogenic differentiation, for example, has not been studied in detail. To examine the effects of frozen storage, hASCs were harvested from lipoaspirate and either maintained in standard culture conditions or frozen for 2 weeks under standard conditions (90% fetal bovine serum, 10% dimethyl sulfoxide). Next, in vitro parameters of cell morphology (surface electron microscopy [EM]), cell viability and growth (trypan blue; bromodeoxyuridine incorporation), osteogenic differentiation (alkaline phosphatase, alizarin red, and quantitative real-time (RT)-polymerase chain reaction), and adipogenic differentiation (Oil red O staining and quantitative RT-polymerase chain reaction) were performed. Finally, in vivo bone formation was assessed using a critical-sized cranial defect in athymic mice, utilizing a hydroxyapatite (HA)-poly(lactic-co-glycolic acid) scaffold for ASC delivery. Healing was assessed by serial microcomputed tomography scans and histology. Freshly derived ASCs differed significantly from freeze-thaw ASCs in all markers examined. Surface EM showed distinct differences in cellular morphology. Proliferation, and osteogenic and adipogenic differentiation were all significantly hampered by the freeze-thaw process in vitro (*P < 0.01). In vivo, near complete healing was observed among calvarial defects engrafted with fresh hASCs. This was in comparison to groups engrafted with freeze-thaw hASCs that showed little healing (*P < 0.01). Finally, recombinant insulin-like growth factor 1 or recombinant bone morphogenetic protein 4 was observed to increase or rescue in vitro osteogenic differentiation among frozen hASCs (*P < 0.01). The freezing of ASCs for storage significantly impacts their biology, both in vitro and in vivo. The ability of ASCs to successfully undergo osteogenic differentiation after freeze-thaw is substantively muted, both in vitro and in vivo. The use of recombinant proteins, however, may be used to mitigate the deleterious effects of the freeze-thaw process.
Collapse
Affiliation(s)
- Aaron W James
- Hagey Pediatric Regenerative Research Laboratory, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305-5148, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Thirumala S, Gimble JM, Devireddy RV. Evaluation of methylcellulose and dimethyl sulfoxide as the cryoprotectants in a serum-free freezing media for cryopreservation of adipose-derived adult stem cells. Stem Cells Dev 2010; 19:513-22. [PMID: 19788372 DOI: 10.1089/scd.2009.0173] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developing effective techniques for the cryopreservation of human adipose-derived adult stem cells (ASCs) could increase the usefulness of these cells in tissue engineering and regenerative medicine. To this end, we investigated the post-freeze/thaw viability and apoptotic behavior of Passage 1 (P1) adult stem cells (ASCs) in 11 different media: (i) the traditional media containing Dulbecco's modified Eagle's medium (DMEM) with 80% fetal calf serum (FCS) and 10% dimethyl sulfoxide (DMSO), (ii) DMEM with 80% human serum (HS) and 10% DMSO, (iii) DMEM with 1% methyl cellulose (MC) and 10% of either HS or FCS or DMSO, and (iv) DMEM with 0%, 2%, 4%, 6%, 8%, or 10% DMSO. Approximately 1 mL (10(6) cells/mL) of P1 ASCs were frozen overnight in a -80 degrees C freezer and stored in liquid nitrogen for 2 weeks before being rapidly thawed in a 37 degrees C water bath (1-2 min of agitation), resuspended in culture media, and seeded in separate wells of a 6-well plate for a 24-h incubation period at 37 degrees C. After 24 h, the thawed samples were analyzed by bright-field microscopy and flow cytometry. The results suggest that the absence of DMSO (and the presence of MC) significantly increases the fraction of apoptotic and/or necrotic ASCs. However, the percentage of viable cells obtained with 2% DMSO and DMEM was comparable with that obtained in freezing media with 10% DMSO and 80% serum (HS or FCS), that is, approximately 84% +/- 5% and approximately 84% +/- 8%, respectively. Adipogenic and osteogenic differentiation behavior of the frozen thawed cells was also assessed using histochemical staining. Our results suggest that post-thaw ASC viability, adipogenic and osteogenic differentiability can be maintained even when they are frozen in the absence of serum but with a minimal concentration of 2% DMSO in DMEM.
