1
|
Di X, Wang D, Shan X, Ding L, Zhong Z, Chen C, Wang D, Song Z, Wang J, Su QP, Yue S, Zhang M, Cheng F, Wang F. Probing the Nanonewton Mitotic Cell Deformation Force by Ion-Resonance-Enhanced Photonics Force Microscopy. NANO LETTERS 2024. [PMID: 39378180 DOI: 10.1021/acs.nanolett.4c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Mechanical forces are essential for regulating dynamic changes in cellular activities. A comprehensive understanding of these forces is imperative for unraveling fundamental mechanisms. Here, we develop a microprobe capable of facilitating the measurement of biological forces up to nanonewton levels in living cells. This probe is designed by coating the core of anatase titania particles with amorphous titania and silica shells and an upconversion nanoparticles (UCNPs) layer. Leveraging both antireflection and ion resonance effects from the shells, the optically trapped probe attains a maximum lateral optical trap stiffness of 14.24 pN μm-1 mW-1, surpassing the best reported value by a factor of 3. Employing this advanced probe in a photonic force microscope, we determine the elasticity modulus of mitotic HeLa cells as 1.27 ± 0.3 kPa. Nanonewton probes offer the potential to explore 3D cellular mechanics with unparalleled precision and spatial resolution, fostering a deeper understanding of the underlying biomechanical mechanisms.
Collapse
Affiliation(s)
- Xiangjun Di
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dejiang Wang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06511, United States
| | - Xuchen Shan
- School of Physics, Beihang University, Beijing 100191, China
| | - Lei Ding
- School of Biomedical Engineering Faculty of Engineering and IT University of Technology, Sydney, New South Wales 2007, Australia
| | - Zhaoxiang Zhong
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Chaohao Chen
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Dajing Wang
- School of Physics, Beihang University, Beijing 100191, China
| | - Zhiyong Song
- The first affiliated hospital, Pingdingshan University, Pingdingshan 467000, China
| | - Jianyun Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Peter Su
- School of Biomedical Engineering Faculty of Engineering and IT University of Technology, Sydney, New South Wales 2007, Australia
| | - Shuhua Yue
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Fan Wang
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Hoque MA, Mahmood N, Ali KM, Sefat E, Huang Y, Petersen E, Harrington S, Fang X, Gluck JM. Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System. Biomimetics (Basel) 2023; 8:biomimetics8020170. [PMID: 37092422 PMCID: PMC10123682 DOI: 10.3390/biomimetics8020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Cells can sense and respond to different kinds of continuous mechanical strain in the human body. Mechanical stimulation needs to be included within the in vitro culture system to better mimic the existing complexity of in vivo biological systems. Existing commercial dynamic culture systems are generally two-dimensional (2D) which fail to mimic the three-dimensional (3D) native microenvironment. In this study, a pneumatically driven fiber robot has been developed as a platform for 3D dynamic cell culture. The fiber robot can generate tunable contractions upon stimulation. The surface of the fiber robot is formed by a braiding structure, which provides promising surface contact and adequate space for cell culture. An in-house dynamic stimulation using the fiber robot was set up to maintain NIH3T3 cells in a controlled environment. The biocompatibility of the developed dynamic culture systems was analyzed using LIVE/DEAD™ and alamarBlue™ assays. The results showed that the dynamic culture system was able to support cell proliferation with minimal cytotoxicity similar to static cultures. However, we observed a decrease in cell viability in the case of a high strain rate in dynamic cultures. Differences in cell arrangement and proliferation were observed between braided sleeves made of different materials (nylon and ultra-high molecular weight polyethylene). In summary, a simple and cost-effective 3D dynamic culture system has been proposed, which can be easily implemented to study complex biological phenomena in vitro.
Collapse
Affiliation(s)
- Muh Amdadul Hoque
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Nasif Mahmood
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Kiran M Ali
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Eelya Sefat
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Yihan Huang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Emily Petersen
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Shane Harrington
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Xiaomeng Fang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Jessica M Gluck
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
3
|
Salipante PF. Microfluidic techniques for mechanical measurements of biological samples. BIOPHYSICS REVIEWS 2023; 4:011303. [PMID: 38505816 PMCID: PMC10903441 DOI: 10.1063/5.0130762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/21/2024]
Abstract
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
4
|
Chen H, Guo J, Bian F, Zhao Y. Microfluidic technologies for cell deformability cytometry. SMART MEDICINE 2022; 1:e20220001. [PMID: 39188737 PMCID: PMC11235995 DOI: 10.1002/smmd.20220001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 08/28/2024]
Abstract
Microfluidic detection methods for cell deformability cytometry have been regarded as powerful tools for single-cell analysis of cellular mechanical phenotypes, thus having been widely applied in the fields of cell preparation, separation, clinical diagnostics and so on. Featured with traits like easy operations, low cost and high throughput, such methods have shown great potentials on investigating physiological state and pathological changes during cellular deformation. Herein, a review on the advancements of microfluidic-based cell deformation cytometry is presented. We discuss several representative microfluidic-based cell deformability cytometry methods with their frontiers in practical applications. Finally, we analyze the current status and propose the remaining challenges with future perspectives and development directions.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing, JiangsuChina
| | - Jiahui Guo
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing, JiangsuChina
| | - Feika Bian
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing, JiangsuChina
| | - Yuanjin Zhao
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing, JiangsuChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
5
|
Kawakami M, Kojima M, Masuda Y, Mae Y, Horii T, Nagai T, Nakahata M, Sakai S, Arai T. Automated Microhand System for Measuring Cell Stiffness By Using Two Plate End-Effectors. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3143296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Dawson H, Elias J, Etienne P, Calas-Etienne S. The Rise of the OM-LoC: Opto-Microfluidic Enabled Lab-on-Chip. MICROMACHINES 2021; 12:1467. [PMID: 34945317 PMCID: PMC8706692 DOI: 10.3390/mi12121467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/04/2023]
Abstract
The integration of optical circuits with microfluidic lab-on-chip (LoC) devices has resulted in a new era of potential in terms of both sample manipulation and detection at the micro-scale. On-chip optical components increase both control and analytical capabilities while reducing reliance on expensive laboratory photonic equipment that has limited microfluidic development. Notably, in-situ LoC devices for bio-chemical applications such as diagnostics and environmental monitoring could provide great value as low-cost, portable and highly sensitive systems. Multiple challenges remain however due to the complexity involved with combining photonics with micro-fabricated systems. Here, we aim to highlight the progress that optical on-chip systems have made in recent years regarding the main LoC applications: (1) sample manipulation and (2) detection. At the same time, we aim to address the constraints that limit industrial scaling of this technology. Through evaluating various fabrication methods, material choices and novel approaches of optic and fluidic integration, we aim to illustrate how optic-enabled LoC approaches are providing new possibilities for both sample analysis and manipulation.
