1
|
Chen Y, Wang Y, Shi J, Guo C, Qi L, Zhao J, Luo S, Zhou H, Lu X, Fan Q. Highly Effective Pyroelectric Catalysis for Simultaneous Tumor-Targeted Dynamic Therapy and Gentle Photothermal Therapy by Oxygen-Vacancy-Rich CeO 2-BaTiO 3 Nanorods. Adv Healthc Mater 2024; 13:e2400781. [PMID: 38738822 DOI: 10.1002/adhm.202400781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Pyroelectric nanostructures can effectively generate temperature-mediated reactive oxygen species (ROS) through the pyroelectric effect, providing promise for treating hypoxic tumors; and therefore, the synergistic application of photothermal therapy (PTT) and pyroelectric dynamic therapy (PEDT) presents an intriguing approach for cancer therapy. However, this method still faces challenges in improving pyroelectric catalysis and achieving precise tumor localization. In this study, a nano-heterojunction based on CeO2-BaTiO3 nanorods (IR1061@PCBNR) is reported, which exhibits highly effective pyroelectric catalysis for simultaneous tumor-targeted dynamic therapy and gentle photothermal therapy through the utilization of the rich oxygen vacancies. The oxygen vacancies create active sites that facilitate the migration of pyroelectrically-induced charge carriers, improving charge separation and ROS generation. IR1061@PCBNR also demonstrates high tumor penetration; while, minimizing damage to normal cells. This precise nanomedicine strategy holds great potential for advancing dynamic cancer therapies by overcoming the limitations of conventional approaches.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Yushu Wang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Jingyi Shi
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Chunmei Guo
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Lina Qi
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Jianhang Zhao
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Sihan Luo
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Hui Zhou
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, 450001, China
| | - Quli Fan
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| |
Collapse
|
2
|
Pham TH, Ngo QTT, Ngo XD, Tufa LT, Nguyen HQ, Tran VT, Chu XQ, Hoang VT, Le AT. Unveiling the role of heterophase nanostructure in MnO 2-based colorimetric sensors for ascorbic acid detection. Mikrochim Acta 2024; 191:520. [PMID: 39110248 DOI: 10.1007/s00604-024-06598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024]
Abstract
Nanozymes based on manganese oxide (MnO2) are demonstrated to be promising probes in colorimetric sensing applications. In this study, the r-MnO2/β-MnO2 heterophase nanostructure was simply prepared by a calcination process with controllable temperature. The characterization of the nanostructured material was confirmed by SEM, UV-vis spectroscopy, Raman, TGA-DSC, and XRD analysis. The r-MnO2/β-MnO2 exhibits a remarkably good catalytic activity in the oxidation process of 3,3',5,5'-tetramethylbenzidine (TMB) compared with the r-MnO2 or Mn2O3 nanostructure owing to its heterophase junctions. The enhanced performance of the colorimetric sensor for ascorbic acid (AA) detection was investigated using the r-MnO2/β-MnO2 heterophase nanostructure as probe. The r-MnO2/β-MnO2 material enhanced the monitoring of AA in the wide linear range from 1 µM to 50 μM with a limit of detection of 0.84 µM. This work presents a promising and straightforward approach for the construction of MnO2-based colorimetric sensor and their practical application in plant growth monitoring.
Collapse
Affiliation(s)
- Thi-Hien Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam
| | - Quynh-Trang Thi Ngo
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam
| | - Xuan-Dinh Ngo
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam
| | - Lemma Teshome Tufa
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Applied Chemistry, Adama Science and Technology University, P.O.Box, 1888, Adama, Ethiopia
| | - Huu-Quang Nguyen
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Van Tan Tran
- Faculty of Biotechnology, Chemical and Environmental Engineering (BCEE), Phenikaa University, Hanoi, 12116, Vietnam.
| | - Xuan-Quang Chu
- Center for Advanced Materials and Environmental Technology, National Center for Technological Progress, Hanoi, 12116, Vietnam
| | - Van-Tuan Hoang
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam.
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam.
| |
Collapse
|
3
|
Pidal JMG, Fiori S, Scroccarello A, Della Pelle F, Maggio F, Serio A, Ferraro G, Escarpa A, Compagnone D. Laser-induced 2D/0D graphene-nanoceria freestanding paper-based films for on-site hydrogen peroxide monitoring in no-touch disinfection treatments. Mikrochim Acta 2024; 191:361. [PMID: 38822891 PMCID: PMC11144143 DOI: 10.1007/s00604-024-06427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
A one-shot CO2 laser-based strategy to generate conductive reduced graphene oxide (rGO) decorated with nanoceria (nCe) is proposed. The 2D/0D rGO-nCe films, integrated as catalytic sensing layers in paper-based sensors, were employed for on-site monitoring of indoor fogging treatments against Listeria monocytogenes (Lm), a ubiquitous pathogenic bacterium. The rGO-nCe laser-assisted synthesis was optimized to preserve the rGO film morphological and electron-transfer features and simultaneously integrate catalytic nCe. The films were characterized by microscopical (SEM), spectroscopical (EDX, Raman, and FTIR), and electrochemical techniques. The most performing film was integrated into a nitrocellulose substrate, and the complete sensor was assembled via a combination of xurography and stencil printing. The rGO-nCe sensor's catalytic activity was proved toward the detection of H2O2, obtaining sensitive determination (LOD = 0.3 µM) and an extended linear range (0.5-1500 µM). Eventually, the rGO-nCe sensor was challenged for the real-time continuous monitoring of hydrogen peroxide aerosol during no-touch fogging treatment conducted following the EU's recommendation for biocidal product use. Treatment effectiveness was proved toward three Lm strains characterized by different origins, i.e., type strain ATCC 7644, clinical strain 338, and food strain 641/6II. The sensor allows for discrimination and quantification treatments at different environmental biocidal amounts and fogging times, and correlates with the microbiological inhibition, promoting the proposed sensor as a useful tool to modulate and monitor no-touch treatments.
Collapse
Affiliation(s)
- José M Gordón Pidal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, 28871, Spain
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Selene Fiori
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy.
| | - Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Giovanni Ferraro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, Florence, I-50019, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, 28871, Spain.
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy.
| |
Collapse
|
4
|
Li S, Ding Q, Zhang L, Shi F, Liu C, Li T, Shi Y, Qi M, Wang L, Dong B, Song S, Sun J, Kim JS, Li C. Gold core@CeO 2 halfshell Janus nanocomposites catalyze targeted sulfate radical for periodontitis therapy. J Control Release 2024; 370:600-613. [PMID: 38735394 DOI: 10.1016/j.jconrel.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
The sulfate radical (SO4•-), known for its high reactivity and long lifespan, has emerged as a potent antimicrobial agent. Its exceptional energy allows for the disruption of vital structures and metabolic pathways in bacteria that are usually inaccessible to common radicals. Despite its promising potential, the efficient generation of this radical, particularly through methods involving enzymes and photocatalysis, remains a substantial challenge. Here, we capitalized on the peroxidase (POD)-mimicking activity and photocatalytic properties of cerium oxide (CeO2) nanozymes, integrating these properties with the enhanced concept of plasma gold nanorod (GNR) to develop a half-encapsulated core@shell GNRs@CeO2 Janus heterostructure impregnated with persulfate. Under near-infrared irradiation, the GNRs generate hot electrons, thereby boosting the CeO2's enzyme-like activity and initiating a potent reactive oxygen species (ROS) storm. This distinct nanoarchitecture facilitates functional specialization, wherein the heterostructure and efficient light absorption ensured continuous hot electron flow, not only enhancing the POD-like activity of CeO2 for the production of SO4•- effectively, but also contributing a significant photothermal effect, disrupting periodontal plaque biofilm and effectively eradicating pathogens. Furthermore, the local temperature elevation synergistically enhances the POD-like activity of CeO2. Transcriptomics analysis, as well as animal experiments of the periodontitis model, have revealed that pathogens undergo genetic information destruction, metabolic disorders, and pathogenicity changes in the powerful ROS system, and profound therapeutic outcomes in vivo, including anti-inflammation and bone preservation. This study demonstrated that energy transfer to augment nanozyme activity, specifically targeting ROS generation, constitutes a significant advancement in antibacterial treatment.
Collapse
Affiliation(s)
- Sijia Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Qihang Ding
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China; Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fangyu Shi
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Tingxuan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yujia Shi
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Manlin Qi
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Lin Wang
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Jiao Sun
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea.
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
5
|
Li X, Zhu W, Liu R, Ding G, Huang H. Cerium Oxide Nanozymes Improve Skeletal Muscle Function in Gestational Diabetic Offspring by Attenuating Mitochondrial Oxidative Stress. ACS OMEGA 2024; 9:21851-21863. [PMID: 38799328 PMCID: PMC11112706 DOI: 10.1021/acsomega.3c09025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Gestational diabetes mellitus (GDM) is a significant complication during pregnancy that results in abnormalities in the function of multiple systems in the offspring, which include skeletal muscle dysfunction and reduced systemic metabolic capacity. One of the primary causes behind this intergenerational effect is the presence of mitochondrial dysfunction and oxidative stress in the skeletal muscle of the offspring due to exposure to a high-glucose environment in utero. Cerium oxide (CeO2) nanozymes are antioxidant agents with polymerase activity that have been widely used in the treatment of inflammatory and aging diseases. In this study, we synthesized ultrasmall particle size CeO2 nanozymes and applied them in GDM mouse offspring. The CeO2 nanozymes demonstrated an ability to increase insulin sensitivity and enhance skeletal muscle motility in GDM offspring by improving mitochondrial activity, increasing mitochondrial ATP synthesis function, and restoring abnormal mitochondrial morphology. Furthermore, at the cellular level, CeO2 nanozymes could ameliorate metabolic dysregulation and decrease cell differentiation in adult muscle cells induced by hyperglycemic stimuli. This was achieved through the elimination of endogenous reactive oxygen species (ROS) and an improvement in mitochondrial oxidative respiration function. In conclusion, CeO2 nanozymes play a crucial role in preserving muscle function and maintaining the metabolic stability of organisms. Consequently, they serve to reverse the negative effects of GDM on skeletal muscle physiology in the offspring.
