1
|
Mireles M, Jiménez-Valerio G, Morales-Dalmau J, Johansson JD, Martínez-Lozano M, Vidal-Rosas EE, Navarro-Pérez V, Busch DR, Casanovas O, Durduran T, Vilches C. Prediction of the response to antiangiogenic sunitinib therapy by non-invasive hybrid diffuse optics in renal cell carcinoma. BIOMEDICAL OPTICS EXPRESS 2024; 15:5773-5789. [PMID: 39421783 PMCID: PMC11482189 DOI: 10.1364/boe.532052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 10/19/2024]
Abstract
In this work, broadband diffuse reflectance spectroscopy (DRS) and diffuse correlation spectroscopy (DCS) were used to quantify deep tissue hemodynamics in a patient-derived orthotopic xenograft mouse model of clear cell renal cancer undergoing antiangiogenic treatment. A cohort of twenty-two mice were treated with sunitinib and compared to thirteen control untreated mice, and monitored by DRS/DCS. A reduction in total hemoglobin concentration (THC, p = 0.03), oxygen saturation (SO2, p = 0.03) and blood flow index (BFI, p = 0.02) was observed over the treatment course. Early changes in tumor microvascular blood flow and total hemoglobin concentration were correlated with the final microvessel density (p = 0.014) and tumor weight (p = 0.024), respectively. Higher pre-treatment tumor microvascular blood flow was observed in non-responder mice with respect to responder mice, which was statistically predictive of the tumor intrinsic resistance (p = 0.01). This hybrid diffuse optical technique provides a method for predicting tumor intrinsic resistance to antiangiogenic therapy and could be used as predictive biomarker of response to antiangiogenic therapies in pre-clinical models.
Collapse
Affiliation(s)
- Miguel Mireles
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- Computational Optics and Translational Imaging Lab, Northeastern University, Boston, Massachusetts 02115, USA
| | - Gabriela Jiménez-Valerio
- Computational Optics and Translational Imaging Lab, Northeastern University, Boston, Massachusetts 02115, USA
| | - Jordi Morales-Dalmau
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Johannes D. Johansson
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- Department of Biomedical Engineering, Linköping University, SE-581 83 Linköping, Sweden
| | - Mar Martínez-Lozano
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Ernesto E. Vidal-Rosas
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- Digital Health and Biomedical Engineering, School of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton, UK
| | - Valentí Navarro-Pérez
- Clinical Research Unit, Institut Català d’Oncologia, 08908 L’Hospitalet de Llobregat, Spain
| | - David R. Busch
- University of Texas Southwestern Medical Center, Departments of Anesthesiology and Pain Management, Neurology, and Biomedical Engineering Dallas, Texas 75390-9003, USA
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Clara Vilches
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| |
Collapse
|
2
|
Wang Q, Pan M, Kreiss L, Samaei S, Carp SA, Johansson JD, Zhang Y, Wu M, Horstmeyer R, Diop M, Li DDU. A comprehensive overview of diffuse correlation spectroscopy: Theoretical framework, recent advances in hardware, analysis, and applications. Neuroimage 2024; 298:120793. [PMID: 39153520 DOI: 10.1016/j.neuroimage.2024.120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical framework but also by the broad range of component options and system architectures. To facilitate new entry to this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the future directions is provided, to offer effective guidance to embark on DCS research.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Mingliang Pan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Lucas Kreiss
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Saeed Samaei
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Stefan A Carp
- Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, United States
| | | | - Yuanzhe Zhang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Melissa Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Mamadou Diop
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - David Day-Uei Li
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
3
|
Moore CH, Sunar U, Lin W. A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA. BIOSENSORS 2024; 14:384. [PMID: 39194613 DOI: 10.3390/bios14080384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Diffuse correlation spectroscopy (DCS) is a non-invasive technology for the evaluation of blood perfusion in deep tissue. However, it requires high computational resources for data analysis, which poses challenges in its implementation for real-time applications. To address the unmet need, we developed a novel device-on-chip solution that fully integrates all the necessary computational components needed for DCS. It takes the output of a photon detector and determines the blood flow index (BFI). It is implemented on a field-programmable gate array (FPGA) chip including a multi-tau correlator for the calculation of the temporal light intensity autocorrelation function and a DCS analyzer to perform the curve fitting operation that derives the BFI at a rate of 6000 BFIs/s. The FPGA DCS system was evaluated against a lab-standard DCS system for both phantom and cuff ischemia studies. The results indicate that the autocorrelation of the light correlation and BFI from both the FPGA DCS and the reference DCS matched well. Furthermore, the FPGA DCS system was able to achieve a measurement rate of 50 Hz and resolve pulsatile blood flow. This can significantly lower the cost and footprint of the computational components of DCS and pave the way for portable, real-time DCS systems.
Collapse
Affiliation(s)
- Christopher H Moore
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ulas Sunar
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wei Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Biswas A, Mohammad PPS, Moka S, Takshi A, Parthasarathy AB. Non-invasive low-cost deep tissue blood flow measurement with integrated Diffuse Speckle Contrast Spectroscopy. FRONTIERS IN NEUROERGONOMICS 2024; 4:1288922. [PMID: 38234484 PMCID: PMC10790947 DOI: 10.3389/fnrgo.2023.1288922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Diffuse Correlation Spectroscopy (DCS) is a widely used non-invasive measurement technique to quantitatively measure deep tissue blood flow. Conventional implementations of DCS use expensive single photon counters as detecting elements and optical probes with bulky fiber optic cables. In recent years, newer approaches to blood flow measurement such as Diffuse Speckle Contrast Analysis (DSCA) and Speckle Contrast Optical Spectroscopy (SCOS), have adapted speckle contrast analysis methods to simplify deep tissue blood flow measurements using cameras and single photon counting avalanche detector arrays as detectors. Here, we introduce and demonstrate integrated Diffuse Speckle Contrast Spectroscopy (iDSCS), a novel optical sensor setup which leverages diffuse speckle contrast analysis for probe-level quantitative measurement of tissue blood flow. iDSCS uses a standard photodiode configured in photovoltaic mode to integrate photon intensity fluctuations over multiple integration durations using a custom electronic circuit, as opposed to the high frequency sampling of photon counts with DCS. We show that the iDSCS device is sensitive to deep-tissue blood flow measurements with experiments on a human forearm and compare the sensitivity and dynamic range of the device to a conventional DCS instrument. The iDSCS device features a low-cost, low-power, small form factor instrument design that will enable wireless probe-level measurements of deep tissue blood flow.
Collapse
|
5
|
Cortese L, Fernández Esteberena P, Zanoletti M, Lo Presti G, Aranda Velazquez G, Ruiz Janer S, Buttafava M, Renna M, Di Sieno L, Tosi A, Dalla Mora A, Wojtkiewicz S, Dehghani H, de Fraguier S, Nguyen-Dinh A, Rosinski B, Weigel UM, Mesquida J, Squarcia M, Hanzu FA, Contini D, Mora Porta M, Durduran T. In vivocharacterization of the optical and hemodynamic properties of the human sternocleidomastoid muscle through ultrasound-guided hybrid near-infrared spectroscopies. Physiol Meas 2023; 44:125010. [PMID: 38061053 DOI: 10.1088/1361-6579/ad133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Objective.In this paper, we present a detailedin vivocharacterization of the optical and hemodynamic properties of the human sternocleidomastoid muscle (SCM), obtained through ultrasound-guided near-infrared time-domain and diffuse correlation spectroscopies.Approach.A total of sixty-five subjects (forty-nine females, sixteen males) among healthy volunteers and thyroid nodule patients have been recruited for the study. Their SCM hemodynamic (oxy-, deoxy- and total hemoglobin concentrations, blood flow, blood oxygen saturation and metabolic rate of oxygen extraction) and optical properties (wavelength dependent absorption and reduced scattering coefficients) have been measured by the use of a novel hybrid device combining in a single unit time-domain near-infrared spectroscopy, diffuse correlation spectroscopy and simultaneous ultrasound imaging.Main results.We provide detailed tables of the results related to SCM baseline (i.e. muscle at rest) properties, and reveal significant differences on the measured parameters due to variables such as side of the neck, sex, age, body mass index, depth and thickness of the muscle, allowing future clinical studies to take into account such dependencies.Significance.The non-invasive monitoring of the hemodynamics and metabolism of the sternocleidomastoid muscle during respiration became a topic of increased interest partially due to the increased use of mechanical ventilation during the COVID-19 pandemic. Near-infrared diffuse optical spectroscopies were proposed as potential practical monitors of increased recruitment of SCM during respiratory distress. They can provide clinically relevant information on the degree of the patient's respiratory effort that is needed to maintain an optimal minute ventilation, with potential clinical application ranging from evaluating chronic pulmonary diseases to more acute settings, such as acute respiratory failure, or to determine the readiness to wean from invasive mechanical ventilation.
Collapse
Affiliation(s)
- Lorenzo Cortese
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
| | - Pablo Fernández Esteberena
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
| | - Marta Zanoletti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
- Politecnico di Milano, Dipartimento di Fisica, I-20133 Milano, Italy
| | - Giuseppe Lo Presti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
| | | | - Sabina Ruiz Janer
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, E-08036 Barcelona, Spain
| | - Mauro Buttafava
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, I-20133 Milano, Italy
- Now at PIONIRS s.r.l., I-20124 Milano, Italy
| | - Marco Renna
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, I-20133 Milano, Italy
- Now at Athinoula A. Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, United States of America
| | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, I-20133 Milano, Italy
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, I-20133 Milano, Italy
| | | | - Stanislaw Wojtkiewicz
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, United Kingdom
- Now at Nalecz Institute of Biocybernetics and Biomedical Engineering, 02-109 Warsaw, Poland
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | | | | - Udo M Weigel
- HemoPhotonics S.L., E-08860 Castelldefels (Barcelona), Spain
| | - Jaume Mesquida
- Área de Crítics, Parc Taulí Hospital Universitari, E-08208 Sabadell, Spain
| | - Mattia Squarcia
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, E-08036 Barcelona, Spain
- Neuroradiology Department, Hospital Clínic of Barcelona, E-08036 Barcelona, Spain
| | - Felicia A Hanzu
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, E-08036 Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clínic of Barcelona, E-08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), E-28029 Madrid, Spain
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, I-20133 Milano, Italy
| | - Mireia Mora Porta
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, E-08036 Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clínic of Barcelona, E-08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), E-28029 Madrid, Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
| |
Collapse
|
6
|
Vitorino R, Barros AS, Guedes S, Caixeta DC, Sabino-Silva R. Diagnostic and monitoring applications using Near infrared (NIR) Spectroscopy in cancer and other diseases. Photodiagnosis Photodyn Ther 2023:103633. [PMID: 37245681 DOI: 10.1016/j.pdpdt.2023.103633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Early cancer diagnosis plays a critical role in improving treatment outcomes and increasing survival rates for certain cancers. NIR spectroscopy offers a rapid and cost-effective approach to evaluate the optical properties of tissues at the microvessel level and provides valuable molecular insights. The integration of NIR spectroscopy with advanced data-driven algorithms in portable instruments has made it a cutting-edge technology for medical applications. NIR spectroscopy is a simple, non-invasive and affordable analytical tool that complements expensive imaging modalities such as functional magnetic resonance imaging, positron emission tomography and computed tomography. By examining tissue absorption, scattering, and concentrations of oxygen, water, and lipids, NIR spectroscopy can reveal inherent differences between tumor and normal tissue, often revealing specific patterns that help stratify disease. In addition, the ability of NIR spectroscopy to assess tumor blood flow, oxygenation, and oxygen metabolism provides a key paradigm for its application in cancer diagnosis. This review evaluates the effectiveness of NIR spectroscopy in the detection and characterization of disease, particularly in cancer, with or without the incorporation of chemometrics and machine learning algorithms. The report highlights the potential of NIR spectroscopy technology to significantly improve discrimination between benign and malignant tumors and accurately predict treatment outcomes. In addition, as more medical applications are studied in large patient cohorts, consistent advances in clinical implementation can be expected, making NIR spectroscopy a valuable adjunct technology for cancer therapy management. Ultimately, the integration of NIR spectroscopy into cancer diagnostics promises to improve prognosis by providing critical new insights into cancer patterns and physiology.