Collapse
|
7
|
Graybill PM, Bollineni RK, Sheng Z, Davalos RV, Mirzaeifar R. A constriction channel analysis of astrocytoma stiffness and disease progression. BIOMICROFLUIDICS 2021; 15:024103. [PMID: 33763160 PMCID: PMC7968935 DOI: 10.1063/5.0040283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/23/2021] [Indexed: 05/12/2023]
Abstract
Studies have demonstrated that cancer cells tend to have reduced stiffness (Young's modulus) compared to their healthy counterparts. The mechanical properties of primary brain cancer cells, however, have remained largely unstudied. To investigate whether the stiffness of primary brain cancer cells decreases as malignancy increases, we used a microfluidic constriction channel device to deform healthy astrocytes and astrocytoma cells of grade II, III, and IV and measured the entry time, transit time, and elongation. Calculating cell stiffness directly from the experimental measurements is not possible. To overcome this challenge, finite element simulations of the cell entry into the constriction channel were used to train a neural network to calculate the stiffness of the analyzed cells based on their experimentally measured diameter, entry time, and elongation in the channel. Our study provides the first calculation of stiffness for grades II and III astrocytoma and is the first to apply a neural network analysis to determine cell mechanical properties from a constriction channel device. Our results suggest that the stiffness of astrocytoma cells is not well-correlated with the cell grade. Furthermore, while other non-central-nervous-system cell types typically show reduced stiffness of malignant cells, we found that most astrocytoma cell lines had increased stiffness compared to healthy astrocytes, with lower-grade astrocytoma having higher stiffness values than grade IV glioblastoma. Differences in nucleus-to-cytoplasm ratio only partly explain differences in stiffness values. Although our study does have limitations, our results do not show a strong correlation of stiffness with cell grade, suggesting that other factors may play important roles in determining the invasive capability of astrocytoma. Future studies are warranted to further elucidate the mechanical properties of astrocytoma across various pathological grades.
Collapse
Affiliation(s)
| | - R. K. Bollineni
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Z. Sheng
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine and Virginia Tech Fralin Biomedical Research Institute, Roanoke, Virginia 24016, USA
| | - R. V. Davalos
- Authors to whom correspondence should be addressed: and
| | - R. Mirzaeifar
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
8
|
Hosseini V, Mallone A, Nasrollahi F, Ostrovidov S, Nasiri R, Mahmoodi M, Haghniaz R, Baidya A, Salek MM, Darabi MA, Orive G, Shamloo A, Dokmeci MR, Ahadian S, Khademhosseini A. Healthy and diseased in vitro models of vascular systems. LAB ON A CHIP 2021; 21:641-659. [PMID: 33507199 DOI: 10.1039/d0lc00464b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Irregular hemodynamics affects the progression of various vascular diseases, such atherosclerosis or aneurysms. Despite the extensive hemodynamics studies on animal models, the inter-species differences between humans and animals hamper the translation of such findings. Recent advances in vascular tissue engineering and the suitability of in vitro models for interim analysis have increased the use of in vitro human vascular tissue models. Although the effect of flow on endothelial cell (EC) pathophysiology and EC-flow interactions have been vastly studied in two-dimensional systems, they cannot be used to understand the effect of other micro- and macro-environmental parameters associated with vessel wall diseases. To generate an ideal in vitro model of the vascular system, essential criteria should be included: 1) the presence of smooth muscle cells or perivascular cells underneath an EC monolayer, 2) an elastic mechanical response of tissue to pulsatile flow pressure, 3) flow conditions that accurately mimic the hemodynamics of diseases, and 4) geometrical features required for pathophysiological flow. In this paper, we review currently available in vitro models that include flow dynamics and discuss studies that have tried to address the criteria mentioned above. Finally, we critically review in vitro fluidic models of atherosclerosis, aneurysm, and thrombosis.
Collapse
Affiliation(s)
- Vahid Hosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Anna Mallone
- Institute of Regenerative Medicine, University of Zurich, Zurich CH-8952, Switzerland
| | - Fatemeh Nasrollahi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Serge Ostrovidov
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and Department of Radiological Sciences, University of California-Los Angeles, CA 90095, USA
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Department of Mechanical Engineering, Sharif University of Technology, Tehran 1136511155, Iran
| | - Mahboobeh Mahmoodi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd 8915813135, Iran
| | - Reihaneh Haghniaz
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Avijit Baidya
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA
| | - M Mehdi Salek
- School of Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain and Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01007, Spain
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 1136511155, Iran
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
9
|
Hao Y, Cheng S, Tanaka Y, Hosokawa Y, Yalikun Y, Li M. Mechanical properties of single cells: Measurement methods and applications. Biotechnol Adv 2020; 45:107648. [DOI: 10.1016/j.biotechadv.2020.107648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022]
|
10
|
Link A, Franke T. Acoustic erythrocytometer for mechanically probing cell viscoelasticity. LAB ON A CHIP 2020; 20:1991-1998. [PMID: 32367091 DOI: 10.1039/c9lc00999j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate an acoustic device to mechanically probe a population of red blood cells at the single cell level. The device operates by exciting a surface acoustic wave in a microfluidic channel creating a stationary acoustic wave field of nodes and antinodes. Erythrocytes are attracted to the nodes and are deformed. Using a stepwise increasing and periodically oscillating acoustic field we study the static and dynamic deformation of individual red blood cells one by one. We quantify the deformation by the Taylor deformation index D and relaxation times τ1 and τ2 that reveal both the viscous and elastic properties of the cells. The precision of the measurement allows us to distinguish between individual cells in the suspension and provides a quantitative viscoelastic fingerprint of the blood sample at single cell resolution. The method overcomes limitations of other techniques that provide averaged values and has the potential for high-throughput.
Collapse
Affiliation(s)
- A Link
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT, Glasgow, UK.
| | | |
Collapse
|
11
|
Choi G, Nouri R, Zarzar L, Guan W. Microfluidic deformability-activated sorting of single particles. MICROSYSTEMS & NANOENGINEERING 2020; 6:11. [PMID: 34567626 PMCID: PMC8433438 DOI: 10.1038/s41378-019-0107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 06/01/2023]
Abstract
Mechanical properties have emerged as a significant label-free marker for characterizing deformable particles such as cells. Here, we demonstrated the first single-particle-resolved, cytometry-like deformability-activated sorting in the continuous flow on a microfluidic chip. Compared with existing deformability-based sorting techniques, the microfluidic device presented in this work measures the deformability and immediately sorts the particles one-by-one in real time. It integrates the transit-time-based deformability measurement and active hydrodynamic sorting onto a single chip. We identified the critical factors that affect the sorting dynamics by modeling and experimental approaches. We found that the device throughput is determined by the summation of the sensing, buffering, and sorting time. A total time of ~100 ms is used for analyzing and sorting a single particle, leading to a throughput of 600 particles/min. We synthesized poly(ethylene glycol) diacrylate (PEGDA) hydrogel beads as the deformability model for device validation and performance evaluation. A deformability-activated sorting purity of 88% and an average efficiency of 73% were achieved. We anticipate that the ability to actively measure and sort individual particles one-by-one in a continuous flow would find applications in cell-mechanotyping studies such as correlational studies of the cell mechanical phenotype and molecular mechanism.