Collapse
Affiliation(s)
- Xinyuan Li
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310058,China
| | - Wanbo Zhu
- Department
of Orthopedics, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Rui Liu
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310058,China
- Reproductive
Medicine Center, International Institutes of Medicine, the Fourth
Affiliated Hospital, Zhejiang University
School of Medicine, Yiwu322000, China
| | - Guolian Ding
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
| | - Hefeng Huang
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310058,China
| |
Collapse
|
6
|
Hang C, Moawad MS, Lin Z, Guo H, Xiong H, Zhang M, Lu R, Liu J, Shi D, Xie D, Liu Y, Liang D, Chen YH, Yang J. Biosafe cerium oxide nanozymes protect human pluripotent stem cells and cardiomyocytes from oxidative stress. J Nanobiotechnology 2024; 22:132. [PMID: 38532378 DOI: 10.1186/s12951-024-02383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) have the highest mortality worldwide. Human pluripotent stem cells (hPSCs) and their cardiomyocyte derivatives (hPSC-CMs) offer a valuable resource for disease modeling, pharmacological screening, and regenerative therapy. While most CVDs are linked to significant over-production of reactive oxygen species (ROS), the effects of current antioxidants targeting excessive ROS are limited. Nanotechnology is a powerful tool to develop antioxidants with improved selectivity, solubility, and bioavailability to prevent or treat various diseases related to oxidative stress. Cerium oxide nanozymes (CeONZs) can effectively scavenge excessive ROS by mimicking the activity of endogenous antioxidant enzymes. This study aimed to assess the nanotoxicity of CeONZs and their potential antioxidant benefits in stressed human embryonic stem cells (hESCs) and their derived cardiomyocytes (hESC-CMs). RESULTS CeONZs demonstrated reliable nanosafety and biocompatibility in hESCs and hESC-CMs within a broad range of concentrations. CeONZs exhibited protective effects on the cell viability of hESCs and hESC-CMs by alleviating excessive ROS-induced oxidative stress. Moreover, CeONZs protected hESC-CMs from doxorubicin (DOX)-induced cardiotoxicity and partially ameliorated the insults from DOX in neonatal rat cardiomyocytes (NRCMs). Furthermore, during hESCs culture, CeONZs were found to reduce ROS, decrease apoptosis, and enhance cell survival without affecting their self-renewal and differentiation potential. CONCLUSIONS CeONZs displayed good safety and biocompatibility, as well as enhanced the cell viability of hESCs and hESC-CMs by shielding them from oxidative damage. These promising results suggest that CeONZs may be crucial, as a safe nanoantioxidant, to potentially improve the therapeutic efficacy of CVDs and be incorporated into regenerative medicine.
Collapse
Affiliation(s)
- Chengwen Hang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Mohamed S Moawad
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, 3725005, Egypt.
| | - Zheyi Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hui Xiong
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dan Shi
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Yi-Han Chen
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
7
|
Abdel-Karim RI, Hashish RK, Badran DI, Mohammed SS, Salem NA. The ameliorative effect of cerium oxide nanoparticles on chlorpyrifos induced hepatotoxicity in a rat model: Biochemical, molecular and immunohistochemical study. J Trace Elem Med Biol 2024; 81:127346. [PMID: 38000167 DOI: 10.1016/j.jtemb.2023.127346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Chlorpyrifos (CPF) is a widely used insecticide that causes toxicity to living organisms through the production of free radicals. Cerium oxide nanoparticles (CeO2NPs) are a new antioxidant agent that has proved therapeutic effects. We evaluated the effect of CeO2NPs on CPF hepatotoxicity. METHODS Forty rats were randomized into four groups. Group I: rats received 1 ml corn oil by gastric tube once daily and 0.5 ml PBS by intra-peritoneal injection twice a week for 4 weeks. Group II: received CeO2NPs 0.5 mg/kg in PBS by i.p. injection, twice weekly for four weeks. Group III: were treated with oral administration of CPF 13.5 mg/kg in corn oil daily for 4 weeks. Group IV: received CPF as in group III, then each animal received CeO2NPs twice weekly for four weeks as in group II. Twenty-four hours after the last dose, rats were anesthetized and sera were collected for liver enzymes assessment. Afterwards, rats were sacrificed, livers were excised, the right lobe of each liver was fixed for immunohistochemical studies, and the left lobe was homogenized for oxidative profile assessment and molecular analysis. RESULTS CPF group showed significant increase in liver transaminases, disturbance of the oxidative profile with up-regulation of BAX expression and down-regulation in the Bcl-2, Gadd45 and NFE2L2. CPF caused severe histopathological liver damage as well as significant increase in anti-Caspase 3 and TNF immunostaining. The CeO2NPs treated group revealed significant improvement of all previous parameters. CONCLUSION CeO2NPs could alleviate CPF hepatoxicity through decreasing expression of the inflammatory and apoptotic proteins and increasing the activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Rehab I Abdel-Karim
- Forensic Medicine and Clinical Toxicology department, Faculty of Medicine, Suez Canal University, Egypt
| | - Rania K Hashish
- Forensic Medicine and Clinical Toxicology department, Faculty of Medicine, Suez Canal University, Egypt
| | - Dahlia I Badran
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Egypt; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Cairo, Egypt.
| | - Sally S Mohammed
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Egypt
| | - Noha A Salem
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Egypt
| |
Collapse
|
8
|
Yang Y, Bustani GS, Alawsi T, Altalbawy FMA, Kareem AK, Gupta J, Zhu P, Hjazi A, Alawadi AH, Mustafa YF. The cardioprotective effects of cerium oxide nanoparticles against the poisoning generated by aluminum phosphide pesticide: Controlling oxidative stress and mitochondrial damage. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105701. [PMID: 38072556 DOI: 10.1016/j.pestbp.2023.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Aluminum phosphide (AlP) is a well-known toxic compound used as an agricultural pesticide to prevent insect damage to stored crops. However, even if just a small amount was consumed, it caused lasting harm to the human body and, in acute concentrations, death. The current study employed cerium oxide nanoparticles (CeO2 NPs) to reduce oxidative stress and various harmful outcomes of AlP poisoning. METHODS Following finding effective concentrations of CeO2 NPs via MTT assay, Human Cardiac Myocyte (HCM) cells were pre-treated with CeO2 NPs for 24 h. After that, they were exposed to 2.36 μM AlP. The activity of oxidative stress and mitochondrial biomarkers, including mitochondrial swelling, mitochondrial membrane potential, and cytochrome c release, were evaluated in HCM cells. Finally, the population of apoptotic and necrotic cells was assessed via flow cytometry. RESULTS After 24 h, data revealed that all tested concentrations of CeO2 NPs were safe, and 25 and 50 μM of that were selected as effective concentrations. Oxidative stress markers (malondialdehyde, protein carbonyl, superoxide dismutase, and catalase) showed that CeO2 NPs could successfully decrease AlP poisoning due to their antioxidant characteristics. Mitochondrial markers were also recovered by pre-treatment of HCM cells with CeO2 NPs. Furthermore, pre-treating with CeO2 NPs could compensate for the reduction of live cells with AlP and cause a diminishing in the population of early and late apoptotic cells. CONCLUSION As a result, it is evident that CeO2 NPs, through the recovery of oxidative stress and mitochondrial damages caused by AlP, reduce apoptosis and have therapeutic potentials on HCM cells.
Collapse
Affiliation(s)
- Yongzheng Yang
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Taif Alawsi
- Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt
| | - Ali Kamil Kareem
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hillah, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Ping Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
9
|
Pota G, Silvestri B, Vitiello G, Gallucci N, Di Girolamo R, Scialla S, Raucci MG, Ambrosio L, Di Napoli M, Zanfardino A, Varcamonti M, Pezzella A, Luciani G. Towards nanostructured red-ox active bio-interfaces: Bioinspired antibacterial hybrid melanin-CeO 2 nanoparticles for radical homeostasis. BIOMATERIALS ADVANCES 2023; 153:213558. [PMID: 37467646 DOI: 10.1016/j.bioadv.2023.213558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/29/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Redox-active nano-biointerfaces are gaining weight in the field of regenerative medicine since they can act as enzymes in regulating physiological processes and enabling cell homeostasis, as well as the defense against pathogen aggression. In particular, cerium oxide nanoparticles (CeO2 NPs) stand as intriguing enzyme-mimicking nanoplatforms, owing to the reversible Ce+3/Ce+4 surface oxidation state. Moreover, surface functionalization leads to higher catalytic activity and selectivity, as well as more tunable enzyme-mimicking performances. Conjugation with melanin is an adequate strategy to boost and enrich CeO2 NPs biological features, because of melanin redox properties accounting for intrinsic antioxidant, antimicrobial and anti-inflammatory power. Herein, hybrid Melanin/CeO2 nanostructures were designed by simply coating the metal-oxide nanoparticles with melanin chains, obtained in-situ through ligand-to-metal charge transfer mechanism, according to a bioinspired approach. Obtained hybrid nanostructures underwent detailed physico-chemical characterization. Morphological and textural features were investigated through TEM, XRD and N2 physisorption. The nature of nanoparticle-melanin interaction was analyzed through FTIR, UV-vis and EPR spectroscopy. Melanin-coated hybrid nanostructures exhibited a relevant antioxidant activity, confirmed by a powerful quenching effect for DPPH radical, reaching 81 % inhibition at 33 μg/mL. A promising anti-inflammatory efficacy of the melanin-coated hybrid nanostructures was validated through a significant inhibition of BSA denaturation after 3 h. Meanwhile, the enzyme-mimicking activity was corroborated by a prolonged peroxidase activity after 8 h at 100 μg/mL and a relevant catalase-like action, by halving the H2O2 level in 30 min at 50 μg/mL. Antimicrobial assays attested that conjugation with melanin dramatically boosted CeO2 biocide activity against both Gram (-) and Gram (+) strains. Cytocompatibility tests demonstrated that the melanin coating not only enhanced the CeO2 nanostructures biomimicry, resulting in improved cell viability for human dermal fibroblast cells (HDFs), but mostly they proved that Melanin-CeO2 NPs were able to control the oxidative stress, modulating the production of nitrite and reactive oxygen species (ROS) levels in HDFs, under physiological conditions. Such remarkable outcomes make hybrid melanin-CeO2 nanozymes, promising redox-active interfaces for regenerative medicine.
