1
|
Xiang X, Gao W, Xu Y, Zhang Y, Lu T, Gan S, Huang J, Li Z, Huang L, Liao Y, Wang L, Zhang J. Study on promoting regeneration of zebrafish skull by phycocyanin characterized by in vivo optical coherence tomography. JOURNAL OF BIOPHOTONICS 2022; 15:e202100333. [PMID: 35044723 DOI: 10.1002/jbio.202100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/11/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
In this study, the efficacy of phycocyanin in bone defect repairing was tested on a zebrafish skull defect model, and the evaluating process was monitored in vivo using optical coherence tomography (OCT). Thirty zebrafish were randomly divided into three groups, which were immersed in water and phycocyanin solution (50 and 100 mg/L) after skull defect creating. All zebrafish were examined by OCT immediately after craniotomy, and on the 10th and 20th days of phycocyanin treatment. All the model fish were euthanized to enable a histological evaluation of skull after 20 days of recovery. OCT images demonstrated that phycocyanin (50 mg/L) could repair a cranial defect within 20 days. A high concentration (100 mg/L) of phycocyanin may favor the recovery of bone abnormalities in 10 days, but with the extended treatment time to 20 days, a deformation of the skull occurs.
Collapse
Affiliation(s)
- Xiang Xiang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weijian Gao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yao Xu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yiqing Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ting Lu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuqi Gan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing Huang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ziling Li
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Huang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yonghua Liao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Limei Wang
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Rakhymzhan A, Reuter L, Raspe R, Bremer D, Günther R, Leben R, Heidelin J, Andresen V, Cheremukhin S, Schulz-Hildebrandt H, Bixel MG, Adams RH, Radbruch H, Hüttmann G, Hauser AE, Niesner RA. Coregistered Spectral Optical Coherence Tomography and Two-Photon Microscopy for Multimodal Near-Instantaneous Deep-Tissue Imaging. Cytometry A 2020; 97:515-527. [PMID: 32293804 DOI: 10.1002/cyto.a.24012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022]
Abstract
Two-photon microscopy (2PM) has brought unique insight into the mechanisms underlying immune system dynamics and function since it enables monitoring of cellular motility and communication in complex systems within their genuine environment-the living organism. However, use of 2PM in clinical settings is limited. In contrast, optical coherence tomography (OCT), a noninvasive label-free diagnostic imaging method, which allows monitoring morphologic changes of large tissue regions in vivo, has found broad application in the clinic. Here we developed a combined multimodal technology to achieve near-instantaneous coregistered OCT, 2PM, and second harmonic generation (SHG) imaging over large volumes (up to 1,000 × 1,000 × 300 μm3 ) of tendons and other tissue compartments in mouse paws, as well as in mouse lymph nodes, spleens, and femurs. Using our multimodal imaging approach, we found differences in macrophage cell shape and motility behavior depending on whether they are located in tendons or in the surrounding tissue compartments of the mouse paw. The cellular shape of tissue-resident macrophages, indicative for their role in tissue, correlated with the supramolecular organization of collagen as revealed by SHG and OCT. Hence, the here-presented approach of coregistered OCT and 2PM has the potential to link specific cellular phenotypes and functions (as revealed by 2PM) to tissue morphology (as highlighted by OCT) and thus, to build a bridge between basic research knowledge and clinical observations. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Lucie Reuter
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Raphael Raspe
- Immundynamics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Immundynamics and Intravital Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Bremer
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Robert Günther
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Immundynamics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Ruth Leben
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Judith Heidelin
- LaVision BioTec-A Miltenyi Biotec Company, Bielefeld, Germany
| | - Volker Andresen
- LaVision BioTec-A Miltenyi Biotec Company, Bielefeld, Germany
| | | | | | - Maria G Bixel
- Max-Plank-Institut for Molecular Biomedicine, Tissue Morphogenesis, Münster, Germany
| | - Ralf H Adams
- Max-Plank-Institut for Molecular Biomedicine, Tissue Morphogenesis, Münster, Germany
| | - Helena Radbruch
- Institute for Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Anja E Hauser
- Immundynamics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Immundynamics and Intravital Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Raluca A Niesner
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Andreana M, Sentosa R, Erkkilä MT, Drexler W, Unterhuber A. Depth resolved label-free multimodal optical imaging platform to study morpho-molecular composition of tissue. Photochem Photobiol Sci 2019; 18:997-1008. [PMID: 30882117 DOI: 10.1039/c8pp00410b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multimodal imaging platforms offer a vast array of tissue information in a single image acquisition by combining complementary imaging techniques. By merging different systems, better tissue characterization can be achieved than is possible by the constituent imaging modalities alone. The combination of optical coherence tomography (OCT) with non-linear optical imaging (NLOI) techniques such as two-photon excited fluorescence (TPEF), second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) provides access to detailed information of tissue structure and molecular composition in a fast, label-free and non-invasive manner. We introduce a multimodal label-free approach for morpho-molecular imaging and spectroscopy and validate the system in mouse skin demonstrating the potential of the system for colocalized acquisition of OCT and NLOI signals.
