1
|
Chen YW, Cheng PP, Yin YF, Cai H, Chen JZ, Feng MH, Guo W, Zhao P, Zhang C, Shan XL, Chen HH, Guo S, Lu Y, Xu M. Integrin αV mediated activation of myofibroblast via mechanoparacrine of transforming growth factor β1 in promoting fibrous scar formation after myocardial infarction. Biochem Biophys Res Commun 2024; 692:149360. [PMID: 38081108 DOI: 10.1016/j.bbrc.2023.149360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Myocardial infarction (MI) dramatically changes the mechanical stress, which is intensified by the fibrotic remodeling. Integrins, especially the αV subunit, mediate mechanical signal and mechanoparacrine of transforming growth factor β1 (TGF-β1) in various organ fibrosis by activating CFs into myofibroblasts (MFBs). We investigated a possible role of integrin αV mediated mechanoparacrine of TGF-β1 in MFBs activation for fibrous reparation in mice with MI. METHODS Heart samples from MI, sham, or MI plus cilengitide (14 mg/kg, specific integrin αV inhibitor) treated mice, underwent functional and morphological assessments by echocardiography, and histochemistry on 7, 14 and 28 days post-surgery. The mechanical and ultrastructural changes of the fibrous scar were further evaluated by atomic mechanics microscope (AFM), immunofluorescence, second harmonic generation (SHG) imaging, polarized light and scanning electron microscope, respectively. Hydroxyproline assay was used for total collagen content, and western blot for protein expression profile examination. Fibroblast bioactivities, including cell shape, number, Smad2/3 signal and expression of extracellular matrix (ECM) related proteins, were further evaluated by microscopic observation and immunofluorescence in polyacrylamide (PA) hydrogel with adjustable stiffness, which was re-explored in fibroblast cultured on stiff matrix after silencing of integrin αV. The content of total and free TGF-β1 was tested by enzyme-linked immunosorbent assay (ELISA) in both infarcted tissue and cell samples. RESULT Increased stiffness with heterogeneity synchronized with integrin αV and alpha smooth muscle actin (α-SMA) positive MFBs accumulation in those less mature fibrous areas. Cilengitide abruptly reduced collagen content and disrupted collagen alignment, which also decreased TGF-β1 bioavailability, Smad2/3 phosphorylation, and α-SMA expression in the fibrous area. Accordingly, fibroblast on stiff but not soft matrix exhibited obvious MFB phenotype, as evidenced by enlarged cell, hyperproliferation, well-developed α-SMA fibers, and elevated ECM related proteins, while silencing of integrin αV almost abolished this switch via attenuating paracrine of TGF-β1 and nuclear translocation of Smad2/3. CONCLUSION This study illustrated that increased tissue stiffness activates CFs into MFBs by integrin αV mediated mechanoparacrine of TGF-β1, especially in immature scar area, which ultimately promotes fibrous scar maturation.
Collapse
Affiliation(s)
- Yu-Wen Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei-Pei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-Feng Yin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong Cai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing-Zhi Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Hui Feng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Li Shan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui-Hua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuo Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi Lu
- Minhang Hospital, Fu Dan University, Shanghai, China.
| | - Ming Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Yang H, Chen T, Hu Y, Niu F, Zheng X, Sun H, Cheng L, Sun L. A microfluidic platform integrating dynamic cell culture and dielectrophoretic manipulation for in situ assessment of endothelial cell mechanics. LAB ON A CHIP 2023; 23:3581-3592. [PMID: 37417786 DOI: 10.1039/d3lc00363a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The function of vascular endothelial cells (ECs) within the complex vascular microenvironment is typically modulated by biochemical cues, cell-cell interactions, and fluid shear stress. These regulatory factors play a crucial role in determining cell mechanical properties, such as elastic and shear moduli, which are important parameters for assessing cell status. However, most studies on the measurement of cell mechanical properties have been conducted in vitro, which is labor-intensive and time-consuming. Notably, many physiological factors are lacking in Petri dish culture compared with in vivo conditions, leading to inaccurate results and poor clinical relevance. Herein, we developed a multi-layer microfluidic chip that integrates dynamic cell culture, manipulation and dielectrophoretic in situ measurement of mechanical properties. Furthermore, we numerically and experimentally simulated the vascular microenvironment to investigate the effects of flow rate and tumor necrosis factor-alpha (TNF-α) on the Young's modulus of human umbilical vein endothelial cells (HUVECs). Results showed that greater fluid shear stress results in increased Young's modulus of HUVECs, suggesting the importance of hemodynamics in modulating the biomechanics of ECs. In contrast, TNF-α, an inflammation inducer, dramatically decreased HUVEC stiffness, demonstrating an adverse impact on the vascular endothelium. Blebbistatin, a cytoskeleton disruptor, significantly reduced the Young's modulus of HUVECs. In summary, the proposed vascular-mimetic dynamic culture and monitoring approach enables the physiological development of ECs in organ-on-a-chip microsystems for accurately and efficiently studying hemodynamics and pharmacological mechanisms underlying cardiovascular diseases.
Collapse
Affiliation(s)
- Hao Yang
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Tao Chen
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Yichong Hu
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Xinyu Zheng
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Haizhen Sun
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215000, China
| | - Lining Sun
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| |
Collapse
|
3
|
Xu W, Kabariti S, Young KM, Swingle SP, Liu AY, Sulchek T. Strain-dependent elastography of cancer cells reveals heterogeneity and stiffening due to attachment. J Biomech 2023; 150:111479. [PMID: 36871429 DOI: 10.1016/j.jbiomech.2023.111479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Because cells vary in thickness and in biomechanical properties, the use of a constant force trigger during atomic force microscopy (AFM) stiffness mapping produces a varied nominal strain that can obfuscate the comparison of local material properties. In this study, we measured the biomechanical spatial heterogeneity of ovarian and breast cancer cells by using an indentation-dependent pointwise Hertzian method. Force curves and surface topography were used together to determine cell stiffness as a function of nominal strain. By recording stiffness at a particular strain, it may be possible to improve comparison of the material properties of cells and produce higher contrast representations of cell mechanical properties. Defining a linear region of elasticity that corresponds to a modest nominal strain, we were able to clearly distinguish the mechanics of the perinuclear region of cells. We observed that, relative to the lamelopodial stiffness, the perinuclear region was softer for metastatic cancer cells than their nonmetastatic counterparts. Moreover, contrast in the strain-dependent elastography in comparison to conventional force mapping with Hertzian model analysis revealed a significant stiffening phenomenon in the thin lamellipodial region in which the modulus scales inversely and exponentially with cell thickness. The observed exponential stiffening is not affected by relaxation of cytoskeletal tension, but finite element modeling indicates it is affected by substrate adhesion. The novel cell mapping technique explores cancer cell mechanical nonlinearity that results from regional heterogeneity, which could help explain how metastatic cancer cells can show soft phenotypes while simultaneously increasing force generation and invasiveness.
Collapse
Affiliation(s)
- Wenwei Xu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Saif Kabariti
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Katherine M Young
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Steven P Swingle
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Alan Y Liu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Todd Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.
| |
Collapse
|
4
|
McCreery KP, Luetkemeyer CM, Calve S, Neu CP. Hyperelastic characterization reveals proteoglycans drive the nanoscale strain-stiffening response in hyaline cartilage. J Biomech 2023; 146:111397. [PMID: 36469996 PMCID: PMC9922104 DOI: 10.1016/j.jbiomech.2022.111397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Degenerative diseases such as osteoarthritis (OA) result in deterioration of cartilage extracellular matrix (ECM) components, significantly compromising tissue function. For measurement of mechanical properties at micron resolution, atomic force microscopy (AFM) is a leading technique in biomaterials research, including in the study of OA. It is common practice to determine material properties by applying classical Hertzian contact theory to AFM data. However, errors are consequential because the application of a linear elastic contact model to tissue ignores the fact that soft materials exhibit nonlinear properties even at small strains, influencing the biological conclusions of clinically-relevant studies. Additionally, nonlinear material properties are not well characterized, limiting physiological relevance of Young's modulus. Here, we probe the ECM of hyaline cartilage with AFM and explore the application of Hertzian theory in comparison to five hyperelastic models: NeoHookean, Mooney-Rivlin, Arruda-Boyce, Fung, and Ogden. The Fung and Ogden models achieved the best fits of the data, but the Fung model demonstrated robust sensitivity during model validation, demonstrating its ideal application to cartilage ECM and potentially other connective tissues. To develop a biological understanding of the Fung nonlinear parameter, we selectively degraded ECM components to target collagens (purified collagenase), hyaluronan (bacterial hyaluronidase), and glycosaminoglycans (chondroitinase ABC). We found significant differences in both Fung parameters in response to enzymatic treatment, indicating that proteoglycans drive the nonlinear response of cartilage ECM, and validating biological relevance of these phenomenological parameters. Our findings add value to the biomechanics community of using two-parameter material models for microindentation of soft biomaterials.
Collapse
Affiliation(s)
- Kaitlin P McCreery
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA; Biomedical Engineering Program, University of Colorado, Boulder, CO, USA
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA; Biomedical Engineering Program, University of Colorado, Boulder, CO, USA
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA; Biomedical Engineering Program, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
5
|
Xie L, Sun Z, Brown NJ, Glinskii OV, Meininger GA, Glinsky VV. Changes in dynamics of tumor/endothelial cell adhesive interactions depending on endothelial cell growth state and elastic properties. PLoS One 2022; 17:e0269552. [PMID: 35666755 PMCID: PMC9170101 DOI: 10.1371/journal.pone.0269552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cell adhesion to the endothelium is a crucial process in hematogenous metastasis, but how the integrity of the endothelial barrier and endothelial cell (EC) mechanical properties influence the adhesion between metastatic cancer cells and the endothelium remain unclear. In the present study, we have measured the adhesion between single cancer cells and two types of ECs at various growth states and their mechanical properties (elasticity) using atomic force microscopy single cell force spectroscopy. We demonstrated that the EC stiffness increased and adhesion with cancer cells decreased, as ECs grew from a single cell to a confluent state and developed cell-cell contacts, but this was reversed when confluent cells returned to a single state in a scratch assay. Our results suggest that the integrity of the endothelial barrier is an important factor in reducing the ability of the metastatic tumor cells to adhere to the vascular endothelium, extravasate and lodge in the vasculature of a distant organ where secondary metastatic tumors would develop.
