1
|
Lyu M, Torii R, Liang C, Peach TW, Bhogal P, Makalanda L, Li Q, Ventikos Y, Chen D. Treatment for middle cerebral artery bifurcation aneurysms: in silico comparison of the novel Contour device and conventional flow-diverters. Biomech Model Mechanobiol 2024; 23:1149-1160. [PMID: 38587717 PMCID: PMC11341747 DOI: 10.1007/s10237-024-01829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/09/2024] [Indexed: 04/09/2024]
Abstract
Endovascular treatment has become the standard therapy for cerebral aneurysms, while the effective treatment for middle cerebral artery (MCA) bifurcation aneurysms remains a challenge. Current flow-diverting techniques with endovascular coils cover the aneurysm orifice as well as adjacent vessel branches, which may lead to branch occlusion. Novel endovascular flow disruptors, such as the Contour device (Cerus Endovascular), are of great potential to eliminate the risk of branch occlusion. However, there is a lack of valid comparison between novel flow disruptors and conventional (intraluminal) flow-diverters. In this study, two in silico MCA bifurcation aneurysm models were treated by specific Contour devices and flow-diverters using fast-deployment algorithms. Computational fluid dynamic simulations were used to examine the performance and efficiency of deployed devices. Hemodynamic parameters, including aneurysm inflow and wall shear stress, were compared among each Contour device, conventional flow-diverter, and untreated condition. Our results show that the placement of devices can effectively reduce the risk of aneurysm rupture, while the deployment of a Contour device causes more flow reduction than using flow-diverters (e.g. Silk Vista Baby). Besides, the Contour device presents the flow diversion capability of targeting the aneurysm neck without occluding the daughter vessel. In summary, the in silico aneurysm models presented in this study can serve as a powerful pre-planning tool for testing new treatment techniques, optimising device deployment, and predicting the performance in patient-specific aneurysm cases. Contour device is proved to be an effective treatment of MCA bifurcation aneurysms with less daughter vessel occlusion.
Collapse
Affiliation(s)
- Mengzhe Lyu
- Department of Mechanical Engineering, University College London, London, UK
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Ce Liang
- Department of Mechanical Engineering, University College London, London, UK
| | - Thomas W Peach
- Department of Mechanical Engineering, University College London, London, UK
| | - Pervinder Bhogal
- Department of Interventional Neuroradiology, The Royal London Hospital, London, UK
| | - Levansri Makalanda
- Department of Interventional Neuroradiology, The Royal London Hospital, London, UK
| | - Qiaoqiao Li
- School of International Education, University of International Business and Economics, Beijing, 100029, China
| | - Yiannis Ventikos
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia.
| | - Duanduan Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Philip NT, Bolem S, Sudhir BJ, Patnaik BSV. Hemodynamics and bio-mechanics of morphologically distinct saccular intracranial aneurysms at bifurcations: Idealised vs Patient-specific geometries. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 227:107237. [PMID: 36413819 DOI: 10.1016/j.cmpb.2022.107237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Understanding the factors that influence the rupture of aneurysms is of primary concern to the clinicians, who are grappled with patient management. It is important to know how the relation between morphological features of the cerebral aneurysm, and the mechanical stresses on the containing arterial walls are influenced by the hemodynamic forces. Present study investigates three different shapes, which have been identified correspondingly in patient-specific scenarios as well. The primary objective is to categorize the bifurcation aneurysms into standard shapes such as, spherical, beehive and pear-shaped, based on patient-specific clinical studies and further compare and contrast the model aneurysms with the patient specific configurations, for their hemodynamic factors as well as the attendant stresses on the wall. MethodsComputational fluid dynamic simulations are performed accounting for the fluid-structure interaction (FSI) effects between the flowing fluid and the containing vessel wall. Blood is assumed to be Newtonian, while the arterial walls are assumed to be linearly elastic. A commercial solver is used for performing detailed calculations. Hemodynamic and bio-mechanical rupture predictions are carried out for the three different shapes. Observations derived from the idealised simulations are compared and contrasted against their patient-specific counterparts. ResultsFrom detailed numerical simulations, it was observed that pear-shaped aneurysms exhibit large re-circulation bubble and flow stagnation zone, with higher residence time for the particles, which may lead to atherosclerotic lesions. Beehive shape allows for maximum flow into the aneurysmal sac with concentrated jet impinging on the dome, leading to high values of maximum WSS (MWSS) resulting in great propensity to form a secondary bleb. However, flow field inside a spherical aneurysm is found to be stable with fewer vortices, and nearly uniform distribution of wall stresses are observed though-out the sac, which perhaps signifies hemodynamically and bio-mechanically stable condition. ConclusionCategorizing patient-specific intracranial aneurysms into standard shapes viz, spherical, beehive and pear could generalize the process of prediction of hemodynamic and bio-mechanical rupture indicators. Comparative assessment of the flow field and stresses reported from the simulations on idealised models, with corresponding patient-specific simulations reveal that, these studies could aid in understanding the generalised shape dependence of hemodynamic and bio-mechanical behaviour of aneurysms.
Collapse
Affiliation(s)
- Nimmy Thankom Philip
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Srinivas Bolem
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - B J Sudhir
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695011, Kerala, India.
| | - B S V Patnaik
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
3
|
Xu M, Lv N, Sun K, Hong R, Wang H, Wang X, Xu L, Chen L, Xu M. Morphological and Hemodynamic Risk Factors for the Rupture of Proximal Anterior Cerebral Artery Aneurysms (A1 Segment). Front Aging Neurosci 2022; 14:835373. [PMID: 35250548 PMCID: PMC8895198 DOI: 10.3389/fnagi.2022.835373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Objective The treatment of unruptured small intracranial aneurysms remains controversial. A distinguishing characteristic of A1 segment aneurysms is that they tend to rupture when they are small, which may be related to their distinctive morphology and hemodynamics. Our study sought to investigate the rupture risk factors of A1 segment aneurysms by analyzing the clinical risk factors, morphology, and hemodynamic characteristics of A1 segment aneurysms. Methods We retrospectively enrolled 49 (23 ruptured, 26 unruptured) consecutive patients presenting to our institute with A1 segment aneurysms between January 2010 and March 2020. Independent risk factors associated with the rupture of A1 segment aneurysms were analyzed by multivariate regression analysis in the ruptured group and unruptured group. Results Clinical risk factors, including age, sex, hypertension, smoking history, and SAH family history revealed no difference between the ruptured and unruptured groups. The ruptured group presented a significantly larger size (Size, P = 0.007), aspect ratio (AR, P = 0.002), size ratio (SR, P = 0.001), bottleneck index (BN, P = 0.016), dome-to-neck ratio (DN, P = 0.001), and oscillatory shear index (OSI) (P = 0.001) than the unruptured group. The normalized wall shear stress (NWSS) of the ruptured aneurysms was lower than the unruptured group (P = 0.001). In the multivariate regression analysis, only SR (OR = 3.672, P = 0.003) and NWSS (OR = 0.474, P = 0.01) were independent risk factors in the A1 segment aneurysm rupture. Conclusion A higher SR and lower NWSS revealed a close connection with the rupture of A1 segment aneurysms in our study, thus providing a reference for clinical decision-making in treating A1 segment unruptured aneurysms.
Collapse
Affiliation(s)
- Mingwei Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Nan Lv
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kai Sun
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Rujun Hong
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Wang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xuhui Wang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lizhao Chen
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Lizhao Chen,
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
- Minhui Xu,
| |
Collapse
|
4
|
Amigo N, Valencia A, Wu W, Patnaik S, Finol E. Cerebral aneurysm rupture status classification using statistical and machine learning methods. Proc Inst Mech Eng H 2021; 235:655-662. [PMID: 33685288 DOI: 10.1177/09544119211000477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Morphological characterization and fluid dynamics simulations were carried out to classify the rupture status of 71 (36 unruptured, 35 ruptured) patient specific cerebral aneurysms using a machine learning approach together with statistical techniques. Eleven morphological and six hemodynamic parameters were evaluated individually and collectively for significance as rupture status predictors. The performance of each parameter was inspected using hypothesis testing, accuracy, confusion matrix, and the area under the receiver operating characteristic curve. Overall, the size ratio exhibited the best performance, followed by the diastolic wall shear stress, and systolic wall shear stress. The prediction capability of all 17 parameters together was evaluated using eight different machine learning algorithms. The logistic regression achieved the highest accuracy (0.75), whereas the random forest had the highest area under curve value among all the classifiers (0.82), surpassing the performance exhibited by the size ratio. Hence, we propose the random forest model as a tool that can help improve the rupture status prediction of cerebral aneurysms.
Collapse
Affiliation(s)
- Nicolás Amigo
- Escuela de Data Science, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Alvaro Valencia
- Departamento de Ingeniera Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Wei Wu
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.,Cardiovascular Division, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sourav Patnaik
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.,Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA
| | - Ender Finol
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
5
|
He F, Hua L, Guo T. Numerical modeling in arterial hemodynamics incorporating fluid-structure interaction and microcirculation. Theor Biol Med Model 2021; 18:6. [PMID: 33468179 PMCID: PMC7816504 DOI: 10.1186/s12976-021-00136-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background The effects of arterial wall compliance on blood flow have been revealed using fluid-structure interaction in last decades. However, microcirculation is not considered in previous researches. In fact, microcirculation plays a key role in regulating blood flow. Therefore, it is very necessary to involve microcirculation in arterial hemodynamics. Objective The main purpose of the present study is to investigate how wall compliance affects the flow characteristics and to establish the comparisons of these flow variables with rigid wall when microcirculation is considered. Methods We present numerical modeling in arterial hemodynamics incorporating fluid-structure interaction and microcirculation. A novel outlet boundary condition is employed to prescribe microcirculation in an idealised model. Results The novel finding in this work is that wall compliance under the consideration of microcirculation leads to the increase of wall shear stress in contrast to rigid wall, contrary to the traditional result that wall compliance makes wall shear stress decrease when a constant or time dependent pressure is specified at an outlet. Conclusions This work provides the valuable study of hemodynamics under physiological and realistic boundary conditions and proves that wall compliance may have a positive impact on wall shear stress based on this model. This methodology in this paper could be used in real model simulations.