Collapse
Affiliation(s)
- Gihoon Choi
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802 USA
| | - Reza Nouri
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802 USA
| | - Lauren Zarzar
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802 USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802 USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802 USA
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802 USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
12
|
Li Z, Gao C, Fan S, Zou J, Gu G, Dong M, Song J. Cell Nanomechanics Based on Dielectric Elastomer Actuator Device. NANO-MICRO LETTERS 2019; 11:98. [PMID: 34138039 PMCID: PMC7770812 DOI: 10.1007/s40820-019-0331-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/21/2019] [Indexed: 05/23/2023]
Abstract
As a frontier of biology, mechanobiology plays an important role in tissue and biomedical engineering. It is a common sense that mechanical cues under extracellular microenvironment affect a lot in regulating the behaviors of cells such as proliferation and gene expression, etc. In such an interdisciplinary field, engineering methods like the pneumatic and motor-driven devices have been employed for years. Nevertheless, such techniques usually rely on complex structures, which cost much but not so easy to control. Dielectric elastomer actuators (DEAs) are well known as a kind of soft actuation technology, and their research prospect in biomechanical field is gradually concerned due to their properties just like large deformation (> 100%) and fast response (< 1 ms). In addition, DEAs are usually optically transparent and can be fabricated into small volume, which make them easy to cooperate with regular microscope to realize real-time dynamic imaging of cells. This paper first reviews the basic components, principle, and evaluation of DEAs and then overview some corresponding applications of DEAs for cellular mechanobiology research. We also provide a comparison between DEA-based bioreactors and current custom-built devices and share some opinions about their potential applications in the future according to widely reported results via other methods.
Collapse
Affiliation(s)
- Zhichao Li
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chao Gao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Sisi Fan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiang Zou
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Guoying Gu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
13
|
Moon JY, Choi SB, Lee JS, Tanner RI, Lee JS. Numerical simulation of optical control for a soft particle in a microchannel. Phys Rev E 2019; 99:022607. [PMID: 30934346 DOI: 10.1103/physreve.99.022607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 11/07/2022]
Abstract
Technologies that use optical force to actively control particles in microchannels are a significant area of research interest in various fields. An optical force is generated by the momentum change caused by the refraction and reflection of light, which changes the particle surface as a function of the angle of incidence of light and which in turn feeds back and modifies the force on the particle. Simulating this phenomenon is a complex task. The deformation of a particle, the interaction between the surrounding fluid and the particle, and the reflection and refraction of light should be analyzed simultaneously. Herein, a deformable particle in a microchannel subjected to optical interactions is simulated using the three-dimensional lattice Boltzmann immersed-boundary method. The laser from the optical source is analyzed by dividing it into individual rays. To calculate the optical forces exerted on the particle, the intensity, momentum, and ray direction are calculated. The optical-separator problem with one optical source is analyzed by measuring the distance traveled because of the optical force. The optical-stretcher problem with two optical sources is then studied by analyzing the relation between the intensity of the optical source and particle deformation. This simulation will help the design of sorting and measuring by optical force.
Collapse
Affiliation(s)
- Ji Young Moon
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Se Bin Choi
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jung Shin Lee
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Roger I Tanner
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joon Sang Lee
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
14
|
Leblanc-Hotte A, Sen Nkwe N, Chabot-Roy G, Affar EB, Lesage S, Delisle JS, Peter YA. On-chip refractive index cytometry for whole-cell deformability discrimination. LAB ON A CHIP 2019; 19:464-474. [PMID: 30570636 DOI: 10.1039/c8lc00938d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
On-chip high-throughput phenotyping of single cells has gained a lot of interest recently due to the discrimination capability of label-free biomarkers such as whole-cell deformability and refractive index. Here we present on-chip refractive index cytometry (RIC) for whole-cell deformability at a high measurement rate. We have further exploited a previously published on-chip optical characterization method which enhances cellular discrimination through the refractive index measurement of single cells. The proposed on-chip RIC can simultaneously probe the cellular refractive index, effective volume and whole-cell deformability while reaching a measurement rate up to 5000 cells per second. Additionally, the relative position of the nucleus inside the cell is reflected by the asymmetry of the measured curve. This particular finding is confirmed by our numerical simulation model and emphasized by a modified cytoskeleton HL-60 cells model. Furthermore, the proposed device discriminated HL-60 derived myeloid cells such as neutrophils, basophils and promyelocytes, which are indistinguishable using flow cytometry. To our knowledge, this is the first integrated device to simultaneously characterize the cellular refractive index and whole-cell deformability, yielding enhanced discrimination of large myeloid cell populations.
Collapse
Affiliation(s)
- Antoine Leblanc-Hotte
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ahmmed SM, Bithi SS, Pore AA, Mubtasim N, Schuster C, Gollahon LS, Vanapalli SA. Multi-sample deformability cytometry of cancer cells. APL Bioeng 2018; 2:032002. [PMID: 31069319 PMCID: PMC6481721 DOI: 10.1063/1.5020992] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/21/2018] [Indexed: 12/03/2022] Open
Abstract
There is growing recognition that cell deformability can play an important role in cancer metastasis and diagnostics. Advancement of methods to characterize cell deformability in a high throughput manner and the capacity to process numerous samples can impact cancer-related applications ranging from analysis of patient samples to discovery of anti-cancer compounds to screening of oncogenes. In this study, we report a microfluidic technique called multi-sample deformability cytometry (MS-DC) that allows simultaneous measurement of flow-induced deformation of cells in multiple samples at single-cell resolution using a combination of on-chip reservoirs, distributed pressure control, and data analysis system. Cells are introduced at rates of O(100) cells per second with a data processing speed of 10 min per sample. To validate MS-DC, we tested more than 50 cell-samples that include cancer cell lines with different metastatic potential and cells treated with several cytoskeletal-intervention drugs. Results from MS-DC show that (i) the cell deformability correlates with metastatic potential for both breast and prostate cancer cells but not with their molecular histotype, (ii) the strongly metastatic breast cancer cells have higher deformability than the weakly metastatic ones; however, the strongly metastatic prostate cancer cells have lower deformability than the weakly metastatic counterparts, and (iii) drug-induced disruption of the actin network, microtubule network, and actomyosin contractility increased cancer cell deformability, but stabilization of the cytoskeletal proteins does not alter deformability significantly. Our study demonstrates the capacity of MS-DC to mechanically phenotype tumor cells simultaneously in many samples for cancer research.