Collapse
Affiliation(s)
- Leike Xie
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Nicola J. Brown
- Microcirculation Research Group, Department of Oncology and Metabolism, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Olga V. Glinskii
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Vladislav V. Glinsky
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| |
Collapse
|
6
|
Arefi SMA, Yang CWT, Sin DD, Feng JJ. A mechanical test of the tenertaxis hypothesis for leukocyte diapedesis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:93. [PMID: 34236552 PMCID: PMC8264968 DOI: 10.1140/epje/s10189-021-00096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
As part of the immune response, leukocytes can directly transmigrate through the body of endothelial cells or through the gap between adjacent endothelial cells. These are known, respectively, as the transcellular and paracellular route of diapedesis. What determines the usage of one route over the other is unclear. A recently proposed tenertaxis hypothesis claims that leukocytes choose the path with less mechanical resistance against leukocyte protrusions. We examined this hypothesis using numerical simulation of the mechanical resistance during paracellular and transcellular protrusions. By using parameters based on human lung endothelium, our results show that the required force to breach the endothelium through the transcellular route is greater than paracellular route, in agreement with experiments. Moreover, experiments have demonstrated that manipulation of the relative strength between the two routes can make the transcellular route preferable. Our simulations have demonstrated this reversal and thus tentatively confirmed the hypothesis of tenertaxis.
Collapse
Affiliation(s)
- S M Amin Arefi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Cheng Wei Tony Yang
- Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| |
Collapse
|
7
|
Dey K, Roca E, Ramorino G, Sartore L. Progress in the mechanical modulation of cell functions in tissue engineering. Biomater Sci 2021; 8:7033-7081. [PMID: 33150878 DOI: 10.1039/d0bm01255f] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals, mechanics at multiple stages-nucleus to cell to ECM-underlie multiple physiological and pathological functions from its development to reproduction to death. Under this inspiration, substantial research has established the role of multiple aspects of mechanics in regulating fundamental cellular processes, including spreading, migration, growth, proliferation, and differentiation. However, our understanding of how these mechanical mechanisms are orchestrated or tuned at different stages to maintain or restore the healthy environment at the tissue or organ level remains largely a mystery. Over the past few decades, research in the mechanical manipulation of the surrounding environment-known as substrate or matrix or scaffold on which, or within which, cells are seeded-has been exceptionally enriched in the field of tissue engineering and regenerative medicine. To do so, traditional tissue engineering aims at recapitulating key mechanical milestones of native ECM into a substrate for guiding the cell fate and functions towards specific tissue regeneration. Despite tremendous progress, a big puzzle that remains is how the cells compute a host of mechanical cues, such as stiffness (elasticity), viscoelasticity, plasticity, non-linear elasticity, anisotropy, mechanical forces, and mechanical memory, into many biological functions in a cooperative, controlled, and safe manner. High throughput understanding of key cellular decisions as well as associated mechanosensitive downstream signaling pathway(s) for executing these decisions in response to mechanical cues, solo or combined, is essential to address this issue. While many reports have been made towards the progress and understanding of mechanical cues-particularly, substrate bulk stiffness and viscoelasticity-in regulating the cellular responses, a complete picture of mechanical cues is lacking. This review highlights a comprehensive view on the mechanical cues that are linked to modulate many cellular functions and consequent tissue functionality. For a very basic understanding, a brief discussion of the key mechanical players of ECM and the principle of mechanotransduction process is outlined. In addition, this review gathers together the most important data on the stiffness of various cells and ECM components as well as various tissues/organs and proposes an associated link from the mechanical perspective that is not yet reported. Finally, beyond addressing the challenges involved in tuning the interplaying mechanical cues in an independent manner, emerging advances in designing biomaterials for tissue engineering are also explored.
Collapse
Affiliation(s)
- Kamol Dey
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Bangladesh
| | | | | | | |
Collapse
|
8
|
Starodubtseva MN, Nadyrov EA, Shkliarava NM, Tsukanava AU, Starodubtsev IE, Kondrachyk AN, Matveyenkau MV, Nedoseikina MS. Heterogeneity of nanomechanical properties of the human umbilical vein endothelial cell surface. Microvasc Res 2021; 136:104168. [PMID: 33845104 DOI: 10.1016/j.mvr.2021.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022]
Abstract
Endothelial cells, due to heterogeneity in the cell structure, can potentially form an inhomogeneous on structural and mechanical properties of the inner layer of the capillaries. Using quantitative nanomechanical mapping mode of atomic force microscopy, the parameters of the structural, elastic, and adhesive properties of the cell surface for living and glutaraldehyde-fixed human umbilical vein endothelial cells were studied. A significant difference in the studied parameters for three cell surface zones (peripheral, perinuclear, and nuclear zones) was established. The perinuclear zone appeared to be the softest zone of the endothelial cell surface. The heterogeneity of the endothelial cell mechanical properties at the nanoscale level can be an important mechanism in regulating the endothelium functions in blood vessels.
Collapse
Affiliation(s)
- Maria N Starodubtseva
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus; Gomel State Medical University, 5 Lange str., Gomel BY-246000, Belarus.
| | - Eldar A Nadyrov
- Gomel State Medical University, 5 Lange str., Gomel BY-246000, Belarus
| | - Nastassia M Shkliarava
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus
| | - Alena U Tsukanava
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus
| | | | | | - Matsvei V Matveyenkau
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus
| | | |
Collapse
|
9
|
Wang K, Qin Y, Chen Y. In situ AFM detection of the stiffness of the in situ exposed cell nucleus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118985. [PMID: 33600839 DOI: 10.1016/j.bbamcr.2021.118985] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022]
Abstract
Biomechanical properties of the cell nucleus play critical roles in cell behaviors and functions. As one important biomechanical property, the stiffness (or Young's modulus) of the cell nucleus has been widely investigated by different techniques including atomic force microscopy (AFM). In most of previous studies, the stiffness of the nuclear region of an intact cell or the stiffness of the isolated nucleus was detected. In this study, we developed a strategy for in situ detecting the stiffness of the cell nucleus via AFM. The extranuclear components of adherent cells (endothelial cells) were in situ removed by Triton X-100 treatment and the bare, adherent nuclei were exposed for in situ AFM force measurement. We found that the nuclear regions of intact cells (5.59 ± 1.55 kPa) had a relatively higher average Young's modulus than the nonnuclear regions (1.47 ± 0.77 kPa) and that the in situ exposed nuclei (22.06 ± 7.29 kPa) were much stiffer than the nuclear regions of intact cells. This strategy is very simple and effective for detecting the stiffness of the cell nucleus and potentially is promising for a wide application.
Collapse
Affiliation(s)
- Kun Wang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Ying Qin
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China; College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yong Chen
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China; College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
10
|
Gendernalik A, Zebhi B, Ahuja N, Garrity D, Bark D. In Vivo Pressurization of the Zebrafish Embryonic Heart as a Tool to Characterize Tissue Properties During Development. Ann Biomed Eng 2020; 49:834-845. [PMID: 32959136 DOI: 10.1007/s10439-020-02619-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
Cardiac morphogenesis requires an intricate orchestration of mechanical stress to sculpt the heart as it transitions from a straight tube to a multichambered adult heart. Mechanical properties are fundamental to this process, involved in a complex interplay with function, morphology, and mechanotransduction. In the current work, we propose a pressurization technique applied to the zebrafish atrium to quantify mechanical properties of the myocardium under passive tension. By further measuring deformation, we obtain a pressure-stretch relationship that is used to identify constitutive models of the zebrafish embryonic cardiac tissue. Two-dimensional results are compared with a three-dimensional finite element analysis based on reconstructed embryonic heart geometry. Through these steps, we found that the myocardium of zebrafish results in a stiffness on the order of 10 kPa immediately after the looping stage of development. This work enables the ability to determine how these properties change under normal and pathological heart development.
Collapse
Affiliation(s)
- Alex Gendernalik
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Banafsheh Zebhi
- Department of Mechanical Engineering, Colorado State University, Room 304 Scott Building, 1374 Campus Delivery, Fort Collins, CO, 80523-1374, USA
| | - Neha Ahuja
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Deborah Garrity
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.,Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - David Bark
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA. .,Department of Mechanical Engineering, Colorado State University, Room 304 Scott Building, 1374 Campus Delivery, Fort Collins, CO, 80523-1374, USA. .,Department of Pediatrics, University of Colorado, Aurora, CO, USA. .,Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
11
|
Fiore VF, Krajnc M, Quiroz FG, Levorse J, Pasolli HA, Shvartsman SY, Fuchs E. Mechanics of a multilayer epithelium instruct tumour architecture and function. Nature 2020; 585:433-439. [PMID: 32879493 DOI: 10.1038/s41586-020-2695-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/22/2020] [Indexed: 01/24/2023]
Abstract
Loss of normal tissue architecture is a hallmark of oncogenic transformation1. In developing organisms, tissues architectures are sculpted by mechanical forces during morphogenesis2. However, the origins and consequences of tissue architecture during tumorigenesis remain elusive. In skin, premalignant basal cell carcinomas form 'buds', while invasive squamous cell carcinomas initiate as 'folds'. Here, using computational modelling, genetic manipulations and biophysical measurements, we identify the biophysical underpinnings and biological consequences of these tumour architectures. Cell proliferation and actomyosin contractility dominate tissue architectures in monolayer, but not multilayer, epithelia. In stratified epidermis, meanwhile, softening and enhanced remodelling of the basement membrane promote tumour budding, while stiffening of the basement membrane promotes folding. Additional key forces stem from the stratification and differentiation of progenitor cells. Tumour-specific suprabasal stiffness gradients are generated as oncogenic lesions progress towards malignancy, which we computationally predict will alter extensile tensions on the tumour basement membrane. The pathophysiologic ramifications of this prediction are profound. Genetically decreasing the stiffness of basement membranes increases membrane tensions in silico and potentiates the progression of invasive squamous cell carcinomas in vivo. Our findings suggest that mechanical forces-exerted from above and below progenitors of multilayered epithelia-function to shape premalignant tumour architectures and influence tumour progression.