Collapse
Affiliation(s)
- Fan He
- Department of Mechanics, School of Science, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Lu Hua
- Thrombosis Center, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Tingting Guo
- Thrombosis Center, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
6
|
Dabagh M, Nair P, Gounley J, Frakes D, Gonzalez LF, Randles A. Hemodynamic and morphological characteristics of a growing cerebral aneurysm. Neurosurg Focus 2020; 47:E13. [PMID: 31261117 DOI: 10.3171/2019.4.focus19195] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/29/2019] [Indexed: 11/06/2022]
Abstract
The growth of cerebral aneurysms is linked to local hemodynamic conditions, but the driving mechanisms of the growth are poorly understood. The goal of this study was to examine the association between intraaneurysmal hemodynamic features and areas of aneurysm growth, to present the key hemodynamic parameters essential for an accurate prediction of the growth, and to gain a deeper understanding of the underlying mechanisms. Patient-specific images of a growing cerebral aneurysm in 3 different growth stages acquired over a period of 40 months were segmented and reconstructed. A unique aspect of this patient-specific case study was that while one side of the aneurysm stayed stable, the other side continued to grow. This unique case enabled the authors to examine their aims in the same patient with parent and daughter arteries under the same inlet flow conditions. Pulsatile flow in the aneurysm models was simulated using computational fluid dynamics and was validated with in vitro experiments using particle image velocimetry measurements. The authors' detailed analysis of intrasaccular hemodynamics linked the growing regions of aneurysms to flow instabilities and complex vortex structures. Extremely low velocities were observed at or around the center of the unstable vortex structure, which matched well with the growing regions of the studied cerebral aneurysm. Furthermore, the authors observed that the aneurysm wall regions with a growth greater than 0.5 mm coincided with wall regions of lower (< 0.5 Pa) time-averaged wall shear stress (TAWSS), lower instantaneous (< 0.5 Pa) wall shear stress (WSS), and high (> 0.1) oscillatory shear index (OSI). To determine which set of parameters can best identify growing and nongrowing aneurysms, the authors performed statistical analysis for consecutive stages of the growing CA. The results demonstrated that the combination of TAWSS and the distance from the center of the vortical structure has the highest sensitivity and positive predictive value, and relatively high specificity and negative predictive value. These findings suggest that an unstable, recirculating flow structure within the aneurysm sac created in the region adjacent to the aneurysm wall with low TAWSS may be introduced as an accurate criterion to explain the hemodynamic conditions predisposing the aneurysm to growth. The authors' findings are based on one patient's data set, but the study lays out the justification for future large-scale verification. The authors' findings can assist clinicians in differentiating stable and growing aneurysms during preinterventional planning.
Collapse
Affiliation(s)
| | - Priya Nair
- Schools of2Biological and Health Systems Engineering and
| | | | - David Frakes
- Schools of2Biological and Health Systems Engineering and.,3Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona
| | | | | |
Collapse
|
7
|
Murayama Y, Fujimura S, Suzuki T, Takao H. Computational fluid dynamics as a risk assessment tool for aneurysm rupture. Neurosurg Focus 2020; 47:E12. [PMID: 31261116 DOI: 10.3171/2019.4.focus19189] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/23/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors reviewed the clinical role of computational fluid dynamics (CFD) in assessing the risk of intracranial aneurysm rupture. METHODS A literature review was performed to identify reports on CFD assessment of aneurysms using PubMed. The usefulness of various hemodynamic parameters, such as wall shear stress (WSS) and the Oscillatory Shear Index (OSI), and their role in aneurysm rupture risk analysis, were analyzed. RESULTS The authors identified a total of 258 published articles evaluating rupture risk, growth, and endovascular device assessment. Of these 258 articles, 113 matching for CFD and hemodynamic parameters that contribute to the risk of rupture (such as WSS and OSI) were identified. However, due to a lack of standardized methodology, controversy remains on each parameter's role. CONCLUSIONS Although controversy continues to exist on which risk factors contribute to predict aneurysm rupture, CFD can provide additional parameters to assess this rupture risk. This technology can contribute to clinical decision-making or evaluation of efficacy for endovascular methods and devices.
Collapse
Affiliation(s)
- Yuichi Murayama
- Departments of1Neurosurgery and.,2Innovation for Medical Information Technology, The Jikei University School of Medicine, Tokyo
| | - Soichiro Fujimura
- 2Innovation for Medical Information Technology, The Jikei University School of Medicine, Tokyo.,3Graduate School of Mechanical Engineering, Tokyo University of Science, Tokyo; and
| | - Tomoaki Suzuki
- 4Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Takao
- Departments of1Neurosurgery and.,2Innovation for Medical Information Technology, The Jikei University School of Medicine, Tokyo.,3Graduate School of Mechanical Engineering, Tokyo University of Science, Tokyo; and
| |
Collapse
|
8
|
Thiarawat P, Jahromi BR, Kozyrev DA, Intarakhao P, Teo MK, Choque-Velasquez J, Niemelä M, Hernesniemi J. Are Fetal-Type Posterior Cerebral Arteries Associated With an Increased Risk of Posterior Communicating Artery Aneurysms? Neurosurgery 2020; 84:1306-1312. [PMID: 29788502 DOI: 10.1093/neuros/nyy186] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/11/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Fetal-type posterior cerebral arteries (F-PCAs) might result in alterations in hemodynamic flow patterns and may predispose an individual to an increased risk of posterior communicating artery aneurysms (PCoAAs). OBJECTIVE To determine the association between PCoAAs and the presence of ipsilateral F-PCAs. METHODS We retrospectively reviewed the radiographic findings from 185 patients harboring 199 PCoAAs that were treated at our institution between 2005 and 2015. Our study population consisted of 4 cohorts: (A) patients with 171 internal carotid arteries (ICAs) harboring unilateral PCoAAs; (B) 171 unaffected ICAs in the same patients from the first group; (C) 28 ICAs of 14 patients with bilateral PCoAAs; and (D) 180 ICAs of 90 patients with aneurysms in other locations. We then determined the presence of ipsilateral F-PCAs and recorded all aneurysm characteristics. RESULTS Group A had the highest prevalence of F-PCAs (42%) compared to 19% in group B, 3% in group C, and 14% in group D (odds ratio A : B = 3.041; A : C = 19.626; and A : D = 4.308; P < .001). PCoAAs were associated with larger diameters of the posterior communicating arteries (median value 1.05 vs 0.86 mm; P = .001). The presence of F-PCAs was associated with larger sizes of the aneurysm necks (median value 3.3 vs 3.0 mm; P = .02). CONCLUSION PCoAAs were associated with a higher prevalence of ipsilateral F-PCAs. This variant was associated with larger sizes of the aneurysm necks but was not associated with the sizes of the aneurysm domes or with their rupture statuses.
Collapse
Affiliation(s)
- Peeraphong Thiarawat
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland.,De-partment of Surgery, Naresuan University, Phitsanulok, Thailand
| | | | - Danil A Kozyrev
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland.,Department of Paediatric Neurology and Neurosurgery, North-western State Medical University, St. Petersburg, Russia
| | - Patcharin Intarakhao
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland.,Department of Anesthesiology, Naresuan University, Phitsanulok, Thailand
| | - Mario K Teo
- Bristol Institute of Clinical Neurosciences, North Bristol University Hospital, Bristol, United Kingdom
| | | | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Juha Hernesniemi
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Saqr KM, Rashad S, Tupin S, Niizuma K, Hassan T, Tominaga T, Ohta M. What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review. J Cereb Blood Flow Metab 2020; 40:1021-1039. [PMID: 31213162 PMCID: PMC7181089 DOI: 10.1177/0271678x19854640] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the plethora of published studies on intracranial aneurysms (IAs) hemodynamic using computational fluid dynamics (CFD), limited progress has been made towards understanding the complex physics and biology underlying IA pathophysiology. Guided by 1733 published papers, we review and discuss the contemporary IA hemodynamics paradigm established through two decades of IA CFD simulations. We have traced the historical origins of simplified CFD models which impede the progress of comprehending IA pathology. We also delve into the debate concerning the Newtonian fluid assumption used to represent blood flow computationally. We evidently demonstrate that the Newtonian assumption, used in almost 90% of studies, might be insufficient to describe IA hemodynamics. In addition, some fundamental properties of the Navier-Stokes equation are revisited in supplementary material to highlight some widely spread misconceptions regarding wall shear stress (WSS) and its derivatives. Conclusively, our study draws a roadmap for next-generation IA CFD models to help researchers investigate the pathophysiology of IAs.
Collapse
Affiliation(s)
- Khalid M Saqr
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan.,Department of Mechanical Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Simon Tupin
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Tamer Hassan
- Department of Neurosurgery, Alexandria University School of Medicine, Azarita Medical Campus, Alexandria, Egypt
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Makoto Ohta
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
10
|
Yesudasan S, Averett RD. Recent advances in computational modeling of fibrin clot formation: A review. Comput Biol Chem 2019; 83:107148. [PMID: 31751883 PMCID: PMC6918949 DOI: 10.1016/j.compbiolchem.2019.107148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
The field of thrombosis and hemostasis is crucial for understanding and developing new therapies for pathologies such as deep vein thrombosis, diabetes related strokes, pulmonary embolisms, and hemorrhaging related diseases. In the last two decades, an exponential growth in studies related to fibrin clot formation using computational tools has been observed. Despite this growth, the complete mechanism behind thrombus formation and hemostasis has been long and rife with obstacles; however, significant progress has been made in the present century. The computational models and methods used in this context are diversified into different spatiotemporal scales, yet there is no single model which can predict both physiological and mechanical properties of fibrin clots. In this review, we list the major strategies employed by researchers in modeling fibrin clot formation using recent and existing computational techniques. This review organizes the computational strategies into continuum level, system level, discrete particle (DPD), and multi-scale methods. We also discuss strengths and weaknesses of various methods and future directions in which computational modeling of fibrin clots can advance.