Collapse
Affiliation(s)
- Sreedhar Thirumala
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
24
|
Thirumala S, Gimble JM, Devireddy RV. Cryopreservation of stromal vascular fraction of adipose tissue in a serum-free freezing medium. J Tissue Eng Regen Med 2010; 4:224-32. [PMID: 19967746 PMCID: PMC4381661 DOI: 10.1002/term.232] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Developing effective techniques for the cryopreservation of human adipose-derived adult stem cells could increase the usefulness of these cells in tissue engineering and regenerative medicine. Unfortunately, the use of serum and a commonly used cryoprotectant chemical, dimethyl sulphoxide (DMSO), during cryopreservation storage restricts the direct translation of adult stem cells to in vivo applications. The objective of this study was to test the hypothesis that the stromal vascular fraction (SVF) of adipose tissue can be effectively cryopreserved and stored in liquid nitrogen, using a freezing medium containing high molecular weight polymers, such as methylcellulose (MC) and/or polyvinylpyrollidone (PVP), as the cryoprotective agent (CPA) instead of DMSO. To this end, we investigated the post-freeze/thaw viability and apoptotic behaviour of SVF of adipose tissue frozen in 16 different media: (a) the traditional medium containing Dulbecco's modified Eagle's medium (DMEM) with 80% fetal calf serum (FCS) and 10% DMSO; (b) DMEM with 80% human serum (HS) and 10% DMSO; (c) DMEM with 0%, 2%, 4%, 6%, 8% or 10% DMSO; (d) DMEM with 1% MC and 10% of either HS or FCS or DMSO; (e) DMEM with 10% PVP and varying concentrations of FCS (0%, 10%, 40% or 80%); (f) DMEM with 10% PVP and 10% HS. Approximately 1 ml (10(6) cells/ml) of SVF cells were frozen overnight in a -80 degrees C freezer and stored in liquid nitrogen for 2 weeks before being rapidly thawed in a 37 degrees C water bath (1-2 min agitation), resuspended in culture medium and seeded in separate wells of a six-well plate for a 24 h incubation period at 37 degrees C. After 24 h, the thawed samples were analysed by brightfield microscopy and flow cytometry. The results suggest that the absence of DMSO (and the presence of MC) significantly increases the fraction of apoptotic and/or necrotic SVF cells. However, the percentage of viable cells obtained with 10% PVP and DMEM was comparable with that obtained in freezing medium with DMSO and serum (HS or FCS), i.e. approximately 54 +/- 14% and approximately 63 +/- 10%, respectively. Adipogenic and osteogenic differentiation behaviour of the frozen thawed cells was also assessed, using histochemical staining. Our results suggest that post-thaw SVF cell viability and adipogenic and osteogenic differentiability can be maintained even when they are frozen in the absence of serum and DMSO but with 10% PVP in DMEM.
Collapse
Affiliation(s)
- Sreedhar Thirumala
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
- Stem Cell Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Jeffrey M. Gimble
- Stem Cell Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Ram V. Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
25
|
Guha A, Devireddy R. Polyvinylpyrrolidone (PVP) mitigates the damaging effects of intracellular ice formation in adult stem cells. Ann Biomed Eng 2010; 38:1826-35. [PMID: 20177781 DOI: 10.1007/s10439-010-9963-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
The objective of this work was to assess the effect of 10% (w/v) polyvinylpyrrolidone (PVP) on the pattern of intracellular ice formation (IIF) in human adipose tissue derived adult stem cells (ASCs) in the absence of serum and other cryoprotective agents (CPAs). The freezing experiments were carried out using a fluorescence microscope equipped with a Linkam cooling stage using two cooling protocols. Both the cooling protocols had a common cooling ramp: cells were cooled from 20 degrees C to -8 degrees C at 20 degrees C/min and then further cooled to -13 degrees C at 1 degrees C/min. At this point we employed either cooling protocol 1: the cells were cooled from -13 degrees C to -40 degrees C at a pre-determined cooling rate of 1, 5, 10, 20, or 40 degrees C/min and then thawed back to 20 degrees C at 20 degrees C/min; or cooling protocol 2: the cells were re-warmed from -13 degrees C to -5 degrees C at 20 degrees C/min and then re-cooled at a pre-determined rate of 1, 5, 10, 20, or 40 degrees C/min to -40 degrees C. Almost all (>95%) of the ASCs frozen in 1x PBS and protocol 1 exhibited IIF. However, almost none (<5%) of the ASCs frozen in 1x PBS and protocol 2 exhibited IIF. Similarly, almost all (>95%) of the ASCs frozen in 10% PVP in PBS and protocol 1 exhibited IIF. However, ~0, ~40, ~47, ~67, and ~100% of the ASCs exhibited IIF when frozen in 10% PVP in PBS and utilizing protocol 2 at a cooling rate of 1, 5, 10, 20, or 40 degrees C/min, respectively.