Collapse
Affiliation(s)
- Rui Vitorino
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António S Barros
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Sofia Guedes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Douglas C Caixeta
- Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| |
Collapse
|
7
|
Fu C, Wang D, Wang L, Zhu L, Li Z, Chen T, Feng H, Li F. Diffuse optical detection of global cerebral ischemia in an adult porcine model. JOURNAL OF BIOPHOTONICS 2023; 16:e202200168. [PMID: 36397661 DOI: 10.1002/jbio.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Rapid screening for ischemic strokes in prehospital settings may improve patient outcomes by allowing early deployment of vascular recanalization therapies. However, there are no low-cost and convenient methods that can assess ischemic strokes in such a setting. Diffuse correlation spectroscopy (DCS) is a promising method for continuous, noninvasive transcranial monitoring of cerebral blood flow. In this study, we used a DCS system to detect cerebral hemodynamics before and after acute ischemic stroke in pigs. Seven adult porcines were chosen to establish ischemic stroke models via bilateral common carotid artery ligation (n = 5) or air emboli (n = 2). The results showed a significant difference in blood flow index (BFI) between the normal and ischemic groups. Relative blood flow index (rBFI) exhibited excellent results. Therefore, the diffuse optical method can assess the hemodynamic changes in acute cerebral ischemic stroke onset in pigs, and rBFI may be a promising biomarker for identifying cerebral ischemic stroke.
Collapse
Affiliation(s)
- Chuhua Fu
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, People's Republic of China
| | - Detian Wang
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China
| | - Long Wang
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
| | - Liguo Zhu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China
| | - Zeren Li
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China
| | - Tunan Chen
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
| | - Hua Feng
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
| | - Fei Li
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
| |
Collapse
|
8
|
Akhmedzhanova KG, Kurnikov AA, Khochenkov DA, Khochenkova YA, Glyavina AM, Kazakov VV, Yudintsev AV, Maslennikova AV, Turchin IV, Subochev PV, Orlova AG. In vivo monitoring of vascularization and oxygenation of tumor xenografts using optoacoustic microscopy and diffuse optical spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:5695-5708. [PMID: 36733761 PMCID: PMC9872889 DOI: 10.1364/boe.469380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 05/11/2023]
Abstract
The research is devoted to comparison of the blood vessel structure and the oxygen state of three xenografts: SN-12C, HCT-116 and Colo320. Differences in the vessel formation and the level of oxygenation are revealed by optoacoustic (OA) microscopy and diffuse optical spectroscopy (DOS) respectively. The Colo320 tumor is characterized by the highest values of vessel size and fraction. DOS showed increased content of deoxyhemoglobin that led to reduction of saturation level for Colo320 as compared to other tumors. Immunohistochemical (IHC) analysis for CD31 demonstrates the higher number of vessels in Colo320. The IHC for hypoxia was consistent with DOS results and revealed higher values of the relative hypoxic fraction in Colo320.
Collapse
Affiliation(s)
- K. G. Akhmedzhanova
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A. A. Kurnikov
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - D. A. Khochenkov
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Togliatti State University, Togliatti, Russia
| | - Yu. A. Khochenkova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - A. M. Glyavina
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - V. V. Kazakov
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A. V. Yudintsev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A. V. Maslennikova
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - I. V. Turchin
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - P. V. Subochev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A. G. Orlova
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
9
|
Mundo AI, Muhammad A, Balza K, Nelson CE, Muldoon TJ. Longitudinal examination of perfusion and angiogenesis markers in primary colorectal tumors shows distinct signatures for metronomic and maximum-tolerated dose strategies. Neoplasia 2022; 32:100825. [PMID: 35901621 PMCID: PMC9326335 DOI: 10.1016/j.neo.2022.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
Metronomic chemotherapy (MET) has been developed to address the shortcomings of maximum-tolerated chemotherapy (MTD) in regard to toxicity and development of resistance mechanisms in the tumor. In colorectal cancer (CRC), MET is a promising novel strategy to treat locally advanced malignancies when used as neoadjuvant chemotherapy (NAC). However, so far there are no preclinical studies to assess the impact of MET NAC in CRC to assess the benefits and challenges of this approach. Here, we used a primary model of CRC (via azoxymethane) to analyze longitudinal changes in angiogenesis in primary tumors under MET and MTD NAC using a combination of diffuse reflectance spectroscopy and mRNA expression (via qPCR). Our results show that MET and MTD NAC lead to increased mean tissue oxygen saturation (8% and 5%, respectively) and oxyhemoglobin (15% and 10%) between weeks 2 and 5 of NAC, and that such increases are caused by distinct molecular signatures in the angiogenic program. Specifically, we find that in the MET group there is a sustained increase in Hif-1a, Aldoa, and Pgk1 expression, suggesting upregulated glycolysis, whereas MTD NAC causes a significant reduction in the expression of the aforementioned genes and of Vegf, leading to vascular remodeling in MTD-treated tumors. Taken together, this study demonstrates the ability of combined optical and molecular methodologies to provide a holistic picture of tumor response to therapy in CRC in a minimally invasive manner.
Collapse
Affiliation(s)
- Ariel I Mundo
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Abdussaboor Muhammad
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Kerlin Balza
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Christopher E Nelson
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Timothy J Muldoon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
10
|
Diffuse Optical Spectroscopy Monitoring of Experimental Tumor Oxygenation after Red and Blue Light Photodynamic Therapy. PHOTONICS 2021. [DOI: 10.3390/photonics9010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) is an effective technique for cancer treatment based on photoactivation of photosensitizer accumulated in pathological tissues resulting in singlet oxygen production. Employment of red (660 nm) or blue (405 nm) light differing in typical penetration depth within the tissue for PDT performance provides wide opportunities for improving PDT protocols. Oxygenation dynamics in the treated area can be monitored using diffuse optical spectroscopy (DOS) which allows evaluating tumor response to treatment. In this study, we report on monitoring oxygenation dynamics in experimental tumors after PDT treatment with chlorin-based photosensitizers using red or blue light. The untreated and red light PDT groups demonstrate a gradual decrease in tumor oxygen saturation during the 7-day observation period, however, the reason is different: in the untreated group, the effect is explained by the excessive tumor growth, while in the PDT group, the effect is caused by the blood flow arrest preventing delivery of oxygenated blood to the tumor. The blue light PDT procedure, on the contrary, demonstrates the preservation of the blood oxygen saturation in the tumor during the entire observation period due to superficial action of the blue-light PDT and weaker tumor growth inhibition. Irradiation-only regimes show a primarily insignificant decrease in tumor oxygen saturation owing to partial inhibition of tumor growth. The DOS observations are interpreted based on histology analysis.
Collapse
|
11
|
Cortese L, Lo Presti G, Pagliazzi M, Contini D, Dalla Mora A, Dehghani H, Ferri F, Fischer JB, Giovannella M, Martelli F, Weigel UM, Wojtkiewicz S, Zanoletti M, Durduran T. Recipes for diffuse correlation spectroscopy instrument design using commonly utilized hardware based on targets for signal-to-noise ratio and precision. BIOMEDICAL OPTICS EXPRESS 2021; 12:3265-3281. [PMID: 34221659 PMCID: PMC8221932 DOI: 10.1364/boe.423071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 05/09/2023]
Abstract
Over the recent years, a typical implementation of diffuse correlation spectroscopy (DCS) instrumentation has been adapted widely. However, there are no detailed and accepted recipes for designing such instrumentation to meet pre-defined signal-to-noise ratio (SNR) and precision targets. These require specific attention due to the subtleties of the DCS signals. Here, DCS experiments have been performed using liquid tissue simulating phantoms to study the effect of the detected photon count-rate, the number of parallel detection channels and the measurement duration on the precision and SNR to suggest scaling relations to be utilized for device design.
Collapse
Affiliation(s)
- Lorenzo Cortese
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Giuseppe Lo Presti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Marco Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | | | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Fabio Ferri
- Università degli Studi dell’Insubria, Dipartimento di Scienza e Alta Tecnologia and To. Sca. Lab., 22100 Como, Italy
| | - Jonas B. Fischer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Fabrizio Martelli
- Università degli Studi di Firenze, Dipartimento di Fisica, 50100 Firenze, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Stanislaw Wojtkiewicz
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Marta Zanoletti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|
12
|
Lin L, Hu P, Tong X, Na S, Cao R, Yuan X, Garrett DC, Shi J, Maslov K, Wang LV. High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation. Nat Commun 2021; 12:882. [PMID: 33563996 PMCID: PMC7873071 DOI: 10.1038/s41467-021-21232-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
Photoacoustic computed tomography (PACT) has generated increasing interest for uses in preclinical research and clinical translation. However, the imaging depth, speed, and quality of existing PACT systems have previously limited the potential applications of this technology. To overcome these issues, we developed a three-dimensional photoacoustic computed tomography (3D-PACT) system that features large imaging depth, scalable field of view with isotropic spatial resolution, high imaging speed, and superior image quality. 3D-PACT allows for multipurpose imaging to reveal detailed angiographic information in biological tissues ranging from the rodent brain to the human breast. In the rat brain, we visualize whole brain vasculatures and hemodynamics. In the human breast, an in vivo imaging depth of 4 cm is achieved by scanning the breast within a single breath hold of 10 s. Here, we introduce the 3D-PACT system to provide a unique tool for preclinical research and an appealing prototype for clinical translation.