Collapse
Affiliation(s)
- Shamim M. Ahmmed
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Swastika S. Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Adity A. Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Noshin Mubtasim
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Caroline Schuster
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Lauren S. Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
16
|
Hwang MY, Kim SG, Lee HS, Muller SJ. Generation and characterization of monodisperse deformable alginate and pNIPAM microparticles with a wide range of shear moduli. SOFT MATTER 2017; 13:5785-5794. [PMID: 28766673 DOI: 10.1039/c7sm01079f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monodisperse particles of varying size, shape, and deformability were produced using two microfluidic strategies. For both strategies, monodisperse emulsion droplets of a crosslinkable solution were generated via flow-focusing. Subsequently, droplets were crosslinked either on chip or in an external bath. On-chip gelation resulted in spherical particles; varying the degree of crosslinking varied the deformability systematically. The optimized flow-focusing device design separated the production of monodisperse aqueous alginate droplets and the on-chip introduction of crosslinking ions. Two features were then adapted to target softer particles: the dispersed phase design and the polymer choice. The alternative design used a sheathed dispersed phase, with the polymer solution surrounding an unreactive viscous core, which generated alginate particles with a softer core. Poly(N-isopropylacrylamide) (pNIPAM) allowed access to a broad range of moduli. The resulting spherical particles were characterized using capillary micromechanics to determine the shear (G) and compressive (K) moduli. Particles with G = 0.013 kPa to 26 kPa and K = 0.221 kPa to 34.9 kPa were obtained; the softest particles are an order of magnitude softer than those previously reported. The second approach, based on earlier work by Hu et al., produced axisymmetric, non-spherical particles with fore-aft asymmetry. Alginate drops were again formed in a flow-focusing device but were crosslinked off-chip in an external gelation bath. By changing the bath viscosity, crosslinker concentration, and outlet height, the falling droplets deformed differently during gelation, resulting in a variety of shapes, such as teardrop, mushroom, and bowl shapes.
Collapse
Affiliation(s)
- Margaret Y Hwang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
17
|
An Electromagnetically Actuated Double-Sided Cell-Stretching Device for Mechanobiology Research. MICROMACHINES 2017; 8:mi8080256. [PMID: 30400447 PMCID: PMC6190231 DOI: 10.3390/mi8080256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/28/2022]
Abstract
Cellular response to mechanical stimuli is an integral part of cell homeostasis. The interaction of the extracellular matrix with the mechanical stress plays an important role in cytoskeleton organisation and cell alignment. Insights from the response can be utilised to develop cell culture methods that achieve predefined cell patterns, which are critical for tissue remodelling and cell therapy. We report the working principle, design, simulation, and characterisation of a novel electromagnetic cell stretching platform based on the double-sided axial stretching approach. The device is capable of introducing a cyclic and static strain pattern on a cell culture. The platform was tested with fibroblasts. The experimental results are consistent with the previously reported cytoskeleton reorganisation and cell reorientation induced by strain. Our observations suggest that the cell orientation is highly influenced by external mechanical cues. Cells reorganise their cytoskeletons to avoid external strain and to maintain intact extracellular matrix arrangements.
Collapse
|
18
|
Torino S, Iodice M, Rendina I, Coppola G. Microfluidic technology for cell hydrodynamic manipulation. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.2.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
19
|
Multiparameter mechanical and morphometric screening of cells. Sci Rep 2016; 6:37863. [PMID: 27910869 PMCID: PMC5133672 DOI: 10.1038/srep37863] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/01/2016] [Indexed: 01/07/2023] Open
Abstract
We introduce a label-free method to rapidly phenotype and classify cells purely based on physical properties. We extract 15 biophysical parameters from cells as they deform in a microfluidic stretching flow field via high-speed microscopy and apply machine-learning approaches to discriminate different cell types and states. When employing the full 15 dimensional dataset, the technique robustly classifies individual cells based on their pluripotency, with accuracy above 95%. Rheological and morphological properties of cells while deforming were critical for this classification. We also show the application of this method in accurate classifying cells based on their viability, drug screening and detecting populations of malignant cells in mixed samples. We show that some of the extracted parameters are not linearly independent, and in fact we reach maximum classification accuracy by using only a subset of parameters. However, the informative subsets could vary depending on cell types in the sample. This work shows the utility of an assay purely based on intrinsic biophysical properties of cells to identify changes in cell state. In addition to a label-free alternative to flow cytometry in certain applications, this work, also can provide novel intracellular metrics that would not be feasible with labeled approaches (i.e. flow cytometry).
Collapse
|
20
|
Heida T, Neubauer JW, Seuss M, Hauck N, Thiele J, Fery A. Mechanically Defined Microgels by Droplet Microfluidics. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Heida
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Jens W. Neubauer
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Maximilian Seuss
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Nicolas Hauck
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
- Leibniz Research Cluster (LRC); Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
- Leibniz Research Cluster (LRC); Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
- Department of Physical Chemistry of Polymeric Materials; Technische Universität Dresden; Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|
21
|
Kamble H, Barton MJ, Jun M, Park S, Nguyen NT. Cell stretching devices as research tools: engineering and biological considerations. LAB ON A CHIP 2016; 16:3193-203. [PMID: 27440436 DOI: 10.1039/c6lc00607h] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cells within the human body are subjected to continuous, cyclic mechanical strain caused by various organ functions, movement, and growth. Cells are well known to have the ability to sense and respond to mechanical stimuli. This process is referred to as mechanotransduction. A better understanding of mechanotransduction is of great interest to clinicians and scientists alike to improve clinical diagnosis and understanding of medical pathology. However, the complexity involved in in vivo biological systems creates a need for better in vitro technologies, which can closely mimic the cells' microenvironment using induced mechanical strain. This technology gap motivates the development of cell stretching devices for better understanding of the cell response to mechanical stimuli. This review focuses on the engineering and biological considerations for the development of such cell stretching devices. The paper discusses different types of stretching concepts, major design consideration and biological aspects of cell stretching and provides a perspective for future development in this research area.
Collapse
Affiliation(s)
- Harshad Kamble
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, QLD 4111, Australia.
| | - Matthew J Barton
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Myeongjun Jun
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, QLD 4111, Australia.