Collapse
Affiliation(s)
- Vincent F Fiore
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Matej Krajnc
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Jozef Stefan Institute, Ljubljana, Slovenia
| | - Felipe Garcia Quiroz
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - John Levorse
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
12
|
Delgadillo LF, Marsh GA, Waugh RE. Endothelial Glycocalyx Layer Properties and Its Ability to Limit Leukocyte Adhesion. Biophys J 2020; 118:1564-1575. [PMID: 32135082 DOI: 10.1016/j.bpj.2020.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/20/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
The endothelial glycocalyx layer (EGL), which consists of long proteoglycans protruding from the endothelium, acts as a regulator of inflammation by preventing leukocyte engagement with adhesion molecules on the endothelial surface. The amount of resistance to adhesive events the EGL provides is the result of two properties: EGL thickness and stiffness. To determine these, we used an atomic force microscope to indent the surfaces of cultured endothelial cells with a glass bead and evaluated two different approaches for interpreting the resulting force-indentation curves. In one, we treat the EGL as a molecular brush, and in the other, we treat it as a thin elastic layer on an elastic half-space. The latter approach proved more robust in our hands and yielded a thickness of 110 nm and a modulus of 0.025 kPa. Neither value showed significant dependence on indentation rate. The brush model indicated a larger layer thickness (∼350 nm) but tended to result in larger uncertainties in the fitted parameters. The modulus of the endothelial cell was determined to be 3.0-6.5 kPa (1.5-2.5 kPa for the brush model), with a significant increase in modulus with increasing indentation rates. For forces and leukocyte properties in the physiological range, a model of a leukocyte interacting with the endothelium predicts that the number of molecules within bonding range should decrease by an order of magnitude because of the presence of a 110-nm-thick layer and even further for a glycocalyx with larger thickness. Consistent with these predictions, neutrophil adhesion increased for endothelial cells with reduced EGL thickness because they were grown in the absence of fluid shear stress. These studies establish a framework for understanding how glycocalyx layers with different thickness and stiffness limit adhesive events under homeostatic conditions and how glycocalyx damage or removal will increase leukocyte adhesion potential during inflammation.
Collapse
Affiliation(s)
- Luis F Delgadillo
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Graham A Marsh
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, New York.
| |
Collapse
|
13
|
Ning L, Yang B, Mohabatpour F, Betancourt N, Sarker MD, Papagerakis P, Chen X. Process-induced cell damage: pneumatic versus screw-driven bioprinting. Biofabrication 2020; 12:025011. [DOI: 10.1088/1758-5090/ab5f53] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Eldridge WJ, Ceballos S, Shah T, Park HS, Steelman ZA, Zauscher S, Wax A. Shear Modulus Measurement by Quantitative Phase Imaging and Correlation with Atomic Force Microscopy. Biophys J 2019; 117:696-705. [PMID: 31349989 DOI: 10.1016/j.bpj.2019.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/08/2019] [Accepted: 07/09/2019] [Indexed: 02/03/2023] Open
Abstract
Many approaches have been developed to characterize cell elasticity. Among these, atomic force microscopy (AFM) combined with modeling has been widely used to characterize cellular compliance. However, such approaches are often limited by the difficulties associated with using a specific instrument and by the complexity of analyzing the measured data. More recently, quantitative phase imaging (QPI) has been applied to characterize cellular stiffness by using an effective spring constant. This metric was further correlated to mass distribution (disorder strength) within the cell. However, these measurements are difficult to compare to AFM-derived measurements of Young's modulus. Here, we describe, to our knowledge, a new way of analyzing QPI data to directly retrieve the shear modulus. Our approach enables label-free measurement of cellular mechanical properties that can be directly compared to values obtained from other rheological methods. To demonstrate the technique, we measured shear modulus and phase disorder strength using QPI, as well as Young's modulus using AFM, across two breast cancer cell-line populations dosed with three different concentrations of cytochalasin D, an actin-depolymerizing toxin. Comparison of QPI-derived and AFM moduli shows good agreement between the two measures and further agrees with theory. Our results suggest that QPI is a powerful tool for cellular biophysics because it allows for optical quantitative measurements of cell mechanical properties.
Collapse
Affiliation(s)
- Will J Eldridge
- Duke University, Department of Biomedical Engineering, Durham, North Carolina.
| | - Silvia Ceballos
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Tejank Shah
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Han Sang Park
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Zachary A Steelman
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Stefan Zauscher
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Adam Wax
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| |
Collapse
|
15
|
Fiore VF, Wong SS, Tran C, Tan C, Xu W, Sulchek T, White ES, Hagood JS, Barker TH. αvβ3 Integrin drives fibroblast contraction and strain stiffening of soft provisional matrix during progressive fibrosis. JCI Insight 2018; 3:97597. [PMID: 30333317 DOI: 10.1172/jci.insight.97597] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is characterized by persistent deposition of extracellular matrix (ECM) by fibroblasts. Fibroblast mechanosensing of a stiffened ECM is hypothesized to drive the fibrotic program; however, the spatial distribution of ECM mechanics and their derangements in progressive fibrosis are poorly characterized. Importantly, fibrosis presents with significant histopathological heterogeneity at the microscale. Here, we report that fibroblastic foci (FF), the regions of active fibrogenesis in idiopathic pulmonary fibrosis (IPF), are surprisingly of similar modulus as normal lung parenchyma and are nonlinearly elastic. In vitro, provisional ECMs with mechanical properties similar to those of FF activate both normal and IPF patient-derived fibroblasts, whereas type I collagen ECMs with similar mechanical properties do not. This is mediated, in part, by αvβ3 integrin engagement and is augmented by loss of expression of Thy-1, which regulates αvβ3 integrin avidity for ECM. Thy-1 loss potentiates cell contractility-driven strain stiffening of provisional ECM in vitro and causes elevated αvβ3 integrin activation, increased fibrosis, and greater mortality following fibrotic lung injury in vivo. These data suggest a central role for αvβ3 integrin and provisional ECM in overriding mechanical cues that normally impose quiescent phenotypes, driving progressive fibrosis through physical stiffening of the fibrotic niche.
Collapse
Affiliation(s)
- Vincent F Fiore
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Simon S Wong
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, University of California, San Diego, La Jolla, California, USA
| | - Coleen Tran
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chunting Tan
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, University of California, San Diego, La Jolla, California, USA
| | - Wenwei Xu
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Todd Sulchek
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Eric S White
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - James S Hagood
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, University of California, San Diego, La Jolla, California, USA.,Rady Children's Hospital of San Diego, San Diego, California, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
16
|
Hedayati M, Kipper MJ. Atomic force microscopy of adsorbed proteoglycan mimetic nanoparticles: Toward new glycocalyx-mimetic model surfaces. Carbohydr Polym 2018; 190:346-355. [DOI: 10.1016/j.carbpol.2018.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 12/30/2022]
|
17
|
Wang J, Liu M, Shen Y, Sun J, Shao Z, Czajkowsky DM. Compressive Force Spectroscopy: From Living Cells to Single Proteins. Int J Mol Sci 2018; 19:E960. [PMID: 29570665 PMCID: PMC5979447 DOI: 10.3390/ijms19040960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.
Collapse
Affiliation(s)
- Jiabin Wang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Meijun Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yi Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhifeng Shao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Daniel Mark Czajkowsky
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Nanomechanical Phenotype of Melanoma Cells Depends Solely on the Amount of Endogenous Pigment in the Cells. Int J Mol Sci 2018; 19:ijms19020607. [PMID: 29463035 PMCID: PMC5855829 DOI: 10.3390/ijms19020607] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer cells have unique nanomechanical properties, i.e., they behave as if they were elastic. This property of cancer cells is believed to be one of the main reasons for their facilitated ability to spread and metastasize. Thus, the so-called nanomechanical phenotype of cancer cells is viewed as an important indicator of the cells’ metastatic behavior. One of the most highly metastatic cancer cells are melanoma cells, which have a very unusual property: they can synthesize the pigment melanin in large amounts, becoming heavily pigmented. So far, the role of melanin in melanoma remains unclear, particularly the impact of the pigment on metastatic behavior of melanoma cells. Importantly, until recently the potential mechanical role of melanin in melanoma metastasis was completely ignored. In this work, we examined melanoma cells isolated from hamster tumors containing endogenous melanin pigment. Applying an array of advanced microscopy and spectroscopy techniques, we determined that melanin is the dominating factor responsible for the mechanical properties of melanoma cells. Our results indicate that the nanomechanical phenotype of melanoma cells may be a reliable marker of the cells’ metastatic behavior and point to the important mechanical role of melanin in the process of metastasis of melanoma.