Collapse
Affiliation(s)
- Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
4
|
Lin Y, Xiang X, Chen T, Gao C, Fu H, Wang L, Deng L, Zeng L, Zhang J. In vivo monitoring and high-resolution characterizing of the prednisolone-induced osteoporotic process on adult zebrafish by optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:1184-1195. [PMID: 30891338 PMCID: PMC6420289 DOI: 10.1364/boe.10.001184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/16/2019] [Accepted: 01/27/2019] [Indexed: 05/29/2023]
Abstract
Because of its similar genetic makeup with humans, zebrafish are an available and well-established osteoporosis model in vivo for anti-osteoporosis drug development as well as the drug safety-evaluation process. However, few optical imaging methods could effectively visualize the bone of adult zebrafish due to their limited penetration depth. In this paper, in vivo high-resolution and long-term characterization of a prednisolone-induced osteoporotic zebrafish model was achieved with spectral-domain optical coherence tomography (SD-OCT). The capability of three-dimensional SD-OCT imaging was also demonstrated in this study. With SD-OCT images, we could non-destructively monitor the deforming process of adult zebrafish skull from several directions at any time. There is good correlation and agreement between SD-OCT and histology. Valuable phenomenon such as bone defects could be quantitatively evaluated using the SD-OCT images at different time points during a period of 21 days.
Collapse
Affiliation(s)
- Yanping Lin
- School of Basic Medical Science, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiang Xiang
- School of Basic Medical Science, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Tingru Chen
- School of Basic Medical Science, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Chudan Gao
- School of Basic Medical Science, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongbo Fu
- School of Basic Medical Science, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Limei Wang
- Center for Drug Non-clinical Evaluation and Research, Guangdong Biological Resources Institute, Guangdong Academy of Sciences, Guangzhou 510900, China
| | - Lijun Deng
- Key Lab of Optic-Electronic and Communication, Jiangxi Sciences and Technology Normal University, Nanchang 330038, China
| | - Lvming Zeng
- Key Lab of Optic-Electronic and Communication, Jiangxi Sciences and Technology Normal University, Nanchang 330038, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jian Zhang
- School of Basic Medical Science, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
5
|
Novel real-time optical imaging modalities for the detection of neoplastic lesions in urology: a systematic review. Surg Endosc 2018; 33:1349-1367. [PMID: 30421080 PMCID: PMC6484817 DOI: 10.1007/s00464-018-6578-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Current optical diagnostic techniques for malignancies are limited in their diagnostic accuracy and lack the ability to further characterise disease, leading to the rapidly increasing development of novel imaging methods within urology. This systematic review critically appraises the literature for novel imagining modalities, in the detection and staging of urological cancer and assesses their effectiveness via their utility and accuracy. METHODS A systematic literature search utilising MEDLINE, EMBASE and Cochrane Library Database was conducted from 1970 to September 2018 by two independent reviewers. Studies were included if they assessed real-time imaging modalities not already approved in guidelines, in vivo and in humans. Outcome measures included diagnostic accuracy and utility parameters, including feasibility and cost. RESULTS Of 5475 articles identified from screening, a final 46 were included. Imaging modalities for bladder cancer included optical coherence tomography (OCT), confocal laser endomicroscopy, autofluorescence and spectroscopic techniques. OCT was the most widely investigated, with 12 studies demonstrating improvements in overall diagnostic accuracy (sensitivity 74.5-100% and specificity 60-98.5%). Upper urinary tract malignancy diagnosis was assessed using photodynamic diagnosis (PDD), narrow band imaging, optical coherence tomography and confocal laser endomicroscopy. Only PDD demonstrated consistent improvements in overall diagnostic accuracy in five trials (sensitivity 94-96% and specificity 96.6-100%). Limited evidence for optical coherence tomography in percutaneous renal biopsy was identified, with anecdotal evidence for any modality in penile cancer. CONCLUSIONS Evidence supporting the efficacy for identified novel imaging modalities remains limited at present. However, OCT for bladder cancer and PDD in upper tract malignancy demonstrate the best potential for improvement in overall diagnostic accuracy. OCT may additionally aid intraoperative decision making via real-time staging of disease. Both modalities require ongoing investigation through larger, well-conducted clinical trials to assess their diagnostic accuracy, use as an intraoperative staging aid and how to best utilise them within clinical practice.
Collapse
|
6
|
Leitgeb RA, Baumann B. Multimodal Optical Medical Imaging Concepts Based on Optical Coherence Tomography. FRONTIERS IN PHYSICS 2018; 6. [PMID: 0 DOI: 10.3389/fphy.2018.00114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
7
|
Wang J, Xu Y, Boppart SA. Review of optical coherence tomography in oncology. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-23. [PMID: 29274145 PMCID: PMC5741100 DOI: 10.1117/1.jbo.22.12.121711] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 05/06/2023]
Abstract
The application of optical coherence tomography (OCT) in the field of oncology has been prospering over the past decade. OCT imaging has been used to image a broad spectrum of malignancies, including those arising in the breast, brain, bladder, the gastrointestinal, respiratory, and reproductive tracts, the skin, and oral cavity, among others. OCT imaging has initially been applied for guiding biopsies, for intraoperatively evaluating tumor margins and lymph nodes, and for the early detection of small lesions that would often not be visible on gross examination, tasks that align well with the clinical emphasis on early detection and intervention. Recently, OCT imaging has been explored for imaging tumor cells and their dynamics, and for the monitoring of tumor responses to treatments. This paper reviews the evolution of OCT technologies for the clinical application of OCT in surgical and noninvasive interventional oncology procedures and concludes with a discussion of the future directions for OCT technologies, with particular emphasis on their applications in oncology.
Collapse
Affiliation(s)
- Jianfeng Wang
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Yang Xu
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Carle–Illinois College of Medicine, Urbana, Illinois, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|
8
|
Gora MJ, Suter MJ, Tearney GJ, Li X. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:2405-2444. [PMID: 28663882 PMCID: PMC5480489 DOI: 10.1364/boe.8.002405] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed.