Collapse
Affiliation(s)
- Li Lin
- grid.20861.3d0000000107068890Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Peng Hu
- grid.20861.3d0000000107068890Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Xin Tong
- grid.20861.3d0000000107068890Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Shuai Na
- grid.20861.3d0000000107068890Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Rui Cao
- grid.20861.3d0000000107068890Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Xiaoyun Yuan
- grid.20861.3d0000000107068890Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA USA ,grid.12527.330000 0001 0662 3178Present Address: Department of Electronic Engineering, Tsinghua University, Haidian District, Beijing, China
| | - David C. Garrett
- grid.20861.3d0000000107068890Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Junhui Shi
- grid.20861.3d0000000107068890Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA USA ,Present Address: Zhejiang Lab, China Artificial Intelligence Town, Hangzhou Zhejiang, China
| | - Konstantin Maslov
- grid.20861.3d0000000107068890Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Lihong V. Wang
- grid.20861.3d0000000107068890Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
13
|
Effects of neoadjuvant chemotherapy on the contralateral non-tumor-bearing breast assessed by diffuse optical tomography. Breast Cancer Res 2021; 23:16. [PMID: 33517909 PMCID: PMC7849076 DOI: 10.1186/s13058-021-01396-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study is to evaluate whether the changes in optically derived parameters acquired with a diffuse optical tomography breast imager system (DOTBIS) in the contralateral non-tumor-bearing breast in patients administered neoadjuvant chemotherapy (NAC) for breast cancer are associated with pathologic complete response (pCR). METHODS In this retrospective evaluation of 105 patients with stage II-III breast cancer, oxy-hemoglobin (ctO2Hb) from the contralateral non-tumor-bearing breast was collected and analyzed at different time points during NAC. The earliest monitoring imaging time point was after 2-3 weeks receiving taxane. Longitudinal data were analyzed using linear mixed-effects modeling to evaluate the contralateral breast ctO2Hb changes across chemotherapy when corrected for pCR status, age, and BMI. RESULTS Patients who achieved pCR to NAC had an overall decrease of 3.88 μM for ctO2Hb (95% CI, 1.39 to 6.37 μM), p = .004, after 2-3 weeks. On the other hand, non-pCR subjects had a non-significant mean reduction of 0.14 μM (95% CI, - 1.30 to 1.58 μM), p > .05. Mixed-effect model results indicated a statistically significant negative relationship of ctO2Hb levels with BMI and age. CONCLUSIONS This study demonstrates that the contralateral normal breast tissue assessed by DOTBIS is modifiable after NAC, with changes associated with pCR after only 2-3 weeks of chemotherapy.
Collapse
|
14
|
Hossain S. Malignant cell characterization via mathematical analysis of bio impedance and optical properties. Electromagn Biol Med 2021; 40:65-83. [PMID: 33356700 DOI: 10.1080/15368378.2020.1850471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
Diagnosis in the early stage of breast cancer is crucial for the onset of preliminary treatment. Non-radiative bioimpedance measurement in the microwave frequency range can contribute to electrode-medium interface error and the malaise of electrode placement on the patient to take measurements. These reasons account for alternate diagnosis procedure and improved reliability of retrieved mensuration. Non-invasive optical diagnosis in the near infra-red (NIR) and visible light of the electromagnetic range is the shifting paradigm for healthcare diagnosis. An accurate quantitative measurement is unparalleled to circumvent false positives. The focus of this paper is to perform quantitative mathematical analysis for bioimpedance and optical properties for sample breast cancer cells for meticulous interpretation of malignant cell diagnosis. The analytical solution of the Cole-Cole plot, relaxation frequency, and capacitance measurement showed reliability with previous experimental findings. The dissimilitude of the frequency-dependent refractive index measurement of the malignant and healthy cell can be used by clinicians for pronouncement. The diffusion theory is also used to interpret the pathlength of the source light particle and the absorption property of the malignant cell. The synergistic analytical solutions of the bioimpedance and optical parameters can be used by licensed Physicians or Clinical Practitioners (CP) to meticulously interpret the diagnosis result. The quantitative parameters obtained from the dispersed bandwidth range from microwave to visible light offers a comprehensive understanding of the biophysical properties of the malignant cell.
Collapse
Affiliation(s)
- Shadeeb Hossain
- Department of Electrical Engineering, University of Texas at San Antonio , San Antonio, TX, USA
| |
Collapse
|
15
|
James E, Powell S. Fourier domain diffuse correlation spectroscopy with heterodyne holographic detection. BIOMEDICAL OPTICS EXPRESS 2020; 11:6755-6779. [PMID: 33282522 PMCID: PMC7687971 DOI: 10.1364/boe.400525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 05/11/2023]
Abstract
We present a new approach to diffuse correlation spectroscopy which overcomes the limited light throughput of single-mode photon counting techniques. Our system employs heterodyne holographic detection to allow parallel measurement of the power spectrum of a fluctuating electric field across thousands of modes, at the shot noise limit, using a conventional sCMOS camera. This yields an order of magnitude reduction in detector cost compared to conventional techniques, whilst also providing robustness to the effects of ambient light and an improved signal-to-noise ratio during in vitro experiments. We demonstrate a GPU-accelerated holographic demodulation system capable of processing the incoming data (79.4 M pixels per second) in real-time, and a novel Fourier domain model of diffuse correlation spectroscopy which permits the direct recovery of flow parameters from the measured data. Our detection and modelling strategy are rigorously validated by modulating the Brownian component of an optical tissue phantom, demonstrating absolute measurements of the Brownian diffusion coefficient in excellent agreement with conventional methods. We further demonstrate the feasibility of our system through in vivo measurement of pulsatile flow rates measured in the human forearm.
Collapse
Affiliation(s)
- Edward James
- Department of Medical Physics & Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Samuel Powell
- Department of Medical Physics & Biomedical Engineering, University College London, London, WC1E 6BT, UK
- Faculty of Engineering, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
16
|
Du Le VN, Srinivasan VJ. Beyond diffuse correlations: deciphering random flow in time-of-flight resolved light dynamics. OPTICS EXPRESS 2020; 28:11191-11214. [PMID: 32403635 PMCID: PMC7340374 DOI: 10.1364/oe.385202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Diffusing wave spectroscopy (DWS) and diffuse correlation spectroscopy (DCS) can assess blood flow index (BFI) of biological tissue with multiply scattered light. Though the main biological function of red blood cells (RBCs) is advection, in DWS/DCS, RBCs are assumed to undergo Brownian motion. To explain this discrepancy, we critically examine the cumulant approximation, a major assumption in DWS/DCS. We present a precise criterion for validity of the cumulant approximation, and in realistic tissue models, identify conditions that invalidate it. We show that, in physiologically relevant scenarios, the first cumulant term for random flow and second cumulant term for Brownian motion alone can cancel each other. In such circumstances, assuming pure Brownian motion of RBCs and the first cumulant approximation, a routine practice in DWS/DCS of BFI, can yield good agreement with data, but only because errors due to two incorrect assumptions cancel out. We conclude that correctly assessing random flow from scattered light dynamics requires going beyond the cumulant approximation and propose a more accurate model to do so.
Collapse
Affiliation(s)
- V. N. Du Le
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Vivek J. Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Davis School of Medicine, Sacramento, CA 96817, USA
| |
Collapse
|
17
|
Optics Based Label-Free Techniques and Applications in Brain Monitoring. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) has been utilized already around three decades for monitoring the brain, in particular, oxygenation changes in the cerebral cortex. In addition, other optical techniques are currently developed for in vivo imaging and in the near future can be potentially used more in human brain research. This paper reviews the most common label-free optical technologies exploited in brain monitoring and their current and potential clinical applications. Label-free tissue monitoring techniques do not require the addition of dyes or molecular contrast agents. The following optical techniques are considered: fNIRS, diffuse correlations spectroscopy (DCS), photoacoustic imaging (PAI) and optical coherence tomography (OCT). Furthermore, wearable optical brain monitoring with the most common applications is discussed.
Collapse
|
18
|
Karrobi K, Tank A, Tabassum S, Pera V, Roblyer D. Diffuse and nonlinear imaging of multiscale vascular parameters for in vivo monitoring of preclinical mammary tumors. JOURNAL OF BIOPHOTONICS 2019; 12:e201800379. [PMID: 30706695 DOI: 10.1002/jbio.201800379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Diffuse optical imaging (DOI) techniques provide a wide-field or macro assessment of the functional tumor state and have shown substantial promise for monitoring treatment efficacy in cancer. Conversely, intravital microscopy provides a high-resolution view of the tumor state and has played a key role in characterizing treatment response in the preclinical setting. There has been little prior work in investigating how the macro and micro spatial scales can be combined to develop a more comprehensive and translational view of treatment response. To address this, a new multiscale preclinical imaging technique called diffuse and nonlinear imaging (DNI) was developed. DNI combines multiphoton microscopy with spatial frequency domain imaging (SFDI) to provide multiscale data sets of tumor microvascular architecture coregistered within wide-field hemodynamic maps. A novel method was developed to match the imaging depths of both modalities by utilizing informed SFDI spatial frequency selection. An in vivo DNI study of murine mammary tumors revealed multiscale relationships between tumor oxygen saturation and microvessel diameter, and tumor oxygen saturation and microvessel length (|Pearson's ρ| ≥ 0.5, P < 0.05). Going forward, DNI will be uniquely enabling for the investigation of multiscale relationships in tumors during treatment.
Collapse
Affiliation(s)
- Kavon Karrobi
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Anup Tank
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Syeda Tabassum
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts
| | - Vivian Pera
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
19
|
Mireles M, Morales-Dalmau J, Johansson JD, Vidal-Rosas EE, Vilches C, Martínez-Lozano M, Sanz V, de Miguel I, Casanovas O, Quidant R, Durduran T. Non-invasive and quantitative in vivo monitoring of gold nanoparticle concentration and tissue hemodynamics by hybrid optical spectroscopies. NANOSCALE 2019; 11:5595-5606. [PMID: 30860518 DOI: 10.1039/c8nr08790c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Owing to their unique combination of chemical and physical properties, inorganic nanoparticles show a great deal of potential as suitable agents for early diagnostics and less invasive therapies. Yet, their translation to the clinic has been hindered, in part, by the lack of non-invasive methods to quantify their concentration in vivo while also assessing their effect on the tissue physiology. In this work, we demonstrate that diffuse optical techniques, employing near-infrared light, have the potential to address this need in the case of gold nanoparticles which support localized surface plasmons. An orthoxenograft mouse model of clear cell renal cell carcinoma was non-invasively assessed by diffuse reflectance and correlation spectroscopies before and over several days following a single intravenous tail vein injection of polyethylene glycol-coated gold nanorods (AuNRs-PEG). Our platform enables to resolve the kinetics of the AuNR-PEG uptake by the tumor in quantitative agreement with ex vivo inductively coupled plasma mass spectroscopy. Furthermore, it allows for the simultaneous monitoring of local tissue hemodynamics, enabling us to conclude that AuNRs-PEG do not significantly alter the animal physiology. We note that the penetration depth of this current probe was a few millimeters but can readily be extended to centimeters, hence gaining clinical relevance. This study and the methodology presented here complement the nanomedicine toolbox by providing a flexible platform, extendable to other absorbing agents that can potentially be translated to human trials.