| |
Collapse
|
22
|
Tsikritsis D, Shi H, Wang Y, Velugotla S, Sršeň V, Elfick A, Downes A. Label-free biomarkers of human embryonic stem cell differentiation to hepatocytes. Cytometry A 2016; 89:575-84. [PMID: 27214589 DOI: 10.1002/cyto.a.22875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 01/09/2023]
Abstract
Four different label-free, minimally invasive, live single cell analysis techniques were applied in a quantitative comparison, to characterize embryonic stem cells and the hepatocytes into which they were differentiated. Atomic force microscopy measures the cell's mechanical properties, Raman spectroscopy measures its chemical properties, and dielectrophoresis measures the membrane's capacitance. They were able to assign cell type of individual cells with accuracies of 91% (atomic force microscopy), 95.5% (Raman spectroscopy), and 72% (dielectrophoresis). In addition, stimulated Raman scattering (SRS) microscopy was able to easily identify hepatocytes in images by the presence of lipid droplets. These techniques, used either independently or in combination, offer label-free methods to study individual living cells. Although these minimally invasive biomarkers can be applied to sense phenotypical or environmental changes to cells, these techniques have most potential in human stem cell therapies where the use of traditional biomarkers is best avoided. Destructive assays consume valuable stem cells and do not characterize the cells which go on to be used in therapies; whereas immunolabeling risks altering cell behavior. It was suggested how these four minimally invasive methods could be applied to cell culture, and how they could in future be combined into one microfluidic chip for cell sorting. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Dimitrios Tsikritsis
- Institute for BioEngineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Hu Shi
- Institute for BioEngineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuan Wang
- Institute for BioEngineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Srinivas Velugotla
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Vlastimil Sršeň
- Institute for BioEngineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Alistair Elfick
- Institute for BioEngineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Downes
- Institute for BioEngineering, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Yang T, Bragheri F, Minzioni P. A Comprehensive Review of Optical Stretcher for Cell Mechanical Characterization at Single-Cell Level. MICROMACHINES 2016; 7:E90. [PMID: 30404265 PMCID: PMC6189960 DOI: 10.3390/mi7050090] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 11/21/2022]
Abstract
This paper presents a comprehensive review of the development of the optical stretcher, a powerful optofluidic device for single cell mechanical study by using optical force induced cell stretching. The different techniques and the different materials for the fabrication of the optical stretcher are first summarized. A short description of the optical-stretching mechanism is then given, highlighting the optical force calculation and the cell optical deformability characterization. Subsequently, the implementations of the optical stretcher in various cell-mechanics studies are shown on different types of cells. Afterwards, two new advancements on optical stretcher applications are also introduced: the active cell sorting based on cell mechanical characterization and the temperature effect on cell stretching measurement from laser-induced heating. Two examples of new functionalities developed with the optical stretcher are also included. Finally, the current major limitation and the future development possibilities are discussed.
Collapse
Affiliation(s)
- Tie Yang
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, Pavia 27100, Italy.
| | - Francesca Bragheri
- Institute of Photonics and Nanotechnology, CNR & Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Paolo Minzioni
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, Pavia 27100, Italy.
| |
Collapse
|
24
|
Yang T, Bragheri F, Nava G, Chiodi I, Mondello C, Osellame R, Berg-Sørensen K, Cristiani I, Minzioni P. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells. Sci Rep 2016; 6:23946. [PMID: 27040456 PMCID: PMC4819226 DOI: 10.1038/srep23946] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/17/2016] [Indexed: 12/17/2022] Open
Abstract
We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental apparatus parameters before performing the cell-characterization experiments, including a non-destructive method to characterize the optical force distribution inside the microchannel. The chip was used to study important cell-mechanics parameters in two human breast cancer cell lines, MCF7 and MDA-MB231. Results indicate that MDA-MB231 has both higher acoustic compressibility and higher optical deformability than MCF7, but statistical analysis shows that optical deformability and acoustic compressibility are not correlated parameters. This result suggests the possibility to use them to analyze the response of different cellular structures. We also demonstrate that it is possible to perform both measurements on a single cell, and that the order of the two experiments does not affect the retrieved values.
Collapse
Affiliation(s)
- Tie Yang
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, 27100, Pavia, Italy
| | - Francesca Bragheri
- Institute of Photonics and Nanotechnology, CNR & Department of Physics, Politecnico di Milano, Piazza, Leonardo da Vinci 32, 20133 Milano, Italy
| | - Giovanni Nava
- Department of Biomedical Science and Translational Medicine, Università di Milano, Via F.lli Cervi 91, 20090 Segrate, Italy
| | - Ilaria Chiodi
- Institute of Molecular Genetics (IGM), CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics (IGM), CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Roberto Osellame
- Institute of Photonics and Nanotechnology, CNR & Department of Physics, Politecnico di Milano, Piazza, Leonardo da Vinci 32, 20133 Milano, Italy
| | | | - Ilaria Cristiani
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, 27100, Pavia, Italy
| | - Paolo Minzioni
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, 27100, Pavia, Italy
| |
Collapse
|
25
|
Roth KB, Neeves KB, Squier J, Marr DWM. High-throughput linear optical stretcher for mechanical characterization of blood cells. Cytometry A 2016; 89:391-7. [PMID: 26565892 PMCID: PMC10625799 DOI: 10.1002/cyto.a.22794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/29/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022]
Abstract
This study describes a linear optical stretcher as a high-throughput mechanical property cytometer. Custom, inexpensive, and scalable optics image a linear diode bar source into a microfluidic channel, where cells are hydrodynamically focused into the optical stretcher. Upon entering the stretching region, antipodal optical forces generated by the refraction of tightly focused laser light at the cell membrane deform each cell in flow. Each cell relaxes as it flows out of the trap and is compared to the stretched state to determine deformation. The deformation response of untreated red blood cells and neutrophils were compared to chemically treated cells. Statistically significant differences were observed between normal, diamide-treated, and glutaraldehyde-treated red blood cells, as well as between normal and cytochalasin D-treated neutrophils. Based on the behavior of the pure, untreated populations of red cells and neutrophils, a mixed population of these cells was tested and the discrete populations were identified by deformability. © 2015 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kevin B. Roth
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401
| | - Keith B. Neeves
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401
- Department of Pediatrics, University of Colorado, Denver, Colorado 80045
| | - Jeff Squier
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401
| | - David W. M. Marr
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401
| |
Collapse
|
26
|
Xie Y, Nama N, Li P, Mao Z, Huang PH, Zhao C, Costanzo F, Huang TJ. Probing Cell Deformability via Acoustically Actuated Bubbles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:902-10. [PMID: 26715211 PMCID: PMC4876965 DOI: 10.1002/smll.201502220] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/02/2015] [Indexed: 05/21/2023]
Abstract
An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nitesh Nama
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhangming Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chenglong Zhao
- Department of Physics & Electro-Optics Program, University of Dayton, Dayton, OH 45469, USA
| | - Francesco Costanzo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Jun Huang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
27
|
Kasukurti A, Eggleton CD, Desai SA, Marr DWM. FACS-style detection for real-time cell viscoelastic cytometry. RSC Adv 2015; 5:105636-105642. [PMID: 26900453 PMCID: PMC4756765 DOI: 10.1039/c5ra24097b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell mechanical properties have been established as a label-free biophysical marker of cell viability and health; however, real-time methods with significant throughput for accurately and non-destructively measuring these properties remain widely unavailable. Without appropriate labels for use with fluorescence activated cell sorters (FACS), easily implemented real-time technology for tracking cell-level mechanical properties remains a current need. Employing modulated optical forces and enabled by a low-dimensional FACS-style detection method introduced here, we present a viscoelasticity cytometer (VC) capable of real-time and continuous measurements. We demonstrate the utility of this approach by tracking the high-frequency cell physical properties of populations of chemically-modified cells at rates of ~ 1 s-1 and explain observations within the context of a simple theoretical model.