Collapse
|
19
|
Blumlein A, Williams N, McManus JJ. The mechanical properties of individual cell spheroids. Sci Rep 2017; 7:7346. [PMID: 28779182 PMCID: PMC5544704 DOI: 10.1038/s41598-017-07813-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
The overall physical properties of tissues emerge in a complex manner from the properties of the component cells and other constituent materials from which the tissue is formed, across multiple length scales ranging from nanometres to millimetres. Recent studies have suggested that interfacial tension between cells contributes significantly to the mechanical properties of tissues and that the overall surface tension is determined by the ratio of adhesion tension to cortical tension. Using cavitation rheology (CR), we have measured the interfacial properties and the elastic modulus of spheroids formed from HEK cells. By comparing the work of bubble formation with deformation of the cell spheroid at different length scales, we have estimated the cortical tension for HEK cells. This innovative approach to understanding the fundamental physical properties associated with tissue mechanics may guide new approaches for the generation of materials to replace or regenerate damaged or diseased tissues.
Collapse
Affiliation(s)
- Alice Blumlein
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Noel Williams
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jennifer J McManus
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
20
|
Zhang G, Fan N, Lv X, Liu Y, Guo J, Yang L, Peng B, Jiang H. Investigation of the Mechanical Properties of the Human Osteosarcoma Cell at Different Cell Cycle Stages †. MICROMACHINES 2017. [PMCID: PMC6190040 DOI: 10.3390/mi8030089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mechanical properties of a single cell play substantial roles in cell mitosis, differentiation, and carcinogenesis. According to the difference of elastic modulus between the benign cell and the tumor cell, it has been shown that the mechanical properties of cells, as special biomarkers, may contribute greatly to disease diagnosis and drug screening. However, the mechanical properties of cells at different cell cycle stages are still not clear, which may mislead us when we use them as biomarkers. In this paper, the target regions of the human osteosarcoma cell were precisely scanned without causing any cell damage by using an atomic force microscopy (AFM) for the first time. Then, the elasticity properties of the human osteosarcoma cells were investigated quantitatively at various regions and cell cycle stages. The 32 × 32 resolution map of the elasticity showed that the elastic modulus of the cells at the interphase was larger than that at the telophase of mitosis. Moreover, the elastic modulus of the cell in the peripheral region was larger than that in the nuclear region of the cell. This work provides an accurate approach to measure the elasticity properties of cells at different stages of the cell cycle for further application in the disease diagnosis.
Collapse
Affiliation(s)
- Guocheng Zhang
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (G.Z.); (N.F.); (J.G.); (L.Y.)
| | - Na Fan
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (G.Z.); (N.F.); (J.G.); (L.Y.)
| | - Xiaoying Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (X.L.); (Y.L.)
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (X.L.); (Y.L.)
| | - Jian Guo
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (G.Z.); (N.F.); (J.G.); (L.Y.)
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Longxiang Yang
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (G.Z.); (N.F.); (J.G.); (L.Y.)
| | - Bei Peng
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (G.Z.); (N.F.); (J.G.); (L.Y.)
- Center for Robotics, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
- Correspondence: (B.P.); (H.J.); Tel.: +86-28-61831723 (B.P.); +86-28-61830242 (H.J.)
| | - Hai Jiang
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (G.Z.); (N.F.); (J.G.); (L.Y.)
- Correspondence: (B.P.); (H.J.); Tel.: +86-28-61831723 (B.P.); +86-28-61830242 (H.J.)
| |
Collapse
|
21
|
Lee D, Ryu S. A Validation Study of the Repeatability and Accuracy of Atomic Force Microscopy Indentation Using Polyacrylamide Gels and Colloidal Probes. J Biomech Eng 2017; 139:2595195. [DOI: 10.1115/1.4035536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 01/06/2023]
Abstract
The elasticity of soft biological materials is a critical property to understand their biomechanical behaviors. Atomic force microscopy (AFM) indentation method has been widely employed to measure the Young's modulus (E) of such materials. Although the accuracy of the method has been recently evaluated based on comparisons with macroscale E measurements, the repeatability of the method has yet to be validated for rigorous biomechanical studies of soft elastic materials. We tested the AFM indentation method using colloidal probes and polyacrylamide (PAAM) gels of E < 20 kPa as a model soft elastic material after having identified optimal trigger force and probe speed. AFM indentations repeated with time intervals show that the method is well repeatable when performed carefully. Compared with the rheometric method and the confocal microscopy indentation method, the AFM indentation method is evaluated to have comparable accuracy and better precision, although these elasticity measurements appear to rely on the compositions of PAAM gels and the length scale of measurement. Therefore, we have confirmed that the AFM indentation method can reliably measure the elasticity of soft elastic materials.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 e-mail:
| | - Sangjin Ryu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 e-mail:
| |
Collapse
|
22
|
Stylianou A, Gkretsi V, Patrickios CS, Stylianopoulos T. Exploring the Nano-Surface of Collagenous and Other Fibrotic Tissues with AFM. Methods Mol Biol 2017; 1627:453-489. [PMID: 28836219 DOI: 10.1007/978-1-4939-7113-8_29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atomic force microscope (AFM) is a powerful and invaluable tool for imaging and probing the mechanical properties of biological samples at the nanometric scale. The importance of nano-scale characterization and nanomechanics of soft biological tissues is becoming widely appreciated, and AFM offers unique advantages in this direction. In this chapter, we describe the procedure to collect data sets (imaging and mechanical properties measurement) of collagen gels and tumor tissues. We provide step-by-step instructions throughout the procedure, from sample preparation to cantilever calibration, data acquisition, analysis, and visualization, using two commercial AFM systems (PicoPlus and Cypher ES) and software that accompanied the AFM systems and/or are freeware available (WSxM, AtomicJ). Our protocols are written specifically for these two systems and the mentioned software; however, most of the general concepts can be readily translated to other AFM systems and software.
Collapse
Affiliation(s)
- Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus, Greece.
| | - Vasiliki Gkretsi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus, Greece
| | | | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus, Greece.
| |
Collapse
|
23
|
Fang Z, Jiang C, Feng Y, Chen R, Lin X, Zhang Z, Han L, Chen X, Li H, Guo Y, Jiang W. Effects of G6PD activity inhibition on the viability, ROS generation and mechanical properties of cervical cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2245-54. [PMID: 27217331 DOI: 10.1016/j.bbamcr.2016.05.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency has been revealed to be involved in the efficacy to anti-cancer therapy but the mechanism remains unclear. We aimed to investigate the anti-cancer mechanism of G6PD deficiency. In our study, dehydroepiandrosterone (DHEA) and shRNA technology were used for inhibiting the activity of G6PD of cervical cancer cells. Peak Force QNM Atomic Force Microscopy was used to assess the changes of topography and biomechanical properties of cells and detect the effects on living cells in a natural aqueous environment. Flow cytometry was used to detect the apoptosis and reactive oxygen species (ROS) generation. Scanning electron microscopy was used to observe cell morphology. Moreover, a laser scanning confocal microscope was used to observe the alterations in cytoskeleton to explore the involved mechanism. When G6PD was inhibited by DHEA or RNA interference, the abnormal Young's modulus and increased roughness of cell membrane were observed in HeLa cells, as well as the idioblasts. Simultaneously, G6PD deficiency resulted in decreased HeLa cells migration and proliferation ability but increased ROS generation inducing apoptosis. What's more, the inhibition of G6PD activity caused the disorganization of microfilaments and microtubules of cytoskeletons and cell shrinkage. Our results indicated the anti-cervix cancer mechanism of G6PD deficiency may be involved with the decreased cancer cells migration and proliferation ability as a result of abnormal reorganization of cell cytoskeleton and abnormal biomechanical properties caused by the increased ROS. Suppression of G6PD may be a promising strategy in developing novel therapeutic methods for cervical cancer.
Collapse
Affiliation(s)
- Zishui Fang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Chengrui Jiang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Yi Feng
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Rixin Chen
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Xiaoying Lin
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Zhiqiang Zhang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Luhao Han
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Xiaodan Chen
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Hongyi Li
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Yibin Guo
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Weiying Jiang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China.
| |
Collapse
|
24
|
Pan Y, Zhan Y, Ji H, Niu X, Zhong Z. Can hyperelastic material parameters be uniquely determined from indentation experiments? RSC Adv 2016. [DOI: 10.1039/c6ra15747e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Uniqueness of hyperelastic parameters depends on a simple criterion: whether dimensionless material parameters are coupled with indentation displacement.