Collapse
Affiliation(s)
- Sumith Yesudasan
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, 597 D.W. Brooks Drive, Athens, GA 30602
| | - Rodney D Averett
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, 597 D.W. Brooks Drive, Athens, GA 30602.
| |
Collapse
|
11
|
Amigo N, Valencia Á. Determining Significant Morphological and Hemodynamic Parameters to Assess the Rupture Risk of Cerebral Aneurysms. J Med Biol Eng 2019. [DOI: 10.1007/s40846-018-0403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
12
|
Balasso A, Fritzsche M, Liepsch D, Prothmann S, Kirschke JS, Sindeev S, Frolov S, Friedrich B. High-frequency wall vibrations in a cerebral patient-specific aneurysm model. BIOMED ENG-BIOMED TE 2019; 64:275-284. [PMID: 29935108 DOI: 10.1515/bmt-2017-0142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 05/18/2018] [Indexed: 11/15/2022]
Abstract
The presence of high-frequency velocity fluctuations in aneurysms have been confirmed by in-vivo measurements and by several numerical simulation studies. Only a few studies have located and recorded wall vibrations in in-vitro experiments using physiological patient models. In this study, we investigated the wall fluctuations produced by a flowing perfusion fluid in a true-to-scale elastic model of a cerebral fusiform aneurysm using a laser Doppler vibrometer (LDV). The model was obtained from patient data. The experimental setup reproduced physiologically relevant conditions using a compliant perfusion system, physiological flow parameters, unsteady flow and a non-Newtonian fluid. Three geometrically identical models with different wall elasticities were used for measurements. The influence of five different flow rates was considered. Wall vibrations were predominantly found at frequencies in the range 40-60 Hz and 255-265 Hz. Their amplitude increased with increasing elasticity of the model, but the spectral peaks remained at about the same frequency. Varying the flow rate produced almost no changes in the frequency domain of the models. The frequency of the spectral peaks varied slightly between points at the lateral wall and at the bottom of the aneurysm. Indeed, embedding the model in a fluid during measurements produced higher and smoother amplitude fluctuations.
Collapse
Affiliation(s)
- Andrea Balasso
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Theresienstr. 41, 80333 Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | - Sascha Prothmann
- Institute of Diagnostic and Interventional Neuroradiology, Helios Klinikum München West, Munich, Germany
| | - Jan Stefan Kirschke
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sergey Sindeev
- Biomedical Engineering Department, Tambov State Technical University, Tambov, Russia
| | - Sergey Frolov
- Biomedical Engineering Department, Tambov State Technical University, Tambov, Russia
| | - Benjamin Friedrich
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
13
|
Owen B, Bojdo N, Jivkov A, Keavney B, Revell A. Structural modelling of the cardiovascular system. Biomech Model Mechanobiol 2018; 17:1217-1242. [PMID: 29911296 PMCID: PMC6154127 DOI: 10.1007/s10237-018-1024-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/25/2018] [Indexed: 02/02/2023]
Abstract
Computational modelling of the cardiovascular system offers much promise, but represents a truly interdisciplinary challenge, requiring knowledge of physiology, mechanics of materials, fluid dynamics and biochemistry. This paper aims to provide a summary of the recent advances in cardiovascular structural modelling, including the numerical methods, main constitutive models and modelling procedures developed to represent cardiovascular structures and pathologies across a broad range of length and timescales; serving as an accessible point of reference to newcomers to the field. The class of so-called hyperelastic materials provides the theoretical foundation for the modelling of how these materials deform under load, and so an overview of these models is provided; comparing classical to application-specific phenomenological models. The physiology is split into components and pathologies of the cardiovascular system and linked back to constitutive modelling developments, identifying current state of the art in modelling procedures from both clinical and engineering sources. Models which have originally been derived for one application and scale are shown to be used for an increasing range and for similar applications. The trend for such approaches is discussed in the context of increasing availability of high performance computing resources, where in some cases computer hardware can impact the choice of modelling approach used.
Collapse
Affiliation(s)
- Benjamin Owen
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, George Begg Building, Manchester, M1 3BB, UK.
| | - Nicholas Bojdo
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, George Begg Building, Manchester, M1 3BB, UK
| | - Andrey Jivkov
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, George Begg Building, Manchester, M1 3BB, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Alistair Revell
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, George Begg Building, Manchester, M1 3BB, UK
| |
Collapse
|
14
|
Varble N, Trylesinski G, Xiang J, Snyder K, Meng H. Identification of vortex structures in a cohort of 204 intracranial aneurysms. J R Soc Interface 2018; 14:rsif.2017.0021. [PMID: 28539480 DOI: 10.1098/rsif.2017.0021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/27/2017] [Indexed: 12/28/2022] Open
Abstract
An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q-criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction (vVF) and the surface vortex fraction (sVF). Computational fluid dynamics simulations showed that the sVF, but not the vVF, discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs.
Collapse
Affiliation(s)
- Nicole Varble
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA.,Toshiba Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Gabriel Trylesinski
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA.,Toshiba Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jianping Xiang
- Toshiba Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA.,Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Kenneth Snyder
- Toshiba Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA.,Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, NY, USA.,Department of Radiology, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Hui Meng
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA .,Toshiba Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA.,Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, NY, USA.,Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
15
|
Suzuki T, Takao H, Suzuki T, Suzuki T, Masuda S, Dahmani C, Watanabe M, Mamori H, Ishibashi T, Yamamoto H, Yamamoto M, Murayama Y. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms. Technol Health Care 2017; 25:37-47. [PMID: 27497460 DOI: 10.3233/thc-161245] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In most simulations of intracranial aneurysm hemodynamics, blood is assumed to be a Newtonian fluid. However, it is a non-Newtonian fluid, and its viscosity profile differs among individuals. Therefore, the common viscosity assumption may not be valid for all patients. OBJECTIVE This study aims to test the suitability of the common viscosity assumption. METHODS Blood viscosity datasets were obtained from two healthy volunteers. Three simulations were performed for three different-sized aneurysms, two using measured value-based non-Newtonian models and one using a Newtonian model. The parameters proposed to predict an aneurysmal rupture obtained using the non-Newtonian models were compared with those obtained using the Newtonian model. RESULTS The largest difference (25%) in the normalized wall shear stress (NWSS) was observed in the smallest aneurysm. Comparing the difference ratio to the NWSS with the Newtonian model between the two Non-Newtonian models, the difference of the ratio was 17.3%. CONCLUSIONS Irrespective of the aneurysmal size, computational fluid dynamics simulations with either the common Newtonian or non-Newtonian viscosity assumption could lead to values different from those of the patient-specific viscosity model for hemodynamic parameters such as NWSS.
Collapse
Affiliation(s)
- Takashi Suzuki
- Graduate School of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hiroyuki Takao
- Graduate School of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan.,Division of Endovascular Neurosurgery, Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan.,Department of Innovation for Medical Information Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takamasa Suzuki
- Department of Chemical, Energy and Environment Engineering, Kansai University, Osaka, Japan
| | - Tomoaki Suzuki
- Division of Endovascular Neurosurgery, Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Shunsuke Masuda
- Division of Endovascular Neurosurgery, Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Chihebeddine Dahmani
- Division of Endovascular Neurosurgery, Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan.,Siemens Japan K.K., Shinagawa-ku, Tokyo, Japan
| | - Mitsuyoshi Watanabe
- Division of Endovascular Neurosurgery, Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroya Mamori
- Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
| | - Toshihiro Ishibashi
- Division of Endovascular Neurosurgery, Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideki Yamamoto
- Department of Chemical, Energy and Environment Engineering, Kansai University, Osaka, Japan
| | - Makoto Yamamoto
- Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
| | - Yuichi Murayama
- Division of Endovascular Neurosurgery, Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Khan MO, Steinman DA, Valen-Sendstad K. Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2836. [PMID: 27696717 DOI: 10.1002/cnm.2836] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Computational fluid dynamics (CFD) shows promise for informing treatment planning and rupture risk assessment for intracranial aneurysms. Much attention has been paid to the impact on predicted hemodynamics of various modelling assumptions and uncertainties, including the need for modelling the non-Newtonian, shear-thinning rheology of blood, with equivocal results. Our study clarifies this issue by contextualizing the impact of rheology model against the recently demonstrated impact of CFD solution strategy on the prediction of aneurysm flow instabilities. Three aneurysm cases were considered, spanning a range of stable to unstable flows. Simulations were performed using a high-resolution/accuracy solution strategy with Newtonian and modified-Cross rheology models and compared against results from a so-called normal-resolution strategy. Time-averaged and instantaneous wall shear stress (WSS) distributions, as well as frequency content of flow instabilities and dome-averaged WSS metrics, were minimally affected by the rheology model, whereas numerical solution strategy had a demonstrably more marked impact when the rheology model was fixed. We show that point-wise normalization of non-Newtonian by Newtonian WSS values tended to artificially amplify small differences in WSS of questionable physiological relevance in already-low WSS regions, which might help to explain the disparity of opinions in the aneurysm CFD literature regarding the impact of non-Newtonian rheology. Toward the goal of more patient-specific aneurysm CFD, we conclude that attention seems better spent on solution strategy and other likely "first-order" effects (eg, lumen segmentation and choice of flow rates), as opposed to "second-order" effects such as rheology.
Collapse
Affiliation(s)
- M O Khan
- Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Simula Research Laboratory AS, Fornebu, Lysaker, Norway
| | - D A Steinman
- Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
17
|
Frolov SV, Sindeev SV, Liepsch D, Balasso A. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Technol Health Care 2017; 24:317-33. [PMID: 26835725 DOI: 10.3233/thc-161132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. OBJECTIVE The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. METHODS A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. RESULTS Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the Newtonian fluid. For the non-Newtonian fluid the wall shear stress minimum is 2.94 mPa; the maximum is 9.14 Pa. The lowest value of the wall shear stress for both fluids was obtained at the dome of the aneurysm while the highest wall shear stress was at the beginning of the outlet segment. The vortex in the aneurysm region is unstable during the cardiac cycle. The clockwise rotation of the streamlines at the inlet segment for Newtonian and non-Newtonian fluid is shown. CONCLUSION The results of the present study are in agreement with the hemodynamics theory of aneurysm genesis. Low value of wall shear stress is observed at the aneurysm dome which can cause a rupture of an aneurysm.