Collapse
Affiliation(s)
- A Kasukurti
- Department of Chemical and Biological Engineering, Colorado School of Mines
| | - C D Eggleton
- Department of Mechanical Engineering, University of Maryland, Baltimore County
| | - S A Desai
- Laboratory for Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Bethesda, MD
| | - D W M Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines
| |
Collapse
|
28
|
Spagnol ST, Lin WC, Booth EA, Ladoux B, Lazarus HM, Dahl KN. Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration. Ann Biomed Eng 2015; 44:2123-31. [PMID: 26581348 DOI: 10.1007/s10439-015-1508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023]
Abstract
The cellular structures and mechanical properties of human mesenchymal stem cells (hMSCs) vary significantly during culture and with differentiation. Previously, studies to measure mechanics have provided divergent results using different quantitative parameters and mechanical models of deformation. Here, we examine hMSCs prepared for clinical use and subject them to mechanical testing conducive to the relevant deformability associated with clinical injection procedures. Micropipette aspiration of hMSCs shows deformation as a viscoelastic fluid, with little variation from cell to cell within a population. After two passages, hMSCs deform as viscoelastic solids. Further, for clinical applicability during stem cell migration in vivo, we investigated the ability of hMSCs to invade into micropillar arrays of increasing confinement from 12 to 8 μm spacing between adjacent micropillars. We find that hMSC samples with reduced deformability and cells that are more solid-like with passage are more easily able to enter the micropillar arrays. Increased cell fluidity is an advantage for injection procedures and optimization of cell selection based on mechanical properties may enhance efficacy of injected hMSC populations. However, the ability to invade and migrate within tight interstitial spaces appears to be increased with a more solidified cytoskeleton, likely from increased force generation and contractility. Thus, there may be a balance between optimal injection survival and in situ tissue invasion.
Collapse
Affiliation(s)
- Stephen T Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Wei-Chun Lin
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Elizabeth A Booth
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, Paris, France
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Hillard M Lazarus
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Abstract
Traditionally, cell analysis has focused on using molecular biomarkers for basic research, cell preparation, and clinical diagnostics; however, new microtechnologies are enabling evaluation of the mechanical properties of cells at throughputs that make them amenable to widespread use. We review the current understanding of how the mechanical characteristics of cells relate to underlying molecular and architectural changes, describe how these changes evolve with cell-state and disease processes, and propose promising biomedical applications that will be facilitated by the increased throughput of mechanical testing: from diagnosing cancer and monitoring immune states to preparing cells for regenerative medicine. We provide background about techniques that laid the groundwork for the quantitative understanding of cell mechanics and discuss current efforts to develop robust techniques for rapid analysis that aim to implement mechanophenotyping as a routine tool in biomedicine. Looking forward, we describe additional milestones that will facilitate broad adoption, as well as new directions not only in mechanically assessing cells but also in perturbing them to passively engineer cell state.
Collapse
Affiliation(s)
- Eric M Darling
- Center for Biomedical Engineering.,Department of Molecular Pharmacology, Physiology, and Biotechnology.,Department of Orthopaedics, and.,School of Engineering, Brown University, Providence, Rhode Island 02912;
| | - Dino Di Carlo
- Department of Bioengineering.,California NanoSystems Institute, and.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095;
| |
Collapse
|
30
|
Galler K, Bräutigam K, Große C, Popp J, Neugebauer U. Making a big thing of a small cell--recent advances in single cell analysis. Analyst 2015; 139:1237-73. [PMID: 24495980 DOI: 10.1039/c3an01939j] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single cell analysis is an emerging field requiring a high level interdisciplinary collaboration to provide detailed insights into the complex organisation, function and heterogeneity of life. This review is addressed to life science researchers as well as researchers developing novel technologies. It covers all aspects of the characterisation of single cells (with a special focus on mammalian cells) from morphology to genetics and different omics-techniques to physiological, mechanical and electrical methods. In recent years, tremendous advances have been achieved in all fields of single cell analysis: (1) improved spatial and temporal resolution of imaging techniques to enable the tracking of single molecule dynamics within single cells; (2) increased throughput to reveal unexpected heterogeneity between different individual cells raising the question what characterizes a cell type and what is just natural biological variation; and (3) emerging multimodal approaches trying to bring together information from complementary techniques paving the way for a deeper understanding of the complexity of biological processes. This review also covers the first successful translations of single cell analysis methods to diagnostic applications in the field of tumour research (especially circulating tumour cells), regenerative medicine, drug discovery and immunology.
Collapse
Affiliation(s)
- Kerstin Galler
- Integrated Research and Treatment Center "Center for Sepsis Control and Care", Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | | | | | | | | |
Collapse
|
31
|
Roth KB, Neeves KB, Squier J, Marr DWM. Imaging of a linear diode bar for an optical cell stretcher. BIOMEDICAL OPTICS EXPRESS 2015; 6:807-14. [PMID: 25798305 PMCID: PMC4361435 DOI: 10.1364/boe.6.000807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 05/07/2023]
Abstract
We present a simplified approach for imaging a linear diode bar laser for application as an optical stretcher within a microfluidic geometry. We have recently shown that these linear sources can be used to measure cell mechanical properties; however, the source geometry creates imaging challenges. To minimize intensity losses and simplify implementation within microfluidic systems without the use of expensive objectives, we combine aspheric and cylindrical lenses to create a 1:1 image of the source at the stretcher focal plane and demonstrate effectiveness by measuring the deformation of human red blood cells and neutrophils.
Collapse
Affiliation(s)
- K. B. Roth
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401,
USA
| | - K. B. Neeves
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401,
USA
- Department of Pediatrics, University of Colorado, Denver, CO 80045,
USA
| | - J. Squier
- Deaprtment of Physics, Colorado School of Mines, Golden, CO 80401,
USA
| | - D. W. M. Marr
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401,
USA
| |
Collapse
|
32
|
Sirbuly DJ, Friddle RW, Villanueva J, Huang Q. Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:024101. [PMID: 25629797 DOI: 10.1088/0034-4885/78/2/024101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function.
Collapse
Affiliation(s)
- Donald J Sirbuly
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA. Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | |
Collapse
|
33
|
|
34
|
Sawetzki T, Eggleton CD, Desai SA, Marr DWM. Viscoelasticity as a biomarker for high-throughput flow cytometry. Biophys J 2014; 105:2281-8. [PMID: 24268140 DOI: 10.1016/j.bpj.2013.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/15/2013] [Accepted: 10/01/2013] [Indexed: 11/16/2022] Open
Abstract
The mechanical properties of living cells are a label-free biophysical marker of cell viability and health; however, their use has been greatly limited by low measurement throughput. Although examining individual cells at high rates is now commonplace with fluorescence activated cell sorters, development of comparable techniques that nondestructively probe cell mechanics remains challenging. A fundamental hurdle is the signal response time. Where light scattering and fluorescence signatures are virtually instantaneous, the cell stress relaxation, typically occurring on the order of seconds, limits the potential speed of elastic property measurement. To overcome this intrinsic barrier to rapid analysis, we show here that cell viscoelastic properties measured at frequencies far higher than those associated with cell relaxation can be used as a means of identifying significant differences in cell phenotype. In these studies, we explore changes in erythrocyte mechanical properties caused by infection with Plasmodium falciparum and find that the elastic response alone fails to detect malaria at high frequencies. At timescales associated with rapid assays, however, we observe that the inelastic response shows significant changes and can be used as a reliable indicator of infection, establishing the dynamic viscoelasticity as a basis for nondestructive mechanical analogs of current high-throughput cell classification methods.