Collapse
Affiliation(s)
- Avishek Guha
- Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
26
|
De Rosa A, De Francesco F, Tirino V, Ferraro GA, Desiderio V, Paino F, Pirozzi G, D'Andrea F, Papaccio G. A new method for cryopreserving adipose-derived stem cells: an attractive and suitable large-scale and long-term cell banking technology. Tissue Eng Part C Methods 2010; 15:659-67. [PMID: 19254116 DOI: 10.1089/ten.tec.2008.0674] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have shown potential ways for improving stem cell cryopreservation. The major need for autologous stem cell use is a long-term storage: this arises from the humans' hope of future use of their own cells. Therefore, it is important to evaluate the cell potential of vitality and differentiation before and after cryopreservation. Although several studies have shown a long-term preservation of adipose tissue, a few of them focused their attention to stem cells. The aim of this study was to evaluate the fate of cryopreserved stem cells collected from adipose tissue and stored at low a temperature in liquid nitrogen through an optimal cryopreservation solution (using slowly cooling in 6% threalose, 4% dimethyl sulfoxide, and 10% fetal bovine serum) and to develop a novel approach to efficiently preserve adipose-derived stem cells (ASCs) for future clinical applications. Results showed that stem cells, after being thawed, are still capable of differentiation and express all surface antigens detected before storage, confirming the integrity of their biology. In particular, ASCs differentiated into adipocytes, showed diffuse positivity for PPARgamma and adiponectin, and were also able to differentiate into endothelial cells without addition of angiogenic factors. Therefore, ASCs can be long-term cryopreserved, and this, due to their great numbers, is an attractive tool for clinical applications as well as of impact for the derived market.
Collapse
Affiliation(s)
- Alfredo De Rosa
- Dipartimento di Discipline Odontostomatologiche, Ortodontiche e Chirurgiche, Seconda Università degli Studi di Napoli , Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hebert TL, Wu X, Yu G, Goh BC, Halvorsen YDC, Wang Z, Moro C, Gimble JM. Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis. J Tissue Eng Regen Med 2010; 3:553-61. [PMID: 19670348 DOI: 10.1002/term.198] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have demonstrated that EGF and bFGF maintain the stem cell properties of proliferating human adipose-derived stromal/stem cells (hASCs) in vitro. While the expansion and cryogenic preservation of isolated hASCs are routine, these manipulations can impact their proliferative and differentiation potential. This study examined cryogenically preserved hASCs (n = 4 donors), with respect to these functions, after culture with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) at varying concentrations (0-10 ng/ml). Relative to the control, cells supplemented with EGF and bFGF significantly increased proliferation by up to three-fold over 7-8 days. Furthermore, cryopreserved hASCs expanded in the presence of EGF and bFGF displayed increased oil red O staining following adipogenic induction. This was accompanied by significantly increased levels of several adipogenesis-related mRNAs: aP2, C/EBPalpha, lipoprotein lipase (LPL), PPARgamma and PPARgamma co-activator-1 (PGC1). Adipocytes derived from EGF- and bFGF-cultured hASCs exhibited more robust functionality based on insulin-stimulated glucose uptake and atrial natriuretic peptide (ANP)-stimulated lipolysis. These findings indicate that bFGF and EGF can be used as culture supplements to optimize the proliferative capacity of cryopreserved human ASCs and their adipogenic differentiation potential.
Collapse
Affiliation(s)
- Teddi L Hebert
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast Reconstr Surg 2008; 121:401-410. [PMID: 18300956 DOI: 10.1097/01.prs.0000298322.70032.bc] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human adipose-derived stem (stromal) cells are promising as a regenerative therapy tool for defective tissues of mesenchymal lineage, including fat, bone, and cartilage, and blood vessels. In potential future clinical applications, adipose-derived stem cell cryopreservation could be an indispensable fundamental technology, as has occurred in other fields involving cell-based therapies using hematopoietic stem cells and umbilical cord blood cells. METHODS The authors examined the proliferative capacity and multipotency of human adipose-derived stem cells isolated from lipoaspirates of 18 patients in total before and after a 6-month cryopreservation following their defined protocol. Proliferative capacity was quantified by measuring doubling time in cell culture, and multipotency was examined with differentiation assays for chondrogenic, osteogenic, and adipogenic lineages. In addition, expression profiles of cell surface markers were determined by flow cytometry and compared between fresh and cryopreserved adipose-derived stem cells. RESULTS Cryopreserved adipose-derived stem cells fully retained the potential for differentiation into adipocytes, osteoblasts, and chondrocytes and for proliferative capacity. Flow cytometric analyses revealed that surface marker expression profiles remained constant before and after storage. CONCLUSIONS Adipose-derived stem cells can be cryopreserved at least for up to 6 months under the present protocol without any loss of proliferative or differentiation potential. These results ensure the availability of autologous banked adipose-derived stem cells for clinical applications in the future.