Collapse
Affiliation(s)
- Miguel Mireles
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Orlova AG, Maslennikova AV, Golubiatnikov GY, Suryakova AS, Kirillin MY, Kurakina DA, Kalganova TI, Volovetsky AB, Turchin IV. Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation. Biomed Phys Eng Express 2019; 5. [PMID: 34247150 DOI: 10.1088/2057-1976/ab0b19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/27/2019] [Indexed: 01/09/2023]
Abstract
Modern radiation therapy of malignant tumors requires careful selection of conditions that can improve the effectiveness of the treatment. The study of the dynamics and mechanisms of tumor reoxygenation after radiation therapy makes it possible to select the regimens for optimizing the ongoing treatment. Diffuse optical spectroscopy (DOS) is among the methods used for non-invasive assessment of tissue oxygenation. In this work DOS was used forin vivoregistration of changes in oxygenation level of an experimental rat tumor after single-dose irradiation at a dose of 10 Gy and investigation of their possible mechanisms. It was demonstrated that in 24 h after treatment, tumor oxygenation increases, which is mainly due to an increase in the oxygen supply to the tissues. DOS is demonstrated to be efficient for study of changes in blood flow parameters when monitoring tumor response to therapy.
Collapse
Affiliation(s)
- A G Orlova
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A V Maslennikova
- Department of Oncology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - G Yu Golubiatnikov
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A S Suryakova
- Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - M Yu Kirillin
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - D A Kurakina
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - T I Kalganova
- Department of Oncology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Clinical Laboratory, N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia
| | - A B Volovetsky
- Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - I V Turchin
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
21
|
Portable Near-Infrared Technologies and Devices for Noninvasive Assessment of Tissue Hemodynamics. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:3750495. [PMID: 30891170 PMCID: PMC6390246 DOI: 10.1155/2019/3750495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/24/2018] [Accepted: 01/14/2019] [Indexed: 12/29/2022]
Abstract
Tissue hemodynamics, including the blood flow, oxygenation, and oxygen metabolism, are closely associated with many diseases. As one of the portable optical technologies to explore human physiology and assist in healthcare, near-infrared diffuse optical spectroscopy (NIRS) for tissue oxygenation measurement has been developed for four decades. In recent years, a dynamic NIRS technology, namely, diffuse correlation spectroscopy (DCS), has been emerging as a portable tool for tissue blood flow measurement. In this article, we briefly describe the basic principle and algorithms for static NIRS and dynamic NIRS (i.e., DCS). Then, we elaborate on the NIRS instrumentation, either commercially available or custom-made, as well as their applications to physiological studies and clinic. The extension of NIRS/DCS from spectroscopy to imaging was depicted, followed by introductions of advanced algorithms that were recently proposed. The future prospective of the NIRS/DCS and their feasibilities for routine utilization in hospital is finally discussed.
Collapse
|
22
|
Cochran JM, Busch DR, Lin L, Minkoff DL, Schweiger M, Arridge S, Yodh AG. Hybrid time-domain and continuous-wave diffuse optical tomography instrument with concurrent, clinical magnetic resonance imaging for breast cancer imaging. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 30680976 PMCID: PMC6345326 DOI: 10.1117/1.jbo.24.5.051409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 05/10/2023]
Abstract
Diffuse optical tomography has demonstrated significant potential for clinical utility in the diagnosis and prognosis of breast cancer, and its use in combination with other structural imaging modalities improves lesion localization and the quantification of functional tissue properties. Here, we introduce a hybrid diffuse optical imaging system that operates concurrently with magnetic resonance imaging (MRI) in the imaging suite, utilizing commercially available MR surface coils. The instrument acquires both continuous-wave and time-domain diffuse optical data in the parallel-plate geometry, permitting both absolute assignment of tissue optical properties and three-dimensional tomography; moreover, the instrument is designed to incorporate diffuse correlation spectroscopic measurements for probing tissue blood flow. The instrument is described in detail here. Image reconstructions of a tissue phantom are presented as an initial indicator of the system's ability to accurately reconstruct optical properties and the concrete benefits of the spatial constraints provided by concurrent MRI. Last, we briefly discuss how various data combinations that the instrument could facilitate, including tissue perfusion, can enable more comprehensive assessment of lesion physiology.
Collapse
Affiliation(s)
- Jeffrey M. Cochran
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- Address all correspondence to Jeffrey M. Cochran, E-mail:
| | - David R. Busch
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- University of Texas Southwestern Medical Center, Department of Anesthesiology and Pain Management, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Department of Neurology and Neurotherapeutics, Dallas, Texas, United States
- Children’s Hospital of Philadelphia, Department of Neurology, Philadelphia, Pennsylvania, United States
| | - Li Lin
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- California Institute of Technology, Department of Medical Engineering, Pasadena, California, United States
| | - David L. Minkoff
- Emory University, Department of Medicine, Atlanta, Georgia, United States
| | - Martin Schweiger
- University College London, Centre for Medical Image Computing, London, United Kigdom
| | - Simon Arridge
- University College London, Centre for Medical Image Computing, London, United Kigdom
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| |
Collapse
|
23
|
Lee S, Kim JG. Breast tumor hemodynamic response during a breath-hold as a biomarker to predict chemotherapeutic efficacy: preclinical study. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-5. [PMID: 29706036 DOI: 10.1117/1.jbo.23.4.048001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Continuous wave diffuse optical tomographic/spectroscopic system does not provide absolute concentrations of chromophores in tissue and monitor only the changes of chromophore concentration. Therefore, it requires a perturbation of physiological signals, such as blood flow and oxygenation. In that sense, a few groups reported that monitoring a relative hemodynamic change during a breast tissue compression or a breath-hold to a patient can provide good contrast between tumor and nontumor. However, no longitudinal study reports the utilization of a breath-hold to predict tumor response during chemotherapy. A continuous wave near-infrared spectroscopy was employed to monitor hemodynamics in rat breast tumor during a hyperoxic to normoxic inhalational gas intervention to mimic a breath-hold during tumor growth and chemotherapy. The reduced oxyhemoglobin concentration during inhalational gas intervention correlated well with tumor growth, and it responded one day earlier than the change of tumor volume after chemotherapy. In conclusion, monitoring tumor hemodynamics during a breath-hold may serve as a biomarker to predict chemotherapeutic efficacy of tumor.
Collapse
Affiliation(s)
- Songhyun Lee
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwang, Republic of Korea
| | - Jae Gwan Kim
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwang, Republic of Korea
- Gwangju Institute of Science and Technology, School of Electrical Engineering and Computer Science,, Republic of Korea
| |
Collapse
|
24
|
Vedantham S, Karellas A. Emerging Breast Imaging Technologies on the Horizon. Semin Ultrasound CT MR 2018; 39:114-121. [PMID: 29317033 DOI: 10.1053/j.sult.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early detection of breast cancers by mammography in conjunction with adjuvant therapy has contributed to reduction in breast cancer mortality. Mammography remains the "gold-standard" for breast cancer screening but is limited by tissue superposition. Digital breast tomosynthesis and more recently, dedicated breast computed tomography have been developed to alleviate the tissue superposition problem. However, all of these modalities rely upon x-ray attenuation contrast to provide anatomical images, and there are ongoing efforts to develop and clinically translate alternative modalities. These emerging modalities could provide for new contrast mechanisms and may potentially improve lesion detection and diagnosis. In this article, several of these emerging modalities are discussed with a focus on technologies that have advanced to the stage of in vivo clinical evaluation.
Collapse
Affiliation(s)
- Srinivasan Vedantham
- Department of Medical Imaging, University of Arizona College of Medicine, Banner University Medical Center, Tucson, AZ.
| | - Andrew Karellas
- Department of Medical Imaging, University of Arizona College of Medicine, Banner University Medical Center, Tucson, AZ
| |
Collapse
|
25
|
Lee S, Jeong H, Seong M, Kim JG. Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:121603. [PMID: 28698890 DOI: 10.1117/1.jbo.22.12.121603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/31/2017] [Indexed: 05/22/2023]
Abstract
Breast cancer is one of the most common cancers in females. To monitor chemotherapeutic efficacy for breast cancer, medical imaging systems such as x-ray mammography, computed tomography, magnetic resonance imaging, and ultrasound imaging have been used. Currently, it can take up to 3 to 6 weeks to see the tumor response from chemotherapy by monitoring tumor volume changes. We used near-infrared spectroscopy (NIRS) to predict breast cancer treatment efficacy earlier than tumor volume changes by monitoring tumor vascular reactivity during inhalational gas interventions. The results show that the amplitude of oxy-hemoglobin changes (vascular reactivity) during hyperoxic gas inhalation is well correlated with tumor growth and responded one day earlier than tumor volume changes after chemotherapy. These results may imply that NIRS with respiratory challenges can be useful in early detection of tumor and in the prediction of tumor response to chemotherapy.