Collapse
Affiliation(s)
- Tobias Sawetzki
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado
| | | | | | | |
Collapse
|
35
|
Huang NT, Zhang HL, Chung MT, Seo JH, Kurabayashi K. Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. LAB ON A CHIP 2014; 14:1230-45. [PMID: 24525555 DOI: 10.1039/c3lc51211h] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cellular analysis plays important roles in various biological applications, such as cell biology, drug development, and disease diagnosis. Conventional cellular analysis usually measures the average response from a whole cell group. However, bulk measurements may cause misleading interpretations due to cell heterogeneity. Another problem is that current cellular analysis may not be able to differentiate various subsets of cell populations, each exhibiting a different behavior than the others. Single-cell analysis techniques are developed to analyze cellular properties, conditions, or functional responses in a large cell population at the individual cell level. Integrating optics with microfluidic platforms provides a well-controlled microenvironment to precisely control single cell conditions and perform non-invasive high-throughput analysis. This paper reviews recent developments in optofluidic technologies for various optics-based single-cell analyses, which involve single cell manipulation, treatment, and property detection. Finally, we provide our views on the future development of integrated optics with microfluidics for single-cell analysis and discuss potential challenges and opportunities of this emerging research field in biological applications.
Collapse
Affiliation(s)
- Nien-Tsu Huang
- Department of Electrical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | | | | | | | | |
Collapse
|
36
|
Mak M, Erickson D. A serial micropipette microfluidic device with applications to cancer cell repeated deformation studies. Integr Biol (Camb) 2013; 5:1374-84. [PMID: 24056324 DOI: 10.1039/c3ib40128f] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cells are complex viscoelastic materials that are frequently in deformed morphological states, particularly during the cancer invasion process. The ability to study cell mechanical deformability in an accessible way can be enabling in many areas of research where biomechanics is important, from cancer metastasis to immune response to stem cell differentiation. Furthermore, phenomena in biology are frequently exhibited in high multiplicity. For instance, during metastasis, cells undergoing non-proteolytic invasion squeeze through a multitude of physiological barriers, including many small pores in the dense extracellular matrix (ECM) of the tumor stroma. Therefore, it is important to perform multiple measurements of the same property even for the same cell in order to fully appreciate its dynamics and variability, especially in the high recurrence regime. We have created a simple and minimalistic micropipette system with automated operational procedures that can sample the deformation and relaxation dynamics of single-cells serially and in a parallel manner. We demonstrated its ability to elucidate the impact of an initial cell deformation event on subsequent deformations for untreated and paclitaxel treated MDA-MB-231 metastatic breast cancer cells, and we examined contributions from the cell nucleus during whole-cell micropipette experiments. Finally we developed an empirical model that characterizes the serial factor, which describes the reduction in cost for cell deformations across sequential constrictions. We performed experiments using spatial, temporal, and force scales that match physiological and biomechanical processes, thus potentially enabling a qualitatively more pertinent representation of the functional attributes of cell deformability.
Collapse
Affiliation(s)
- Michael Mak
- Biomedical Engineering Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
37
|
Roth KB, Eggleton CD, Neeves KB, Marr DWM. Measuring cell mechanics by optical alignment compression cytometry. LAB ON A CHIP 2013; 13:1571-1577. [PMID: 23440063 PMCID: PMC3623556 DOI: 10.1039/c3lc41253a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To address the need for a high throughput, non-destructive technique for measuring individual cell mechanical properties, we have developed optical alignment compression (OAC) cytometry. OAC combines hydrodynamic drag in an extensional flow microfluidic device with optical forces created with an inexpensive diode laser to induce measurable deformations between compressed cells. In this, a low-intensity linear optical trap aligns incoming cells with the flow stagnation point allowing hydrodynamic drag to induce deformation during cell-cell interaction. With this novel approach, we measure cell mechanical properties with a throughput that improves significantly on current non-destructive individual cell testing methods.
Collapse
Affiliation(s)
- Kevin B. Roth
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA 80401
| | - Charles D. Eggleton
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA 21250
| | - Keith B. Neeves
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA 80401
- Department of Pediatrics, University of Colorado, Denver, CO, USA 80045
| | - David W. M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA 80401
| |
Collapse
|
38
|
Sawetzki T, Eggleton CD, Marr DWM. Cell elongation via intrinsic antipodal stretching forces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061901. [PMID: 23367970 PMCID: PMC3566237 DOI: 10.1103/physreve.86.061901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 09/03/2012] [Indexed: 05/16/2023]
Abstract
To probe the mechanical properties of cells, we investigate a technique to perform deformability-based cytometry that inherently induces normal antipodal surface forces using a single line-shaped optical trap. We show theoretically that these opposing forces are generated simultaneously over curved microscopic object surfaces with optimal magnitude at low numerical apertures, allowing the directed stretching of elastic cells with a single, weakly focused laser source. Matching these findings with concomitant experimental observations, we elongate red blood cells, effectively stretching them within the narrow confines of a steep, optically induced potential well.
Collapse
Affiliation(s)
- T Sawetzki
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | | | | |
Collapse
|
39
|
Burdick MM, Henson KA, Delgadillo LF, Choi YE, Goetz DJ, Tees DFJ, Benencia F. Expression of E-selectin ligands on circulating tumor cells: cross-regulation with cancer stem cell regulatory pathways? Front Oncol 2012; 2:103. [PMID: 22934288 PMCID: PMC3422812 DOI: 10.3389/fonc.2012.00103] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/02/2012] [Indexed: 12/19/2022] Open
Abstract
Although significant progress has been made in the fight against cancer, successful treatment strategies have yet to be developed to combat those tumors that have metastasized to distant organs. Poor characterization of the molecular mechanisms of cancer spread is a major impediment to designing predictive diagnostics and effective clinical interventions against late stage disease. In hematogenous metastasis, it is widely suspected that circulating tumor cells (CTCs) express specific adhesion molecules that actively initiate contact with the vascular endothelium lining the vessel walls of the target organ. This "tethering" is mediated by ligands expressed by CTCs that bind to E-selectin expressed by endothelial cells. However, it is currently unknown whether expression of functional E-selectin ligands on CTCs is related to cancer stem cell regulatory or maintenance pathways, particularly epithelial-to-mesenchymal transition and the reverse, mesenchymal-to-epithelial transition. In this hypothesis and theory article, we explore the potential roles of these mechanisms on the dynamic regulation of selectin ligands mediating CTC trafficking during metastasis.