Collapse
Affiliation(s)
- Giulio Pota
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Brigida Silvestri
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy; CSGI, Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Noemi Gallucci
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Stefania Scialla
- Institute for Polymers Composites and Biomaterials (IPCB) CNR Via Campi Flegrei 34, I-80078 Pozzuoli, NA, Italy
| | - Maria Grazia Raucci
- Institute for Polymers Composites and Biomaterials (IPCB) CNR Via Campi Flegrei 34, I-80078 Pozzuoli, NA, Italy
| | - Luigi Ambrosio
- Institute for Polymers Composites and Biomaterials (IPCB) CNR Via Campi Flegrei 34, I-80078 Pozzuoli, NA, Italy
| | - Michela Di Napoli
- Department of Biology, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Alessandro Pezzella
- Institute for Polymers Composites and Biomaterials (IPCB) CNR Via Campi Flegrei 34, I-80078 Pozzuoli, NA, Italy; Department of Physics "Ettore Pancini", University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Florence, Italy
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.
| |
Collapse
|
10
|
Yadav S, Chamoli S, Kumar P, Maurya PK. Structural and functional insights in polysaccharides coated cerium oxide nanoparticles and their potential biomedical applications: A review. Int J Biol Macromol 2023; 246:125673. [PMID: 37406905 DOI: 10.1016/j.ijbiomac.2023.125673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Cerium oxide nanoparticles have now significant presence in biomedical fields due to their wide applications; however, challenges regarding their safety and biocompatibility persist. Polysaccharides based biopolymers have inherent hydroxyl and carboxyl groups, enabling them to govern the surface functionalization of cerium oxide nanoparticles, hence their chemical and physical characteristics. Because of this, polysaccharides such as dextran, alginate, pullulan, chitosan, polylactic acid, starch, and pectin are practical substitutes for the conventional coatings used to synthesize cerium oxide nanoparticles. This review discusses the effect of biopolymer coatings on the properties of cerium oxide nanoparticles, such as size, stability, aggregation, and biocompatibility. Additionally, it also summarises various biomedical applications of polysaccharides coated cerium oxide nanoparticles, such as in bone tissue regeneration, liver inflammation, wound healing, and antibacterial and anticancer activities. Biocompatible cerium oxide nanoparticles will surely improve their applications in the biomedical field.
Collapse
Affiliation(s)
- Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Shivangi Chamoli
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Piyush Kumar
- School of Health Sciences and Technology, Bidholi Campus, UPES, Dehradun, Uttarakhand 248007, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
11
|
Sisakhtnezhad S, Rahimi M, Mohammadi S. Biomedical applications of MnO 2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother 2023; 163:114833. [PMID: 37150035 DOI: 10.1016/j.biopha.2023.114833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023] Open
Abstract
Manganese dioxide (MnO2) nanoenzymes/nanozymes (MnO2-NEs) are 1-100 nm nanomaterials that mimic catalytic, oxidative, peroxidase, and superoxide dismutase activities. The oxidative-like activity of MnO2-NEs makes them suitable for developing effective and low-cost colorimetric detection assays of biomolecules. Interestingly, MnO2-NEs also demonstrate scavenging properties against reactive oxygen species (ROS) in various pathological conditions. In addition, due to the decomposition of MnO2-NEs in the tumor microenvironment (TME) and the production of Mn2+, they can act as a contrast agent for improving clinical imaging diagnostics. MnO2-NEs also can use as an in situ oxygen production system in TME, thereby overcoming hypoxic conditions and their consequences in the progression of cancer. Furthermore, MnO2-NEs as a shell and coating make the nanosystems smart and, therefore, in combination with other nanomaterials, the MnO2-NEs can be used as an intelligent nanocarrier for delivering drugs, photosensitizers, and sonosensitizers in vivo. Moreover, these capabilities make MnO2-NEs a promising candidate for the detection and treatment of different human diseases such as cancer, metabolic, infectious, and inflammatory pathological conditions. MnO2-NEs also have ROS-scavenging and anti-bacterial properties against Gram-positive and Gram-negative bacterial strains, which make them suitable for wound healing applications. Given the importance of nanomaterials and their potential applications in biomedicine, this review aimed to discuss the biochemical properties and the theranostic roles of MnO2-NEs and recent advances in their use in colorimetric detection assays of biomolecules, diagnostic imaging, drug delivery, and combinatorial therapy applications. Finally, the challenges of MnO2-NEs applications in biomedicine will be discussed.
Collapse
Affiliation(s)
| | - Matin Rahimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Wang S, Zhao M, Yan Y, Li P, Huang W. Flexible Monitoring, Diagnosis, and Therapy by Microneedles with Versatile Materials and Devices toward Multifunction Scope. RESEARCH (WASHINGTON, D.C.) 2023; 6:0128. [PMID: 37223469 PMCID: PMC10202386 DOI: 10.34133/research.0128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Microneedles (MNs) have drawn rising attention owing to their merits of convenience, noninvasiveness, flexible applicability, painless microchannels with boosted metabolism, and precisely tailored multifunction control. MNs can be modified to serve as novel transdermal drug delivery, which conventionally confront with the penetration barrier caused by skin stratum corneum. The micrometer-sized needles create channels through stratum corneum, enabling efficient drug delivery to the dermis for gratifying efficacy. Then, incorporating photosensitizer or photothermal agents into MNs can conduct photodynamic or photothermal therapy, respectively. Besides, health monitoring and medical detection by MN sensors can extract information from skin interstitial fluid and other biochemical/electronic signals. Here, this review discloses a novel monitoring, diagnostic, and therapeutic pattern by MNs, with elaborate discussion about the classified formation of MNs together with various applications and inherent mechanism. Hereby, multifunction development and outlook from biomedical/nanotechnology/photoelectric/devices/informatics to multidisciplinary applications are provided. Programmable intelligent MNs enable logic encoding of diverse monitoring and treatment pathways to extract signals, optimize the therapy efficacy, real-time monitoring, remote control, and drug screening, and take instant treatment.
Collapse
Affiliation(s)
| | | | - Yibo Yan
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| | - Peng Li
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| | - Wei Huang
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| |
Collapse
|
13
|
Saif-Elnasr M, El-Ghlban S, Bayomi AI, El-Sayyad GS, Maghraby MS. Gallic acid and/or cerium oxide nanoparticles synthesized by gamma-irradiation protect cisplatin-induced nephrotoxicity via modulating oxidative stress, inflammation and apoptosis. Arch Biochem Biophys 2023; 740:109594. [PMID: 37023935 DOI: 10.1016/j.abb.2023.109594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Cisplatin is one of the most significant anticancer. However, its use is associated with numerous toxicities especially nephrotoxicity. The main aim of this work was to examine the protective effect of Gallic acid (GA) and/or cerium oxide nanoparticles (CONPs) synthesized by gamma-irradiation on cisplatin-induced nephrotoxicity in rats. To do that, 48 adult male albino rats were separated into eight groups and received GA (100 mg/kg orally) and/or CONPs (15 mg/kg i. p.) for 10 days before injection with a single dose of cisplatin (7.5 mg/kg i. p.). The findings showed that cisplatin treatment impaired kidney functioning as shown by elevated serum levels of urea and creatinine. Additionally, the oxidative stress indicators (MDA and NO), levels of NF-kB, pro-inflammatory cytokines (IL1-and TNF-) and pro-apoptotic proteins (BAX and caspase-3) were raised after cisplatin injection, while levels of intrinsic anti-oxidants (CAT, SOD, and GSH) and anti-apoptotic protein (Bcl-2) were reduced. Moreover, renal toxicity was confirmed by alteration in normal histological architecture of the kidneys. On the other hand, pretreatment with CONPs and/or GA ameliorated cisplatin-induced nephrotoxicity as evidenced by improvement of renal function parameters and levels of oxidative stress, inflammatory and apoptotic markers in renal tissue along with the renal histopathological changes. This study clarifies how GA and CONPs protect against cisplatin-induced nephrotoxicity and demonstrates any potential synergism between them. Therefore, they can be considered as promising nephroprotective agents during chemotherapy.
Collapse
Affiliation(s)
- Mostafa Saif-Elnasr
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Samah El-Ghlban
- Biochemistry Division, Department of Chemistry, Faculty of Science, El Menoufia University, Shebin El-kom, Egypt
| | - Asmaa I Bayomi
- Zoology Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt; Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohamed Said Maghraby
- Biochemistry Division, Department of Chemistry, Faculty of Science, El Menoufia University, Shebin El-kom, Egypt.
| |
Collapse
|
14
|
Filippova KO, Ermakov AM, Popov AL, Ermakova ON, Blagodatsky AS, Chukavin NN, Shcherbakov AB, Baranchikov AE, Ivanov VK. Mitogen-like Cerium-Based Nanoparticles Protect Schmidtea mediterranea against Severe Doses of X-rays. Int J Mol Sci 2023; 24:ijms24021241. [PMID: 36674757 PMCID: PMC9864839 DOI: 10.3390/ijms24021241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Novel radioprotectors are strongly demanded due to their numerous applications in radiobiology and biomedicine, e.g., for facilitating the remedy after cancer radiotherapy. Currently, cerium-containing nanomaterials are regarded as promising inorganic radioprotectors due to their unrivaled antioxidant activity based on their ability to mimic the action of natural redox enzymes like catalase and superoxide dismutase and to neutralize reactive oxygen species (ROS), which are by far the main damaging factors of ionizing radiation. The freshwater planarian flatworms are considered a promising system for testing new radioprotectors, due to the high regenerative potential of these species and an excessive amount of proliferating stem cells (neoblasts) in their bodies. Using planarian Schmidtea mediterranea, we tested CeO2 nanoparticles, well known for their antioxidant activity, along with much less studied CeF3 nanoparticles, for their radioprotective potential. In addition, both CeO2 and CeF3 nanoparticles improve planarian head blastema regeneration after ionizing irradiation by enhancing blastema growth, increasing the number of mitoses and neoblasts' survival, and modulating the expression of genes responsible for the proliferation and differentiation of neoblasts. The CeO2 nanoparticles' action stems directly from their redox activity as ROS scavengers, while the CeF3 nanoparticles' action is mediated by overexpression of "wound-induced genes" and neoblast- and stem cell-regulating genes.