Collapse
Affiliation(s)
- Michalina J Gora
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- ICube Laboratory, CNRS, Strasbourg University, 1 Place de l'Hopital, Strasbourg 67091, France
| | - Melissa J Suter
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Xingde Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, and Department of Oncology, Johns Hopkins University, 720 Rutland Avenue, Traylor 710, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Duan L, McRaven MD, Liu W, Shu X, Hu J, Sun C, Veazey RS, Hope TJ, Zhang HF. Colposcopic imaging using visible-light optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:56003. [PMID: 28492851 PMCID: PMC5421648 DOI: 10.1117/1.jbo.22.5.056003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/17/2017] [Indexed: 05/12/2023]
Abstract
High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6 × 4.6 - mm 2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.
Collapse
Affiliation(s)
- Lian Duan
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Michael D. McRaven
- Northwestern University, Department of Cell and Molecular Biology, Chicago, Illinois, United States
| | - Wenzhong Liu
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Xiao Shu
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Jianmin Hu
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
- Wuhan University of Technology, School of Information Engineering, Wuhan, Hubei, China
| | - Cheng Sun
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois, United States
| | - Ronald S. Veazey
- Tulane University, School of Medicine, Tulane National Primate Research Center, Covington, Louisiana, United States
| | - Thomas J. Hope
- Northwestern University, Department of Cell and Molecular Biology, Chicago, Illinois, United States
| | - Hao F. Zhang
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| |
Collapse
|
10
|
Muller BG, de Bruin DM, Brandt MJ, van den Bos W, van Huystee S, Faber DJ, Savci D, Zondervan PJ, de Reijke TM, Laguna-Pes MP, van Leeuwen TG, de la Rosette JJMCH. Prostate cancer diagnosis by optical coherence tomography: First results from a needle based optical platform for tissue sampling. JOURNAL OF BIOPHOTONICS 2016; 9:490-498. [PMID: 26856796 DOI: 10.1002/jbio.201500252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
The diagnostic accuracy of Optical Coherence Tomography (OCT) based optical attenuation coefficient analysis is assessed for the detection of prostate cancer. Needle-based OCT-measurements were performed on the prostate specimens. Attenuation coefficients were determined by an earlier described in-house developed software package. The mean attenuation coefficients (benign OCT data; malignant OCT data; p-value Mann-Whitney U test) were: (3.56 mm(-1) ; 3.85 mm(-1) ; p < 0.0001) for all patients combined. The area under the ROC curve was 0.64. In order to circumvent the effect of histopathology mismatching, we performed a sub-analysis on only OCT data in which tumor was visible in two subsequent histopathological prostate slices. This analysis could be performed in 3 patients. The mean attenuation coefficients (benign OCT data; malignant OCT data; p-value Mann-Whitney U test) were: (3.23 mm(-1) ; 4.11 mm(-1) ; p < 0.0001) for all patients grouped together. The area under the ROC curve was 0.89. Functional OCT of the prostate has shown to differentiate between cancer and healthy prostate tissue. The optical attenuation coefficient in malignant tissue was significantly higher in malignant tissue compared to benign prostate tissue. Further studies are required to validate these initial results in a larger group of patients with a more tailored histopathology matching protocol.
Collapse
Affiliation(s)
- Berrend G Muller
- Department of Urology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam Z.O., The Netherlands.
| | - Daniel M de Bruin
- Department of Urology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam Z.O., The Netherlands
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Martin J Brandt
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Willemien van den Bos
- Department of Urology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam Z.O., The Netherlands
| | - Suzanne van Huystee
- Department of Urology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam Z.O., The Netherlands
| | - D J Faber
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Dilaria Savci
- Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Patricia J Zondervan
- Department of Urology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam Z.O., The Netherlands
| | - Theo M de Reijke
- Department of Urology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam Z.O., The Netherlands
| | - M Pilar Laguna-Pes
- Department of Urology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam Z.O., The Netherlands
| | - Ton G van Leeuwen
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jean J M C H de la Rosette
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
11
|
Lurie KL, Gurjarpadhye AA, Seibel EJ, Ellerbee AK. Rapid scanning catheterscope for expanded forward-view volumetric imaging with optical coherence tomography. OPTICS LETTERS 2015; 40:3165-3168. [PMID: 26125393 DOI: 10.1364/ol.40.003165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate a novel catheterscope, based on scanning fiber endoscopy, for volumetric imaging with optical coherence tomography (OCT), which possesses a high resonance frequency (>2 kHz) and a small outer diameter (OD) (1.07 mm). Our design is the fastest volumetric-scanning, forward-viewing catheterscope for OCT, and the scanning package has the smallest OD of any such OCT package published to date. Using a proof-of-operation catheterscope with commercial lenses, we demonstrate high-quality in vivo and ex vivo volumetric imaging and extend the 1.1 mm diameter field of view more than 200-fold by mosaicking. Due to its small OD, short rigid tip length, and fast scan rate, this scope is the leading candidate design to enable early detection and staging of bladder cancer during flexible white light cystoscopy.
Collapse
|
12
|
Wang HW, Chen Y. Clinical applications of optical coherence tomography in urology. INTRAVITAL 2014; 3:e28770. [PMID: 28243507 PMCID: PMC5312717 DOI: 10.4161/intv.28770] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/20/2022]
Abstract
Since optical coherence tomography (OCT) was first demonstrated in 1991, it has advanced significantly in technical aspects such as imaging speed and resolution, and has been clinically demonstrated in a diverse set of medical and surgical applications, including ophthalmology, cardiology, gastroenterology, dermatology, oncology, among others. This work reviews current clinical applications in urology, particularly in bladder, urether, and kidney. Clinical applications in bladder and urether mainly focus on cancer detection and staging based on tissue morphology, image contrast, and OCT backscattering. The application in kidney includes kidney cancer detection based on OCT backscattering attenuation and non-destructive evaluation of transplant kidney viability or acute tubular necrosis based on both tissue morphology from OCT images and function from Doppler OCT (DOCT) images. OCT holds the promise to positively impact the future clinical practices in urology.