Collapse
Affiliation(s)
- S V Frolov
- Department of Biomedical Engineering, Tambov State Technical University, Tambov, Russia
| | - S V Sindeev
- Department of Biomedical Engineering, Tambov State Technical University, Tambov, Russia
| | - D Liepsch
- Department of Mechanical Engineering, Munich University of Applied Sciences, Munich, Germany
| | - A Balasso
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Peach TW, Ventikos Y, Byrne JV, You Z. Porcine In Vivo Validation of a Virtual Contrast Model: The Influence of Contrast Agent Properties and Vessel Flow Rates. AJNR Am J Neuroradiol 2016; 37:2304-2309. [PMID: 27390316 DOI: 10.3174/ajnr.a4884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/02/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Accurately and efficiently modeling the transport of angiographic contrast currently offers the best method of verifying computational fluid dynamics simulations and, with it, progress toward the lofty goal of prediction of aneurysm treatment outcome a priori. This study specifically examines the influence of estimated flow rate and contrast properties on such in silico predictions of aneurysm contrast residence and decay. MATERIALS AND METHODS Four experimental sidewall aneurysms were created in swine, with aneurysm contrast flow patterns and decay rates observed under angiography. A simplified computational fluid dynamics model of the experimental aneurysm was constructed from 3D angiography and contrast residence predicted a priori. The relative influence of a number of estimated model parameters (contrast viscosity, contrast density, and blood flow rate) on contrast residence was then investigated with further simulations. RESULTS Contrast infiltration and washout pattern were accurately predicted by the a priori computational fluid dynamics model; however, the contrast decay rate was underestimated by ∼25%. This error was attributed to the estimated parent vessel flow rate alone, and the effects of contrast viscosity and density on the decay rate were found to be inconsequential. A linear correlation between the parent vessel flow rate and the corresponding contrast decay rate was observed. CONCLUSIONS In experimental sidewall aneurysms, contrast fluid properties (viscosity and density) were shown to have a negligible effect on variation in the modeled contrast decay rate. A strong linear correlation was observed between parent vessel flow rate and contrast decay over a physiologically reasonable range of flow rates.
Collapse
Affiliation(s)
- T W Peach
- From the Department of Mechanical Engineering (T.W.P., Y.V.), University College London, London, UK
| | - Y Ventikos
- From the Department of Mechanical Engineering (T.W.P., Y.V.), University College London, London, UK
| | - J V Byrne
- Department of Neuroradiology (J.V.B.), John Radcliffe Hospital, Oxford, UK
| | - Z You
- Department of Engineering Science (Z.Y.), University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Peach T, Spranger K, Ventikos Y. Virtual flow-diverter treatment planning: The effect of device placement on bifurcation aneurysm haemodynamics. Proc Inst Mech Eng H 2016; 231:432-443. [PMID: 27780870 DOI: 10.1177/0954411916673674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bifurcation aneurysms account for a large fraction of cerebral aneurysms and often present morphologies that render traditional endovascular treatments, such as coiling, challenging and problematic. Flow-diverter stents offer a potentially elegant treatment option for such aneurysms, but clinical use of these devices remains controversial. Specifically, the deployment of a flow-diverter device in a bifurcation entails jailing one or more potentially vital vessels with a low-porosity mesh designed to restrict the flow. When multiple device placement configurations exist, the most appropriate clinical decision becomes increasingly opaque. In this study, three bifurcation aneurysm geometries were virtually treated by flow-diverter device. Each aneurysm was selected to offer two possible device deployment positions. Flow-diverters similar to commercially available designs were deployed with a fast-deployment algorithm before transient and steady state computational fluid dynamics simulations were performed. Reductions in aneurysm inflow, mean wall shear stress and maximum wall shear stress, all factors often linked with aneurysm treatment outcome, were compared for different device configurations in each aneurysm. In each of the three aneurysms modelled, a particular preferential device placement was shown to offer superior performance with the greatest reduction in the flow metrics considered. In all the three aneurysm geometries, substantial variations in inflow reduction (up to 25.3%), mean wall shear stress reduction (up to 14.6%) and maximum wall shear stress reduction (up to 12.1%) were seen, which were all attributed to device placement alone. Optimal device placement was found to be non-trivial and highly aneurysm specific; in only one-third of the simulated geometries, the best overall performance was achieved by deploying a device in the daughter vessel with the highest flow rate. Good correspondence was seen between transient results and steady state computations that offered a significant reduction in simulation run time. If accurate steady state computations are combined with the fast-deployment algorithm used, the modest run time and corresponding hardware make a virtual treatment pipeline in the clinical setting a meaningful possibility.
Collapse
Affiliation(s)
- Thomas Peach
- Department of Mechanical Engineering, University College London, London, UK
| | - Katerina Spranger
- Department of Mechanical Engineering, University College London, London, UK
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
20
|
Montanino A, Fortunato A, Angelillo M. A new simplified methodology for studying the coupled fluid-structure interaction in a weakened basilar artery. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2016; 32:e02752. [PMID: 26446301 DOI: 10.1002/cnm.2752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/07/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
In this paper, we study the fluid-structure interaction in a weakened basilar artery. The aim is to study how the wall shear stress changes in space and time because of the weakening, because spatial and temporal changes are thought to be possible causes of aneurysm and vascular deseases. The arterial wall, in its natural configuration, is modeled as a hyperelastic cylinder, inhomogeneous along its axis, in order to simulate the axis-symmetric weakening. The fluid is studied exploiting a recent approach for quasi-one-dimensional flows in slowly varying ducts, which allows to write the averaged equations of mass and energy balance on the basis of the velocity profile in a straight duct. The unknowns are the wall pressure, the average velocity, and the wall radial displacement. The problem is solved in two parts: first, the stationary non-linear coupled problem is solved, and an intermediate configuration is obtained. Then, we study the variation of the basic unknowns about the intermediate configuration, considering time dependence over the cardiac cycles. The results suggest that, with a 10% reduction of the main elastic modulus, the shear stress in the weakened zone changes its sign and doubles the maximum stress value detected in the healthy zone. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A Montanino
- Dipartimento di Ingegneria Civile ed Architettura (DICAr), Università degli Studi di Pavia, Pavia, Italy
- Centro di Simulazione Numerica Avanzata (CeSNA), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy
| | - A Fortunato
- Dipartimento di Ingegneria Civile (DiCiv), Università degli Studi di Salerno, Fisciano, SA, Italy
| | - M Angelillo
- Dipartimento di Ingegneria Civile (DiCiv), Università degli Studi di Salerno, Fisciano, SA, Italy
| |
Collapse
|
21
|
Lv N, Yu Y, Xu J, Karmonik C, Liu J, Huang Q. Hemodynamic and morphological characteristics of unruptured posterior communicating artery aneurysms with oculomotor nerve palsy. J Neurosurg 2015; 125:264-8. [PMID: 26636379 DOI: 10.3171/2015.6.jns15267] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Unruptured posterior communicating artery (PCoA) aneurysms with oculomotor nerve palsy (ONP) have a very high risk of rupture. This study investigated the hemodynamic and morphological characteristics of intracranial aneurysms with high rupture risk by analyzing PCoA aneurysms with ONP. METHODS Fourteen unruptured PCoA aneurysms with ONP, 33 ruptured PCoA aneurysms, and 21 asymptomatic unruptured PCoA aneurysms were included in this study. The clinical, morphological, and hemodynamic characteristics were compared among the different groups. RESULTS The clinical characteristics did not differ among the 3 groups (p > 0.05), whereas the morphological and hemodynamic analyses showed that size, aspect ratio, size ratio, undulation index, nonsphericity index, ellipticity index, normalized wall shear stress (WSS), and percentage of low WSS area differed significantly (p < 0.05) among the 3 groups. Furthermore, multiple comparisons revealed that these parameters differed significantly between the ONP group and the asymptomatic unruptured group and between the ruptured group and the asymptomatic unruptured group, except for size, which differed significantly only between the ONP group and the asymptomatic unruptured group (p = 0.0005). No morphological or hemodynamic parameters differed between the ONP group and the ruptured group. CONCLUSIONS Unruptured PCoA aneurysms with ONP demonstrated a distinctive morphological-hemodynamic pattern that was significantly different compared with asymptomatic unruptured PCoA aneurysms and was similar to ruptured PCoA aneurysms. The larger size, more irregular shape, and lower WSS might be related to the high rupture risk of PCoA aneurysms.
Collapse
Affiliation(s)
- Nan Lv
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Ying Yu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Jinyu Xu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Christof Karmonik
- Cerebrovascular Center, Department of Neurosurgery, Houston Methodist, Houston, Texas
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Qinghai Huang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| |
Collapse
|
22
|
Halabian M, Karimi A, Beigzadeh B, Navidbakhsh M. A NUMERICAL STUDY ON THE HEMODYNAMIC AND SHEAR STRESS OF DOUBLE ANEURYSM THROUGH S-SHAPED VESSEL. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2015. [DOI: 10.4015/s1016237215500337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative disease defined as the abnormal ballooning of the abdominal aorta (AA) wall which is usually caused by atherosclerosis. The aneurysm grows larger and eventually ruptures if it is not diagnosed and treated. Aneurysms occur mostly in the aorta, the main artery of the chest and abdomen. The aorta carries blood flow from the heart to all parts of the body, including the vital organs, the legs, and feet. The objective of the present study is to investigate the combined effects of aneurysm and curvature on flow characteristics in S-shaped bends with sweep angle of 90° at Reynolds number of 900. The fluid mechanics of blood flow in a curved artery with abnormal aortic is studied through a mathematical analysis and employing Cosmos flow simulation. Blood is modeled as an incompressible non-Newtonian fluid and the flow is assumed to be steady and laminar. Hemodynamic characteristics are analyzed. Grid independence is tested on three successively refined meshes. It is observed that the abrupt expansion induced by AAA results in an immensely disturbed regime. The results may have implications not only for understanding the mechanical behavior of the blood flow inside an aneurysm artery but also for investigating the mechanical behavior of the blood flow in different arterial diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Mahdi Halabian
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran
| | - Alireza Karimi
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran
| | - Borhan Beigzadeh
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran
| | - Mahdi Navidbakhsh
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran
| |
Collapse
|
23
|
Peach TW, Ngoepe M, Spranger K, Zajarias-Fainsod D, Ventikos Y. Personalizing flow-diverter intervention for cerebral aneurysms: from computational hemodynamics to biochemical modeling. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:1387-1407. [PMID: 25045060 DOI: 10.1002/cnm.2663] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/11/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
This paper presents the computational modeling of a variety of flow-diverting stents, deployed in a number of patient-specific aneurysm geometries. We consider virtual device deployment and hemodynamics as well as thrombus formation, with the scope to assess pre-operatively the efficacy of specific devices in treating particular aneurysms. An algorithm based on a linear and torsional spring analogy is developed for the fast virtual deployment of stents and similar minimally invasive devices in patient-specific vessel geometries. The virtual deployment algorithm is used to accurately deploy a total of four stent designs in three aneurysm geometries. A variety of different flow-diverting stent designs, representing the commercially available and the entirely novel, are presented, varying in both mesh design and porosity. Transient computational hemodynamics simulations are performed on multiple patient-specific geometries to predict the reduction in aneurysm inflow after the deployment of each device. Further, a thrombosis initiation and growth model is implemented, coupled with the hemodynamic computations. Hemodynamic simulations show large variations in flow reduction between devices and across different aneurysm geometries. The industry standard of flow-diverters with 70% porosity, assumed to offer the best compromise in flexibility and flow reduction, is challenged in at least one aneurysm geometry.