Collapse
Affiliation(s)
- Kristina O. Filippova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Artem M. Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Moscow Region Pedagogical State University, Moscow 141014, Russia
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Correspondence:
| | - Olga N. Ermakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Artem S. Blagodatsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nikita N. Chukavin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Moscow Region Pedagogical State University, Moscow 141014, Russia
| | - Alexander B. Shcherbakov
- Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
15
|
Hsu KC, Yu CL, Lei HJ, Sakthinathan S, Chen PC, Lin CC, Chiu TW, Nagaraj K, Fan L, Lee YH. Modification of Electrospun CeO 2 Nanofibers with CuCrO 2 Particles Applied to Hydrogen Harvest from Steam Reforming of Methanol. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8770. [PMID: 36556574 PMCID: PMC9785846 DOI: 10.3390/ma15248770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen is the alternative renewable energy source for addressing the energy crisis, global warming, and climate change. Hydrogen is mostly obtained in the industrial process by steam reforming of natural gas. In the present work, CuCrO2 particles were attached to the surfaces of electrospun CeO2 nanofibers to form CeO2-CuCrO2 nanofibers. However, the CuCrO2 particles did not readily adhere to the surfaces of the CeO2 nanofibers, so a trace amount of SiO2 was added to the surfaces to make them hydrophilic. After the SiO2 modification, the CeO2 nanofibers were immersed in Cu-Cr-O precursor and annealed in a vacuum atmosphere to form CeO2-CuCrO2 nanofibers. The CuCrO2, CeO2, and CeO2-CuCrO2 nanofibers were examined by X-ray diffraction analysis, transmission electron microscopy, field emission scanning electron microscopy, scanning transmission electron microscope, thermogravimetric analysis, and Brunauer-Emmett-Teller studies (BET). The BET surface area of the CeO2-CuCrO2 nanofibers was 15.06 m2/g. The CeO2-CuCrO2 nanofibers exhibited hydrogen generation rates of up to 1335.16 mL min-1 g-cat-1 at 773 K. Furthermore, the CeO2-CuCrO2 nanofibers produced more hydrogen at lower temperatures. The hydrogen generation performance of these CeO2-CuCrO2 nanofibers could be of great importance in industry and have an economic impact.
Collapse
Affiliation(s)
- Kai-Chun Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Chung-Lun Yu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Heng-Jyun Lei
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Po-Chou Chen
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
- E-Current Co., Ltd., 10F.-5, 50, Section 4, Nanjing East Road, Taipei 10533, Taiwan
| | - Chia-Cheng Lin
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Karuppiah Nagaraj
- SRICT-Institute of Science and Research, UPL University of Sustainable Technology, Vataria, Ankleshwar 393135, Gujarat, India
| | - Liangdong Fan
- Department of New Energy Science and Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yi-Hsuan Lee
- Department of Mechanical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
| |
Collapse
|
16
|
Xiao G, Li H, Zhao Y, Wei H, Li J, Su H. Nanoceria-Based Artificial Nanozymes: Review of Materials and Applications. ACS APPLIED NANO MATERIALS 2022; 5:14147-14170. [DOI: 10.1021/acsanm.2c03009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Affiliation(s)
- Gang Xiao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Haotian Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Yilin Zhao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Huiling Wei
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Jiayi Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| |
Collapse
|
17
|
Panchal N, Jain V, Elliott R, Flint Z, Worsley P, Duran C, Banerjee T, Santra S. Plasmon-Enhanced Bimodal Nanosensors: An Enzyme-Free Signal Amplification Strategy for Ultrasensitive Detection of Pathogens. Anal Chem 2022; 94:13968-13977. [PMID: 36153970 DOI: 10.1021/acs.analchem.2c03215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing foodborne illnesses have led to global health and economic burdens. E. coli O157:H7 is one of the most common disease-provoking pathogens and known to be lethal Shiga toxin-producing E. coli (STEC) strains. With a low infection dose in addition to person-to-person transmission, STEC infections are easily spread. As a result, specific and rapid testing methods to identify foodborne pathogens are urgently needed. Nanozymes have emerged as enzyme-mimetic nanoparticles, demonstrating intrinsic catalytic activity that could allow for rapid, specific, and accurate pathogen identification in the agrifood industry. In this study, we developed a sensitive nanoplatform based on the traditional ELISA assay with the synergistic properties of gold and iron oxide nanozymes, replacing the conventional enzyme horseradish peroxidase (HRP). We designed an easily interchangeable sandwich ELISA composed of a novel, multifunctional magneto-plasmonic nanosensor (MPnS) with target antibodies (MPnS-Ab). Our experiments demonstrate a 100-fold increase in catalytic activity in comparison to HRP with observable color changes within 15 min. Results further indicate that the MPnS-Ab is highly specific for E. coli O157:H7. Additionally, effective translatability of catalytic activity of the MPnS technology in the lateral flow assay (LFA) platform is also demonstrated for E. coli O157:H7 detection. As nanozymes display more stability, tunable activity, and multi-functionality than natural enzymes, our platform could provide customizable, low-cost assay that combines high specificity with rapid detection for a variety of pathogens in a point-of-care setup.
Collapse
Affiliation(s)
- Nilamben Panchal
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Vedant Jain
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Rebekah Elliott
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Zachary Flint
- Department of Chemistry and Biochemistry, Missouri State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Paul Worsley
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Caine Duran
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Tuhina Banerjee
- Department of Chemistry and Biochemistry, Missouri State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| |
Collapse
|
18
|
Lin Y, Chen Z, Liu Y, Wang J, Lv W, Peng R. Recent Advances in Nano-Formulations for Skin Wound Repair Applications. Drug Des Devel Ther 2022; 16:2707-2728. [PMID: 35996567 PMCID: PMC9392552 DOI: 10.2147/dddt.s375541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Skin injuries caused by accidents and acute or chronic diseases place a heavy burden on patients and health care systems. Current treatments mainly depend on preventing infection, debridement, and hemostasis and on supplementing growth factors, but patients will still have scar tissue proliferation or difficulty healing and other problems after treatment. Conventional treatment usually focuses on a single factor or process of wound repair and often ignores the influence of the wound pathological microenvironment on the final healing effect. Therefore, it is of substantial research value to develop multifunctional therapeutic methods that can actively regulate the wound microenvironment and reduce the oxidative stress level at the wound site to promote the repair of skin wounds. In recent years, various bioactive nanomaterials have shown great potential in tissue repair and regeneration due to their properties, including their unique surface interface effect, small size effect, enzyme activity and quantum effect. This review summarizes the mechanisms underlying skin wound repair and the defects in traditional treatment methods. We focus on analyzing the advantages of different types of nanomaterials and comment on their toxicity and side effects when used for skin wound repair.
Collapse
Affiliation(s)
- Yue Lin
- Department of Emergency, The Third Affiliated Hospital of Shanghai University & Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, People’s Republic of China
| | - Zheyan Chen
- Department of Plastic Surgery, The Third Affiliated Hospital of Shanghai University & Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, People’s Republic of China
| | - Yinai Liu
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Jiawen Wang
- Department of Plastic Surgery, The Third Affiliated Hospital of Shanghai University & Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, People’s Republic of China
| | - Wang Lv
- Department of Emergency, The Third Affiliated Hospital of Shanghai University & Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, People’s Republic of China
| | - Renyi Peng
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
- Correspondence: Renyi Peng, Tel +86 159-5771-6937, Email
| |
Collapse
|
19
|
Behroozi Z, Rahimi B, Hamblin MR, Nasirinezhad F, Janzadeh A, Ramezani F. Injection of Cerium Oxide Nanoparticles to Treat Spinal Cord Injury in Rats. J Neuropathol Exp Neurol 2022; 81:635-642. [PMID: 35472142 PMCID: PMC9297098 DOI: 10.1093/jnen/nlac026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This study investigated the effects of local injection of cerium oxide nanoparticles (CeONPs) in a rat spinal cord injury (SCI) model. Thirty-six adult male Wistar rats were divided into 4 groups: controls (healthy animals), sham (laminectomy), SCI (laminectomy+SCI induction), and treatment (laminectomy+SCI induction+intrathecal injection of CeONPs immediately after injury). SCI was induced using an aneurysm clip at the T12-T13 vertebral region. Motor performance and pain threshold tests were performed weekly; H&E staining and measurement of cavity sizes were performed 6 weeks after injury. The expression of granulocyte colony-stimulating factor (GCSF), P44/42 MAPK, P-P44/42 MAPK, Tau, myelin-associated glycoprotein(MAG) was evaluated after 6 weeks by Western blot. The Basso, Beattie, and Bresnahan locomotor scoring scales improved in animals receiving CeONPs compared with SCI animals. The cavity sizes were less in the treatment group. GCSF expression was similar in the animals receiving CeONPs compared with the SCI group but the expression of ERK1/ERK2 and phospho-ERK was lower than in the SCI group. Expression levels of Tau and MAG were significantly increased in treated animals compared to the SCI group. These data indicate that the use of CeONPs may improve motor functional recovery in SCI.