Collapse
Affiliation(s)
- Songhyun Lee
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Hyeryun Jeong
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Myeongsu Seong
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Jae Gwan Kim
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of KoreabGwangju Institute of Science and Technology, School of Electrical Engineering and Computer Science, Gwangju, Republic of Korea
| |
Collapse
|
26
|
Anderson PG, Kalli S, Sassaroli A, Krishnamurthy N, Makim SS, Graham RA, Fantini S. Optical Mammography in Patients with Breast Cancer Undergoing Neoadjuvant Chemotherapy: Individual Clinical Response Index. Acad Radiol 2017; 24:1240-1255. [PMID: 28532642 DOI: 10.1016/j.acra.2017.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVES We present an optical mammography study that aims to develop quantitative measures of pathologic response to neoadjuvant chemotherapy (NAC) in patients with breast cancer. Such quantitative measures are based on the concentrations of oxyhemoglobin ([HbO2]), deoxyhemoglobin ([Hb]), total hemoglobin ([HbT]), and hemoglobin saturation (SO2) in breast tissue at the tumor location and at sequential time points during chemotherapy. MATERIALS AND METHODS Continuous-wave, spectrally resolved optical mammography was performed in transmission and parallel-plate geometry on 10 patients before treatment initiation and at each NAC administration (mean number of optical mammography sessions: 12, range: 7-18). Data on two patients were discarded for technical reasons. The patients were categorized as responders (R, >50% decrease in tumor size), or nonresponders (NR, <50% decrease in tumor size) based on imaging and histopathology results. RESULTS At 50% completion of the NAC regimen (therapy midpoint), R (6/8) demonstrated significant decreases in SO2 (-27% ± 4%) and [HbT] (-35 ± 4 µM) at the tumor location with respect to baseline values. By contrast, NR (2/8) showed nonsignificant changes in SO2 and [HbT] at therapy midpoint. We introduce a cumulative response index as a quantitative measure of the individual patient's response to therapy. At therapy midpoint, the SO2-based cumulative response index had a sensitivity of 100% and a specificity of 100% for the identification of R. CONCLUSIONS These results show that optical mammography is a promising tool to assess individual response to NAC at therapy midpoint to guide further decision making for neoadjuvant therapy.
Collapse
Affiliation(s)
- Pamela G Anderson
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Sirishma Kalli
- Department of Radiology, Tufts Medical Center, Boston, Massachusetts
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Nishanth Krishnamurthy
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Shital S Makim
- Department of Radiology, Tufts Medical Center, Boston, Massachusetts
| | - Roger A Graham
- Department of Surgery, Tufts Medical Center, Boston, Massachusetts
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155.
| |
Collapse
|
27
|
Gas6 derived from cancer-associated fibroblasts promotes migration of Axl-expressing lung cancer cells during chemotherapy. Sci Rep 2017; 7:10613. [PMID: 28878389 PMCID: PMC5587707 DOI: 10.1038/s41598-017-10873-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Alterations to the tumor stromal microenvironment induced by chemotherapy could influence the behavior of cancer cells. In the tumor stromal microenvironment, cancer-associated fibroblasts (CAFs) play an important role. Because the receptor tyrosine kinase Axl and its ligand Gas6 could be involved in promoting non-small cell lung cancer (NSCLC), we investigated the role of Gas6 secreted by CAFs during chemotherapy in NSCLC. In a murine model, we found that Gas6 expression by CAFs was upregulated following cisplatin treatment. Gas6 expression might be influenced by intratumoral hypoperfusion during chemotherapy, and it increased after serum starvation in a human lung CAF line, LCAFhTERT. Gas6 is associated with LCAFhTERT cell growth. Recombinant Gas6 promoted H1299 migration, and conditioned medium (CM) from LCAFhTERT cells activated Axl in H1299 cells and promoted migration. Silencing Gas6 in LCAFhTERT reduced the Axl activation and H1299 cell migration induced by CM from LCAFhTERT. In clinical samples, stromal Gas6 expression increased after chemotherapy. Five-year disease-free survival rates for patients with tumor Axl- and stromal Gas6-positive tumors (n = 37) was significantly worse than for the double negative group (n = 12) (21.9% vs 51.3%, p = 0.04). Based on these findings, it is presumed that Gas6 derived from CAFs promotes migration of Axl-expressing lung cancer cells during chemotherapy and is involved in poor clinical outcome.
Collapse
|
28
|
Farzam P, Johansson J, Mireles M, Jiménez-Valerio G, Martínez-Lozano M, Choe R, Casanovas O, Durduran T. Pre-clinical longitudinal monitoring of hemodynamic response to anti-vascular chemotherapy by hybrid diffuse optics. BIOMEDICAL OPTICS EXPRESS 2017; 8:2563-2582. [PMID: 28663891 PMCID: PMC5480498 DOI: 10.1364/boe.8.002563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 05/20/2023]
Abstract
The longitudinal effect of an anti-vascular endothelial growth factor receptor 2 (VEGFR-2) antibody (DC 101) therapy on a xenografted renal cell carcinoma (RCC) mouse model was monitored using hybrid diffuse optics. Two groups of immunosuppressed male nude mice (seven treated, seven controls) were measured. Tumor microvascular blood flow, total hemoglobin concentration and blood oxygenation were investigated as potential biomarkers for the monitoring of the therapy effect twice a week and were related to the final treatment outcome. These hemodynamic biomarkers have shown a clear differentiation between two groups by day four. Moreover, we have observed that pre-treatment values and early changes in hemodynamics are highly correlated with the therapeutic outcome demonstrating the potential of diffuse optics to predict the therapy response at an early time point.
Collapse
Affiliation(s)
- Parisa Farzam
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129,
USA
| | - Johannes Johansson
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Department of Biomedical Engineering, Linköping University, 58185 Linköping,
Sweden
| | - Miguel Mireles
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
| | - Gabriela Jiménez-Valerio
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Mar Martínez-Lozano
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Oriol Casanovas
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), 08015, Barcelona,
Spain
| |
Collapse
|
29
|
Cochran JM, Chung SH, Leproux A, Baker WB, Busch DR, DeMichele AM, Tchou J, Tromberg BJ, Yodh AG. Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy. Phys Med Biol 2017; 62:4637-4653. [PMID: 28402286 DOI: 10.1088/1361-6560/aa6cef] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n = 4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.
Collapse
Affiliation(s)
- J M Cochran
- Department of Physics and Astronomy, University of Pennsylvania, 209 S 33rd St, Philadelphia, PA 19104, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yazdi HS, O’Sullivan TD, Leproux A, Hill B, Durkin A, Telep S, Lam J, Yazdi SS, Police AM, Carroll RM, Combs FJ, Strömberg T, Yodh AG, Tromberg BJ. Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:45003. [PMID: 28384703 PMCID: PMC5381696 DOI: 10.1117/1.jbo.22.4.045003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/13/2017] [Indexed: 05/18/2023]
Abstract
Diffuse optical spectroscopic imaging (DOSI) and diffuse correlation spectroscopy (DCS) are model-based near-infrared (NIR) methods that measure tissue optical properties (broadband absorption, ? a , and reduced scattering, ? s ? ) and blood flow (blood flow index, BFI), respectively. DOSI-derived ? a values are used to determine composition by calculating the tissue concentration of oxy- and deoxyhemoglobin ( HbO 2 , HbR), water, and lipid. We developed and evaluated a combined, coregistered DOSI/DCS handheld probe for mapping and imaging these parameters. We show that uncertainties of 0.3 ?? mm ? 1 (37%) in ? s ? and 0.003 ?? mm ? 1 (33%) in ? a lead to ? 53 % and 9% errors in BFI, respectively. DOSI/DCS imaging of a solid tissue-simulating flow phantom and
Collapse
MESH Headings
- Adult
- Carcinoma, Ductal, Breast/blood supply
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/drug therapy
- Diffusion
- Female
- Hemoglobins/analysis
- Humans
- Lipids/blood
- Models, Theoretical
- Neoadjuvant Therapy
- Oxyhemoglobins/analysis
- Phantoms, Imaging
- Spectrophotometry/methods
- Spectroscopy, Near-Infrared/methods
- Tomography, Optical/methods
Collapse
Affiliation(s)
- Hossein S. Yazdi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thomas D. O’Sullivan
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Anais Leproux
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Brian Hill
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Amanda Durkin
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Seraphim Telep
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Jesse Lam
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Siavash S. Yazdi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Alice M. Police
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Robert M. Carroll
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Freddie J. Combs
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Tomas Strömberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|
31
|
Shang Y, Li T, Yu G. Clinical applications of near-infrared diffuse correlation spectroscopy and tomography for tissue blood flow monitoring and imaging. Physiol Meas 2017; 38:R1-R26. [PMID: 28199219 PMCID: PMC5726862 DOI: 10.1088/1361-6579/aa60b7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. APPROACH Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). MAIN RESULTS This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. SIGNIFICANCE Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring.
Collapse
Affiliation(s)
- Yu Shang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, No.3 Xueyuan Road, Taiyuan, Shanxi 030051, China
| | - Ting Li
- State Key Lab Elect Thin Film & Integrated Device, University of Electronic Science & Technology of China, Chengdu, Sichuan 610054, China
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, 514C RMB, 143 Graham Avenue, Lexington, KY 40506-0108, USA
| |
Collapse
|
32
|
Ban HY, Schweiger M, Kavuri VC, Cochran JM, Xie L, Busch DR, Katrašnik J, Pathak S, Chung SH, Lee K, Choe R, Czerniecki BJ, Arridge SR, Yodh AG. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry. Med Phys 2017; 43:4383. [PMID: 27370153 DOI: 10.1118/1.4953830] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. METHODS The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source-detector pairs (10(6)). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittal breast measurements. RESULTS The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. CONCLUSIONS Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.