Collapse
Affiliation(s)
- Yihui Pan
- School of Aerospace Engineering and Applied Mechanics
- Tongji University
- Shanghai 200092
- People's Republic of China
| | - Yuexing Zhan
- Center for Advanced Structural Materials (CASM)
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- Kowloon
- People's Republic of China
| | - Huanyun Ji
- Center for Advanced Structural Materials (CASM)
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- Kowloon
- People's Republic of China
| | - Xinrui Niu
- Center for Advanced Structural Materials (CASM)
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- Kowloon
- People's Republic of China
| | - Zheng Zhong
- School of Aerospace Engineering and Applied Mechanics
- Tongji University
- Shanghai 200092
- People's Republic of China
| |
Collapse
|
25
|
Mendez MG, Restle D, Janmey PA. Vimentin enhances cell elastic behavior and protects against compressive stress. Biophys J 2015; 107:314-323. [PMID: 25028873 DOI: 10.1016/j.bpj.2014.04.050] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/04/2014] [Accepted: 04/30/2014] [Indexed: 02/05/2023] Open
Abstract
Vimentin intermediate filament expression is a hallmark of epithelial-to-mesenchymal transitions, and vimentin is involved in the maintenance of cell mechanical properties, cell motility, adhesion, and other signaling pathways. A common feature of vimentin-expressing cells is their routine exposure to mechanical stress. Intermediate filaments are unique among cytoskeletal polymers in resisting large deformations in vitro, yet vimentin's mechanical role in the cell is not clearly understood. We use atomic force microscopy to compare the viscoelastic properties of normal and vimentin-null (vim(-/-)) mouse embryo fibroblasts (mEFs) on substrates of different stiffnesses, spread to different areas, and subjected to different compression patterns. In minimally perturbed mEF, vimentin contributes little to the elastic modulus at any indentation depth in cells spread to average areas. On a hard substrate however, the elastic moduli of maximally spread mEFs are greater than those of vim(-/-)mEF. Comparison of the plastic deformation resulting from controlled compression of the cell cortex shows that vimentin's enhancement of elastic behavior increases with substrate stiffness. The elastic moduli of normal mEFs are more stable over time than those of vim(-/-)mEFs when cells are subject to ongoing oscillatory compression, particularly on a soft substrate. In contrast, increasing compressive strain over time shows a greater role for vimentin on a hard substrate. Under both conditions, vim(-/-)mEFs exhibit more variable responses, indicating a loss of regulation. Finally, normal mEFs are more contractile in three-dimensional collagen gels when seeded at low density, when cell-matrix contacts dominate, whereas contractility of vim(-/-)mEF is greater at higher densities when cell-cell contacts are abundant. Addition of fibronectin to gel constructs equalizes the contractility of the two cell types. These results show that the Young's moduli of normal and vim(-/-)mEFs are substrate stiffness dependent even when the spread area is similar, and that vimentin protects against compressive stress and preserves mechanical integrity by enhancing cell elastic behavior.
Collapse
Affiliation(s)
- M G Mendez
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - D Restle
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - P A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
26
|
Pandya HJ, Park K, Desai JP. Design and fabrication of a flexible MEMS-based electromechanical sensor array for breast cancer diagnosis. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2015; 25:075025. [PMID: 26526747 PMCID: PMC4624460 DOI: 10.1088/0960-1317/25/7/075025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The use of flexible micro-electro-mechanical systems (MEMS) based device provides a unique opportunity in bio-medical robotics such as characterization of normal and malignant tissues. This paper reports on design and development of a flexible MEMS-based sensor array integrating mechanical and electrical sensors on the same platform to enable the study of the change in electro-mechanical properties of the benign and cancerous breast tissues. In this work, we present the analysis for the electrical characterization of the tissue specimens and also demonstrate the feasibility of using the sensor for mechanical characterization of the tissue specimens. Eight strain gauges acting as mechanical sensors were fabricated using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) conducting polymer on poly(dimethylsiloxane) (PDMS) as the substrate material. Eight electrical sensors were fabricated using SU-8 pillars on gold (Au) pads which were patterned on the strain gauges separated by a thin insulator (SiO2 1.0μm). These pillars were coated with gold to make it conducting. The electromechanical sensors are integrated on the same substrate. The sensor array covers 180μm × 180μm area and the size of the complete device is 20mm in diameter. The diameter of each breast tissue core used in the present study was 1mm and the thickness was 8μm. The region of interest was 200μm × 200μm. Microindentation technique was used to characterize the mechanical properties of the breast tissues. The sensor is integrated with conducting SU-8 pillars to study the electrical property of the tissue. Through electro-mechanical characterization studies using this MEMS-based sensor, we were able to measure the accuracy of the fabricated device and ascertain the difference between benign and cancer breast tissue specimens.
Collapse
Affiliation(s)
- Hardik J. Pandya
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Kihan Park
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jaydev P. Desai
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
27
|
Hayashi K, Iwata M. Stiffness of cancer cells measured with an AFM indentation method. J Mech Behav Biomed Mater 2015; 49:105-11. [PMID: 26004036 DOI: 10.1016/j.jmbbm.2015.04.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022]
Abstract
The stiffness of cancer cells and its changes during metastasis are very important for understanding the pathophysiology of cancer cells and the mechanisms of metastasis of cancer. As the first step of the studies on the mechanics of cancer cells during metastasis, we determined the elasticity and stiffness of cancer cells with an indentation method using an atomic force microscope (AFM), and compared with those of normal cells. In most of the past AFM studies, Young׳s elastic moduli of cells have been calculated from force-indentation data using Hertzian model. As this model is based on several important assumptions including infinitesimal strain and Hooke׳s linear stress-strain law, in the exact sense it cannot be applied to cells that deform very largely and nonlinearly. To overcome this problem, we previously proposed an equation F=a[exp(bδ)-1] to describe relations between force (F) and indentation (δ), where a and b are parameters relating with cellular stiffness. In the present study, we applied this method to cancer cells instead of Young׳s elastic modulus. The conclusions obtained are: 1) AFM indentation test data of cancer cells can be very well described by the above equation, 2) cancer cells are softer than normal cells, and 3) there are no significant locational differences in the stiffness of cancer cells between the central and the peripheral regions. These methods and results are useful for studying the mechanics of cancer cells and the mechanisms of metastasis.
Collapse
Affiliation(s)
- Kozaburo Hayashi
- Department of Biomedical Engineering, School of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0001, Japan; Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan; Division of Bioengineering, Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan.
| | - Mayumi Iwata
- Department of Biomedical Engineering, School of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0001, Japan.
| |
Collapse
|
28
|
Kassianidou E, Kumar S. A biomechanical perspective on stress fiber structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3065-74. [PMID: 25896524 DOI: 10.1016/j.bbamcr.2015.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 01/11/2023]
Abstract
Stress fibers are actomyosin-based bundles whose structural and contractile properties underlie numerous cellular processes including adhesion, motility and mechanosensing. Recent advances in high-resolution live-cell imaging and single-cell force measurement have dramatically sharpened our understanding of the assembly, connectivity, and evolution of various specialized stress fiber subpopulations. This in turn has motivated interest in understanding how individual stress fibers generate tension and support cellular structure and force generation. In this review, we discuss approaches for measuring the mechanical properties of single stress fibers. We begin by discussing studies conducted in cell-free settings, including strategies based on isolation of intact stress fibers and reconstitution of stress fiber-like structures from purified components. We then discuss measurements obtained in living cells based both on inference of stress fiber properties from whole-cell mechanical measurements (e.g., atomic force microscopy) and on direct interrogation of single stress fibers (e.g., subcellular laser nanosurgery). We conclude by reviewing various mathematical models of stress fiber function that have been developed based on these experimental measurements. An important future challenge in this area will be the integration of these sophisticated biophysical measurements with the field's increasingly detailed molecular understanding of stress fiber assembly, dynamics, and signal transduction. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Elena Kassianidou
- Department of Bioengineering, University of California, Berkeley, United States
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, United States.
| |
Collapse
|
29
|
van Zwieten RW, Puttini S, Lekka M, Witz G, Gicquel-Zouida E, Richard I, Lobrinus JA, Chevalley F, Brune H, Dietler G, Kulik A, Kuntzer T, Mermod N. Assessing dystrophies and other muscle diseases at the nanometer scale by atomic force microscopy. Nanomedicine (Lond) 2014; 9:393-406. [PMID: 24910872 DOI: 10.2217/nnm.12.215] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Atomic force microscopy nanoindentation of myofibers was used to assess and quantitatively diagnose muscular dystrophies from human patients. MATERIALS & METHODS Myofibers were probed from fresh or frozen muscle biopsies from human dystrophic patients and healthy volunteers, as well as mice models, and Young's modulus stiffness values were determined. RESULTS Fibers displaying abnormally low mechanical stability were detected in biopsies from patients affected by 11 distinct muscle diseases, and Young's modulus values were commensurate to the severity of the disease. Abnormal myofiber resistance was also observed from consulting patients whose muscle condition could not be detected or unambiguously diagnosed otherwise. DISCUSSION & CONCLUSION This study provides a proof-of-concept that atomic force microscopy yields a quantitative read-out of human muscle function from clinical biopsies, and that it may thereby complement current muscular dystrophy diagnosis.
Collapse
Affiliation(s)
- Ruthger W van Zwieten
- Laboratory of Molecular Biotechnology, Center for Biotechnology UNIL-EPFL & Institute of Biotechnology, University of Lausanne, Station 6, EPFL, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lim YC, Cooling MT, Long DS. Computational models of the primary cilium and endothelial mechanotransmission. Biomech Model Mechanobiol 2014; 14:665-78. [PMID: 25366114 DOI: 10.1007/s10237-014-0629-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/20/2014] [Indexed: 12/31/2022]
Abstract
In endothelial cells (ECs), the mechanotransduction of fluid shear stress is partially dependent on the transmission of force from the fluid into the cell (mechanotransmission). The role of the primary cilium in EC mechanotransmission is not yet known. To motivate a framework towards quantifying cilia contribution to EC mechanotransmission, we have reviewed mechanical models of both (1) the primary cilium (three-dimensional and lower-dimensional) and (2) whole ECs (finite element, non-finite element, and tensegrity). Both the primary cilia and whole EC models typically incorporate fluid-induced wall shear stress and spatial geometry based on experimentally acquired images of cells. This paper presents future modelling directions as well as the major goals towards integrating primary cilium models into a multi-component EC mechanical model. Finally, we outline how an integrated cilium-EC model can be used to better understand mechanotransduction in the endothelium.