Collapse
Affiliation(s)
- Zahra Behroozi
- From the Physiology Research Center, Institute of Neuropharmaclogy, Kerman University of Medical Sciences. Kerman, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Rahimi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Farinaz Nasirinezhad
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Yokel RA, Ensor ML, Vekaria HJ, Sullivan PG, Feola DJ, Stromberg A, Tseng MT, Harrison DA. Cerium dioxide, a Jekyll and Hyde nanomaterial, can increase basal and decrease elevated inflammation and oxidative stress. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102565. [PMID: 35595014 DOI: 10.1016/j.nano.2022.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
It was hypothesized that the catalyst nanoceria can increase inflammation/oxidative stress from the basal and reduce it from the elevated state. Macrophages clear nanoceria. To test the hypothesis, M0 (non-polarized), M1- (classically activated, pro-inflammatory), and M2-like (alternatively activated, regulatory phenotype) RAW 264.7 macrophages were nanoceria exposed. Inflammatory responses were quantified by IL-1β level, arginase activity, and RT-qPCR and metabolic changes and oxidative stress by the mito and glycolysis stress tests (MST and GST). Morphology was determined by light microscopy, macrophage phenotype marker expression, and a novel three-dimensional immunohistochemical method. Nanoceria blocked IL-1β and arginase effects, increased M0 cell OCR and GST toward the M2 phenotype and altered multiple M1- and M2-like cell endpoints toward the M0 level. M1-like cells had greater volume and less circularity/roundness. M2-like cells had greater volume than M0 macrophages. The results are overall consistent with the hypothesis.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Marsha L Ensor
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Hemendra J Vekaria
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, USA; Neuroscience, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Patrick G Sullivan
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, USA; Neuroscience, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David J Feola
- Pharmacy Practice and Science, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Arnold Stromberg
- Statistics, University of Kentucky, Lexington, KY 40536-0082, USA
| | - Michael T Tseng
- Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
21
|
Chen M, Zhou X, Xiong C, Yuan T, Wang W, Zhao Y, Xue Z, Guo W, Wang Q, Wang H, Li Y, Zhou H, Wu Y. Facet Engineering of Nanoceria for Enzyme-Mimetic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21989-21995. [PMID: 35503925 DOI: 10.1021/acsami.2c04320] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials with natural enzyme-mimicking characteristics have aroused extensive attention in various fields owing to their economical price, ease of large-scale production, and environmental resistance. Previous investigations have demonstrated that composition, size, shape, and surface modification play important roles in the enzymelike activity of nanomaterials; however, a fundamental understanding of the crystal facet effect, which determines surface energy or surface reactivity, has rarely been reported. Herein, fluorite cubic CeO2 nanocrystals with controllably exposed {111}, {100}, or {110} facets are fabricated as proof-of-concept candidates to study the facet effect on the peroxidase-mimetic activity. Both experiments and theoretical results show that {110}-dominated CeO2 nanorods (CeO2 NR) possess the highest peroxidase-mimetic activity due to the richest defects on their surfaces, which are beneficial to capture metal atoms to further enrich their artificial enzymatic functionality for cascade catalysis. For instance, the introduction of atomically dispersed Au on CeO2 NR surfaces not only enhances the peroxidase activity but also endows the obtained catalyst with glucose oxidase (GOx)-mimicking activity, which realizes enzyme-free cascade reactions for glucose colorimetric detection. This work not only provides an understanding for crystal facet engineering of nanomaterials to enhance the catalytic activity but also opens up a new way for the design of biomimetic nanomaterials with multiple functions.
Collapse
Affiliation(s)
- Min Chen
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaocheng Zhou
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Can Xiong
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tongwei Yuan
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Wenyu Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yafei Zhao
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenggang Xue
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenxin Guo
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiuping Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Huang Zhou
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuen Wu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
22
|
Yadav N. Cerium oxide nanostructures: properties, biomedical applications and surface coatings. 3 Biotech 2022; 12:121. [PMID: 35547014 PMCID: PMC9035199 DOI: 10.1007/s13205-022-03186-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Cerium oxide nanoparticles have significantly improved catalytic properties and are of increasing interest in the nanoparticle research field hence the current trends in cerium oxide nanoparticles are reviewed here. Unlike previous reviews which have focused primarily on the biosynthesis of cerium oxide nanoparticles, their properties, and applications, this review will focus on the unique physical, chemical, and biological properties of cerium oxide nanoparticles, the role of oxygen vacancies or defects in the lattice structure, the ratio of oxidation states in determining their catalytic properties and applications in biosensing, drug or gene delivery, etc. have been discussed. Furthermore, the limitations of the bare form of cerium oxide nanoparticles and the advances in the field of surface coating by different ligands to overcome the issues of bare nanoparticles have been discussed. The review concludes with a discussion on the environmental aspects and toxicity of cerium oxide nanoparticles and their potential future in practical applications.
Collapse
Affiliation(s)
- Nisha Yadav
- Nanomaterials and Toxicology Laboratory, Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, 380009 India
| |
Collapse
|
23
|
Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioeng Transl Med 2022; 7:e10262. [PMID: 35111954 PMCID: PMC8780931 DOI: 10.1002/btm2.10262] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bone grafts or prosthetic implant designing for clinical application is challenging due to the complexity of integrated physiological processes. The revolutionary advances of nanotechnology in the biomaterial field expedite and endorse the current unresolved complexity in functional bone graft and implant design. Rare earth (RE) materials are emerging biomaterials in tissue engineering due to their unique biocompatibility, fluorescence upconversion, antimicrobial, antioxidants, and anti-inflammatory properties. Researchers have developed various RE smart nano-biomaterials for bone tissue engineering and implantology applications in the past two decades. Furthermore, researchers have explored the molecular mechanisms of RE material-mediated tissue regeneration. Recent advances in biomedical applications of micro or nano-scale RE materials have provided a foundation for developing novel, cost-effective bone tissue engineering strategies. This review attempted to provide an overview of RE nanomaterials' technological innovations in bone tissue engineering and implantology and summarized the osteogenic, angiogenic, immunomodulatory, antioxidant, in vivo bone tissue imaging, and antimicrobial properties of various RE nanomaterials, as well as the molecular mechanisms involved in these biological events. Further, we extend to discuss the challenges and prospects of RE smart nano-biomaterials in the field of bone tissue engineering and implantology.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Liping Wang
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Linhu Ge
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Janak Lal Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
24
|
Yadav N, Patel V, Mccourt L, Ruppert M, Miller M, Inerbaev T, Mahasivam S, Vinu A, Singh S, Karakoti AS. Tuning the enzyme-like activities of cerium oxide nanoparticles using triethyl phosphite ligand. Biomater Sci 2022; 10:3245-3258. [DOI: 10.1039/d2bm00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerium oxide nanoparticles (CeNPs) depict excellent in vitro and in vivo antioxidant properties, determined by the redox switching of surface cerium ions between its two oxidation states (Ce3+ and Ce4+)....
Collapse
|
25
|
Qin J, Feng Y, Cheng D, Liu B, Wang Z, Zhao Y, Wei J. Construction of a Mesoporous Ceria Hollow Sphere/Enzyme Nanoreactor for Enhanced Cascade Catalytic Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40302-40314. [PMID: 34412471 DOI: 10.1021/acsami.1c10821] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanozyme has been regarded as one of the antibacterial agents to kill bacteria via a Fenton-like reaction in the presence of H2O2. However, it still suffers drawbacks such as insufficient catalytic activity in near-neutral conditions and the requirement of high H2O2 levels, which would minimize the side effects to healthy tissues. Herein, a mesoporous ceria hollow sphere/enzyme nanoreactor is constructed by loading glucose oxidase in the mesoporous ceria hollow sphere nanozyme. Due to the mesoporous framework, large internal voids, and high specific surface area, the obtained nanoreactor can effectively convert the nontoxic glucose into highly toxic hydroxyl radicals via a cascade catalytic reaction. Moreover, the generated glucose acid can decrease the localized pH value, further boosting the peroxidase-like catalytic performance of mesoporous ceria. The generated hydroxyl radicals could damage severely the cell structure of the bacteria and prevent biofilm formation. Moreover, the in vivo experiments demonstrate that the nanoreactor can efficiently eliminate 99.9% of bacteria in the wound tissues and prevent persistent inflammation without damage to normal tissues in mice. This work provides a rational design of a nanoreactor with enhanced catalytic activity, which can covert glucose to hydroxyl radicals and exhibits potential applications in antibacterial therapy.
Collapse
Affiliation(s)
- Jing Qin
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Dong Cheng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Biwu Liu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Ningxia 750021, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
26
|
Popov AL, Abakumov MA, Savintseva IV, Ermakov AM, Popova NR, Ivanova OS, Kolmanovich DD, Baranchikov AE, Ivanov VK. Biocompatible dextran-coated gadolinium-doped cerium oxide nanoparticles as MRI contrast agents with high T 1 relaxivity and selective cytotoxicity to cancer cells. J Mater Chem B 2021; 9:6586-6599. [PMID: 34369536 DOI: 10.1039/d1tb01147b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gd-based complexes are widely used as magnetic resonance imaging (MRI) contrast agents. The safety of previously approved contrast agents is questionable and is being re-assessed. The main causes of concern are possible gadolinium deposition in the brain and the development of systemic nephrogenic fibrosis after repeated use of MRI contrasts. Thus, there is an urgent need to develop a new generation of MRI contrasts that are safe and that have high selectivity in tissue accumulation with improved local contrast. Here, we report on a new type of theranostic MRI contrast, namely dextran stabilised, gadolinium doped cerium dioxide nanoparticles. These ultra-small (4-6 nm) Ce0.9Gd0.1O1.95 nanoparticles have been shown to possess excellent colloidal stability and high r1-relaxivity (3.6 mM-1 s-1). They are effectively internalised by human normal and cancer cells and demonstrate dose-dependent selective cytotoxicity to cancer cells.
Collapse
Affiliation(s)
- A L Popov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky av., 31, Moscow 119991, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu X, Wu J, Liu Q, Lin A, Li S, Zhang Y, Wang Q, Li T, An X, Zhou Z, Yang M, Wei H. Synthesis-temperature-regulated multi-enzyme-mimicking activities of ceria nanozymes. J Mater Chem B 2021; 9:7238-7245. [PMID: 34095923 DOI: 10.1039/d1tb00964h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ceria (CeO2) nanozymes have drawn much attention in recent years due to their unique physiochemical properties and excellent biocompatibility. It is therefore very important to establish a simple and robust guideline to regulate CeO2 with desired multi-enzyme-mimicking activities that are ideal for practical bioapplications. In this work, the multi-enzyme-mimicking activities of CeO2 were regulated in a facile manner by a wet-chemical method with different synthesis temperatures. Interestingly, a distinct response in multi-enzyme-mimicking activities of CeO2 was observed towards different synthesis temperatures. And the regulation was ascribed to the comprehensive effect of the oxygen species, size, and self-restoring abilities of CeO2. This study demonstrates that high-performance CeO2 can be rationally designed by a specific synthesis temperature, and the guidelines from radar chart analysis established here can advance the biomedical applications of ceria-based nanozymes.