Collapse
Affiliation(s)
- H Y Ban
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - M Schweiger
- Department of Computer Science, University College London, London WC1E 7JE, United Kingdom
| | - V C Kavuri
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - J M Cochran
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - L Xie
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - D R Busch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - J Katrašnik
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana 1000, Slovenia
| | - S Pathak
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - S H Chung
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - K Lee
- Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-813, South Korea
| | - R Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642
| | - B J Czerniecki
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - S R Arridge
- Department of Computer Science, University College London, London WC1E 7JE, United Kingdom
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
33
|
Teng F, Cormier T, Sauer-Budge A, Chaudhury R, Pera V, Istfan R, Chargin D, Brookfield S, Ko NY, Roblyer DM. Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:14001. [PMID: 28114449 PMCID: PMC5289133 DOI: 10.1117/1.jbo.22.1.014001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/21/2016] [Indexed: 05/04/2023]
Abstract
We present a new continuous-wave wearable diffuse optical probe aimed at investigating the hemodynamic response of locally advanced breast cancer patients during neoadjuvant chemotherapy infusions. The system consists of a flexible printed circuit board that supports an array of six dual wavelength surface-mount LED and photodiode pairs. The probe is encased in a soft silicone housing that conforms to natural breast shape. Probe performance was evaluated using tissue-simulating phantoms and in vivo normal volunteer measurements. High SNR (71 dB), low source-detector crosstalk ( ? 60 ?? dB ), high measurement precision (0.17%), and good thermal stability (0.22% V rms / ° C ) were achieved in phantom studies. A cuff occlusion experiment was performed on the forearm of a healthy volunteer to demonstrate the ability to track rapid hemodynamic changes. Proof-of-principle normal volunteer measurements were taken to demonstrate the ability to collect continuous in vivo breast measurements. This wearable probe is a first of its kind tool to explore prognostic hemodynamic changes during chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Fei Teng
- Boston University, Department of Electrical and Computer Engineering and Photonics Center, 8 Saint Mary’s Street, Boston, Massachusetts 02215, United States
| | - Timothy Cormier
- Boston University, Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, United States
| | - Alexis Sauer-Budge
- Boston University, Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, United States
| | - Rachita Chaudhury
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Vivian Pera
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Raeef Istfan
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - David Chargin
- Boston University, Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, United States
| | - Samuel Brookfield
- Boston University, Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, United States
| | - Naomi Yu Ko
- Boston Medical Center, Section of Hematology and Oncology, Women’s Health Unit, 801 Massachusetts Avenue, First Floor, Boston, Massachusetts 02118, United States
| | - Darren M. Roblyer
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, Massachusetts 02215, United States
- Address all correspondence to: Darren M. Roblyer, E-mail:
| |
Collapse
|
34
|
Perekatova V, Subochev P, Kleshnin M, Turchin I. Optimal wavelengths for optoacoustic measurements of blood oxygen saturation in biological tissues. BIOMEDICAL OPTICS EXPRESS 2016; 7:3979-3995. [PMID: 27867709 PMCID: PMC5102547 DOI: 10.1364/boe.7.003979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 05/18/2023]
Abstract
The non-invasive measurement of blood oxygen saturation in blood vessels is a promising clinical application of optoacoustic imaging. Nevertheless, precise optoacoustic measurements of blood oxygen saturation are limited because of the complexities of calculating the spatial distribution of the optical fluence. In the paper error in the determination of blood oxygen saturation, associated with the use of approximate methods of optical fluence evaluation within the blood vessel, was investigated for optoacoustic measurements at two wavelengths. The method takes into account both acoustic pressure noise and the error in determined values of the optical scattering and absorption coefficients used for the calculation of the fluence. It is shown that, in conditions of an unknown (or partially known) spatial distribution of fluence at depths of 2 to 8 mm, minimal error in the determination of blood oxygen saturation is achieved at wavelengths of 658 ± 40 nm and 1069 ± 40 nm.
Collapse
Affiliation(s)
- Valeriya Perekatova
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950, Russia
| | - Pavel Subochev
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950, Russia
| | - Mikhail Kleshnin
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950, Russia
| | - Ilya Turchin
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950, Russia
| |
Collapse
|
35
|
Ramirez G, Proctor AR, Jung KW, Wu TT, Han S, Adams RR, Ren J, Byun DK, Madden KS, Brown EB, Foster TH, Farzam P, Durduran T, Choe R. Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:3610-3630. [PMID: 27699124 PMCID: PMC5030036 DOI: 10.1364/boe.7.003610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 05/08/2023]
Abstract
The non-invasive, in vivo measurement of microvascular blood flow has the potential to enhance breast cancer therapy monitoring. Here, longitudinal blood flow of 4T1 murine breast cancer (N=125) under chemotherapy was quantified with diffuse correlation spectroscopy based on layer models. Six different treatment regimens involving doxorubicin, cyclophosphamide, and paclitaxel at clinically relevant doses were investigated. Treatments with cyclophosphamide increased blood flow as early as 3 days after administration, whereas paclitaxel induced a transient blood flow decrease at 1 day after administration. Early blood flow changes correlated strongly with the treatment outcome and distinguished treated from untreated mice individually for effective treatments.
Collapse
Affiliation(s)
- Gabriel Ramirez
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Ashley R. Proctor
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Ki Won Jung
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642,
USA
| | - Songfeng Han
- The Institute of Optics, University of Rochester, Rochester, NY 14627,
USA
| | - Russell R. Adams
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Jingxuan Ren
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Daniel K. Byun
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Kelley S. Madden
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Edward B. Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Thomas H. Foster
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
- The Institute of Optics, University of Rochester, Rochester, NY 14627,
USA
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY 14642,
USA
| | - Parisa Farzam
- ICFO- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona),
Spain
| | - Turgut Durduran
- ICFO- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona),
Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona,
Spain
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627,
USA
| |
Collapse
|
36
|
Han S, Proctor AR, Vella JB, Benoit DSW, Choe R. Non-invasive diffuse correlation tomography reveals spatial and temporal blood flow differences in murine bone grafting approaches. BIOMEDICAL OPTICS EXPRESS 2016; 7:3262-3279. [PMID: 27699097 PMCID: PMC5030009 DOI: 10.1364/boe.7.003262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/30/2016] [Accepted: 07/31/2016] [Indexed: 05/16/2023]
Abstract
Longitudinal blood flow during murine bone graft healing was monitored non-invasively using diffuse correlation tomography. The system utilized spatially dense data from a scanning set-up, non-linear reconstruction, and micro-CT anatomical information. Weekly in vivo measurements were performed. Blood flow changes in autografts, which heal successfully, were localized to graft regions and consistent across mice. Poor healing allografts showed heterogeneous blood flow elevation and high inter-subject variabilities. Allografts with tissue-engineered periosteum showed responses intermediate to both autografts and allografts, consistent with healing observed. These findings suggest that spatiotemporal blood flow changes can be utilized to differentiate the degree of bone graft healing.
Collapse
Affiliation(s)
- Songfeng Han
- Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| | - Ashley R. Proctor
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Joseph B. Vella
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
37
|
Sadeghi-Naini A, Vorauer E, Chin L, Falou O, Tran WT, Wright FC, Gandhi S, Yaffe MJ, Czarnota GJ. Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images. Med Phys 2016; 42:6130-46. [PMID: 26520706 DOI: 10.1118/1.4931603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Changes in textural characteristics of diffuse optical spectroscopic (DOS) functional images, accompanied by alterations in their mean values, are demonstrated here for the first time as early surrogates of ultimate treatment response in locally advanced breast cancer (LABC) patients receiving neoadjuvant chemotherapy (NAC). NAC, as a standard component of treatment for LABC patient, induces measurable heterogeneous changes in tumor metabolism which were evaluated using DOS-based metabolic maps. This study characterizes such inhomogeneous nature of response development, by determining alterations in textural properties of DOS images apparent at early stages of therapy, followed later by gross changes in mean values of these functional metabolic maps. METHODS Twelve LABC patients undergoing NAC were scanned before and at four times after treatment initiation, and tomographic DOS images were reconstructed at each time. Ultimate responses of patients were determined clinically and pathologically, based on a reduction in tumor size and assessment of residual tumor cellularity. The mean-value parameters and textural features were extracted from volumetric DOS images for several functional and metabolic parameters prior to the treatment initiation. Changes in these DOS-based biomarkers were also monitored over the course of treatment. The measured biomarkers were applied to differentiate patient responses noninvasively and compared to clinical and pathologic responses. RESULTS Responding and nonresponding patients demonstrated different changes in DOS-based textural and mean-value parameters during chemotherapy. Whereas none of the biomarkers measured prior the start of therapy demonstrated a significant difference between the two patient populations, statistically significant differences were observed at week one after treatment initiation using the relative change in contrast/homogeneity of seven functional maps (0.001<p<0.049), and mean value of water content in tissue (p=0.010). The cross-validated sensitivity and specificity of these parameters at week one of therapy ranged between 80%-100% and 67%-100%, respectively. Higher levels of statistically significant differences were exhibited at week four after start of treatment, with cross-validated sensitivities and specificities ranging between 80% and 100% for three textural and three mean-value parameters. The combination of the textural and mean-value parameters in a "hybrid" profile could better separate the two patient populations early on during a course of treatment, with cross-validated sensitivities and specificities of up to 100% (p=0.001). CONCLUSIONS The results of this study suggest that alterations in textural characteristics of DOS images, in conjunction with changes in their mean values, can classify noninvasively the ultimate clinical and pathologic response of LABC patients to chemotherapy, as early as one week after start of their treatment. This provides a basis for using DOS imaging as a tool for therapy personalization.
Collapse
Affiliation(s)
- Ali Sadeghi-Naini
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada; Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Eric Vorauer
- Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Lee Chin
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M4N 3M5, Canada; Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; and Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Omar Falou
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada; Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - William T Tran
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Frances C Wright
- Division of General Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Surgery, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Sonal Gandhi
- Division of Medical Oncology, Sunnybrook Health Sciences Centre, and Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Martin J Yaffe
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada; Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
38
|
Dong L, Kudrimoti M, Irwin D, Chen L, Kumar S, Shang Y, Huang C, Johnson EL, Stevens SD, Shelton BJ, Yu G. Diffuse optical measurements of head and neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:85004. [PMID: 27564315 PMCID: PMC4999482 DOI: 10.1117/1.jbo.21.8.085004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/08/2016] [Indexed: 05/03/2023]
Abstract
This study used a hybrid near-infrared diffuse optical instrument to monitor tumor hemodynamic responses to chemoradiation therapy for early prediction of treatment outcomes in patients with head and neck cancer. Forty-seven patients were measured once per week to evaluate the hemodynamic status of clinically involved cervical lymph nodes as surrogates for the primary tumor response. Patients were classified into two groups: complete response (CR) (n=29) and incomplete response (IR) (n=18). Tumor hemodynamic responses were found to be associated with clinical outcomes (CR/IR), wherein the associations differed depending on human papillomavirus (HPV-16) status. In HPV-16 positive patients, significantly lower levels in tumor oxygenated hemoglobin concentration ([HbO2]) at weeks 1 to 3, total hemoglobin concentration at week 3, and blood oxygen saturation (StO2) at week 3 were found in the IR group. In HPV-16 negative patients, significantly higher levels in tumor blood flow index and reduced scattering coefficient (μs′) at week 3 were observed in the IR group. These hemodynamic parameters exhibited significantly high accuracy for early prediction of clinical outcomes, within the first three weeks of therapy, with the areas under the receiver operating characteristic curves (AUCs) ranging from 0.83 to 0.96.