Collapse
Affiliation(s)
- Hsing-Wen Wang
- Fischell Department of Bioengineering; University of Maryland; College Park, MD USA
| | - Yu Chen
- Fischell Department of Bioengineering; University of Maryland; College Park, MD USA
| |
Collapse
|
13
|
Kamaya A, Vaithilingam S, Chung BI, Oralkan O, Khuri-Yakub BT. Photoacoustic imaging of the bladder: a pilot study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2013; 32:1245-50. [PMID: 23804347 DOI: 10.7863/ultra.32.7.1245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Photoacoustic imaging is a promising new technology that combines tissue optical characteristics with ultrasound transmission and can potentially visualize tumor depth in bladder cancer. We imaged simulated tumors in 5 fresh porcine bladders with conventional pulse-echo sonography and photoacoustic imaging. Isoechoic biomaterials of different optical qualities were used. In all 5 of the bladder specimens, photoacoustic imaging showed injected biomaterials, containing varying degrees of pigment, better than control pulse-echo sonography. Photoacoustic imaging may be complementary to diagnostic information obtained by cystoscopy and urine cytologic analysis and could potentially obviate the need for biopsy in some tumors before definitive treatment.
Collapse
Affiliation(s)
- Aya Kamaya
- Department of Radiology, Stanford University Medical Center, 300 Pasteur Dr, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
14
|
Sommerauer M, Jocham D, Laturnus JM. [Non-muscle invasive transitional cell carcinoma of the bladder. New developments in diagnostics and therapy]. Urologe A 2012; 51:791-7. [PMID: 22618669 DOI: 10.1007/s00120-012-2897-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to the high incidence and recurrence rate non-muscle invasive bladder cancer (NMIBC) has a relevant impact. Raman spectroscopy and optical coherence tomography represent innovative diagnostic tools. Urine markers still play a minor role in the diagnostics of NMIBC. New therapeutic options are thermochemotherapy and mitomycin-C electromotive drug administration (MMC-EMDA) as well as gemcitabine and apaziquone for intravesical administration.
Collapse
Affiliation(s)
- M Sommerauer
- Klinik und Poliklinik für Urologie, UK-SH Campus Lübeck, Ratzeburgerallee 160, 23568 Lübeck.
| | | | | |
Collapse
|
15
|
Gilchrist KH, Dausch DE, Grego S. Electromechanical performance of piezoelectric scanning mirrors for medical endoscopy. SENSORS AND ACTUATORS. A, PHYSICAL 2012; 178:193-201. [PMID: 22773894 PMCID: PMC3388502 DOI: 10.1016/j.sna.2012.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The electromechanical performance of piezoelectric scanning mirrors for endoscopy imaging is presented. The devices are supported by a single actuating cantilever to achieve a high fill factor, the ratio of mirror area to the combined mirror and actuator area. The largest fill factor devices (74%) achieved 10° mechanical scan range at +/-10V with a 300 μm long cantilever. The largest angular displacement of 30° mechanical scan range was obtained with a 500 μm long cantilever device with a 63% fill factor driven at 40 Vpp. A systematic investigation of device performance (displacement and speed) as a function of fabrication and operational parameters including the stress balance in the cantilever revealed unexpectedly large displacements with lack of inversion at the coercive field. An interpretation of the results is presented based on piezoelectric film domain orientation and clamping with supporting piezoelectric film characterization measurements.
Collapse
Affiliation(s)
- Kristin H Gilchrist
- Center for Materials and Electronic Technologies, RTI International, Research Triangle Park, NC, USA
| | | | | |
Collapse
|
16
|
Ren H, Park KC, Pan R, Waltzer WC, Shroyer KR, Pan Y. Early Detection of Carcinoma In Situ of the Bladder: A Comparative Study of White Light Cystoscopy, Narrow Band Imaging, 5-ALA Fluorescence Cystoscopy and 3-Dimensional Optical Coherence Tomography. J Urol 2012; 187:1063-70. [DOI: 10.1016/j.juro.2011.10.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Indexed: 10/14/2022]
Affiliation(s)
- Hugang Ren
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Ki Cheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Rubin Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Wayne C. Waltzer
- Department of Urology, Stony Brook University, Stony Brook, New York
| | | | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| |
Collapse
|
17
|
Liang CP, Wierwille J, Moreira T, Schwartzbauer G, Jafri MS, Tang CM, Chen Y. A forward-imaging needle-type OCT probe for image guided stereotactic procedures. OPTICS EXPRESS 2011; 19:26283-94. [PMID: 22274213 PMCID: PMC3297117 DOI: 10.1364/oe.19.026283] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A forward-imaging needle-type optical coherence tomography (OCT) probe with Doppler OCT (DOCT) capability has the potential to solve critical challenges in interventional procedures. A case in point is stereotactic neurosurgery where probes are advanced into the brain based on predetermined coordinates. Laceration of blood vessels in front of the advancing probe is an unavoidable complication with current methods. Moreover, cerebrospinal fluid (CSF) leakage during surgery can shift the brain rendering the predetermined coordinates unreliable. In order to address these challenges, we developed a forward-imaging OCT probe (740 μm O.D.) using a gradient-index (GRIN) rod lens that can provide real-time imaging feedback for avoiding at-risk vessels (8 frames/s with 1024 A-scans per frame for OCT/DOCT dual imaging) and guiding the instrument to specific targets with 12 μm axial resolution (100 frames/s with 160 A-scans per frame for OCT imaging only). The high signal-to-background characteristic of DOCT provides exceptional sensitivity in detecting and quantifying the blood flow within the sheep brain parenchyma in real time. The OCT/DOCT dual imaging also demonstrated its capability to differentiate the vessel type (artery/vein) on rat's femoral vessels. We also demonstrated in ex vivo human brain that the location of the tip of the OCT probe can be inferred from micro-anatomical landmarks in OCT images. These findings demonstrate the suitability of OCT guidance during stereotactic procedures in the brain and its potential for reducing the risk of cerebral hemorrhage.