Collapse
Affiliation(s)
- Yi Chung Lim
- Auckland Bioengineering Institute, University of Auckland, 70 Symonds St, Auckland, 1010, New Zealand
| | | | | |
Collapse
|
31
|
Mosiewicz KA, Kolb L, van der Vlies AJ, Lutolf MP. Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols. Biomater Sci 2014; 2:1640-1651. [PMID: 32481945 DOI: 10.1039/c4bm00262h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mammalian cell behavior is strongly influenced by physical and chemical cues originating from the extracellular matrix (ECM). In vivo, ECM signals are displayed in a spatiotemporally complex fashion, often composed as gradients and in concentration profiles that change in time. Most in vitro models to study the role of ECM signals in regulating cell behavior are limited in capturing this microenvironmental complexity, as they are static and homogeneous. In order to achieve a dynamic control of the physical properties of a hydrogel network, we here designed a chemical scheme to control poly(ethylene glycol) (PEG) hydrogel stiffness in space, time and intensity. Specifically, we combined caging chemistry and Michael-type addition to enable the light-triggered local control of hydrogel crosslinking density. Thiol moieties of one of the reactive PEG macromers undergoing crosslinking were equipped with caging groups to prevent their susceptibility to the counter-reactive vinyl sulfone groups on the termini of the complementary PEG macromers. Thus, the crosslinking density of the hydrogel network could be tuned by uncaging with light which directly translated into differential patterns of hydrogel stiffness. Using this approach, user-defined stiffness patterns in a range of soft tissue microenvironments (i.e. between 3-8 kPa) were obtained and shown to influence the migratory behavior of primary human mesenchymal stem cells (hMSC). Stiffness gradients in the higher range (5.5-8 kPa) were able to elicit durotaxis towards the more densely crosslinked regions, whereas those in the lower range (3-5.5 kPa) showed no significant directional preference in hMSC migration. Our patterning tool should be useful for the manipulation of cell fate in various other contexts.
Collapse
Affiliation(s)
- Katarzyna A Mosiewicz
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
32
|
Roy R, Desai JP. Determination of mechanical properties of spatially heterogeneous breast tissue specimens using contact mode atomic force microscopy (AFM). Ann Biomed Eng 2014; 42:1806-22. [PMID: 25015130 PMCID: PMC5172611 DOI: 10.1007/s10439-014-1057-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/16/2014] [Indexed: 01/12/2023]
Abstract
This paper outlines a comprehensive parametric approach for quantifying mechanical properties of spatially heterogeneous thin biological specimens such as human breast tissue using contact-mode Atomic Force Microscopy. Using inverse finite element (FE) analysis of spherical nanoindentation, the force response from hyperelastic material models is compared with the predicted force response from existing analytical contact models, and a sensitivity study is carried out to assess uniqueness of the inverse FE solution. Furthermore, an automation strategy is proposed to analyze AFM force curves with varying levels of material nonlinearity with minimal user intervention. Implementation of our approach on an elastic map acquired from raster AFM indentation of breast tissue specimens indicates that a judicious combination of analytical and numerical techniques allow more accurate interpretation of AFM indentation data compared to relying on purely analytical contact models, while keeping the computational cost associated an inverse FE solution with reasonable limits. The results reported in this study have several implications in performing unsupervised data analysis on AFM indentation measurements on a wide variety of heterogeneous biomaterials.
Collapse
Affiliation(s)
- Rajarshi Roy
- Robotics, Automation, and Medical Systems (RAMS)
Laboratory, Department of Mechanical Engineering, University of Maryland, College
Park, MD, USA
- Maryland Robotics Center, Institute for Systems Research
(ISR), Department of Mechanical Engineering, University of Maryland, College Park,
MD, USA
| | - Jaydev P. Desai
- Robotics, Automation, and Medical Systems (RAMS)
Laboratory, Department of Mechanical Engineering, University of Maryland, College
Park, MD, USA
- Maryland Robotics Center, Institute for Systems Research
(ISR), Department of Mechanical Engineering, University of Maryland, College Park,
MD, USA
| |
Collapse
|
33
|
Roy R, Chen W, Cong L, Goodell LA, Foran DJ, Desai JP. Probabilistic estimation of mechanical properties of biomaterials using atomic force microscopy. IEEE Trans Biomed Eng 2014; 61:547-56. [PMID: 24081838 DOI: 10.1109/tbme.2013.2283597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanoindentation using contact-mode atomic force microscopy (AFM) has emerged as a powerful tool for effective material characterization of a wide variety of biomaterials across multiple length scales. However, the interpretation of force-indentation experimental data from AFM is subject to some debate. Uncertainties in AFM data analysis stems from two primary sources: The exact point of contact between the AFM probe and the biological specimen and the variability in the spring constant of the AFM probe. While a lot of attention has been directed toward addressing the contact-point uncertainty, the effect of variability in the probe spring constant has not received sufficient attention. In this paper, we report on an error-in-variables-based Bayesian change-point approach to quantify the elastic modulus of human breast tissue samples after accounting for variability in both contact point and the probe spring constant. We also discuss the efficacy of our approach to a wide range of hyperparameter values using a sensitivity analysis.
Collapse
|
34
|
Benitez R, Toca-herrera JL. Looking at cell mechanics with atomic force microscopy: Experiment and theory. Microsc Res Tech 2014; 77:947-58. [DOI: 10.1002/jemt.22419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Rafael Benitez
- Department of Mathematics; University Center of Plasencia, University of Extremadura, Avda. Virgen del Puerto 2; 10600 Plasencia Spain
| | - José. L. Toca-herrera
- Institute for Biophysics, Department of Nanobiotechnology; University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 11; 1190 Vienna Austria
| |
Collapse
|
35
|
Ogneva IV, Buravkov SV, Shubenkov AN, Buravkova LB. Mechanical characteristics of mesenchymal stem cells under impact of silica-based nanoparticles. NANOSCALE RESEARCH LETTERS 2014; 9:284. [PMID: 24948901 PMCID: PMC4055799 DOI: 10.1186/1556-276x-9-284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/24/2014] [Indexed: 05/07/2023]
Abstract
Silica-based nanoparticles (NPs) pose great potential for medical and biological applications; however, their interactions with living cells have not been investigated in full. The objective of this study was to analyze the mechanical characteristics of mesenchymal stem cells when cultured in the presence of silica (Si) and silica-boron (SiB) nanoparticles. Cell stiffness was measured using atomic force microscopy; F-actin structure was evaluated using TRITC-phalloidin by confocal microscopy. The obtained data suggested that the cell stiffness increased within the following line: 'Control' - 'Si' - 'SiB' (either after 1-h cultivation or 24-h incubation). Moreover, the cell stiffness was found to be higher after 1-h cultivation as compared to 24-h cultivation. This result shows that there is a two-phase process of particle diffusion into cells and that the particles interact directly with the membrane and, further, with the submembranous cytoskeleton. Conversely, the intensity of phalloidin fluorescence dropped within the same line: Control - Si - SiB. It could be suggested that the effects of silica-based particles may result in structural reorganization of cortical cytoskeleton with subsequent stiffness increase and concomitant F-actin content decrease (for example, in recruitment of additional actin-binding proteins within membrane and regrouping of actin filaments).
Collapse
Affiliation(s)
- Irina V Ogneva
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Khoroshevskoyoe shosse, 76a, Moscow 123007, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Sergey V Buravkov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Alexander N Shubenkov
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Khoroshevskoyoe shosse, 76a, Moscow 123007, Russia
| | - Ludmila B Buravkova
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Khoroshevskoyoe shosse, 76a, Moscow 123007, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119192, Russia
| |
Collapse
|
36
|
Hermanowicz P, Sarna M, Burda K, Gabryś H. AtomicJ: an open source software for analysis of force curves. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:063703. [PMID: 24985823 DOI: 10.1063/1.4881683] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.
Collapse
Affiliation(s)
- Paweł Hermanowicz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Michał Sarna
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Kvetoslava Burda
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
37
|
Vichare S, Sen S, Inamdar MM. Cellular mechanoadaptation to substrate mechanical properties: contributions of substrate stiffness and thickness to cell stiffness measurements using AFM. SOFT MATTER 2014; 10:1174-1181. [PMID: 24651595 DOI: 10.1039/c3sm51786a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mechanosensing by adherent cells is usually studied by quantifying cell responses on hydrogels that are covalently linked to a rigid substrate. Atomic force microscopy (AFM) represents a convenient way of characterizing the mechanoadaptation response of adherent cells on hydrogels of varying stiffness and thickness. Since AFM measurements reflect the effective cell stiffness, therefore, in addition to measuring real cytoskeletal alterations across different conditions, these measurements might also be influenced by the geometry and physical properties of the substrate itself. To better understand how the physical attributes of the gel influence AFM stiffness measurements of cells, we have used finite element analysis to simulate the indentation of cells of various spreads resting on hydrogels of varying stiffness and thickness. Consistent with experimental results, our simulation results indicate that for well spread cells, stiffness values are significantly over-estimated when experiments are performed on cells cultured on soft and thin gels. Using parametric studies, we have developed scaling relationships between the effective stiffness probed by AFM and the bulk cell stiffness, taking cell and tip geometry, hydrogel properties, nuclear stiffness and cell contractility into account. Finally, using simulated mechanoadaptation responses, we have demonstrated that a cell stiffening response may arise purely due to the substrate properties. Collectively, our results demonstrate the need to take hydrogel properties into account while estimating cell stiffness using AFM indentation.