Collapse
Affiliation(s)
- Xiaoli Liu
- School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Anqi Lin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yihong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Tong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, Nanjing, Jiangsu 210023, China and Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Zijun Zhou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Ming Yang
- School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China. and Key Laboratory of Modern preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330000, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China. and State Key Laboratory of Analytical Chemistry for Life Science and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
28
|
Dai Y, Ding Y, Li L. Nanozymes for regulation of reactive oxygen species and disease therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Zhao R, Liu H, Li Y, Guo M, Zhang XD. Catalytic Nanozyme for Radiation Protection. Bioconjug Chem 2021; 32:411-429. [PMID: 33570917 DOI: 10.1021/acs.bioconjchem.0c00648] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Radiotherapy has been widely used in clinical cancer treatment. However, the ionizing radiation required to kill the tumor will inevitably cause damage to the surrounding normal tissues. To minimize the radiation damage and side effects, small molecular radioprotective agents have been used as clinical adjuvants for radiation protection of healthy tissues. However, the shortcomings of small molecules such as short circulation time and rapid kidney clearance from the body greatly hinder their biomedical applications. In recent years, nanozymes have attracted much attention because of their potential to treat a variety of diseases. Nanozymes exhibit catalytic properties and antioxidant capabilities to provide a potential solution for the development of high-efficiency radioprotective agents in radiotherapy and nuclear radiation accidents. Therefore, in this review, we systematically summarize the catalytic nanozymes used for radiation protection of healthy tissues and discuss the challenges and future prospects of nanomaterials in the field of radiation protection.
Collapse
Affiliation(s)
- Ruiying Zhao
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Yongming Li
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
30
|
Hu T, Wang Z, Shen W, Liang R, Yan D, Wei M. Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics 2021; 11:3278-3300. [PMID: 33537087 PMCID: PMC7847668 DOI: 10.7150/thno.54227] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/05/2020] [Indexed: 12/24/2022] Open
Abstract
Photodynamic therapy (PDT), a non-invasive therapeutic modality, has received increasing attention owing to its high selectivity and limited side effects. Although significant clinical research progress has been made in PDT, the breadth and depth of its clinical application have not been fully realized due to the limitations such as inadequate light penetration depth, non-targeting photosensitizers (PSs), and tumor hypoxia. Consequently, numerous investigations put their emphasis on innovative strategies to overcome the aforementioned limitations and enhance the therapeutic effect of PDT. Herein, up-to-date advances in these innovative methods for PDT are summarized by introducing the design of PS systems, their working mechanisms and application examples. In addition, current challenges of these innovative strategies for clinical application, and future perspectives on further improvement of PDT are also discussed.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhengdi Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Weicheng Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dan Yan
- Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
31
|
Uekawa N. Synthesis of Defect and Valence State Tuned Metal Oxide Nanoparticles with Colloid Chemical Solution Process: Control of Optical and Electrical Characteristics. CHEM LETT 2021. [DOI: 10.1246/cl.200638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Naofumi Uekawa
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
32
|
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2556. [PMID: 33352731 PMCID: PMC7766190 DOI: 10.3390/nano10122556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Multifunctional nanomaterials, defined as those able to achieve a combined effect or more than one function through their multiple functionalization or combination with other materials, are gaining increasing attention in the last years in many relevant fields, including cargo targeted delivery, tissue engineering, in vitro and/or in vivo diseases imaging and therapy, as well as in the development of electrochemical (bio)sensors and (bio)sensing strategies with improved performance. This review article aims to provide an updated overview of the important advances and future opportunities exhibited by electrochemical biosensing in connection to multifunctional nanomaterials. Accordingly, representative aspects of recent approaches involving metal, carbon, and silica-based multifunctional nanomaterials are selected and critically discussed, as they are the most widely used multifunctional nanomaterials imparting unique capabilities in (bio)electroanalysis. A brief overview of the main remaining challenges and future perspectives in the field is also provided.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | | - Susana Campuzano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | |
Collapse
|
33
|
Zhu XH, Du JX, Zhu D, Ren SZ, Chen K, Zhu HL. Recent Research on Methods to Improve Tumor Hypoxia Environment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5721258. [PMID: 33343807 PMCID: PMC7725563 DOI: 10.1155/2020/5721258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/26/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
Cancer is a major disease burden worldwide. In recent years, in addition to surgical resection, radiotherapy and chemotherapy are recognized as the most effective methods for treating solid tumors. These methods have been introduced to treat tumors of different origins and stages clinically. However, due to insufficient blood flow and oxygen (O2) supply in solid tumors, hypoxia is caused, leading to decreased sensitivity of tumor cells and poor therapeutic effects. In addition, hypoxia will also lead to resistance to most anticancer drugs, accelerate malignant progress, and increase metastasis. In solid tumors, adequate O2 supply and adequate delivery of anticancer drugs are essential to improve radiotherapy and chemotherapy sensitivity. In recent decades, the researches on relieving tumor hypoxia have attracted researchers' extensive attention and achieved good results. However, as far as we know, there is no detailed review of the researches on alleviating tumor hypoxia. Therefore, in this contribution, we hope to give an overview of the researches on methods to improve tumor hypoxia environment and summarize their effect and application in tumor therapy, to provide a methodological reference for the research and development of new antitumor agents.
Collapse
Affiliation(s)
- Xiao-Hua Zhu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jun-Xi Du
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Dan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shen-Zhen Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Abdelhamid AM, Mahmoud SS, Abdelrahman AE, Said NM, Toam M, Samy W, Amer MAM. Protective effect of cerium oxide nanoparticles on cisplatin and oxaliplatin primary toxicities in male albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2411-2425. [PMID: 32710137 DOI: 10.1007/s00210-020-01946-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
Cisplatin and oxaliplatin are widely used anticancer drugs. Their use is restricted by their dose-limiting side effects: nephrotoxicity and neurotoxicity, respectively. Cerium oxide nanoparticles (CONPs) are promising antioxidant and anti-inflammatory agent. To test the possible ameliorative impact of CONPs on the toxic effect of cisplatin and oxaliplatin in male albino rats. Forty eight rats were divided into 6 groups: control group, CONPs group, cisplatin group, cisplatin and CONPs group, oxaliplatin group, and oxaliplatin and CONPs group. After 4 weeks, serum urea and creatinine, renal tissue level of interleukin 10 (IL10), and total antioxidant (TAO) were measured in control, CONPs, and cisplatin groups. The other kidney was used for histopathological and immunohistochemical studies. The right sciatic nerves and the lumbar spinal cord of rats from control, CONPs, and oxaliplatin groups were used for immunohistochemical evaluations of nitrotyrosine, myelin basic protein (MBP), and glial fibrillary acidic protein (GFAP). Cisplatin significantly increased serum urea and creatinine levels, significantly decreased the kidney level of IL10 and TAO with marked tubular necrosis, hemorrhage and renal damage. Also, it decreased IL10 immunohistochemical expression. CONPs significantly decreased the serum urea and creatinine level and increased IL10 and TAO with lower renal damage and strong IL10 expression compared with cisplatin group. Oxaliplatin significantly decreased MBP immunoreactivity and increased nitrotyrosine immunoreactivity. In the lumbar spinal cord, GFAP immunoreactivity was significantly increased. CONPs significantly increased MBP and decreased nitrotyrosine immunoreactivity. GFAP immunoreactivity was significantly decreased. CONPs ameliorated cisplatin and oxaliplatin primary toxicities through anti-inflammatory and antioxidant characteristics.
Collapse
Affiliation(s)
- Amira Mohamed Abdelhamid
- Clinical pharmacology department, faculty of medicine, Zagazig University, Zagazig, Sharqia, Egypt.
| | - Shireen Sami Mahmoud
- Clinical pharmacology department, faculty of medicine, Zagazig University, Zagazig, Sharqia, Egypt
| | - Aziza E Abdelrahman
- Pathology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Nelly Mohamed Said
- Pathology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Mostafa Toam
- Clinical Oncology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Biochemistry department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Marwa AbdEl-Moniem Amer
- Forensic Medicine and Clinical toxicology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
35
|
Shah F, Yadav N, Singh S. Phosphotungstate-sandwiched between cerium oxide and gold nanoparticles exhibit enhanced catalytic reduction of 4-nitrophenol and peroxidase enzyme-like activity. Colloids Surf B Biointerfaces 2020; 198:111478. [PMID: 33272726 DOI: 10.1016/j.colsurfb.2020.111478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/25/2020] [Accepted: 11/15/2020] [Indexed: 11/17/2022]
Abstract
The catalytic performance of gold (Au) decorated cerium oxide nanoparticles (nanoceria) can be potentially crucial because such a defined arrangement of multiple materials may provide improved chemical and biological catalytic activities. In this work, we have utilized a highly localized approach to reduce Au nanoparticles (AuNPs) on the nanoceria-phosphotungstate composite's surface. Phosphotungstic acid (PTA) bound on nanoceria's surface acts as a UV-light dependent redox molecule that specifically reduces AuNPs. The mechanistic study demonstrates that PTA* molecules outstanding electron transfer ability leads to an excellent improvement in the catalytic performance of nanoceria-PTA*-AuNPs composite. Nanoceria-PTA*-AuNPs showed better and faster degradation of 4-nitrophenol than either nanoceria or PTA*-AuNPs. The developed nanoceria-PTA*-AuNPs exhibited efficient (>80 % in 5 min) conversion of 4-NP into 4-AP at room temperature and neutral pH. Additionally, the nanoceria-PTA*-AuNPs also showed improved peroxidase enzyme-like activity than the corresponding control samples. The observed catalytic activity could be due to the rapid electron transfer from nanoceria to AuNPs, where the metal nanoparticle acts as an electron sink, mediated by PTA*. Nanoceria-PTA*-AuNPs showed ∼ 2-fold better catalytic oxidation of peroxidase substrate than PTA*-AuNPs. The reported nanoceria-PTA*-AuNPs nanocomposites are expected to display improved biological enzyme-like activities, photocatalysis, and other biomedical applications.