Collapse
Affiliation(s)
- T W Peach
- Institute of Biomedical Engineering & Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ
| | | | | | | | | |
Collapse
|
24
|
The 'Sphere': A Dedicated Bifurcation Aneurysm Flow-Diverter Device. Cardiovasc Eng Technol 2014; 5:334-347. [PMID: 25400707 PMCID: PMC4226933 DOI: 10.1007/s13239-014-0188-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/15/2014] [Indexed: 11/03/2022]
Abstract
We present flow-based results from the early stage design cycle, based on computational modeling, of a prototype flow-diverter device, known as the 'Sphere', intended to treat bifurcation aneurysms of the cerebral vasculature. The device is available in a range of diameters and geometries and is constructed from a single loop of NITINOL® wire. The 'Sphere' reduces aneurysm inflow by means of a high-density, patterned, elliptical surface that partially occludes the aneurysm neck. The device is secured in the healthy parent vessel by two armatures in the shape of open loops, resulting in negligible disruption of parent or daughter vessel flow. The device is virtually deployed in six anatomically accurate bifurcation aneurysms: three located at the Basilar tip and three located at the terminus bifurcation of the Internal Carotid artery (at the meeting of the middle cerebral and anterior cerebral arteries). Both steady state and transient flow simulations reveal that the device presents with a range of aneurysm inflow reductions, with mean flow reductions falling in the range of 30.6-71.8% across the different geometries. A significant difference is noted between steady state and transient simulations in one geometry, where a zone of flow recirculation is not captured in the steady state simulation. Across all six aneurysms, the device reduces the WSS magnitude within the aneurysm sac, resulting in a hemodynamic environment closer to that of a healthy vessel. We conclude from extensive CFD analysis that the 'Sphere' device offers very significant levels of flow reduction in a number of anatomically accurate aneurysm sizes and locations, with many advantages compared to current clinical cylindrical flow-diverter designs. Analysis of the device's mechanical properties and deployability will follow in future publications.
Collapse
|
25
|
Castro MA, Ahumada Olivares MC, Putman CM, Cebral JR. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models. Med Biol Eng Comput 2014; 52:827-39. [PMID: 25154981 DOI: 10.1007/s11517-014-1189-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/14/2014] [Indexed: 11/24/2022]
Abstract
The aim of this work was to determine whether or not Newtonian rheology assumption in image-based patient-specific computational fluid dynamics (CFD) cerebrovascular models harboring cerebral aneurysms may affect the hemodynamics characteristics, which have been previously associated with aneurysm progression and rupture. Ten patients with cerebral aneurysms with lobulations were considered. CFD models were reconstructed from 3DRA and 4DCTA images by means of region growing, deformable models, and an advancing front technique. Patient-specific FEM blood flow simulations were performed under Newtonian and Casson rheological models. Wall shear stress (WSS) maps were created and distributions were compared at the end diastole. Regions of lower WSS (lobulation) and higher WSS (neck) were identified. WSS changes in time were analyzed. Maximum, minimum and time-averaged values were calculated and statistically compared. WSS characterization remained unchanged. At high WSS regions, Casson rheology systematically produced higher WSS minimum, maximum and time-averaged values. However, those differences were not statistically significant. At low WSS regions, when averaging over all cases, the Casson model produced higher stresses, although in some cases the Newtonian model did. However, those differences were not significant either. There is no evidence that Newtonian model overestimates WSS. Differences are not statistically significant.
Collapse
Affiliation(s)
- Marcelo A Castro
- Grupo de Investigación y Desarrollo en Bioingeniería, Universidad Tecnológica Nacional, Facultad Regional Buenos Aires, CONICET, Medrano 951, CP 1179, Buenos Aires, Argentina,
| | | | | | | |
Collapse
|
26
|
Futami K, Sano H, Misaki K, Nakada M, Ueda F, Hamada J. Identification of the inflow zone of unruptured cerebral aneurysms: comparison of 4D flow MRI and 3D TOF MRA data. AJNR Am J Neuroradiol 2014; 35:1363-70. [PMID: 24610906 DOI: 10.3174/ajnr.a3877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The hemodynamics of the inflow zone of cerebral aneurysms may be a key factor in coil compaction and recanalization after endovascular coil embolization. We performed 4D flow MR imaging in conjunction with 3D TOF MRA and compared their ability to identify the inflow zone of unruptured cerebral aneurysms. MATERIALS AND METHODS This series comprised 50 unruptured saccular cerebral aneurysms in 44 patients. Transluminal color-coded 3D MRA images were created by selecting the signal-intensity ranges on 3D TOF MRA images that corresponded with both the luminal margin and the putative inflow. RESULTS 4D flow MR imaging demonstrated the inflow zone and yielded inflow velocity profiles for all 50 aneurysms. In 18 of 24 lateral-projection aneurysms (75%), the inflow zone was located distally on the aneurysmal neck. The maximum inflow velocity ranged from 285 to 922 mm/s. On 4D flow MR imaging and transluminal color-coded 3D MRA studies, the inflow zone of 32 aneurysms (64%) was at a similar location. In 91% of aneurysms whose neck section plane angle was <30° with respect to the imaging section direction on 3D TOF MRA, depiction of the inflow zone was similar on transluminal color-coded 3D MRA and 4D flow MR images. CONCLUSIONS 4D flow MR imaging can demonstrate the inflow zone and provide inflow velocity profiles. In aneurysms whose angle of the neck-section plane is obtuse vis-a-vis the imaging section on 3D TOF MRA scans, transluminal color-coded 3D MRA may depict the inflow zone reliably.
Collapse
Affiliation(s)
- K Futami
- From the Department of Neurosurgery (K.F.), Mattoh-Ishikawa Central Hospital, Ishikawa, Japan
| | - H Sano
- Departments of Neurosurgery (H.S., K.M., M.N., J.H.) and Radiology (F.U.), Kanazawa University School of Medicine, Ishikawa, Japan
| | - K Misaki
- Departments of Neurosurgery (H.S., K.M., M.N., J.H.) and Radiology (F.U.), Kanazawa University School of Medicine, Ishikawa, Japan
| | - M Nakada
- Departments of Neurosurgery (H.S., K.M., M.N., J.H.) and Radiology (F.U.), Kanazawa University School of Medicine, Ishikawa, Japan
| | - F Ueda
- From the Department of Neurosurgery (K.F.), Mattoh-Ishikawa Central Hospital, Ishikawa, Japan
| | - J Hamada
- Departments of Neurosurgery (H.S., K.M., M.N., J.H.) and Radiology (F.U.), Kanazawa University School of Medicine, Ishikawa, Japan
| |
Collapse
|
27
|
Farnoush A, Avolio A, Qian Y. A growth model of saccular aneurysms based on hemodynamic and morphologic discriminant parameters for risk of rupture. J Clin Neurosci 2014; 21:1514-9. [PMID: 24929861 DOI: 10.1016/j.jocn.2013.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022]
Abstract
The aim of this study was to derive a model describing the evolution of bifurcation type cerebral aneurysms based on morphological and hemodynamic parameters. Idealized bifurcation models were constructed based on the two morphological parameters of aspect ratio (AR) and size ratio (SR). Aneurysm development was investigated according to the following four patterns: R1, increasing SR with constant AR; R2, increasing AR with constant SR; R3, increasing SR and increasing AR; R4, increasing AR with constant parent artery diameter. Relationships were obtained between energy loss (EL) and morphological parameters (EL-SR and EL-AR curves). The curves were validated by mapping the growth of a ruptured patient-specific bifurcation aneurysm at three stages of follow-up. EL increased in parallel with growth patterns R1 and R3, whereas growth pattern R2 showed a decrease in EL. No significant changes were observed in EL when the growth of the aneurysm was associated only with changes in aneurysm size and independent of changes in parent artery diameter and main flow (R4). Changes in parent artery diameter of bifurcation aneurysms resulted in significant variation in EL. Mapping the growth of a follow-up aneurysm onto the EL-AR curve demonstrated that aneurysms with increasing EL during the observation period are at higher risk of rupture than aneurysms with decreasing EL. Based on the proposed growth model, assessment of morphological (AR and SR) and hemodynamic (EL) parameters may provide quantifiable information on the risk of bifurcation aneurysm rupture during clinical patient follow-up.
Collapse
Affiliation(s)
- Azadeh Farnoush
- The Australian School of Advanced Medicine, Macquarie University, 2 Technology Place, Macquarie Park, NSW 2113, Australia.
| | - Alberto Avolio
- The Australian School of Advanced Medicine, Macquarie University, 2 Technology Place, Macquarie Park, NSW 2113, Australia
| | - Yi Qian
- The Australian School of Advanced Medicine, Macquarie University, 2 Technology Place, Macquarie Park, NSW 2113, Australia
| |
Collapse
|
28
|
Bi Y, Han X, Zhong H, Xu K, Qi X, Zhang Z, Li W. Different long-term outcomes of abdominal aortic aneurysm and intracranial aneurysm models: hemodynamic change may also play an essential role in the initiation and progression of abdominal aortic aneurysm in rabbits. Cell Biochem Biophys 2014; 70:819-22. [PMID: 24801772 DOI: 10.1007/s12013-014-9985-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Self-healing phenomenon was found in the periarterial elastase-induced abdominal aortic aneurysm (AAA) in rabbit. This kind of aneurysm model does not progress and heals spontaneously in the long term, which is quite different from the performance of AAA disease in human. In order to better mimic human AAA and overcome this shortcoming of traditional AAA model in rabbit, we studied the pathogenesis of cerebral aneurysm (CA) model in small animal, which shows an excellent long-term patency and progressive enlargement. We found that hemodynamic conditions, such as turbulence flow, high blood flow, and shear stress, play an important role in the formation and progression of CA. So, we hypothesize that hemodynamic change may also play an essential role in the initiation and progression of rabbit AAA, and self-healing will be overcome if hemodynamic condition changes by coarctation of infra-renal aorta after elastase incubation.