Collapse
Affiliation(s)
- Chia-Pin Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
USA
| | - Jeremiah Wierwille
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
USA
| | - Thais Moreira
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
USA
- Research Service, Baltimore VA Medical Center, Baltimore, MD 21201
USA
| | - Gary Schwartzbauer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
USA
| | - M. Samir Jafri
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
USA
- Research Service, Baltimore VA Medical Center, Baltimore, MD 21201
USA
| | - Cha-Min Tang
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
USA
- Research Service, Baltimore VA Medical Center, Baltimore, MD 21201
USA
| | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
USA
| |
Collapse
|
18
|
Cauberg Evelyne CC, de la Rosette JJMCH, de Reijke TM. Emerging optical techniques in advanced cystoscopy for bladder cancer diagnosis: A review of the current literature. Indian J Urol 2011; 27:245-51. [PMID: 21814317 PMCID: PMC3142837 DOI: 10.4103/0970-1591.82845] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The current standard for the diagnosis and followup of bladder cancer remains white light cystoscopy, despite its well-known limitations. The aim of this paper is to review the current literature on three optical diagnostics that have been developed to improve the performance of white light cystoscopy: photodynamic diagnosis, narrow-band imaging and optical coherence tomography. MATERIALS AND METHODS A PubMed search was performed for all articles on bladder cancer and photodynamic diagnosis, narrow-band imaging, and optical coherence tomography. Relevant papers on the working mechanism or clinical performance of the techniques were selected. RESULTS Photodynamic diagnosis and narrow-band imaging both aim to improve the visualization of bladder cancer. Both techniques have demonstrated an improved detection rate of bladder cancer. For photodynamic diagnosis, decreased residual tumor rates and increased recurrence free survival after photodynamic diagnosis-assisted transurethral resection have been shown. Both techniques have a relatively high false positive rate. Optical coherence tomography is a technique aiming at real-time noninvasive pathological diagnosis. Studies have shown that optical coherence tomography can accurately discriminate bladder cancer from normal bladder mucosa, and even suggest that a reliable estimation of the stage of a bladder tumor can be made. CONCLUSIONS Photodynamic diagnosis is the technique with most evidence of clinical effectiveness to date, but low specificity is limiting a widespread use. For the novelties, narrow-band imaging, and optical coherence tomography, more evidence is needed before these techniques can be implemented in daily urological practice.
Collapse
|
19
|
Abstract
We demonstrate the feasibility of a novel and nonionizing process for bladder imaging in vivo, called photoacoustic cystography (PAC). Using a photoacoustic imaging system, we have successfully imaged a rat bladder filled with clinically used Methylene Blue (MB) dye. An image contrast of ~8 was achieved. Further, spectroscopic PAC confirmed the accumulation of MB in the bladder. Using a laser pulse energy of less than 1 mJ/cm² (1/20 of the ANSI safety limit), a deeply (1.2 cm) positioned bladder in biological tissues was clearly visible in the PA image. Our results suggest that PAC can potentially provide a nonionizing, relatively cheap, and portable tool for bladder mapping. Among our clinical interests, nonionizing PAC with an injection of MB can potentially monitor vesicoureteral reflux in children.
Collapse
Affiliation(s)
- Chulhong Kim
- BioOptics and Acoustics Laboratory, Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.
| | | | | |
Collapse
|
20
|
Popescu DP, Choo-Smith LP, Flueraru C, Mao Y, Chang S, Disano J, Sherif S, Sowa MG. Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications. Biophys Rev 2011; 3:155. [PMID: 28510064 PMCID: PMC5418377 DOI: 10.1007/s12551-011-0054-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/08/2011] [Indexed: 12/20/2022] Open
Abstract
The advances made in the last two decades in interference technologies, optical instrumentation, catheter technology, optical detectors, speed of data acquisition and processing as well as light sources have facilitated the transformation of optical coherence tomography from an optical method used mainly in research laboratories into a valuable tool applied in various areas of medicine and health sciences. This review paper highlights the place occupied by optical coherence tomography in relation to other imaging methods that are used in medical and life science areas such as ophthalmology, cardiology, dentistry and gastrointestinal endoscopy. Together with the basic principles that lay behind the imaging method itself, this review provides a summary of the functional differences between time-domain, spectral-domain and full-field optical coherence tomography, a presentation of specific methods for processing the data acquired by these systems, an introduction to the noise sources that plague the detected signal and the progress made in optical coherence tomography catheter technology over the last decade.