Collapse
Affiliation(s)
- Lixin Dong
- University of Kentucky College of Engineering, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Mahesh Kudrimoti
- University of Kentucky College of Medicine, Department of Radiation Medicine, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Daniel Irwin
- University of Kentucky College of Engineering, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Li Chen
- University of Kentucky, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, Lexington, 800 Rose Street, Kentucky 40536, United States
- University of Kentucky College of Public Health, Department of Biostatistics, Lexington, 111 Washington Avenue, Kentucky 40536, United States
| | - Sameera Kumar
- University of Kentucky College of Medicine, Department of Radiation Medicine, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Yu Shang
- University of Kentucky College of Engineering, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Chong Huang
- University of Kentucky College of Engineering, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Ellis L. Johnson
- University of Kentucky College of Medicine, Department of Radiation Medicine, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Scott D. Stevens
- University of Kentucky College of Medicine, Department of Radiology, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Brent J. Shelton
- University of Kentucky, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, Lexington, 800 Rose Street, Kentucky 40536, United States
- University of Kentucky College of Public Health, Department of Biostatistics, Lexington, 111 Washington Avenue, Kentucky 40536, United States
| | - Guoqiang Yu
- University of Kentucky College of Engineering, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
- Address all correspondence to: Guoqiang Yu, E-mail:
| |
Collapse
|
39
|
Zhao Y, Pogue BW, Haider SJ, Gui J, diFlorio-Alexander RM, Paulsen KD, Jiang S. Portable, parallel 9-wavelength near-infrared spectral tomography (NIRST) system for efficient characterization of breast cancer within the clinical oncology infusion suite. BIOMEDICAL OPTICS EXPRESS 2016; 7:2186-201. [PMID: 27375937 PMCID: PMC4918575 DOI: 10.1364/boe.7.002186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 05/09/2023]
Abstract
A portable near-infrared spectral tomography (NIRST) system was developed with simultaneous frequency domain (FD) and continuous-wave (CW) optical measurements for efficient characterization of breast cancer in a clinical oncology setting. Simultaneous FD and CW recordings were implemented to speed up acquisition to 3 minutes for all 9 wavelengths, spanning a range from 661nm to 1064nm. An adjustable interface was designed to fit various breast sizes and shapes. Spatial images of oxy- and deoxy-hemoglobin, water, lipid, and scattering components were reconstructed using a 2D FEM approach. The system was tested on a group of 10 normal subjects, who were examined bilaterally and the recovered optical images were compared to radiographic breast density. Significantly higher total hemoglobin and water were estimated in the high density relative to low density groups. One patient with invasive ductal carcinoma was also examined and the cancer region was characterized as having a contrast ratio of 1.4 in total hemoglobin and 1.2 in water.
Collapse
Affiliation(s)
- Yan Zhao
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Steffen J. Haider
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Jiang Gui
- Department of Radiology, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
40
|
Johansson JD, Mireles M, Morales-Dalmau J, Farzam P, Martínez-Lozano M, Casanovas O, Durduran T. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system. BIOMEDICAL OPTICS EXPRESS 2016; 7:481-98. [PMID: 26977357 PMCID: PMC4771466 DOI: 10.1364/boe.7.000481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/19/2015] [Accepted: 01/13/2016] [Indexed: 05/24/2023]
Abstract
A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.
Collapse
Affiliation(s)
- Johannes D. Johansson
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Miguel Mireles
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Jordi Morales-Dalmau
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Parisa Farzam
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Mar Martínez-Lozano
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute–IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona), Spain
| | - Oriol Casanovas
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute–IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona), Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|
41
|
Lindner C, Mora M, Farzam P, Squarcia M, Johansson J, Weigel UM, Halperin I, Hanzu FA, Durduran T. Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies. PLoS One 2016; 11:e0147851. [PMID: 26815533 PMCID: PMC4731400 DOI: 10.1371/journal.pone.0147851] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
The in vivo optical and hemodynamic properties of the healthy (n = 22) and pathological (n = 2) human thyroid tissue were measured non-invasively using a custom time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) system. Medical ultrasound was used to guide the placement of the hand-held hybrid optical probe. TRS measured the absorption and reduced scattering coefficients (μa, μs′) at three wavelengths (690, 785 and 830 nm) to derive total hemoglobin concentration (THC) and oxygen saturation (StO2). DCS measured the microvascular blood flow index (BFI). Their dependencies on physiological and clinical parameters and positions along the thyroid were investigated and compared to the surrounding sternocleidomastoid muscle. The THC in the thyroid ranged from 131.9 μM to 144.8 μM, showing a 25–44% increase compared to the surrounding sternocleidomastoid muscle tissue. The blood flow was significantly higher in the thyroid (BFIthyroid = 16.0 × 10-9 cm2/s) compared to the muscle (BFImuscle = 7.8 × 10-9 cm2/s), while StO2 showed a small (StO2, muscle = 63.8% to StO2, thyroid = 68.4%), yet significant difference. Two case studies with thyroid nodules underwent the same measurement protocol prior to thyroidectomy. Their THC and BFI reached values around 226.5 μM and 62.8 × 10-9 cm2/s respectively showing a clear contrast to the nodule-free thyroid tissue as well as the general population. The initial characterization of the healthy and pathologic human thyroid tissue lays the ground work for the future investigation on the use of diffuse optics in thyroid cancer screening.
Collapse
Affiliation(s)
- Claus Lindner
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- * E-mail:
| | - Mireia Mora
- Department of Endocrinology and Nutrition, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Parisa Farzam
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | | | - Johannes Johansson
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Udo M. Weigel
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Hemophotonics S.L., Mediterranean Technology Park, Castelldefels (Barcelona), Spain
| | - Irene Halperin
- Department of Endocrinology and Nutrition, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Felicia A. Hanzu
- Department of Endocrinology and Nutrition, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
42
|
Busch DR, Lynch JM, Winters ME, McCarthy AL, Newland JJ, Ko T, Cornaglia MA, Radcliffe J, McDonough JM, Samuel J, Matthews E, Xiao R, Yodh AG, Marcus CL, Licht DJ, Tapia IE. Cerebral Blood Flow Response to Hypercapnia in Children with Obstructive Sleep Apnea Syndrome. Sleep 2016; 39:209-16. [PMID: 26414896 DOI: 10.5665/sleep.5350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/07/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Children with obstructive sleep apnea syndrome (OSAS) often experience periods of hypercapnia during sleep, a potent stimulator of cerebral blood flow (CBF). Considering this hypercapnia exposure during sleep, it is possible that children with OSAS have abnormal CBF responses to hypercapnia even during wakefulness. Therefore, we hypothesized that children with OSAS have blunted CBF response to hypercapnia during wakefulness, compared to snorers and controls. METHODS CBF changes during hypercapnic ventilatory response (HCVR) were tested in children with OSAS, snorers, and healthy controls using diffuse correlation spectroscopy (DCS). Peak CBF changes with respect to pre-hypercapnic baseline were measured for each group. The study was conducted at an academic pediatric sleep center. RESULTS Twelve children with OSAS (aged 10.1 ± 2.5 [mean ± standard deviation] y, obstructive apnea hypopnea index [AHI] = 9.4 [5.1-15.4] [median, interquartile range] events/hour), eight snorers (11 ± 3 y, 0.5 [0-1.3] events/hour), and 10 controls (11.4 ± 2.6 y, 0.3 [0.2-0.4] events/hour) were studied. The fractional CBF change during hypercapnia, normalized to the change in end-tidal carbon dioxide, was significantly higher in controls (9 ± 1.8 %/mmHg) compared to OSAS (7.1 ± 1.5, P = 0.023) and snorers (6.7 ± 1.9, P = 0.025). CONCLUSIONS Children with OSAS and snorers have blunted CBF response to hypercapnia during wakefulness compared to controls. Noninvasive DCS blood flow measurements of hypercapnic reactivity offer insights into physiopathology of OSAS in children, which could lead to further understanding about the central nervous system complications of OSAS.
Collapse
Affiliation(s)
- David R Busch
- Division of Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Jennifer M Lynch
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Madeline E Winters
- Division of Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - John J Newland
- Division of Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Tiffany Ko
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, PA
| | - Mary Anne Cornaglia
- The Sleep Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jerilynn Radcliffe
- Clinical and Translational Research Center, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Joseph M McDonough
- The Sleep Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - John Samuel
- The Sleep Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Edward Matthews
- The Sleep Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Rui Xiao
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Carole L Marcus
- The Sleep Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Daniel J Licht
- Division of Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ignacio E Tapia
- The Sleep Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
43
|
Nouizi F, Luk A, Thayer D, Lin Y, Ha S, Gulsen G. Experimental validation of a high-resolution diffuse optical imaging modality: photomagnetic imaging. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:16009. [PMID: 26790644 PMCID: PMC4719037 DOI: 10.1117/1.jbo.21.1.016009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/11/2015] [Indexed: 05/25/2023]
Abstract
We present experimental results that validate our imaging technique termed photomagnetic imaging (PMI). PMI illuminates the medium under investigation with a near-infrared light and measures the induced temperature increase using magnetic resonance imaging. A multiphysics solver combining light and heat propagation is used to model spatiotemporal distribution of temperature increase. Furthermore, a dedicated PMI reconstruction algorithm has been developed to reveal high-resolution optical absorption maps from temperature measurements. Being able to perform measurements at any point within the medium, PMI overcomes the limitations of conventional diffuse optical imaging. We present experimental results obtained on agarose phantoms mimicking biological tissue with inclusions having either different sizes or absorption contrasts, located at various depths. The reconstructed images show that PMI can successfully resolve these inclusions with high resolution and recover their absorption coefficient with high-quantitative accuracy. Even a 1-mm inclusion located 6-mm deep is recovered successfully and its absorption coefficient is underestimated by only 32%. The improved PMI system presented here successfully operates under the maximum skin exposure limits defined by the American National Standards Institute, which opens up the exciting possibility of its future clinical use for diagnostic purposes.
Collapse
Affiliation(s)
- Farouk Nouizi
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California, United States
| | - Alex Luk
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California, United States
| | - Dave Thayer
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California, United States
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | - Yuting Lin
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California, United States
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, 55 Fruit Street, Boston, Massachusetts 02144, United States
| | - Seunghoon Ha
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California, United States
- Philips Healthcare, N27 West 23676 Paul Road, Pewaukee, Wisconsin 53072, United States
| | - Gultekin Gulsen
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California, United States
| |
Collapse
|
44
|
Verdecchia K, Diop M, Morrison LB, Lee TY, St. Lawrence K. Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain. BIOMEDICAL OPTICS EXPRESS 2015; 6:4288-301. [PMID: 26600995 PMCID: PMC4646539 DOI: 10.1364/boe.6.004288] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 05/23/2023]
Abstract
Diffuse correlation spectroscopy (DCS) is a non-invasive optical technique capable of monitoring tissue perfusion. The normalized temporal intensity autocorrelation function generated by DCS is typically characterized by assuming that the movement of erythrocytes can be modeled as a Brownian diffusion-like process instead of by the expected random flow model. Recently, a hybrid model, referred to as the hydrodynamic diffusion model, was proposed, which combines the random and Brownian flow models. The purpose of this study was to investigate the best model to describe autocorrelation functions acquired directly on the brain in order to avoid confounding effects of extracerebral tissues. Data were acquired from 11 pigs during normocapnia and hypocapnia, and flow changes were verified by computed tomography perfusion (CTP). The hydrodynamic diffusion model was found to provide the best fit to the autocorrelation functions; however, no significant difference for relative flow changes measured by the Brownian and hydrodynamic diffusion models was observed.