Collapse
Affiliation(s)
- Yonghua Bi
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Cornejo S, Guzmán A, Valencia A, Rodríguez J, Finol E. Flow-induced wall mechanics of patient-specific aneurysmal cerebral arteries: Nonlinear isotropic versus anisotropic wall stress. Proc Inst Mech Eng H 2013; 228:37-48. [PMID: 24280227 DOI: 10.1177/0954411913512283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fluid-structure interaction simulations of three patient-specific models of cerebral aneurysms were carried out with the objective of quantifying the effects of non-Newtonian blood flow and the vessel mechanical behavior on the time-dependent fluid shear and normal stresses, and structural stress and stretch. The average wall shear stress at peak systole was found to be approximately one order of magnitude smaller than the shear stresses in the proximal communicating arteries, regardless of the shape or size of the aneurysms. Spatial distributions of oscillatory shear index were consistent with the reciprocal of wall shear stress distributions at peak systole for all aneurysm geometries, demonstrating that oscillatory shear index correlates inversely with wall shear at this time point in the cardiac cycle. An aneurysm wall modeled with an isotropic material resulted in an underestimation of both the maximum principal stress and stretch, compared to the anisotropic material model. For the three aneurysm geometries, anisotropic peak wall stresses were approximately 50% higher than for an isotropic material. Regardless of the constitutive material, the maximum stresses were consistently located at the aneurysm neck; stresses in the dome were 30% of those in the neck.
Collapse
Affiliation(s)
- Sergio Cornejo
- Department of Mechanical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
30
|
Castro MA. Understanding the role of hemodynamics in the initiation, progression, rupture, and treatment outcome of cerebral aneurysm from medical image-based computational studies. ISRN RADIOLOGY 2013; 2013:602707. [PMID: 24967285 PMCID: PMC4045510 DOI: 10.5402/2013/602707] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/19/2013] [Indexed: 12/31/2022]
Abstract
About a decade ago, the first image-based computational hemodynamic studies of cerebral aneurysms were presented. Their potential for clinical applications was the result of a right combination of medical image processing, vascular reconstruction, and grid generation techniques used to reconstruct personalized domains for computational fluid and solid dynamics solvers and data analysis and visualization techniques. A considerable number of studies have captivated the attention of clinicians, neurosurgeons, and neuroradiologists, who realized the ability of those tools to help in understanding the role played by hemodynamics in the natural history and management of intracranial aneurysms. This paper intends to summarize the most relevant results in the field reported during the last years.
Collapse
Affiliation(s)
- Marcelo A. Castro
- Grupo de Investigación y Desarrollo en Bioingeniería, Facultad Regional Buenos Aires, Universidad Tecnológica Nacional, CONICET, Medrano 951, CP 1179, Buenos Aires, Argentina
| |
Collapse
|
31
|
Sadasivan C, Fiorella DJ, Woo HH, Lieber BB. Physical factors effecting cerebral aneurysm pathophysiology. Ann Biomed Eng 2013; 41:1347-65. [PMID: 23549899 DOI: 10.1007/s10439-013-0800-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 03/21/2013] [Indexed: 12/21/2022]
Abstract
Many factors that are either blood-, wall-, or hemodynamics-borne have been associated with the initiation, growth, and rupture of intracranial aneurysms. The distribution of cerebral aneurysms around the bifurcations of the circle of Willis has provided the impetus for numerous studies trying to link hemodynamic factors (flow impingement, pressure, and/or wall shear stress) to aneurysm pathophysiology. The focus of this review is to provide a broad overview of such hemodynamic associations as well as the subsumed aspects of vascular anatomy and wall structure. Hemodynamic factors seem to be correlated to the distribution of aneurysms on the intracranial arterial tree and complex, slow flow patterns seem to be associated with aneurysm growth and rupture. However, both the prevalence of aneurysms in the general population and the incidence of ruptures in the aneurysm population are extremely low. This suggests that hemodynamic factors and purely mechanical explanations by themselves may serve as necessary, but never as necessary and sufficient conditions of this disease's causation. The ultimate cause is not yet known, but it is likely an additive or multiplicative effect of a handful of biochemical and biomechanical factors.
Collapse
Affiliation(s)
- Chander Sadasivan
- Department of Neurological Surgery, Stony Brook University Medical Center, 100 Nicolls Road, HSC T12, Room 080, Stony Brook, NY 11794-8122, USA
| | | | | | | |
Collapse
|
32
|
Computer Simulations in Stroke Prevention: Design Tools and Virtual Strategies Towards Procedure Planning. Cardiovasc Eng Technol 2013. [DOI: 10.1007/s13239-013-0134-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Farnoush A, Avolio A, Qian Y. Effect of bifurcation angle configuration and ratio of daughter diameters on hemodynamics of bifurcation aneurysms. AJNR Am J Neuroradiol 2013; 34:391-6. [PMID: 22859285 DOI: 10.3174/ajnr.a3222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE EL associated with ruptured aneurysms is higher than that for unruptured aneurysms. In this study, the effect of arterial morphologic variation of bifurcation aneurysms on EL was investigated in idealized models of middle cerebral artery aneurysms. MATERIALS AND METHODS Bifurcation angle configuration and DA ratio were evaluated in 6 idealized numeric models. Type A and B bifurcation models were defined with symmetric and asymmetric bifurcation angles of 136°, and 57° and 79°, respectively. Three models with DA ratios of 1, 1.3, and 2 were constructed for each type. EL was calculated as the energy difference between aneurysm inflow and outflow at the aneurysm neck. Three growth paths (R1, R2, and R3) were proposed. RESULTS The highest EL and influx occurred in bifurcations with DA ratios of 1 for both types A and B. As the DA ratio increases, flow distribution between branches becomes more asymmetric, resulting in a reduction of EL and intra-aneurysmal flow. No strong relation was found between bifurcation angle configuration, inflow flux, and EL. EL decreased with an increase in the AR and DA ratio and increased with an increase in the AR and reduction of DA ratio. CONCLUSIONS EL determined in idealized models is less dependent on bifurcation angle configuration than on DA ratio, and the stability of the aneurysm strongly depends on variation of the daughter artery morphology after aneurysm growth.
Collapse
Affiliation(s)
- A Farnoush
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | | | | |
Collapse
|
34
|
Hemodynamics of cerebral aneurysms: computational analyses of aneurysm progress and treatment. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:782801. [PMID: 22454695 PMCID: PMC3290806 DOI: 10.1155/2012/782801] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/10/2011] [Indexed: 12/02/2022]
Abstract
The progression of a cerebral aneurysm involves degenerative arterial wall remodeling. Various hemodynamic parameters are suspected to be major mechanical factors related to the genesis and progression of vascular diseases. Flow alterations caused by the insertion of coils and stents for interventional aneurysm treatment may affect the aneurysm embolization process. Therefore, knowledge of hemodynamic parameters may provide physicians with an advanced understanding of aneurysm progression and rupture, as well as the effectiveness of endovascular treatments. Progress in medical imaging and information technology has enabled the prediction of flow fields in the patient-specific blood vessels using computational analysis. In this paper, recent computational hemodynamic studies on cerebral aneurysm initiation, progress, and rupture are reviewed. State-of-the-art computational aneurysmal flow analyses after coiling and stenting are also summarized. We expect the computational analysis of hemodynamics in cerebral aneurysms to provide valuable information for planning and follow-up decisions for treatment.
Collapse
|
35
|
Jiang J, Johnson K, Valen-Sendstad K, Mardal KA, Wieben O, Strother C. Flow characteristics in a canine aneurysm model: a comparison of 4D accelerated phase-contrast MR measurements and computational fluid dynamics simulations. Med Phys 2012; 38:6300-12. [PMID: 22047395 DOI: 10.1118/1.3652917] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Our purpose was to compare quantitatively velocity fields in and around experimental canine aneurysms as measured using an accelerated 4D PC-MR angiography (MRA) method and calculated based on animal-specific CFD simulations. METHODS Two animals with a surgically created bifurcation aneurysm were imaged using an accelerated 4D PC-MRA method. Meshes were created based on the geometries obtained from the PC-MRA and simulations using "subject-specific" pulsatile velocity waveforms and geometries were then solved using a commercial CFD solver. Qualitative visual assessments and quantitative comparisons of the time-resolved velocity fields obtained from the PC-MRA measurements and the CFD simulations were performed using a defined similarity metric combining both angular and magnitude differences of vector fields. RESULTS PC-MRA and image-based CFD not only yielded visually consistent representations of 3D streamlines in and around both aneurysms, but also showed good agreement with regard to the spatial velocity distributions. The estimated similarity between time-resolved velocity fields from both techniques was reasonably high (mean value >0.60; one being the highest and zero being the lowest). Relative differences in inflow and outflow zones among selected planes were also reasonable (on the order of 10%-20%). The correlation between CFD-calculated and PC-MRA-measured time-averaged wall shear stresses was low (0.22 and 0.31, p < 0.001). CONCLUSIONS In two experimental canine aneurysms, PC-MRA and image-based CFD showed favorable agreement in intra-aneurismal velocity fields. Combining these two complementary techniques likely will further improve the ability to characterize and interpret the complex flow that occurs in human intracranial aneurysms.
Collapse
Affiliation(s)
- Jingfeng Jiang
- Medical Physics Department, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Cavazzuti M, Atherton MA, Collins MW, Barozzi GS. Non-newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm. Proc Inst Mech Eng H 2011; 225:597-609. [PMID: 22034743 DOI: 10.1177/09544119jeim894] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three models of different stent designs implanted in a cerebral aneurysm, originating from the Virtual Intracranial Stenting Challenge '07, are meshed and the flow characteristics simulated using commercial computational fluid dynamics (CFD) software in order to investigate the effects of non-Newtonian viscosity and pulsatile flow. Conventional mass inflow and wall shear stress (WSS) output are used as a means of comparing the CFD simulations. In addition, a WSS distribution is presented, which clearly discriminates in favour of the stent design identified by other groups. It is concluded that non-Newtonian and pulsatile effects are important to include in order to avoid underestimating wss, to understand dynamic flow effects, and to discriminate more effectively between stent designs.