Collapse
Affiliation(s)
- Dan P Popescu
- National Research Council of Canada, Institute for Biodiagnostics, 435 Ellice Avenue, Winnipeg, MB, Canada, R3B 1Y6.
| | - Lin-P'ing Choo-Smith
- National Research Council of Canada, Institute for Biodiagnostics, 435 Ellice Avenue, Winnipeg, MB, Canada, R3B 1Y6
| | - Costel Flueraru
- National Research Council of Canada, Institute for Microstructural Sciences, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Youxin Mao
- National Research Council of Canada, Institute for Microstructural Sciences, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Shoude Chang
- National Research Council of Canada, Institute for Microstructural Sciences, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - John Disano
- National Research Council of Canada, Institute for Microstructural Sciences, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Sherif Sherif
- Electrical and Computer Engineering, University of Manitoba, 75A Chancellor Drive, Winnipeg, MB, Canada, R3T 5V6
| | - Michael G Sowa
- National Research Council of Canada, Institute for Biodiagnostics, 435 Ellice Avenue, Winnipeg, MB, Canada, R3B 1Y6
| |
Collapse
|
21
|
Korde VR, Liebmann E, Barton JK. Design of a handheld optical coherence microscopy endoscope. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:066018. [PMID: 21721819 PMCID: PMC3144968 DOI: 10.1117/1.3594149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 04/29/2011] [Accepted: 05/04/2011] [Indexed: 05/15/2023]
Abstract
Optical coherence microscopy (OCM) combines coherence gating, high numerical aperture optics, and a fiber-core pinhole to provide high axial and lateral resolution with relatively large depth of imaging. We present a handheld rigid OCM endoscope designed for small animal surgical imaging, with a 6-mm diam tip, 1-mm scan width, and 1-mm imaging depth. X-Y scanning is performed distally with mirrors mounted to micro galvonometer scanners incorporated into the endoscope handle. The endoscope optical design consists of scanning doublets, an afocal Hopkins relay lens system, a 0.4 numerical aperture water immersion objective, and a cover glass. This endoscope can resolve laterally a 1.4-μm line pair feature and has an axial resolution (full width half maximum) of 5.4 μm. Images taken with this endoscope of fresh ex-vivo mouse ovaries show structural features, such as corpus luteum, primary follicles, growing follicles, and fallopian tubes. This rigid handheld OCM endoscope can be useful for a variety of minimally invasive and surgical imaging applications.
Collapse
Affiliation(s)
- Vrushali R Korde
- University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
22
|
Cauberg ECC, de Bruin DM, Faber DJ, de Reijke TM, Visser M, de la Rosette JJMCH, van Leeuwen TG. Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:066013. [PMID: 21198187 DOI: 10.1117/1.3512206] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Real-time grading of bladder urothelial carcinoma (UC) is clinically important, but the current standard for grading (histopathology) cannot provide this information. Based on optical coherence tomography (OCT)-measured optical attenuation (μ(t)), the grade of bladder UC could potentially be assessed in real time. We evaluate ex vivo whether μ(t) differs between different grades of UC and benign bladder tissue. Human bladder tissue specimens are examined ex vivo by 850-nm OCT using dynamic focusing. Three observers independently determine the μ(t) from the OCT images, and three pathologists independently review the corresponding histology slides. For both methods, a consensus diagnosis is made. We include 76 OCT scans from 54 bladder samples obtained in 20 procedures on 18 patients. The median (interquartile range) μ(t) of benign tissue is 5.75 mm(-1) (4.77 to 6.14) versus 5.52 mm(-1) (3.47 to 5.90), 4.85 mm(-1) (4.25 to 6.50), and 5.62 mm(-1) (5.01 to 6.29) for grade 1, 2, and 3 UC, respectively (p = 0.732). Interobserver agreement of histopathology is "substantial" [Kappa 0.62, 95% confidence interval (IC) 0.54 to 0.70] compared to "almost perfect" [interclass correlation coefficient (ICC) 0.87, 95% CI 0.80 to 0.92] for OCT. Quantitative OCT analysis (by μ(t)) does not detect morphological UC changes. This may be due to factors typical for an ex-vivo experimental setting.
Collapse
Affiliation(s)
- Evelyne C C Cauberg
- Academic Medical Center, Department of Urology, 1100 DD Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
23
|
Gerstner AOH. Early detection in head and neck cancer - current state and future perspectives. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2010; 7:Doc06. [PMID: 22073093 PMCID: PMC3199835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Survival and quality of life in head and neck cancer are directly linked to the size of the primary tumor at first detection. In order to achieve substantial gain at these issues, both, primary prevention and secondary prevention, which is early detection of malignant lesions at a small size, have to be improved. So far, there is not only a lack in the necessary infrastructure not only in Germany, but rather worldwide, but additionally the techniques developed so far for early detection have a significance and specificity too low as to warrant safe implementation for screening programs. However, the advancements recently achieved in endoscopy and in quantitative analysis of hypocellular specimens open new perspectives for secondary prevention. Chromoendoscopy and narrow band imaging (NBI) pinpoint suspicious lesions more easily, confocal endomicroscopy and optical coherence tomography obtain optical sections through those lesions, and hyperspectral imaging classifies lesions according to characteristic spectral signatures. These techniques therefore obtain optical biopsies. Once a "bloody" biopsy has been taken, the plethora of parameters that can be quantified objectively has been increased and could be the basis for an objective and quantitative classification of epithelial lesions (multiparametric cytometry, quantitative histology). Finally, cytomics and proteomics approaches, and lab-on-the-chip technology might help to identify patients at high-risk. Sensitivity and specificity of these approaches have to be validated, yet, and some techniques have to be adapted for the specific conditions for early detection of head and neck cancer. On this background it has to be stated that it is still a long way to go until a population based screening for head and neck cancer is available. The recent results of screening for cancer of the prostate and breast highlight the difficulties implemented in such a task.