Collapse
Affiliation(s)
- Foram Shah
- Nanomaterials and Nanotoxicology Lab, Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Nisha Yadav
- Nanomaterials and Nanotoxicology Lab, Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Sanjay Singh
- Nanomaterials and Nanotoxicology Lab, Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
36
|
Yu Y, Zhang Q, Gao H, Yan C, Zheng X, Yang T, Zhou X, Shao Y. Metalloenzyme-mimic innate G-quadruplex DNAzymes using directly coordinated metal ions as active centers. Dalton Trans 2020; 49:13160-13166. [PMID: 32936164 DOI: 10.1039/d0dt02871a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G-quadruplex DNAs (G4s) have been reported to exhibit the DNAzyme activities by binding with some metal complexes and functional organic ligands. However, there is a challenge to develop metalloenzyme-mimic G4-based innate DNAzymes using the complexed metal ions directly serving as the active centers. This will diversify DNAzymes for developing novel devices since G4 structures are more polymorphic than the other DNA foldings. In this work, we found that the lanthanide trivalent cerium ion of Ce3+ can bind to the human telomere G4 (htG4) according to a 1 : 2 binding mode favorable for creating metalloenzymes-mimic G4 DNAzymes. This Ce3+-G4 entity exhibits a peroxidase activity towards the oxidation of the substrate of 3,3,5,5-tetramethylbenzidine (TMB) by hydrogen peroxide. The 5' G4 tetrads with the orderly arranged carbonyl oxygen atoms are believed to be the coordination sites for Ce3+ and favor the conversion between Ce3+ and Ce4+. Our work provides an alternative feasibility in developing the G4-based innate DNAzymes for variant applications.
Collapse
Affiliation(s)
- Yali Yu
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Qingqing Zhang
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Heng Gao
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Chenxiao Yan
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Xiong Zheng
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Tong Yang
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Xiaoshun Zhou
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Yong Shao
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| |
Collapse
|
37
|
Baldim V, Yadav N, Bia N, Graillot A, Loubat C, Singh S, Karakoti AS, Berret JF. Polymer-Coated Cerium Oxide Nanoparticles as Oxidoreductase-like Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42056-42066. [PMID: 32812730 DOI: 10.1021/acsami.0c08778] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cerium oxide nanoparticles have been shown to mimic oxidoreductase enzymes by catalyzing the decomposition of organic substrates and reactive oxygen species. This mimicry can be found in superoxide radicals and hydrogen peroxides, which are harmful molecules produced in oxidative stress-associated diseases. Despite the fact that nanoparticle functionalization is mandatory in the context of nanomedicine, the influence of polymer coatings on their enzyme-like catalytic activity is poorly understood. In this work, six polymer-coated cerium oxide nanoparticles are prepared by the association of 7.8 nm cerium oxide cores with two poly(sodium acrylate) and four poly(ethylene glycol) (PEG)-grafted copolymers with different terminal or anchoring end groups, such as phosphonic acids. The superoxide dismutase-, catalase-, peroxidase-, and oxidase-like catalytic activities of the coated nanoparticles were systematically studied. It is shown that the polymer coatings do not affect the superoxide dismutase-like, impair the catalase-like and oxidase-like, and surprisingly improves peroxidase-like catalytic activities of cerium oxide nanoparticles. It is also demonstrated that the particles coated with the PEG-grafted copolymers perform better than the poly(acrylic acid)-coated ones as oxidoreductase-like enzymes, a result that confirms the benefit of having phosphonic acids as anchoring groups at the particle surface.
Collapse
Affiliation(s)
- Victor Baldim
- Matière et systèmes complexes, Université de Paris, CNRS, 75013 Paris, France
- Electrochimie et Physicochimie aux Interfaces, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des États-Unis, 78035 Versailles, France
| | - Nisha Yadav
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, 380009 Gujarat, India
| | - Nicolas Bia
- SPECIFIC POLYMERS, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Alain Graillot
- SPECIFIC POLYMERS, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Cédric Loubat
- SPECIFIC POLYMERS, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, 380009 Gujarat, India
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment (FEBE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
38
|
Abid SA, Taha AA, Ismail RA, Mohsin MH. Antibacterial and cytotoxic activities of cerium oxide nanoparticles prepared by laser ablation in liquid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30479-30489. [PMID: 32468358 DOI: 10.1007/s11356-020-09332-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
In this work, we have prepared cerium oxide (CeO2) nanoparticles (NPs) by laser ablation in water at different laser energies. The structural and optical properties of synthesized nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy, energy dispersive X-ray (EDX), and UV-Vis absorption. XRD results confirmed that the synthesized cerium oxide NPs were crystalline in nature with cubic structure. SEM investigations show that the nanoparticles having a spherical shape with diameter ranged from 26 to 37 nm depending on the laser energy. The antibacterial activity and minimal inhibition concentration of synthesized CeO2 NPs against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa were examined. Bacterial adhesion test of cerium oxide NPs was also determined under different incubation temperatures. Cytotoxicity of CeO2 NP effect against the human throat cancer was studied. The cytotoxicity effect of CeO2 NPs synthesized at 160 mJ on the cancer cells caused a free radical releasing which causing oxidative stress. The cytotoxicity effects of ceria NPs against human throat cancer (RD rhabdomyosarcoma cell line) and mouse fibroblast L cell (L20B cell line) growth were 33% and 13%, respectively.
Collapse
Affiliation(s)
- Suhad A Abid
- College of Sciences, University of Almustansiriyah, Baghdad, Iraq
| | - Ali A Taha
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Raid A Ismail
- Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Mayyadah H Mohsin
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| |
Collapse
|
39
|
Yokel RA, Tseng MT, Butterfield DA, Hancock ML, Grulke EA, Unrine JM, Stromberg AJ, Dozier AK, Graham UM. Nanoceria distribution and effects are mouse-strain dependent. Nanotoxicology 2020; 14:827-846. [DOI: 10.1080/17435390.2020.1770887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Robert A. Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Michael T. Tseng
- Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY, USA
| | | | - Matthew L. Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Eric A. Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Jason M. Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | - Uschi M. Graham
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
- CDC, NIOSH, Cincinnati, OH, USA
| |
Collapse
|
40
|
Mahmudunnabi RG, Farhana FZ, Kashaninejad N, Firoz SH, Shim YB, Shiddiky MJA. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 2020; 145:4398-4420. [PMID: 32436931 DOI: 10.1039/d0an00558d] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, a new group of nanomaterials named nanozymes that exhibit enzyme-mimicking catalytic activity has emerged as a promising alternative to natural enzymes. Nanozymes can address some of the intrinsic limitations of natural enzymes such as high cost, low stability, difficulty in storage, and specific working conditions (i.e., narrow substrate, temperature and pH ranges). Thus, synthesis and applications of hybrid and stimuli-responsive advanced nanozymes could revolutionize the current practice in life sciences and biosensor applications. On the other hand, electrochemical biosensors have long been used as an efficient way for quantitative detection of analytes (biomarkers) of interest. As such, the use of nanozymes in electrochemical biosensors is particularly important to achieve low cost and stable biosensors for prognostics, diagnostics, and therapeutic monitoring of diseases. Herein, we summarize the recent advances in the synthesis and classification of common nanozymes and their application in electrochemical biosensor development. After briefly overviewing the applications of nanozymes in non-electrochemical-based biomolecular sensing systems, we thoroughly discuss the state-of-the-art advances in nanozyme-based electrochemical biosensors, including genosensors, immunosensors, cytosensors and aptasensors. The applications of nanozymes in microfluidic-based assays are also discussed separately. We also highlight the challenges of nanozyme-based electrochemical biosensors and provide some possible strategies to address these limitations. Finally, future perspectives on the development of nanozyme-based electrochemical biosensors for disease biomarker detection are presented. We envisage that standardization of nanozymes and their fabrication process may bring a paradigm shift in biomolecular sensing by fabricating highly specific, multi-enzyme mimicking nanozymes for highly sensitive, selective, and low-biofouling electrochemical biosensors.
Collapse
Affiliation(s)
- Rabbee G Mahmudunnabi
- Institute of BioPhysio-Sensor Technology, Pusan National University, Busan 46241, South Korea
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Kim MS, Kim DH, Lee J, Ahn HT, Kim MI, Lee J. Self color-changing ordered mesoporous ceria for reagent-free colorimetric biosensing. NANOSCALE 2020; 12:1419-1424. [PMID: 31909409 DOI: 10.1039/c9nr09182c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A reagent-free colorimetric detection method using mesoporous cerium oxide with a large pore size trapping an oxidative enzyme has been developed and glucose is sensitively detected with a limit of detection of 10 μM by supporting glucose oxidase on mesoporous cerium oxide.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongbuk, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Zhang Y, Song J, Pan Q, Zhang X, Shao W, Zhang X, Quan C, Li J. An Au@NH2-MIL-125(Ti)-based multifunctional platform for colorimetric detections of biomolecules and Hg2+. J Mater Chem B 2020; 8:114-124. [DOI: 10.1039/c9tb02183c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Au@NH2-MIL-125(Ti) was fabricated and explored as a multifunctional platform for sensitive colorimetric detections of biomolecules and Hg2+.