Collapse
Affiliation(s)
- Shirish Vichare
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | | | | |
Collapse
|
38
|
Zimmer CC, Liu YX, Morgan JT, Yang G, Wang KH, Kennedy IM, Barakat AI, Liu GY. New approach to investigate the cytotoxicity of nanomaterials using single cell mechanics. J Phys Chem B 2014; 118:1246-55. [PMID: 24417356 PMCID: PMC3980960 DOI: 10.1021/jp410764f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Current in vitro methods to assess nanomaterial cytotoxicity involve various assays to monitor specific cellular dysfunction, such as metabolic imbalance or inflammation. Although high throughput, fast, and animal-free, these in vitro methods suffer from unreliability and lack of relevance to in vivo situations. New approaches, especially with the potential to reliably relate to in vivo studies directly, are in critical need. This work introduces a new approach, single cell mechanics, derived from atomic force microscopy-based single cell compression. The single cell based approach is intrinsically advantageous in terms of being able to directly correlate to in vivo investigations. Its reliability and potential to measure cytotoxicity is evaluated using known systems: zinc oxide (ZnO) and silicon dioxide (SiO2) nanoparticles (NP) on human aortic endothelial cells (HAECs). This investigation clearly indicates the reliability of single cell compression. For example, ZnO NPs cause significant changes in force vs relative deformation profiles, whereas SiO2 NPs do not. New insights into NPs-cell interactions pertaining to cytotoxicity are also revealed from this single cell mechanics approach, in addition to a qualitative cytotoxicity conclusion. The advantages and disadvantages of this approach are also compared with conventional cytotoxicity assays.
Collapse
Affiliation(s)
- Christopher C Zimmer
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sun J, Jamilpour N, Wang FY, Wong PK. Geometric control of capillary architecture via cell-matrix mechanical interactions. Biomaterials 2014; 35:3273-80. [PMID: 24439400 DOI: 10.1016/j.biomaterials.2013.12.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/28/2013] [Indexed: 01/02/2023]
Abstract
Capillary morphogenesis is a multistage, multicellular activity that plays a pivotal role in various developmental and pathological situations. In-depth understanding of the regulatory mechanism along with the capability of controlling the morphogenic process will have direct implications on tissue engineering and therapeutic angiogenesis. Extensive research has been devoted to elucidate the biochemical factors that regulate capillary morphogenesis. The roles of geometric confinement and cell-matrix mechanical interactions on the capillary architecture, nevertheless, remain largely unknown. Here, we show geometric control of endothelial network topology by creating physical confinements with microfabricated fences and wells. Decreasing the thickness of the matrix also results in comparable modulation of the network architecture, supporting the boundary effect is mediated mechanically. The regulatory role of cell-matrix mechanical interaction on the network topology is further supported by alternating the matrix stiffness by a cell-inert PEG-dextran hydrogel. Furthermore, reducing the cell traction force with a Rho-associated protein kinase inhibitor diminishes the boundary effect. Computational biomechanical analysis delineates the relationship between geometric confinement and cell-matrix mechanical interaction. Collectively, these results reveal a mechanoregulation scheme of endothelial cells to regulate the capillary network architecture via cell-matrix mechanical interactions.
Collapse
Affiliation(s)
- Jian Sun
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Nima Jamilpour
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Fei-Yue Wang
- The Key Laboratory for Complex Systems and Intelligence Science, The Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
40
|
Unal M, Alapan Y, Jia H, Varga AG, Angelino K, Aslan M, Sayin I, Han C, Jiang Y, Zhang Z, Gurkan UA. Micro and Nano-Scale Technologies for Cell Mechanics. Nanobiomedicine (Rij) 2014; 1:5. [PMID: 30023016 PMCID: PMC6029242 DOI: 10.5772/59379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023] Open
Abstract
Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS), we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS). BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Yunus Alapan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Hao Jia
- Department of Biology, Case Western Reserve University, Cleveland, USA
| | - Adrienn G. Varga
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Keith Angelino
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Mahmut Aslan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Ismail Sayin
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Chanjuan Han
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, USA
| | - Yanxia Jiang
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Zhehao Zhang
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Umut A. Gurkan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
| |
Collapse
|
41
|
Morita Y, Mukai T, Ju Y, Watanabe S. Evaluation of stem cell-to-tenocyte differentiation by atomic force microscopy to measure cellular elastic moduli. Cell Biochem Biophys 2013; 66:73-80. [PMID: 23090789 DOI: 10.1007/s12013-012-9455-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the present study, we evaluated whether stem cell-to-tenocyte differentiation could be evaluated via measurement of the mechanical properties of the cell. We used mechanical uniaxial cyclic stretching to induce the differentiation of human bone marrow mesenchymal stem cells into tenocytes. The cells were subjected to cyclic elongation of 10 or 15 % at a cyclic frequency of 1 Hz for 24 or 48 h, and differentiation was assessed by real-time PCR (rtPCR) determination of messenger RNA expression levels for four commonly used markers of stem cell-to-tenocyte differentiation: type I collagen, type III collagen, tenascin-C, and scleraxis. The rtPCR results showed that cells subjected to 10 % cyclic elongation for 24 or 48 h differentiated into tenocytes. Atomic force microscopy (AFM) was then used to measure the force curves around the cell nuclei, and the AFM data were used to calculate the elastic moduli of the cell surfaces. The elastic modulus values of the control (non-stretched) cells differed significantly from those of cells stretched at 10 % for 24 or 48 h (P < 0.01). Confocal fluorescence microscopic observations of actin stress fibers suggested that the change in elastic modulus was ascribable to the development of the cellular cytoskeleton during the differentiation process. Therefore, we conclude that the atomic force microscopic measurement of the elastic modulus of the cell surface can be used to evaluate stem cell-to-tenocyte differentiation.
Collapse
Affiliation(s)
- Yasuyuki Morita
- Department of Mechanical Science & Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | | | |
Collapse
|
42
|
Chiou YW, Lin HK, Tang MJ, Lin HH, Yeh ML. The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment. PLoS One 2013; 8:e77384. [PMID: 24194882 PMCID: PMC3806741 DOI: 10.1371/journal.pone.0077384] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/04/2013] [Indexed: 01/16/2023] Open
Abstract
Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM)-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All of these cues show a significant influence on the cell elasticity assessment. Sharp AFM tips create a two-fold increase in the value of the effective Young's modulus (E(eff)) relative to that of the blunt tips. Higher indenting force at the same loading rate generates higher estimated cell elasticity. Increasing the operation temperature of the AFM leads to decreases in the cell stiffness because the structure of actin filaments becomes disorganized. The physiological cues include the presence of fetal bovine serum or extracellular matrix-coated surfaces, the culture passage number, and the culture density. Both fetal bovine serum and the extracellular matrix are critical for cells to maintain the integrity of actin filaments and consequently exhibit higher elasticity. Unlike primary cells, mouse kidney progenitor cells can be passaged and maintain their morphology and elasticity for a very long period without a senescence phenotype. Finally, cell elasticity increases with increasing culture density only in MDCK epithelial cells. In summary, for researchers who use AFM to assess cell elasticity, our results provide basic and significant information about the suitable selection of physical and physiological cues.
Collapse
Affiliation(s)
- Yu-Wei Chiou
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
43
|
Arce FT, Meckes B, Camp SM, Garcia JGN, Dudek SM, Lal R. Heterogeneous elastic response of human lung microvascular endothelial cells to barrier modulating stimuli. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2013; 9:875-84. [PMID: 23523769 PMCID: PMC3762941 DOI: 10.1016/j.nano.2013.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 11/15/2022]
Abstract
In this study we employ atomic force microscopy, supported by finite element analysis and fluorescence microscopy, to characterize the elastic properties accompanying cytoskeletal structural rearrangements of lung microvascular endothelial cells in response to barrier altering stimuli. Statistical analysis of elasticity data obtained from multiple cells demonstrates a heterogeneous cellular elastic response to barrier-enhancing and barrier-disrupting agents; sphingosine 1-phosphate (S1P) and thrombin, respectively. A small but detectable (10%) increase in the average elastic modulus of all cells is observed for S1P, which is accompanied by a corresponding significant decrease in cell thickness. Variable effects of thrombin on these parameters were observed. To account for possible substrate effects in our elasticity analysis, we analyzed only the low-force sections of the force-displacement curves and utilized a finite-thickness correction to the Hertzian model. Our finite element analysis results substantiate this approach. The heterogeneous elastic behavior correlates with differential cytoskeletal rearrangements observed with fluorescence microscopy. FROM THE CLINICAL EDITOR This team of investigators employed atomic force microscopy coupled with finite element analysis and fluorescence microscopy to characterize the elastic properties accompanying cytoskeletal structural rearrangements of lung microvascular endothelial cells in response to barrier altering stimuli, demonstrating the validity of their approach.
Collapse
Affiliation(s)
- Fernando Terán Arce
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA; Bioengineering Departments, University of California San Diego, La Jolla, California, USA.
| | | | | | | | | | | |
Collapse
|
44
|
CHANG CHENGTAO, LIN CHOUCHINGK, JU MINGSHAUNG. COMBINED ATOMIC FORCE AND FLUORESCENCE MICROSCOPIES TO MEASURE SUBCELLULAR MECHANICAL PROPERTIES OF LIVE CELLS. J MECH MED BIOL 2013. [DOI: 10.1142/s0219519413500577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atomic force microscopy (AFM) has been widely applied to study cellular functions;however, the relationship between cellular elasticity and ultrastructure density of a live cell remains to be discovered. The objective of this study was thus to extend our previous method of integrating AFM and immunofluorescence imaging to measure the ultrastructure distribution-related local mechanical properties of live cells. First, the morphology of a live cell was obtained by AFM. Second, the indentation sites were selected and flexible force volume indentation was performed. Third, the immunofluorescence image of the cell was obtained. The last was the mapping of the indentation site to the immunofluorescence image and obtaining the relationship between the local elastic properties and cytoskeleton density. The results on differentiated rat Schwann cells (RSCs) showed that the elastic modulus of stress fibers is higher than those of the nucleus and cytosol. The local elastic modulus of the live RSCs is correlated to the actin density, and the stress fiber that behaves like a pretension beam can give RSCs enough strength to envelop axons during myelination. In particular, the elastic properties of the live RSCs were twofold lower than those of the fixed. The results demonstrated the integrated method's applicability for a live cell.
