1
|
Zaki FR, Monroy GL, Shi J, Sudhir K, Boppart SA. Texture-based speciation of otitis media-related bacterial biofilms from optical coherence tomography images using supervised classification. JOURNAL OF BIOPHOTONICS 2024; 17:e202400075. [PMID: 39103198 PMCID: PMC11464188 DOI: 10.1002/jbio.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024]
Abstract
Otitis media (OM), a highly prevalent inflammatory middle-ear disease in children worldwide, is commonly caused by an infection, and can lead to antibiotic-resistant bacterial biofilms in recurrent/chronic OM cases. A biofilm related to OM typically contains one or multiple bacterial species. OCT has been used clinically to visualize the presence of bacterial biofilms in the middle ear. This study used OCT to compare microstructural image texture features from bacterial biofilms. The proposed method applied supervised machine-learning-based frameworks (SVM, random forest, and XGBoost) to classify multiple species bacterial biofilms from in vitro cultures and clinically-obtained in vivo images from human subjects. Our findings show that optimized SVM-RBF and XGBoost classifiers achieved more than 95% of AUC, detecting each biofilm class. These results demonstrate the potential for differentiating OM-causing bacterial biofilms through texture analysis of OCT images and a machine-learning framework, offering valuable insights for real-time in vivo characterization of ear infections.
Collapse
Affiliation(s)
- Farzana R Zaki
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Guillermo L Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jindou Shi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kavya Sudhir
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Zhou Z, Pandey R, Valdez TA. Label-Free Optical Technologies for Middle-Ear Diseases. Bioengineering (Basel) 2024; 11:104. [PMID: 38391590 PMCID: PMC10885954 DOI: 10.3390/bioengineering11020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Medical applications of optical technology have increased tremendously in recent decades. Label-free techniques have the unique advantage of investigating biological samples in vivo without introducing exogenous agents. This is especially beneficial for a rapid clinical translation as it reduces the need for toxicity studies and regulatory approval for exogenous labels. Emerging applications have utilized label-free optical technology for screening, diagnosis, and surgical guidance. Advancements in detection technology and rapid improvements in artificial intelligence have expedited the clinical implementation of some optical technologies. Among numerous biomedical application areas, middle-ear disease is a unique space where label-free technology has great potential. The middle ear has a unique anatomical location that can be accessed through a dark channel, the external auditory canal; it can be sampled through a tympanic membrane of approximately 100 microns in thickness. The tympanic membrane is the only membrane in the body that is surrounded by air on both sides, under normal conditions. Despite these favorable characteristics, current examination modalities for middle-ear space utilize century-old technology such as white-light otoscopy. This paper reviews existing label-free imaging technologies and their current progress in visualizing middle-ear diseases. We discuss potential opportunities, barriers, and practical considerations when transitioning label-free technology to clinical applications.
Collapse
Affiliation(s)
- Zeyi Zhou
- School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Rishikesh Pandey
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Tulio A Valdez
- Department of Otolaryngology, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
3
|
Locke AK, Zaki FR, Fitzgerald ST, Sudhir K, Monroy GL, Choi H, Won J, Mahadevan-Jansen A, Boppart SA. Differentiation of otitis media-causing bacteria and biofilms via Raman spectroscopy and optical coherence tomography. Front Cell Infect Microbiol 2022; 12:869761. [PMID: 36034696 PMCID: PMC9400059 DOI: 10.3389/fcimb.2022.869761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
In the management of otitis media (OM), identification of causative bacterial pathogens and knowledge of their biofilm formation can provide more targeted treatment approaches. Current clinical diagnostic methods rely on the visualization of the tympanic membrane and lack real-time assessment of the causative pathogen(s) and the nature of any biofilm that may reside behind the membrane and within the middle ear cavity. In recent years, optical coherence tomography (OCT) has been demonstrated as an improved in vivo diagnostic tool for visualization and morphological characterization of OM biofilms and middle ear effusions; but lacks specificity about the causative bacterial species. This study proposes the combination of OCT and Raman spectroscopy (RS) to examine differences in the refractive index, optical attenuation, and biochemical composition of Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis, and Pseudomonas aeruginosa; four of the leading otopathogens in OM. This combination provides a dual optical approach for identifying and differentiating OM-causing bacterial species under three different in vitro growth environments (i.e., agar-grown colonies, planktonic cells from liquid cultures, and biofilms). This study showed that RS was able to identify key biochemical variations to differentiate all four OM-causing bacteria. Additionally, biochemical spectral changes (RS) and differences in the mean attenuation coefficient (OCT) were able to distinguish the growth environment for each bacterial species.