Collapse
|
24
|
Ren H, Yuan Z, Waltzer W, Shroyer K, Pan Y. Enhancing Detection of Bladder Carcinoma In Situ by 3-Dimensional Optical Coherence Tomography. J Urol 2010; 184:1499-506. [DOI: 10.1016/j.juro.2010.05.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Indexed: 10/19/2022]
Affiliation(s)
- Hugang Ren
- Departments of Biomedical Engineering, Urology (WW) and Pathology (KS), Stony Brook University, Stony Brook, New York
| | - Zhijia Yuan
- Departments of Biomedical Engineering, Urology (WW) and Pathology (KS), Stony Brook University, Stony Brook, New York
| | - Wayne Waltzer
- Departments of Biomedical Engineering, Urology (WW) and Pathology (KS), Stony Brook University, Stony Brook, New York
| | - Kenneth Shroyer
- Departments of Biomedical Engineering, Urology (WW) and Pathology (KS), Stony Brook University, Stony Brook, New York
| | - Yingtian Pan
- Departments of Biomedical Engineering, Urology (WW) and Pathology (KS), Stony Brook University, Stony Brook, New York
| |
Collapse
|
25
|
Karl A, Tritschler S, Zaak D, Tilki D, Stief C, Burger M. Diagnostische Verfahren beim Harnblasenkarzinom. Urologe A 2010; 49:1303-11; quiz 1312. [DOI: 10.1007/s00120-010-2343-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Yuan Z, Luo Z, Volkow ND, Pan Y, Du C. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo. Neuroimage 2010; 54:1130-9. [PMID: 20804849 DOI: 10.1016/j.neuroimage.2010.08.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/19/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022] Open
Abstract
MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod(2) fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 μm, 10 Hz) and over a large field of view (3×5 mm(2)). We apply it to assess cocaine's effects in rat cortical brain and show an immediate decrease (3.5±0.9 min, phase 1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot (7.1±0.2 min, phase 2) lasting over 20 min whereas Ca(2+) increased immediately (peaked at t=4.1±0.4 min) and remained elevated. This enabled us to identify a delay (2.9±0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).
Collapse
Affiliation(s)
- Zhijia Yuan
- Department of Biomedical Engineering, Stony Brook University, NY, NY 11794, USA
| | | | | | | | | |
Collapse
|
27
|
Ren H, Waltzer WC, Bhalla R, Liu J, Yuan Z, Lee CS, Darras F, Schulsinger D, Adler HL, Kim J, Mishail A, Pan Y. Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography. Urology 2009; 74:1351-7. [PMID: 19660795 PMCID: PMC2789875 DOI: 10.1016/j.urology.2009.04.090] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/16/2009] [Accepted: 04/14/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To examine the utility and potential limitations of microelectromechanical systems-based spectral-domain cystoscopic optical coherence tomography (COCT) so as to improve the diagnosis of early bladder cancer. METHODS An optical coherence tomography catheter was integrated into the single instrument channel of a 22F cystoscope to permit white-light-guided COCT over a large field of view (4.6 mm wide and 2.1 mm deep per scan at 8 frames/s) and 10-microm resolution. Intraoperative COCT diagnosis was performed in 56 patients, with a total of 110 lesions examined and compared with biopsied histology. RESULTS The overall sensitivity of COCT (94%) was significantly higher than cystoscopy (75%, P = .02) and voided cytology (59%, P = .005); the major enhancement over cystoscopy was for low-grade pTa-1 cancer and carcinoma in situ (P < .018). The overall specificity of COCT (81%) was comparable to voided cytology (88.9%, P = .49), but significantly higher than cystoscopy (62.5%, P = .02). CONCLUSIONS The microelectromechanical systems-based COCT, owing to its high resolution and detection sensitivity and large field of view, offers great potential for "optical biopsy" to enhance the diagnosis of nonpapillary bladder tumors and their recurrences and to guide bladder tumor resection.
Collapse
Affiliation(s)
- Hugang Ren
- Department of Biomedical Engineering, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Wayne C. Waltzer
- Department of Urology, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Rahuldev Bhalla
- Department of Urology, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Jingxuan Liu
- Department of Pathology, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Zhijia Yuan
- Department of Biomedical Engineering, SUNY at Stony Brook, Stony Brook, NY 11794
| | | | - Frank Darras
- Department of Urology, SUNY at Stony Brook, Stony Brook, NY 11794
| | | | - Howard L. Adler
- Department of Urology, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Jason Kim
- Department of Urology, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Alek Mishail
- Department of Urology, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Yingtian Pan
- Department of Biomedical Engineering, SUNY at Stony Brook, Stony Brook, NY 11794
| |
Collapse
|
28
|
Walther J, Koch E. Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT. OPTICS EXPRESS 2009; 17:19698-19713. [PMID: 19997190 DOI: 10.1364/oe.17.019698] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recently, a new phase-resolved Doppler model was presented for spectral domain optical coherence tomography (SD OCT) showing that the linear relation between the axial velocity component of the obliquely moving sample and the phase difference of consecutive A-Scans does not hold true in the presence of a transverse velocity component which is neglected in the widely-used classic Doppler analysis. Besides taking note of the new non-proportional relationship of phase shift and oblique sample motion, it is essential to consider the correlation of the phase shift and its specific characteristic at certain Doppler angles for designing Doppler experiments with SD OCT. A correlation quotient is introduced to quantify the correlation of the backscattering signal in consecutive A-Scans as a function of the oblique sample motion. It was found that at certain velocities and Doppler angles no correlation of the phases of sequential A-Scans exists, even though the signal does not vanish. To indicate how the noise of the Doppler phase shift behaves for oblique movement, the standard deviation is determined as a function of the correlation quotient and the number of complex Doppler data averaged. The detailed theoretical model is validated by using a flow phantom model consisting of a 1% Intralipid flow through a 310 microm capillary. Finally, a short discussion of the presented results and the consequence for performing Doppler experiments is given.