Collapse
Affiliation(s)
- CHENG-TAO CHANG
- Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan
| | - CHOU-CHING K. LIN
- Department of Neurology, University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Road, Tainan 701, Taiwan
| | - MING-SHAUNG JU
- Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan
| |
Collapse
|
45
|
Thomas G, Burnham NA, Camesano TA, Wen Q. Measuring the mechanical properties of living cells using atomic force microscopy. J Vis Exp 2013. [PMID: 23851674 DOI: 10.3791/50497] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mechanical properties of cells and extracellular matrix (ECM) play important roles in many biological processes including stem cell differentiation, tumor formation, and wound healing. Changes in stiffness of cells and ECM are often signs of changes in cell physiology or diseases in tissues. Hence, cell stiffness is an index to evaluate the status of cell cultures. Among the multitude of methods applied to measure the stiffness of cells and tissues, micro-indentation using an Atomic Force Microscope (AFM) provides a way to reliably measure the stiffness of living cells. This method has been widely applied to characterize the micro-scale stiffness for a variety of materials ranging from metal surfaces to soft biological tissues and cells. The basic principle of this method is to indent a cell with an AFM tip of selected geometry and measure the applied force from the bending of the AFM cantilever. Fitting the force-indentation curve to the Hertz model for the corresponding tip geometry can give quantitative measurements of material stiffness. This paper demonstrates the procedure to characterize the stiffness of living cells using AFM. Key steps including the process of AFM calibration, force-curve acquisition, and data analysis using a MATLAB routine are demonstrated. Limitations of this method are also discussed.
Collapse
Affiliation(s)
- Gawain Thomas
- Department of Physics, Worcester Polytechnic Institute
| | | | | | | |
Collapse
|
46
|
Aryaei A, Jayasuriya AC. Mechanical properties of human amniotic fluid stem cells using nanoindentation. J Biomech 2013; 46:1524-30. [PMID: 23628151 PMCID: PMC4930323 DOI: 10.1016/j.jbiomech.2013.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to obtain nanomechanical properties of living cells focusing on human amniotic fluid stem (hAFS) cell using nanoindentation techniques. We modified the conventional method of atomic force microscopy (AFM) in aqueous environment for cell imaging and indentation to avoid inherent difficulties. Moreover, we determined the elastic modulus of murine osteoblast (OB6) cells and hAFS cells at the nucleus and cytoskeleton using force-displacement curves and Hertz theory. Since OB6 cell line has been widely used, it was selected to validate and compare the obtained results with the previous research studies. As a result, we were able to capture high resolution images through utilization of the tapping mode without adding protein or using fixation methods. The maximum depth of indentation was kept below 15% of the cell thickness to minimize the effect of substrate hardness. Nanostructural details on the surface of cells were visualized by AFM and fluorescence microscopy. The cytoskeletal fibers presented remarkable increase in elastic modulus as compared with the nucleus. Furthermore, our results showed that the elastic modulus of hAFS cell edge (31.6 kPa) was lower than that of OB6 cell edge (42.2 kPa). In addition, the elastic modulus of nucleus was 13.9 kPa for hAFS cell and 26.9 kPa for OB6 cells. Differences in cell elastic modulus possibly resulted from the type and number of actin cytoskeleton organization in these two cell types.
Collapse
Affiliation(s)
- Ashkan Aryaei
- Department of Mechanical Engineering, University of Toledo, 1650 N. Westwood Avenue, Toledo, OH 43606-3390, USA
| | - Ambalangodage C. Jayasuriya
- Department of Orthopaedic Surgery, University of Toledo, MS 1094, 3065 Arlington Avenue, Toledo, OH 43614-5807, USA
| |
Collapse
|
47
|
Chahine NO, Blanchette C, Thomas CB, Lu J, Haudenschild D, Loots GG. Effect of age and cytoskeletal elements on the indentation-dependent mechanical properties of chondrocytes. PLoS One 2013; 8:e61651. [PMID: 23613892 PMCID: PMC3628340 DOI: 10.1371/journal.pone.0061651] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 03/12/2013] [Indexed: 11/18/2022] Open
Abstract
Articular cartilage chondrocytes are responsible for the synthesis, maintenance, and turnover of the extracellular matrix, metabolic processes that contribute to the mechanical properties of these cells. Here, we systematically evaluated the effect of age and cytoskeletal disruptors on the mechanical properties of chondrocytes as a function of deformation. We quantified the indentation-dependent mechanical properties of chondrocytes isolated from neonatal (1-day), adult (5-year) and geriatric (12-year) bovine knees using atomic force microscopy (AFM). We also measured the contribution of the actin and intermediate filaments to the indentation-dependent mechanical properties of chondrocytes. By integrating AFM with confocal fluorescent microscopy, we monitored cytoskeletal and biomechanical deformation in transgenic cells (GFP-vimentin and mCherry-actin) under compression. We found that the elastic modulus of chondrocytes in all age groups decreased with increased indentation (15-2000 nm). The elastic modulus of adult chondrocytes was significantly greater than neonatal cells at indentations greater than 500 nm. Viscoelastic moduli (instantaneous and equilibrium) were comparable in all age groups examined; however, the intrinsic viscosity was lower in geriatric chondrocytes than neonatal. Disrupting the actin or the intermediate filament structures altered the mechanical properties of chondrocytes by decreasing the elastic modulus and viscoelastic properties, resulting in a dramatic loss of indentation-dependent response with treatment. Actin and vimentin cytoskeletal structures were monitored using confocal fluorescent microscopy in transgenic cells treated with disruptors, and both treatments had a profound disruptive effect on the actin filaments. Here we show that disrupting the structure of intermediate filaments indirectly altered the configuration of the actin cytoskeleton. These findings underscore the importance of the cytoskeletal elements in the overall mechanical response of chondrocytes, indicating that intermediate filament integrity is key to the non-linear elastic properties of chondrocytes. This study improves our understanding of the mechanical properties of articular cartilage at the single cell level.
Collapse
Affiliation(s)
- Nadeen O. Chahine
- The Feinstein Institute for Medical Research, Hofstra North Shore LIJ School of Medicine, Manhasset, New York, United States of America
| | - Craig Blanchette
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
| | - Cynthia B. Thomas
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
| | - Jeffrey Lu
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Dominik Haudenschild
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Gabriela G. Loots
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| |
Collapse
|
48
|
Magdesian MH, Sanchez FS, Lopez M, Thostrup P, Durisic N, Belkaid W, Liazoghli D, Grütter P, Colman DR. Atomic force microscopy reveals important differences in axonal resistance to injury. Biophys J 2013; 103:405-414. [PMID: 22947856 DOI: 10.1016/j.bpj.2012.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/22/2012] [Accepted: 07/02/2012] [Indexed: 01/06/2023] Open
Abstract
Axonal degeneration after traumatic brain injury and nerve compression is considered a common underlying cause of temporary as well as permanent disability. Because a proper functioning of neural network requires phase coherence of all components, even subtle changes in circuitry may lead to network failure. However, it is still not possible to determine which axons will recover or degenerate after injury. Several groups have studied the pressure threshold for axonal injury within a nerve, but difficulty accessing the injured region; insufficient imaging methods and the extremely small dimensions involved have prevented the evaluation of the response of individual axons to injury. We combined microfluidics with atomic force microscopy and in vivo imaging to estimate the threshold force required to 1), uncouple axonal transport without impairing axonal survival, and 2), compromise axonal survival in both individual and bundled axons. We found that rat hippocampal axons completely recover axonal transport with no detectable axonal loss when compressed with pressures up to 65 ± 30 Pa for 10 min, while dorsal root ganglia axons can resist to pressures up to 540 ± 220 Pa. We investigated the reasons for the differential susceptibility of hippocampal and DRG axons to mechanical injury and estimated the elasticity of live axons. We found that dorsal root ganglia axons have a 20% lower elastic modulus than hippocampal axons. Our results emphasize the importance of the integrity of the axonal cytoskeleton in deciding the axonal fate after damage and open up new avenues to improve injury diagnosis and to identify ways to protect axons.
Collapse
Affiliation(s)
- Margaret H Magdesian
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Program in NeuroEngineering, McGill University, Montreal, Quebec, Canada; Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fernando S Sanchez
- Program in NeuroEngineering, McGill University, Montreal, Quebec, Canada; Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Monserratt Lopez
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Peter Thostrup
- Program in NeuroEngineering, McGill University, Montreal, Quebec, Canada; Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Nela Durisic
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Wiam Belkaid
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Program in NeuroEngineering, McGill University, Montreal, Quebec, Canada
| | - Dalinda Liazoghli
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Program in NeuroEngineering, McGill University, Montreal, Quebec, Canada
| | - Peter Grütter
- Program in NeuroEngineering, McGill University, Montreal, Quebec, Canada; Department of Physics, McGill University, Montreal, Quebec, Canada
| | - David R Colman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Program in NeuroEngineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Zheng X, Young Koh G, Jackson T. A continuous model of angiogenesis: Initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, platelet-derived growth factor-B, and pericytes. ACTA ACUST UNITED AC 2013. [DOI: 10.3934/dcdsb.2013.18.1109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Cell mechanosensitivity: mechanical properties and interaction with gravitational field. BIOMED RESEARCH INTERNATIONAL 2012; 2013:598461. [PMID: 23509748 PMCID: PMC3591207 DOI: 10.1155/2013/598461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/17/2012] [Accepted: 11/27/2012] [Indexed: 02/08/2023]
Abstract
This paper addressed the possible mechanisms of primary reception of a mechanical stimulus by different cells. Data concerning the stiffness of muscle and nonmuscle cells as measured by atomic force microscopy are provided. The changes in the mechanical properties of cells that occur under changed external mechanical tension are presented, and the initial stages of mechanical signal transduction are considered. The possible mechanism of perception of different external mechanical signals by cells is suggested.
Collapse
|