Collapse
Affiliation(s)
- M Cavazzuti
- Dipartimento di Ingegneria Meccanica e Civile, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | | | | |
Collapse
|
37
|
Penn DL, Komotar RJ, Sander Connolly E. Hemodynamic mechanisms underlying cerebral aneurysm pathogenesis. J Clin Neurosci 2011; 18:1435-8. [PMID: 21917457 DOI: 10.1016/j.jocn.2011.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/15/2022]
Abstract
Intracranial aneurysms and associated subarachnoid hemorrhage (SAH) are predominant cerebrovascular disorders that present a significant public health risk through high rates of morbidity and mortality. Unruptured aneurysms that become large enough compress cerebral tissue and manifest various neurological signs. But the largest danger presented by these cerebrovascular lesions is from the increased likelihood that the vessel will rupture, causing a SAH, a condition that creates higher risk of cerebral ischemia through reduced cerebral blood flow and vasospasm. The specific pathophysiological mechanisms that cause these lesions are not fully understood. The current literature focuses on understanding the effects of and links between hemodynamic forces, vascular remodeling and inflammation, and genetics in aneurysm formation, development, and rupture. The present study represents a survey of the complete hemodynamic pathogenesis of aneurysmal SAH detailing the many factors and their connections that contribute to the pathophysiology of this disorder.
Collapse
Affiliation(s)
- David L Penn
- Department of Neurological Surgery, Columbia University, New York, NY, USA.
| | | | | |
Collapse
|
38
|
Hemodynamic effect of Neuroform stent on intimal hyperplasia and thrombus formation in a carotid aneurysm. Med Eng Phys 2011; 33:573-80. [DOI: 10.1016/j.medengphy.2010.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 12/06/2010] [Accepted: 12/14/2010] [Indexed: 11/15/2022]
|
39
|
Jiang J, Strother C, Johnson K, Baker S, Consigny D, Wieben O, Zagzebski J. Comparison of blood velocity measurements between ultrasound Doppler and accelerated phase-contrast MR angiography in small arteries with disturbed flow. Phys Med Biol 2011; 56:1755-73. [PMID: 21346280 DOI: 10.1088/0031-9155/56/6/015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ultrasound Doppler (UD) velocity measurements are commonly used to quantify blood flow velocities in vivo. The aim of our work was to investigate the accuracy of in vivo spectral Doppler measurements of velocity waveforms. Waveforms were derived from spectral Doppler signals and corrected for intrinsic spectral broadening errors by applying a previously published algorithm. The method was tested in a canine aneurysm model by determining velocities in small arteries (3-4 mm diameter) near the aneurysm where there was moderately disturbed flow. Doppler results were compared to velocity measurements in the same arteries acquired with a rapid volumetric phase contrast MR angiography technique named phase contrast vastly undersampled isotropic projection reconstruction magnetic resonance angiography (PC-VIPR MRA). After correcting for intrinsic spectral broadening, there was a high degree of correlation between velocities obtained by the real-time UD and the accelerated PC-MRA technique. The peak systolic velocity yielded a linear correlation coefficient of r = 0.83, end diastolic velocity resulted in r = 0.81, and temporally averaged mean velocity resulted in r = 0.76. The overall velocity waveforms obtained by the two techniques were also highly correlated (r = 0.89 ± 0.06). There were, however, only weak correlations for the pulsatility index (PI: 0.25) and resistive index (RI: 0.14) derived from the two techniques. Results demonstrate that to avoid overestimations of peak systolic velocities, the results for UD must be carefully corrected to compensate for errors caused by intrinsic spectral broadening.
Collapse
Affiliation(s)
- Jingfeng Jiang
- Medical Physics Department, University of Wisconsin-Madison School of Medicine and Public Health, WI, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Hoganson DM, Pryor HI, Bassett EK, Spool ID, Vacanti JP. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform. LAB ON A CHIP 2011; 11:700-7. [PMID: 21152606 DOI: 10.1039/c0lc00158a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
There is no technology available to support failing lung function for patients outside the hospital. An implantable lung assist device would augment lung function as a bridge to transplant or possible destination therapy. Utilizing biomimetic design principles, a microfluidic vascular network was developed for blood inflow from the pulmonary artery and blood return to the left atrium. Computational fluid dynamics analysis was used to optimize blood flow within the vascular network. A micro milled variable depth mold with 3D features was created to achieve both physiologic blood flow and shear stress. Gas exchange occurs across a thin silicone membrane between the vascular network and adjacent alveolar chamber with flowing oxygen. The device had a surface area of 23.1 cm(2) and respiratory membrane thickness of 8.7 ± 1.2 μm. Carbon dioxide transfer within the device was 156 ml min(-1) m(-2) and the oxygen transfer was 34 ml min(-1) m(-2). A lung assist device based on tissue engineering architecture achieves gas exchange comparable to hollow fiber oxygenators yet does so while maintaining physiologic blood flow. This device may be scaled up to create an implantable ambulatory lung assist device.
Collapse
Affiliation(s)
- David M Hoganson
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
41
|
Timing and size of flow impingement in a giant intracranial aneurysm at the internal carotid artery. Med Biol Eng Comput 2011; 49:891-9. [PMID: 21210303 DOI: 10.1007/s11517-010-0727-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
Flow impingement is regarded as a key factor for aneurysm formation and rupture. Wall shear stress (WSS) is often used to evaluate flow impingement even though WSS and impinging force are in two different directions; therefore, this raises an important question of whether using WSS for evaluation of flow impingement size is appropriate. Flow impinging behavior in a patient-specific model of a giant aneurysm (GA) at the internal carotid artery (ICA) was analyzed by computational fluid dynamics simulations. An Impingement Index (IMI) was used to evaluate the timing and size of flow impingement. In theory, the IMI is related to the WSS gradient, which is known to affect vascular biology of endothelial cells. Effect of non-Newtonian fluid, aneurysm size, and heart rate were also studied. Maximum WSS is found to be proportional to the IMI, but the area of high wall shear is not proportional to the size of impingement. A faster heart rate or larger aneurysm does not produce a larger impinging site, and the Newtonian assumption overestimates the size of impingement. Flow impingement at the dome occurs approximately 0.11 s after the peak of flow waveform is attained. This time delay also increases with aneurysm size and varies with heart rate and waveform.
Collapse
|
42
|
Sforza DM, Löhner R, Putman C, Cebral J. Hemodynamic Analysis of Intracranial Aneurysms with Moving Parent Arteries: Basilar Tip Aneurysms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2010; 26:1219-1227. [PMID: 21113271 PMCID: PMC2990194 DOI: 10.1002/cnm.1385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of parent artery motion on the hemodynamics of basilar tip saccular aneurysms and its potential effect on aneurysm rupture were studied.The aneurysm and parent artery motions in two patients were determined from cine loops of dynamic angiographies. The oscillatory motion amplitude was quantified by registering the frames. Patient-specific computational fluid dynamics (CFD) models of both aneurysms were constructed from 3D rotational angiography images. Two CFD calculations were performed for each patient, corresponding to static and moving models. The motion estimated from the dynamic images was used to move the surface grid points in the moving model. Visualizations from the simulations were compared for wall shear stress (WSS), velocity profiles, and streamlines.In both patients a rigid oscillation of the aneurysm and basilar artery in the anterio-posterior direction was observed and measured. The distribution of WSS was nearly identical between the models of each patient, as well as major intra-aneurysmal flow structures, inflow jets, and regions of impingement.The motion observed in pulsating intracranial vasculature does not have a major impact on intra-aneurysmal hemodynamic variables. Parent artery motion is unlikely to be a risk factor for increased risk of aneurysmal rupture.
Collapse
|
43
|
Abstract
Object
Because the risks are reduced, larger basilar apex aneurysms are usually treated endovascularly instead of with surgery. However, small basilar apex aneurysms are more common and an unfavorable shape may prevent definitive endovascular treatment. The goal of this study was to reevaluate the outcome of traditional surgery for small unruptured basilar apex aneurysms as an alternative to the currently more accepted endovascular treatment.
Methods
The authors reviewed clinical data obtained in 21 patients who underwent surgery between 2000 and 2007 for unruptured basilar apex aneurysms < 7 mm.
Results
The median age of the 21 patients was 52 years (range 29–74 years). All patients experienced a good outcome. Two patients harbored a small residual aneurysm (> 95% occlusion). Eight patients (38%) suffered a temporary third nerve paresis, which resolved in all cases.
Conclusions
Surgical clip ligation remains an excellent treatment for small basilar apex aneurysms. The treatment is definitive and in experienced hands is associated with a low risk.
Collapse
|
44
|
Sforza DM, Putman CM, Scrivano E, Lylyk P, Cebral JR. Blood-flow characteristics in a terminal basilar tip aneurysm prior to its fatal rupture. AJNR Am J Neuroradiol 2010; 31:1127-31. [PMID: 20150312 DOI: 10.3174/ajnr.a2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The development and validation of methods to stratify the risk of rupture of cerebral aneurysms is highly desired because current treatment risks can exceed the natural risk of rupture. Because unruptured aneurysms are typically treated before they rupture, it is very difficult to connect the proposed risk indices to the rupture of an individual aneurysm. The purpose of this case study was to analyze the hemodynamic environment of a saccular aneurysm of the terminal morphology subtype that was imaged just before its rupture and to test whether the hemodynamic characteristics would designate this particular aneurysm as at high risk. MATERIALS AND METHODS A patient-specific CFD model was constructed from 3DRA images acquired just hours before the aneurysm ruptured. A pulsatile flow calculation was performed, and hemodynamic characteristics previously connected to rupture were analyzed. RESULTS It was found that the aneurysm had a concentrated inflow stream, small impingement region, complex intra-aneurysmal flow structure, asymmetric flow split from the parent vessel to the aneurysm and daughter branches, and high levels of aneurysmal WSS near the impaction zone. CONCLUSIONS The hemodynamic characteristics observed in this aneurysm right before its rupture are consistent with previous studies correlating aneurysm rupture and hemodynamic patterns in saccular and terminal aneurysms. This study supports the notion that hemodynamic information may be used to help stratify the rupture risk of cerebral aneurysms.
Collapse
Affiliation(s)
- D M Sforza
- Department of Computational and Data Sciences, Center for Computational Fluid Dynamics, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | | | | | | | | |
Collapse
|
45
|
Fisher C, Rossmann JS. Effect of Non-Newtonian Behavior on Hemodynamics of Cerebral Aneurysms. J Biomech Eng 2009; 131:091004. [DOI: 10.1115/1.3148470] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Blood flow dynamics near and within cerebral aneurysms have long been implicated in aneurysm growth and rupture. In this study, the governing equations for pulsatile flow are solved in their finite volume formulation to simulate blood flow in a range of three-dimensional aneurysm geometries. Four constitutive models are applied to investigate the influence of non-Newtonian behavior on flow patterns and fluid mechanical forces. The blood’s non-Newtonian behavior is found to be more significant, in particular, vascular geometries, and to have pronounced effects on flow and fluid mechanical forces within the aneurysm. The choice of constitutive model has measurable influence on the numerical prediction of aneurysm rupture risk due to fluid stresses, though less influence than aneurysm morphology.