Collapse
Affiliation(s)
- Yanmei Zhang
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Jie Song
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Qiaoling Pan
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Xin Zhang
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Wenhui Shao
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Xiang Zhang
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Chunshan Quan
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Jun Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian 116023
- China
| |
Collapse
|
44
|
Adebayo OA, Akinloye O, Adaramoye OA. Cerium Oxide Nanoparticles Attenuate Oxidative Stress and Inflammation in the Liver of Diethylnitrosamine-Treated Mice. Biol Trace Elem Res 2020; 193:214-225. [PMID: 30993490 DOI: 10.1007/s12011-019-01696-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
Abstract
The catalytic activity of cerium oxide nanoparticles (CeO2NPs) is responsible for its application as an antitumor agent. This activity may be due to its ability to switch between III and IV oxidation states thereby conferring pro- and antioxidant properties. This study was designed to assess the hepatoprotective potential of CeO2NPs in male BALB/c mice administered diethylnitrosamine (DEN). Thirty-six mice were divided equally into six groups and treated intraperitoneally with normal saline (control), DEN (200 mg/kg) alone, CeO2NPs 1 (100 μg/kg) + DEN (200 mg/kg), CeO2NPs 2 (200 μg/kg) + DEN (200 mg/kg), CeO2NPs 1 alone, and CeO2NPs 2 alone. Animals were pretreated with CeO2NPs daily for eight consecutive days, while DEN was administered 48 h before the animals were sacrificed. Administration of DEN caused a significant increase in serum alanine aminotransferase (ALT) and urea by 51% and 96%, respectively. Markers of oxidative stress (malondialdehyde) and inflammation (nitric oxide and myeloperoxidase) in hepatic tissues of DEN-treated mice were increased by 60%, 16%, and 38%, respectively. The activities of hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, and level of reduced glutathione were significantly decreased in DEN-treated mice by 50%, 123%, 23%, 419%, and 78%, respectively. In addition, DEN increased the expression of hepatic Bcl2 and COX-2, while p53, Bax, and iNOS were mildly expressed. Pretreatment with CeO2NPs attenuated the activities of antioxidant enzymes and expression of Bcl2 and COX-2. Overall, CeO2NPs confers protection from DEN-induced liver damage via antioxidative activity.
Collapse
Affiliation(s)
- Olayinka A Adebayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluyemi Akinloye
- Clinical Chemistry and Molecular Diagnostic Laboratory, Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria
| | - Oluwatosin A Adaramoye
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
45
|
Khoshgozaran Roudbaneh SZ, Kahbasi S, Sohrabi MJ, Hasan A, Salihi A, Mirzaie A, Niyazmand A, Qadir Nanakali NM, Shekha MS, Aziz FM, Vaghar-Lahijani G, Keshtali AB, Ehsani E, Rasti B, Falahati M. Albumin binding, antioxidant and antibacterial effects of cerium oxide nanoparticles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Nanoparticles as Emerging Labels in Electrochemical Immunosensors. SENSORS 2019; 19:s19235137. [PMID: 31771201 PMCID: PMC6928605 DOI: 10.3390/s19235137] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
This review shows recent trends in the use of nanoparticles as labels for electrochemical immunosensing applications. Some general considerations on the principles of both the direct detection based on redox properties and indirect detection through electrocatalytic properties, before focusing on the applications for mainly proteins detection, are given. Emerging use as blocking tags in nanochannels-based immunosensing systems is also covered in this review. Finally, aspects related to the analytical performance of the developed devices together with prospects for future improvements and applications are discussed.
Collapse
|
47
|
Leibrock L, Wagener S, Singh AV, Laux P, Luch A. Nanoparticle induced barrier function assessment at liquid-liquid and air-liquid interface in novel human lung epithelia cell lines. Toxicol Res (Camb) 2019; 8:1016-1027. [PMID: 32153768 PMCID: PMC7021197 DOI: 10.1039/c9tx00179d] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/14/2019] [Indexed: 01/05/2023] Open
Abstract
Inhalation is the most relevant entry point for nanoparticles (NPs) into the human body. To date, toxicity testing of nanomaterials in respect to oral, dermal and inhalative application is mainly based on animal experiments. The development of alternative test methods is the subject of current research. In vitro models can help to investigate mechanistic aspects, as e.g. cellular uptake or genotoxicity and might help to reduce in vivo testing. Lung cell lines are proper in vitro tools to assess NP toxicity. In respect to this, various cell models have been developed during the recent years, but often lack in a proper intact barrier function. However, besides other important in vivo criteria which are still missing like e.g. circulation, this is one basic prerequisite to come closer to the in vivo situation in certain mechanistic aspects such as particle translocation which is an important task for risk assessment of nanomaterials. Novel developed in vitro models may help to investigate the translocation of nanomaterials from the lung. We investigated the barrier function of the recently developed human lung cell lines CI-hAELVi and CI-huAEC. The cells were further exposed to CeO2 NPs and ZnO NPs, and their suitability as in vitro models for toxicological investigations was proven. The obtained data were compared with data generated with the A549 cell line. Measurement of transepithelial resistance and immunohistochemical examination of tight junctions confirmed the formation of a functional barrier for both cell lines for submerged and air-liquid cultivation. For particle exposure, hAELVi and huAEC cells showed comparable results to A549 cells without losing the barrier function. CeO2 NP exposure revealed no toxicity for all cell lines. In contrast, ZnO NPs was toxic for all cell lines at a concentration between 10-50 μg ml-1. Due to the comparable results to A549 cells CI-hAELVi and CI-huAEC offer new opportunities to investigate nanoparticle cell interactions more realistic than recent 2D cell models.
Collapse
Affiliation(s)
- Lars Leibrock
- German Federal Institute for Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Straße 8-10 , 10589 Berlin , Germany .
| | - Sandra Wagener
- German Federal Institute for Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Straße 8-10 , 10589 Berlin , Germany .
| | - Ajay Vikram Singh
- German Federal Institute for Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Straße 8-10 , 10589 Berlin , Germany .
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Straße 8-10 , 10589 Berlin , Germany .
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Straße 8-10 , 10589 Berlin , Germany .
| |
Collapse
|
48
|
Sahu A, Kwon I, Tae G. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials 2019; 228:119578. [PMID: 31678843 DOI: 10.1016/j.biomaterials.2019.119578] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
Hypoxia, resulting from the imbalance between oxygen supply and consumption is a critical component of the tumor microenvironment. It has a paramount impact on cancer growth, metastasis and has long been known as a major obstacle for cancer therapy. However, none of the clinically approved anticancer therapeutics currently available for human use directly tackles this problem. Previous clinical trials of targeting tumor hypoxia with bioreductive prodrugs have failed to demonstrate satisfactory results. Therefore, new ideas are needed to overcome the hypoxia barrier. The method of modulating hypoxia to improve the therapeutic activity is of great interest but remains a considerable challenge. One of the emerging concepts is to supply or generate oxygen at the tumor site to increase the partial oxygen pressure and thereby reverse the hypoxia and its effects. In this review, we present an overview of the recent progress in the development of novel nanomaterials for the alleviation of hypoxic microenvironment. Two main strategies for hypoxia augmentation, i) direct delivery of O2 into the tumor, and ii) in situ O2 generations in the tumor microenvironment through different methods such as catalytic decomposition of endogenous hydrogen peroxide (H2O2) and light-triggered water splitting are discussed in detail. At present, these emerging nanomaterials are in their early phase and expected to grow rapidly in the coming years. Despite the promising start, there are several challenges needed to overcome for successful clinical translation.
Collapse
Affiliation(s)
- Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
49
|
Dulany K, Hepburn K, Goins A, Allen JB. In vitro and in vivo biocompatibility assessment of free radical scavenging nanocomposite scaffolds for bone tissue regeneration. J Biomed Mater Res A 2019; 108:301-315. [PMID: 31606924 DOI: 10.1002/jbm.a.36816] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
Abstract
Bone is the second most transplanted tissue in the world, resulting in increased demand for bone grafts leading to the fabrication of synthetic scaffold grafting alternatives. Fracture sites are under increased oxidative stress after injuries, affecting osteoblast function and hindering fracture healing and remodeling. To counter oxidative stress, free radical scavenging agents, such as cerium oxide nanoparticles, have gained traction in tissue engineering. Toward the goal of developing a functional synthetic system for bone tissue engineering, we characterized the biocompatibility of a porous, bioactive, free radical scavenging nanocomposite scaffold composed of poly(1,8 octanediol-co-citrate), beta-tricalcium phosphate, and cerium oxide nanoparticles. We studied cellular and tissue compatibility utilizing in vitro and in vivo models to assess nanocomposite interactions with both human osteoblast cells and rat subcutaneous tissue. We found the scaffolds were biocompatible in both models and supported cell attachment, proliferation, mineralization, and infiltration. Using hydrogen peroxide, we simulated oxidative stress to study the protective properties of the nanocomposite scaffolds via a reduction in cytotoxicity and recovered mineralization of osteoblast cells in vitro. We also found after implantation in vivo the scaffolds exhibited biocompatible properties essential for successful scaffolds for bone tissue engineering. Cells were able to infiltrate through the scaffolds, the surrounding tissues elicited a minimal immune response, and there were signs of scaffold degradation after 30 days of implantation. After the array of biological characterization, we had confirmed the development of a nanocomposite scaffold system capable of supporting bone-remodeling processes while providing a protective free radical scavenging effect.
Collapse
Affiliation(s)
- Krista Dulany
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
| | - Katie Hepburn
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
| | - Allison Goins
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
| | - Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
50
|
Zhao Y, Wang Y, Mathur A, Wang Y, Maheshwari V, Su H, Liu J. Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: inhibiting product adsorption and increasing oxygen vacancies. NANOSCALE 2019; 11:17841-17850. [PMID: 31552980 DOI: 10.1039/c9nr05346h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanozymes aim to mimic enzyme activities using nanomaterials. Nanoceria (CeO2 nanoparticles) is an important model nanozyme for its rich redox chemistry. In particular, its oxidase-like activity allows oxidation reactions without the need of unstable and toxic H2O2. Fluoride can significantly improve its oxidase-like activity, and this work aims to understand the mechanism of fluoride-promoted catalysis. First, fluoride can adsorb on CeO2 tighter than other halides, but not as strong as phosphate as characterized by isothermal titration calorimetry (ITC). FT-IR spectroscopy indicates adsorption of fluoride likely via exchange with surface hydroxide groups. Fluoride capping inverses the surface charge of CeO2, facilitating desorption of the ABTS oxidation product, significantly increasing the turnover number. The Raman, EPR and XPS spectroscopy results demonstrate that the concentration of Ce3+ and the accompanying oxygen vacancy significantly increased upon adding F-, which can explain the enhanced catalytic activity. Finally, the electron transfer properties of fluoride-capped CeO2 were more efficient than that of the bare CeO2 as determined by a direct electrochemical measurement on a glass carbon electrode. This study has provided new insight into nanoceria, and can also further confirm the role of nanoceria as a model for engineering the surface of nanozymes.
Collapse
Affiliation(s)
- Yilin Zhao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, P. R. China.
| | | | | | | | | | | | | |
Collapse
|