Collapse
|
29
|
Goh BC, Thirumala S, Kilroy G, Devireddy RV, Gimble JM. Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability. J Tissue Eng Regen Med 2008; 1:322-4. [PMID: 18038424 DOI: 10.1002/term.35] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the emergence of regenerative medicine, many researchers have turned to fat tissue as a source of adipose-derived stem cells (ASCs). Because freshly collected adipose tissue is not always readily available, there will be a need for improved cryopreservation methods to reproducibly maintain ASC viablility and multipotentiality in long-term storage. This study examines the efficiency of conventional dimethyl sulphoxide cryopreservation methods by measuring the maintenance of differentiation potential after one freeze cycle. Additionally, we analysed the viability of ASCs as a function of varying cell concentrations in cryopreservation media. We evaluated four distinct colony-forming unit assays (fibroblast, alkaline phosphatase, adipocyte and osteoblast) to monitor quantitatively the differentiation potential in ASCs after one freeze cycle. We found that the post-thaw viability was a function of storage concentration and that an optimal viability was observed for a concentration of 0.5 x 10(6) cells/ml cryopreservation medium.
Collapse
Affiliation(s)
- Brian C Goh
- Stem Cell Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
30
|
Kardak A, Leibo SP, Devireddy R. Membrane Transport Properties of Equine and Macaque Ovarian Tissues Frozen in Mixtures of Dimethylsulfoxide and Ethylene Glycol. J Biomech Eng 2007; 129:688-94. [PMID: 17887894 DOI: 10.1115/1.2768107] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The rate at which equine and macaque ovarian tissue sections are first cooled from +25°Cto+4°C has a significant effect on the measured water transport when the tissues are subsequently frozen in 0.85M solutions of glycerol, dimethylsulfoxide (DMSO), or ethylene glycol (EG). To determine whether the response of ovarian tissues is altered if they are suspended in mixtures of cryoprotective agents (CPAs), rather than in solutions of a single CPA, we have now measured the subzero water transport from ovarian tissues that were suspended in mixtures of DMSO and EG. Sections of freshly collected equine and macaque ovaries were suspended either in a mixture of 0.9M EG plus 0.7M DMSO (equivalent to a mixture of ∼5%v∕v of EG and DMSO) or in a 1.6M solution of only DMSO or only EG. The tissue sections were cooled from +25°Cto+4°C and then frozen to subzero temperatures at 5°C∕min. As the tissues were being frozen, a shape-independent differential scanning calorimeter technique was used to measure water loss from the tissues and, consequently, the best fit membrane permeability parameters (Lpg and ELp) of ovarian tissues during freezing. In the mixture of DMSO+EG, the respective values of Lpg and ELp for equine tissue first cooled at 40°C∕min between +25°C and +4°C before being frozen were 0.15μm∕minatm and 7.6kcal∕mole. The corresponding Lpg and ELp values for equine tissue suspended in 1.6M DMSO were 0.12μm∕minatm and 27.2kcal∕mole; in 1.6M EG, the values were 0.06μm∕minatm and 21.9kcal∕mole, respectively. For macaque ovarian tissues suspended in the mixture of DMSO+EG, the respective values of Lpg and ELp were 0.26μm∕minatm and 26.2kcal∕mole. Similarly, the corresponding LLg and ELp values for macaque tissue suspended in 1.6M DMSO were 0.22μm∕minatm and 31.4kcal∕mole; in 1.6M EG, the values were 0.20μm∕minatm and 27.9kcal∕mole. The parameters for both equine and macaque tissue samples suspended in the DMSO+EG mixture and first cooled at 0.5°C∕min between +25°C and +4°C were very similar to the corresponding values for samples cooled at 40°C∕min. In contrast, the membrane parameters of equine and macaque samples first cooled at 0.5°C∕min in single-component solutions were significantly different from the corresponding values for samples cooled at 40°C∕min. These results show that the membrane properties of ovarian cells from two species are different, and that the membrane properties are significantly affected both by the solution in which the tissue is suspended and by the rate at which the tissue is cooled from +25°Cto+4°C before being frozen. These observations suggest that these variables ought to be considered in the derivation of methods to cryopreserve ovarian tissues.
Collapse
Affiliation(s)
- A Kardak
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|