Collapse
Affiliation(s)
- Carolyn Fisher
- Department of Mechanical Engineering, Lafayette College, Easton, PA 18042
| | | |
Collapse
|
46
|
Rayz VL, Boussel L, Acevedo-Bolton G, Martin AJ, Young WL, Lawton MT, Higashida R, Saloner D. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J Biomech Eng 2009; 130:051011. [PMID: 19045518 DOI: 10.1115/1.2970056] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Computational fluid dynamics (CFD) methods can be used to compute the velocity field in patient-specific vascular geometries for pulsatile physiological flow. Those simulations require geometric and hemodynamic boundary values. The purpose of this study is to demonstrate that CFD models constructed from patient-specific magnetic resonance (MR) angiography and velocimetry data predict flow fields that are in good agreement with in vivo measurements and therefore can provide valuable information for clinicians. The effect of the inlet flow rate conditions on calculated velocity fields was investigated. We assessed the internal consistency of our approach by comparing CFD predictions of the in-plane velocity field to the corresponding in vivo MR velocimetry measurements. Patient-specific surface models of four basilar artery aneurysms were constructed from contrast-enhanced MR angiography data. CFD simulations were carried out in those models using patient-specific flow conditions extracted from MR velocity measurements of flow in the inlet vessels. The simulation results computed for slices through the vasculature of interest were compared with in-plane velocity measurements acquired with phase-contrast MR imaging in vivo. The sensitivity of the flow fields to inlet flow ratio variations was assessed by simulating five different inlet flow scenarios for each of the basilar aneurysm models. In the majority of cases, altering the inlet flow ratio caused major changes in the flow fields predicted in the aneurysm. A good agreement was found between the flow fields measured in vivo using the in-plane MR velocimetry technique and those predicted with CFD simulations. The study serves to demonstrate the consistency and reliability of both MR imaging and numerical modeling methods. The results demonstrate the clinical relevance of computational models and suggest that realistic patient-specific flow conditions are required for numerical simulations of the flow in aneurysmal blood vessels.
Collapse
Affiliation(s)
- Vitaliy L Rayz
- Radiology Service, VA Medical Center - San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Impact of aneurysmal geometry on intraaneurysmal flow: a computerized flow simulation study. Neuroradiology 2008; 50:411-21. [PMID: 18180916 DOI: 10.1007/s00234-007-0350-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 11/28/2007] [Indexed: 09/29/2022]
Abstract
INTRODUCTION This study was performed to assess the effect of aneurysm geometry on parameters that may have an impact on the natural history of intracranial aneurysms, such as intraaneurysmal flow pressure and shear stress. METHODS Flow was simulated in 21 randomly selected aneurysms using finite volume modeling. Ten aneurysms were classified as side-wall aneurysms, with either single-sided or circumferential involvement of the parent artery wall, and 11 as bifurcation aneurysms (symmetric or asymmetric), with an axis either perpendicular or parallel to the parent artery. The flow patterns were classified as either jet or vortex types (with regular or irregular vortex flow). Pressures and shear stresses were characterized as evenly or unevenly distributed over the aneurysm wall and neck. RESULTS All side-wall and four of the bifurcation aneurysms with a perpendicular axis had a vortex type flow pattern and seven bifurcation aneurysms with a parallel axis (four symmetric and two asymmetric) had a jet flow pattern. Jet type flow was associated with an uneven pressure distribution in seven out of seven aneurysms. Vortex type flow resulted in an even pressure distribution in five out of six aneurysms with an irregular flow pattern and six out of eight with a regular flow pattern. No firm relationship could be established between any geometrical type and shear stress distribution. Only 1 of 14 aneurysms with a perpendicular axis, but 4 of 7 aneurysms with a parallel axis, had ruptured. CONCLUSION Aneurysm geometry does have an impact on flow conditions. Aneurysms with a main axis parallel to the parent artery have a tendency to have a jet flow pattern and uneven distribution of unsteady pressure. These aneurysms may have a higher rate of rupture as than those with a main axis perpendicular to the parent artery.
Collapse
|
48
|
Pekkan K, Dur O, Sundareswaran K, Kanter K, Fogel M, Yoganathan A, Ündar A. Neonatal Aortic Arch Hemodynamics and Perfusion During Cardiopulmonary Bypass. J Biomech Eng 2008; 130:061012. [DOI: 10.1115/1.2978988] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study is to quantify the detailed three-dimensional (3D) pulsatile hemodynamics, mechanical loading, and perfusion characteristics of a patient-specific neonatal aortic arch during cardiopulmonary bypass (CPB). The 3D cardiac magnetic resonance imaging (MRI) reconstruction of a pediatric patient with a normal aortic arch is modified based on clinical literature to represent the neonatal morphology and flow conditions. The anatomical dimensions are verified from several literature sources. The CPB is created virtually in the computer by clamping the ascending aorta and inserting the computer-aided design model of the 10 Fr tapered generic cannula. Pulsatile (130 bpm) 3D blood flow velocities and pressures are computed using the commercial computational fluid dynamics (CFD) software. Second order accurate CFD settings are validated against particle image velocimetry experiments in an earlier study with a complex cardiovascular unsteady benchmark. CFD results in this manuscript are further compared with the in vivo physiological CPB pressure waveforms and demonstrated excellent agreement. Cannula inlet flow waveforms are measured from in vivo PC-MRI and 3 kg piglet neonatal animal model physiological experiments, distributed equally between the head-neck vessels and the descending aorta. Neonatal 3D aortic hemodynamics is also compared with that of the pediatric and fetal aortic stages. Detailed 3D flow fields, blood damage, wall shear stress (WSS), pressure drop, perfusion, and hemodynamic parameters describing the pulsatile energetics are calculated for both the physiological neonatal aorta and for the CPB aorta assembly. The primary flow structure is the high-speed canulla jet flow (∼3.0 m/s at peak flow), which eventually stagnates at the anterior aortic arch wall and low velocity flow in the cross-clamp pouch. These structures contributed to the reduced flow pulsatility (85%), increased WSS (50%), power loss (28%), and blood damage (288%), compared with normal neonatal aortic physiology. These drastic hemodynamic differences and associated intense biophysical loading of the pathological CPB configuration necessitate urgent bioengineering improvements—in hardware design, perfusion flow waveform, and configuration. This study serves to document the baseline condition, while the methodology presented can be utilized in preliminary CPB cannula design and in optimization studies reducing animal experiments. Coupled to a lumped-parameter model the 3D hemodynamic characteristics will aid the surgical decision making process of the perfusion strategies in complex congenital heart surgeries.
Collapse
Affiliation(s)
- Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University, 2100 Doherty Hall, Pittsburgh, PA 15213-3890
| | - Onur Dur
- Department of Biomedical Engineering, Carnegie Mellon University, 2100 Doherty Hall, Pittsburgh, PA 15213-3890
| | - Kartik Sundareswaran
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0535
| | - Kirk Kanter
- Pediatric Cardiothoracic Surgery, Emory University School of Medicine, 1440 Clifton Road, Atlanta, GA 30322
| | - Mark Fogel
- Children’s Hospital of Philadelphia, 34th Street, Civic Center Boulevard, Philadelphia, PA 19104
| | - Ajit Yoganathan
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0535A
| | - Akif Ündar
- Department of Pediatrics, Surgery and Bioengineering, Penn State College of Medicine, Hershey, PA 17033
| |
Collapse
|
49
|
Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann Biomed Eng 2008; 36:1793-804. [PMID: 18787954 DOI: 10.1007/s10439-008-9561-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
The deposition of intralumenal thrombus in intracranial aneurysms adds a risk of thrombo-embolism over and above that posed by mass effect and rupture. In addition to biochemical factors, hemodynamic factors that are governed by lumenal geometry and blood flow rates likely play an important role in the thrombus formation and deposition process. In this study, patient-specific computational fluid dynamics (CFD) models of blood flow were constructed from MRA data for three patients who had fusiform basilar aneurysms that were thrombus free and then proceeded to develop intralumenal thrombus. In order to determine whether features of the flow fields could suggest which regions had an elevated potential for thrombus deposition, the flow was modeled in the baseline, thrombus-free geometries. Pulsatile flow simulations were carried out using patient-specific inlet flow conditions measured with MR velocimetry. Newtonian and non-Newtonian blood behavior was considered. A strong similarity was found between the intra-aneurysmal regions with CFD-predicted slow, recirculating flows and the regions of thrombus deposition observed in vivo in the follow-up MR studies. In two cases with larger aneurysms, the agreement between the low velocity zones and clotted-off regions improved when non-Newtonian blood behavior was taken into account. A similarity was also found between the calculated low shear stress regions and the regions that were later observed to clot.
Collapse
|
50
|
Ortega J, Hartman J, Rodriguez J, Maitland D. Post-treatment hemodynamics of a basilar aneurysm and bifurcation. Ann Biomed Eng 2008; 36:1531-46. [PMID: 18629647 PMCID: PMC2704058 DOI: 10.1007/s10439-008-9535-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/30/2008] [Indexed: 11/29/2022]
Abstract
To investigate whether or not a successful aneurysm treatment procedure can subject a parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm and bifurcation before and after a virtual endovascular treatment. Prior to treatment, the aneurysm at systole is filled with a periodic train of vortex tubes, which form at the aneurysm neck and advect upwards into the dome. Following the treatment procedure however, the motion of the vortex train is inhibited by the aneurysm filling material, which confines the vortex tubes to the region beneath the aneurysm neck. Analysis of the post-treatment flow field indicates that the impingement of the basilar artery flow upon the treated aneurysm neck and the close proximity of a vortex tube to the parent artery wall increase the maximum wall shear stresses to values approximately equal to 50 Pa at systole. Calculation of the time-averaged wall shear stresses indicates that there is a 1.4 x 10(-7) m(2) area on the parent artery exposed to wall shear stresses greater than 37.9 Pa, a value shown by Fry [Circ. Res. 22(2):165-197, 1968] to cause severe damage to the endothelial cells that line the artery wall. The results of this study demonstrate that it is possible for a treatment procedure, which successfully isolates the aneurysm from the circulation and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the artery wall.
Collapse
Affiliation(s)
- J Ortega
- Lawrence Livermore National Laboratory, P.O. Box 808, L-645, Livermore, CA 94550, USA.
| | | | | | | |
Collapse
|