Collapse
Affiliation(s)
- Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University Athens, OH, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc Natl Acad Sci U S A 2012; 109:E1523-9. [PMID: 22615348 DOI: 10.1073/pnas.1120349109] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanical properties of adipose-derived stem cell (ASC) clones correlate with their ability to produce tissue-specific metabolites, a finding that has dramatic implications for cell-based regenerative therapies. Autologous ASCs are an attractive cell source due to their immunogenicity and multipotent characteristics. However, for practical applications ASCs must first be purified from other cell types, a critical step which has proven difficult using surface-marker approaches. Alternative enrichment strategies identifying broad categories of tissue-specific cells are necessary for translational applications. One possibility developed in our lab uses single-cell mechanical properties as predictive biomarkers of ASC clonal differentiation capability. Elastic and viscoelastic properties of undifferentiated ASCs were tested via atomic force microscopy and correlated with lineage-specific metabolite production. Cell sorting simulations based on these "mechanical biomarkers" indicated they were predictive of differentiation capability and could be used to enrich for tissue-specific cells, which if implemented could dramatically improve the quality of regenerated tissues.
Collapse
|
41
|
Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 2012; 109:7630-5. [PMID: 22547795 DOI: 10.1073/pnas.1200107109] [Citation(s) in RCA: 483] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell state is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as the ability to mechanically deform under a load, are advantageous in that they do not require costly labeling or sample preparation. However, current techniques that assay cell mechanical properties have had limited adoption in clinical and cell biology research applications. Here, we demonstrate an automated microfluidic technology capable of probing single-cell deformability at approximately 2,000 cells/s. The method uses inertial focusing to uniformly deliver cells to a stretching extensional flow where cells are deformed at high strain rates, imaged with a high-speed camera, and computationally analyzed to extract quantitative parameters. This approach allows us to analyze cells at throughputs orders of magnitude faster than previously reported biophysical flow cytometers and single-cell mechanics tools, while creating easily observable larger strains and limiting user time commitment and bias through automation. Using this approach we rapidly assay the deformability of native populations of leukocytes and malignant cells in pleural effusions and accurately predict disease state in patients with cancer and immune activation with a sensitivity of 91% and a specificity of 86%. As a tool for biological research, we show the deformability we measure is an early biomarker for pluripotent stem cell differentiation and is likely linked to nuclear structural changes. Microfluidic deformability cytometry brings the statistical accuracy of traditional flow cytometric techniques to label-free biophysical biomarkers, enabling applications in clinical diagnostics, stem cell characterization, and single-cell biophysics.
Collapse
|
42
|
Sraj I, Szatmary AC, Desai SA, Marr DWM, Eggleton CD. Erythrocyte deformation in high-throughput optical stretchers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041923. [PMID: 22680514 PMCID: PMC3989886 DOI: 10.1103/physreve.85.041923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 10/30/2011] [Indexed: 05/21/2023]
Abstract
Optical stretchers can be used to quantify elastic and homeostatic properties of cells. Because they can apply forces to cells without requiring direct contact, they may noninvasively measure mechanical properties related to cell and membrane health. Present-day optical stretchers are, however, limited to measurements on individual stationary cells, limiting throughput. To overcome this limitation and allow study of variations in cell populations, we recently developed and tested a microfluidic chamber that measures optical stretching parameters for erythrocytes under dynamic flowing conditions. The method uses a single linear diode laser bar and permitted measurements at low flow rates and higher throughput. Here, we numerically investigate the feasibility of further increasing the measurement rates of the optical stretcher in parameter domains where hydrodynamic and optical forces are of comparable magnitude. To do this we couple a recently implemented dynamic optical ray-tracing technique with a fluid-structure interaction solver to simulate the deformation of osmotically swollen erythrocytes in fluid flow of variable rate. Our results demonstrate that a detectable steady-state stretch is induced at nominal optical powers and flow rates. In addition, we find that flow rates can be increased significantly with no major effect on net cell stretch showing the feasibility of application of this technique at greatly increased throughputs.
Collapse
Affiliation(s)
- Ihab Sraj
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | - Alex C. Szatmary
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | - Sanjay A. Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David W. M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Charles D. Eggleton
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
- Corresponding author:
| |
Collapse
|
43
|
Sraj I, Marr DW, Eggleton CD. Linear diode laser bar optical stretchers for cell deformation. BIOMEDICAL OPTICS EXPRESS 2010; 1:482-488. [PMID: 21258483 PMCID: PMC3017999 DOI: 10.1364/boe.1.000482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/31/2010] [Accepted: 08/02/2010] [Indexed: 05/08/2023]
Abstract
To investigate the use of linear diode laser bars to optically stretch cells and measure their mechanical properties, we present numerical simulations using the immersed boundary method (IBM) coupled with classic ray optics. Cells are considered as three-dimensional (3D) spherical elastic capsules immersed in a fluid subjected to both optical and hydrodynamic forces in a periodic domain. We simulate cell deformation induced by both single and dual diode laser bar configurations and show that a single diode laser bar induces significant stretching but also induces cell translation of speed < 10 µm/sec for applied 6.6 mW/µm power in unconfined systems. The dual diode laser bar configuration, however, can be used to both stretch and optically trap cells at a fixed position. The net cell deformation was found to be a function of the total laser power and not the power distribution between single or dual diode laser bar configurations.
Collapse
Affiliation(s)
- Ihab Sraj
- Department of Mechanical Engineering, University of Maryland Baltimore County,
Baltimore, Maryland 21250, USA
| | - David W.M. Marr
- Department of Chemical Engineering, Colorado School of Mines,
Golden, Colorado 80401, USA
| | - Charles D. Eggleton
- Department of Mechanical Engineering, University of Maryland Baltimore County,
Baltimore, Maryland 21250, USA
| |
Collapse
|
44
|
Sraj I, Szatmary AC, Marr DWM, Eggleton CD. Dynamic ray tracing for modeling optical cell manipulation. OPTICS EXPRESS 2010; 18:16702-16714. [PMID: 20721060 PMCID: PMC3408928 DOI: 10.1364/oe.18.016702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/24/2010] [Accepted: 07/11/2010] [Indexed: 05/28/2023]
Abstract
Current methods for predicting stress distribution on a cell surface due to optical trapping forces are based on a traditional ray optics scheme for fixed geometries. Cells are typically modeled as solid spheres as this facilitates optical force calculation. Under such applied forces however, real and non-rigid cells can deform, so assumptions inherent in traditional ray optics methods begin to break down. In this work, we implement a dynamic ray tracing technique to calculate the stress distribution on a deformable cell induced by optical trapping. Here, cells are modeled as three-dimensional elastic capsules with a discretized surface with associated hydrodynamic forces calculated using the Immersed Boundary Method. We use this approach to simulate the transient deformation of spherical, ellipsoidal and biconcave capsules due to external optical forces induced by a single diode bar optical trap for a range of optical powers.
Collapse
Affiliation(s)
- Ihab Sraj
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250,
USA
| | - Alex C. Szatmary
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250,
USA
| | - David W. M. Marr
- Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401,
USA
| | - Charles D. Eggleton
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250,
USA
| |
Collapse
|