Collapse
Affiliation(s)
- Julia Walther
- Department of Clinical Sensoring and Monitoring, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | | |
Collapse
|
29
|
Cauberg ECC, de Bruin DM, Faber DJ, van Leeuwen TG, de la Rosette JJMCH, de Reijke TM. A new generation of optical diagnostics for bladder cancer: technology, diagnostic accuracy, and future applications. Eur Urol 2009; 56:287-96. [PMID: 19285787 DOI: 10.1016/j.eururo.2009.02.033] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 02/25/2009] [Indexed: 02/06/2023]
Abstract
CONTEXT New developments in optical diagnostics have a potential for less invasive and improved detection of bladder cancer. OBJECTIVE To provide an overview of the technology and diagnostic yield of recently developed optical diagnostics for bladder cancer and to outline their potential future applications. EVIDENCE ACQUISITION A PubMed literature search was performed, and papers on Raman spectroscopy (RS), optical coherence tomography (OCT), photodynamic diagnosis (PDD) and narrow-band imaging (NBI) regarding bladder cancer were reviewed. Technology, clinical evidence, and future applications of the techniques are discussed. EVIDENCE SYNTHESIS With RS, the molecular components of tissue can be measured objectively in qualitative and quantitative ways. The first studies demonstrating human in vivo applicability are still awaited. OCT produces high-resolution, cross-sectional images of tissue, comparable with histopathology, and provides information about depth of tumour growth. The first in vivo studies of OCT demonstrated promising diagnostic accuracy. RS and OCT are not suitable for scanning the entire bladder. PDD is a technique using fluorescence to indicate pathologic tissue. Several studies have shown that PDD increases the detection rate of bladder tumours and improves resection, resulting in fewer early recurrences. The relatively low specificity of PDD remains a problem. NBI enhances contrast of mucosal surface and microvascular structures. The NBI technique has clear advantages over PDD, and the two studies published to date have shown promising preliminary results. PDD and NBI do not contribute to histopathologic diagnosis. CONCLUSIONS RS and OCT aim at providing a real-time, minimally invasive, objective prediction of histopathologic diagnosis, while PDD and NBI aim at improving visualisation of bladder tumours. For RS, OCT, and NBI, more research has to be conducted before these techniques can be implemented in the management of bladder cancer. All techniques might be of value in specific clinical scenarios.
Collapse
Affiliation(s)
- Evelyne C C Cauberg
- Department of Urology, Academic Medical Center Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Karl A, Stepp H, Willmann E, Tilki D, Zaak D, Knüchel R, Stief C. Optical coherence tomography (OCT): ready for the diagnosis of a nephrogenic adenoma of the urinary bladder? J Endourol 2009; 22:2429-32. [PMID: 19046083 DOI: 10.1089/end.2008.0201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The feasibility of Optical Coherence Tomography (OCT) as a non-invasive technique was shown in different fields. We investigated OCT's potential to detect nephrogenic adenoma (NA) within the human bladder. Clinically non-invasive methods like ultrasonography or CT have significant limitations. We applied our experience from OCT-analyses to one case of NA. OCT in vivo examination was performed using an optical fiber which was positioned cystoscopically. Characteristic structures of NA were compared in the OCT-images and the hematoxylin and eosin histological samples. Indeed, the structure and exact position of NA could be defined in relation to surrounding layers. However, a definite classification as NA by OCT only could not be reached in this single case. The examination of more NA cases would be necessary to base well-founded conclusions on. Further development of this technology could lead to an optical substitute for biopsies: especially apt for the field of endourology.
Collapse
Affiliation(s)
- Alexander Karl
- Ludwig-Maximilians-Universtiy, Department of Urology, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Visualization of the Basement Membrane Zone of the Bladder by Optical Coherence Tomography: Feasibility of Noninvasive Evaluation of Tumor Invasion. Urology 2008; 72:677-81. [DOI: 10.1016/j.urology.2008.02.062] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/04/2008] [Accepted: 02/29/2008] [Indexed: 11/20/2022]
|
32
|
Zagaynova E, Gladkova N, Shakhova N, Gelikonov G, Gelikonov V. Endoscopic OCT with forward-looking probe: clinical studies in urology and gastroenterology. JOURNAL OF BIOPHOTONICS 2008; 1:114-28. [PMID: 19343643 DOI: 10.1002/jbio.200710017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the current paper we present results of application of endoscopic time-domain OCT (EOCT) with lateral scanning by forward looking miniprobe. We analysed material of clinical studies of 554 patients: 164 patients with urinary bladder pathology, and 390 with gastrointestinal tract pathology. We reviewed the materials obtained in different clinics using the OCT device elaborated at the Institute of Applied Physics. We demonstrate results of EOCT application in detection of early cancer and surgery guidance, examples of combined use of OCT and fluorescence imaging. As a result, we show the diagnostic accuracy of EOCT in specific clinical tasks. The sensitivity of EOCT cancer determination in Barrett's esophagus is from 71% to 85% at different stages of neoplasia with specificity 68% for all stages. As for bladder carcinoma, the sensitivity and specificity are 85% and 68%, respectively. In colon dysplasia EOST demonstrates high efficacy: sensitivity 92% and specificity 84%.
Collapse
Affiliation(s)
- E Zagaynova
- Institute of Applied and Fundamental Medicine, Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia.
| | | | | | | | | |
Collapse
|
33
|
Kumar K, Condit JC, McElroy A, Kemp NJ, Hoshino K, Milner TE, Zhang X. Fast 3Din vivoswept-source optical coherence tomography using a two-axis MEMS scanning micromirror. ACTA ACUST UNITED AC 2008. [DOI: 10.1088/1464-4258/10/4/044013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|