Collapse
Affiliation(s)
- Kyle Verdecchia
- Imaging Division, Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond Street North, London, ON N6A 5C1, Canada
| | - Mamadou Diop
- Imaging Division, Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond Street North, London, ON N6A 5C1, Canada
| | - Laura B. Morrison
- Imaging Division, Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond Street North, London, ON N6A 5C1, Canada
| | - Ting-Yim Lee
- Imaging Division, Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond Street North, London, ON N6A 5C1, Canada
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond Street North, London, ON N6G 2V4, Canada
| | - Keith St. Lawrence
- Imaging Division, Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond Street North, London, ON N6A 5C1, Canada
| |
Collapse
|
45
|
Huang C, Lin Y, He L, Irwin D, Szabunio MM, Yu G. Alignment of sources and detectors on breast surface for noncontact diffuse correlation tomography of breast tumors. APPLIED OPTICS 2015; 54:8808-16. [PMID: 26479823 PMCID: PMC4801123 DOI: 10.1364/ao.54.008808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Noncontact diffuse correlation tomography (ncDCT) is an emerging technology for 3D imaging of deep tissue blood flow distribution without distorting hemodynamic properties. To adapt the ncDCT for imaging in vivo breast tumors, we designed a motorized ncDCT probe to scan over the breast surface. A computer-aided design (CAD)-based approach was proposed to create solid volume mesh from arbitrary breast surface obtained by a commercial 3D camera. The sources and detectors of ncDCT were aligned on the breast surface through ray tracing to mimic the ncDCT scanning with CAD software. The generated breast volume mesh along with the boundary data of ncDCT at the aligned source and detector pairs were used for finite-element-method-based flow image reconstruction. We evaluated the accuracy of source alignments on mannequin and human breasts; largest alignment errors were less than 10% in both tangential and radial directions of scanning. The impact of alignment errors (assigned 10%) on the tumor reconstruction was estimated using computer simulations. The deviations of simulated tumor location and blood flow contrast resulted from the alignment errors were 0.77 mm (less than the node distance of 1 mm) and 1%, respectively, which result in minor impact on flow image reconstruction. Finally, a case study on a human breast tumor was conducted and a tumor-to-normal flow contrast was reconstructed, demonstrating the feasibility of ncDCT in clinical application.
Collapse
Affiliation(s)
- Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Yu Lin
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Lian He
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Irwin
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
- Corresponding author:
| |
Collapse
|
46
|
He L, Lin Y, Huang C, Irwin D, Szabunio MM, Yu G. Noncontact diffuse correlation tomography of human breast tumor. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:86003. [PMID: 26259706 PMCID: PMC4688914 DOI: 10.1117/1.jbo.20.8.086003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/09/2015] [Indexed: 05/19/2023]
Abstract
Our first step to adapt our recently developed noncontact diffuse correlation tomography (ncDCT) system for three-dimensional (3-D) imaging of blood flow distribution in human breast tumors is reported. A commercial 3-D camera was used to obtain breast surface geometry, which was then converted to a solid volume mesh. An ncDCT probe scanned over a region of interest on the mesh surface and the measured boundary data were combined with a finite element framework for 3-D image reconstruction of blood flow distribution. This technique was tested in computer simulations and in vivo human breasts with low-grade carcinoma. Results from computer simulations suggest that relatively high accuracy can be achieved when the entire tumor is within the sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location can significantly improve the accuracy in recovery of tumor blood flow contrasts. In vivo imaging results from two breast carcinomas show higher average blood flow contrasts (5.9- and 10.9-fold) in the tumor regions compared to the surrounding tissues, which are comparable with previous findings using diffuse correlation spectroscopy. The ncDCT system has the potential to image blood flow distributions in soft and vulnerable tissues without distorting tissue hemodynamics
Collapse
Affiliation(s)
- Lian He
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Yu Lin
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Chong Huang
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Daniel Irwin
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Margaret M. Szabunio
- University of Kentucky, Markey Cancer Center, Division of Women’s Radiology, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
- Address all correspondence to: Guoqiang Yu, E-mail:
| |
Collapse
|
47
|
Langhout G, Spliethoff J, Schmitz S, Aalbers A, van Velthuysen ML, Hendriks B, Ruers T, Kuhlmann K. Differentiation of healthy and malignant tissue in colon cancer patients using optical spectroscopy: A tool for image-guided surgery. Lasers Surg Med 2015; 47:559-565. [DOI: 10.1002/lsm.22388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 11/06/2022]
Affiliation(s)
- G.C. Langhout
- Department of Surgery; Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital; Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam the Netherlands
| | - J.W. Spliethoff
- Department of Surgery; Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital; Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam the Netherlands
| | - S.J. Schmitz
- Department of Surgery; Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital; Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam the Netherlands
| | - A.G.J. Aalbers
- Department of Surgery; Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital; Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam the Netherlands
| | - M.-L.F. van Velthuysen
- Department of Pathology; Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital; Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam the Netherlands
| | - B.H.W. Hendriks
- Department of Minimally Invasive Healthcare; Philips Research, Eindhoven; High Tech Campus 34 5656 AE Eindhoven the Netherlands
| | - T.J.M. Ruers
- Department of Surgery; Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital; Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam the Netherlands
- Nanobiophysics Group; MIRA Institute, University of Twente; P.O. Box 217 7500 AE Enschede the Netherlands
| | - K.F.D. Kuhlmann
- Department of Surgery; Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital; Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam the Netherlands
| |
Collapse
|
48
|
Godavarty A, Rodriguez S, Jung YJ, Gonzalez S. Optical imaging for breast cancer prescreening. BREAST CANCER-TARGETS AND THERAPY 2015; 7:193-209. [PMID: 26229503 PMCID: PMC4516032 DOI: 10.2147/bctt.s51702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach.
Collapse
Affiliation(s)
- Anuradha Godavarty
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Suset Rodriguez
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Young-Jin Jung
- Department of Radiological Science, Dongseo University, Busan, South Korea
| | - Stephanie Gonzalez
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| |
Collapse
|
49
|
Han S, Johansson J, Mireles M, Proctor AR, Hoffman MD, Vella JB, Benoit DSW, Durduran T, Choe R. Non-contact scanning diffuse correlation tomography system for three-dimensional blood flow imaging in a murine bone graft model. BIOMEDICAL OPTICS EXPRESS 2015; 6. [PMID: 26203392 PMCID: PMC4505720 DOI: 10.1364/boe.6.002695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A non-contact galvanometer-based optical scanning system for diffuse correlation tomography was developed for monitoring bone graft healing in a murine femur model. A linear image reconstruction algorithm for diffuse correlation tomography was tested using finite-element method based simulated data and experimental data from a femur or a tube suspended in a homogeneous liquid phantom. Finally, the non-contact system was utilized to monitor in vivo blood flow changes prior to and one week after bone graft transplantation within murine femurs. Localized blood flow changes were observed in three mice, demonstrating a potential for quantification of longitudinal blood flow associated with bone graft healing.
Collapse
Affiliation(s)
- Songfeng Han
- Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| | - Johannes Johansson
- ICFO- Institut de Ciències Fotòniques, 08860, Castelldefels (Barcelona), Spain
| | - Miguel Mireles
- ICFO- Institut de Ciències Fotòniques, 08860, Castelldefels (Barcelona), Spain
| | - Ashley R. Proctor
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Michael D. Hoffman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joseph B. Vella
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Turgut Durduran
- ICFO- Institut de Ciències Fotòniques, 08860, Castelldefels (Barcelona), Spain
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
50
|
Chung SH, Feldman MD, Martinez D, Kim H, Putt ME, Busch DR, Tchou J, Czerniecki BJ, Schnall MD, Rosen MA, DeMichele A, Yodh AG, Choe R. Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures. Breast Cancer Res 2015; 17:72. [PMID: 26013572 PMCID: PMC4487833 DOI: 10.1186/s13058-015-0578-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/11/2015] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Non-invasive diffuse optical tomography (DOT) and diffuse correlation spectroscopy (DCS) can detect and characterize breast cancer and predict tumor responses to neoadjuvant chemotherapy, even in patients with radiographically dense breasts. However, the relationship between measured optical parameters and pathological biomarker information needs to be further studied to connect information from optics to traditional clinical cancer biology. Thus we investigate how optically measured physiological parameters in malignant tumors such as oxy-, deoxy-hemoglobin concentration, tissue blood oxygenation, and metabolic rate of oxygen correlate with microscopic histopathological biomarkers from the same malignant tumors, e.g., Ki67 proliferation markers, CD34 stained vasculature markers and nuclear morphology. METHODS In this pilot study, we investigate correlations of macroscopic physiological parameters of malignant tumors measured by diffuse optical technologies with microscopic histopathological biomarkers of the same tumors, i.e., the Ki67 proliferation marker, the CD34 stained vascular properties marker, and nuclear morphology. RESULTS The tumor-to-normal relative ratio of Ki67-positive nuclei is positively correlated with DOT-measured relative tissue blood oxygen saturation (R = 0.89, p-value: 0.001), and lower tumor-to-normal deoxy-hemoglobin concentration is associated with higher expression level of Ki67 nuclei (p-value: 0.01). In a subset of the Ki67-negative group (defined by the 15 % threshold), an inverse correlation between Ki67 expression level and mammary metabolic rate of oxygen was observed (R = -0.95, p-value: 0.014). Further, CD34 stained mean-vessel-area in tumor is positively correlated with tumor-to-normal total-hemoglobin and oxy-hemoglobin concentration. Finally, we find that cell nuclei tend to have more elongated shapes in less oxygenated DOT-measured environments. CONCLUSIONS Collectively, the pilot data are consistent with the notion that increased blood is supplied to breast cancers, and it also suggests that less conversion of oxy- to deoxy-hemoglobin occurs in more proliferative cancers. Overall, the observations corroborate expectations that macroscopic measurements of breast cancer physiology using DOT and DCS can reveal microscopic pathological properties of breast cancer and hold potential to complement pathological biomarker information.
Collapse
Affiliation(s)
- So Hyun Chung
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA, 19104, USA.
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Daniel Martinez
- Pathology Core Laboratory, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Helen Kim
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA, 19104, USA.
| | - Mary E Putt
- Department of Biostatistics and Epidemiology, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| | - David R Busch
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA, 19104, USA.
- Division of Neurology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Julia Tchou
- Department of Surgery, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Brian J Czerniecki
- Department of Surgery, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Mitchell D Schnall
- Department of Radiology, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Mark A Rosen
- Department of Radiology, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Angela DeMichele
- Department of Medicine, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA, 19104, USA.
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, 209 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA.
| |
Collapse
|