Collapse
Affiliation(s)
- Andrea K. Locke
- Vanderbilt Biophotonics Center, School of Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Farzana R. Zaki
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Sean T. Fitzgerald
- Vanderbilt Biophotonics Center, School of Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, United States
| | - Kavya Sudhir
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Honggu Choi
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Jungeun Won
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, School of Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois at Urbana–Champaign, Urbana, IL, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana–Champaign, Urbana, IL, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
Monroy GL, Fitzgerald ST, Locke A, Won J, Spillman DR, Ho A, Zaki FR, Choi H, Chaney EJ, Werkhaven JA, Mason KM, Mahadevan-Jansen A, Boppart SA. Multimodal Handheld Probe for Characterizing Otitis Media - Integrating Raman Spectroscopy and Optical Coherence Tomography. FRONTIERS IN PHOTONICS 2022; 3:929574. [PMID: 36479543 PMCID: PMC9720905 DOI: 10.3389/fphot.2022.929574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Otitis media (OM) is a common disease of the middle ear, affecting 80% of children before the age of three. The otoscope, a simple illuminated magnifier, is the standard clinical diagnostic tool to observe the middle ear. However, it has limited contrast to detect signs of infection, such as clearly identifying and characterizing middle ear fluid or biofilms that accumulate within the middle ear. Likewise, invasive sampling of every subject is not clinically indicated nor practical. Thus, collecting accurate noninvasive diagnostic factors is vital for clinicians to deliver a precise diagnosis and effective treatment regimen. To address this need, a combined benchtop Raman spectroscopy (RS) and optical coherence tomography (OCT) system was developed. Together, RS-OCT can non-invasively interrogate the structural and biochemical signatures of the middle ear under normal and infected conditions.In this paper, in vivo RS scans from pediatric clinical human subjects presenting with OM were evaluated in parallel with RS-OCT data of physiologically relevant in vitro ear models. Component-level characterization of a healthy tympanic membrane and malleus bone, as well as OM-related middle ear fluid, identified the optimal position within the ear for RS-OCT data collection. To address the design challenges in developing a system specific to clinical use, a prototype non-contact multimodal handheld probe was built and successfully tested in vitro. Design criteria have been developed to successfully address imaging constraints imposed by physiological characteristics of the ear and optical safety limits. Here, we present the pathway for translation of RS-OCT for non-invasive detection of OM.
Collapse
Affiliation(s)
- Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Sean T. Fitzgerald
- Vanderbilt Biophotonics Center, Nashville, TN, United States
- Dept. Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Andrea Locke
- Vanderbilt Biophotonics Center, Nashville, TN, United States
- Dept. Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jungeun Won
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Dept. Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Alexander Ho
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Dept. Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Farzana R. Zaki
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Honggu Choi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jay A. Werkhaven
- Dept. Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kevin M. Mason
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute Nationwide Children’s Hospital, Columbus, OH, United States
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Nashville, TN, United States
- Dept. Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Dept. Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Dept. Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Dept. Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Ren X, Lin K, Hsieh CM, Liu L, Ge X, Liu Q. Optical coherence tomography-guided confocal Raman microspectroscopy for rapid measurements in tissues. BIOMEDICAL OPTICS EXPRESS 2022; 13:344-357. [PMID: 35154875 PMCID: PMC8803007 DOI: 10.1364/boe.441058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/24/2021] [Accepted: 12/06/2021] [Indexed: 05/05/2023]
Abstract
We report a joint system with both confocal Raman spectroscopy (CRS) and optical coherence tomography (OCT) modules capable of quickly addressing the region of interest in a tissue for targeted Raman measurements from OCT. By using an electrically tunable lens in the Raman module, the focus of the module can be adjusted to address any specific depth indicated in an OCT image in a few milliseconds. We demonstrate the performance of the joint system in the depth dependent measurements of an ex vivo swine tissue and in vivo human skin. This system can be useful in measuring samples embedded with small targets, for example, to identify tumors in skin in vivo and assessment of tumor margins, in which OCT can be used to perform initial real-time screening with high throughput based on morphological features to identify suspicious targets then CRS is guided to address the targets in real time and fully characterize their biochemical fingerprints for confirmation.
Collapse
Affiliation(s)
- Xiaojing Ren
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Equal contributors to paper
| | - Kan Lin
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- Equal contributors to paper
| | - Chao-Mao Hsieh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Linbo Liu
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Xin Ge
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Quan Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
6
|
Esposito S, Bianchini S, Argentiero A, Gobbi R, Vicini C, Principi N. New Approaches and Technologies to Improve Accuracy of Acute Otitis Media Diagnosis. Diagnostics (Basel) 2021; 11:2392. [PMID: 34943628 PMCID: PMC8700495 DOI: 10.3390/diagnostics11122392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
Several studies have shown that in recent years incidence of acute otitis media (AOM) has declined worldwide. However, related medical, social, and economic problems for patients, their families, and society remain very high. Better knowledge of potential risk factors for AOM development and more effective preventive interventions, particularly in AOM-prone children, can further reduce disease incidence. However, a more accurate AOM diagnosis seems essential to achieve this goal. Diagnostic uncertainty is common, and to avoid risks related to a disease caused mainly by bacteria, several children without AOM are treated with antibiotics and followed as true AOM cases. The main objective of this manuscript is to discuss the most common difficulties that presently limit accurate AOM diagnosis and the new approaches and technologies that have been proposed to improve disease detection. We showed that misdiagnosis can be dangerous or lead to relevant therapeutic mistakes. The need to improve AOM diagnosis has allowed the identification of a long list of technologies to visualize and evaluate the tympanic membrane and to assess middle-ear effusion. Most of the new instruments, including light field otoscopy, optical coherence tomography, low-coherence interferometry, and Raman spectroscopy, are far from being introduced in clinical practice. Video-otoscopy can be effective, especially when it is used in association with telemedicine, parents' cooperation, and artificial intelligence. Introduction of otologic telemedicine and use of artificial intelligence among pediatricians and ENT specialists must be strongly promoted in order to reduce mistakes in AOM diagnosis.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (S.B.); (A.A.)
| | - Sonia Bianchini
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (S.B.); (A.A.)
| | - Alberto Argentiero
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (S.B.); (A.A.)
| | - Riccardo Gobbi
- Head-Neck and Oral Surgery Unit, Department of Head-Neck Surgery, Otolaryngology, Morgagni Piertoni Hospital, 47121 Forlì, Italy; (R.G.); (C.V.)
| | - Claudio Vicini
- Head-Neck and Oral Surgery Unit, Department of Head-Neck Surgery, Otolaryngology, Morgagni Piertoni Hospital, 47121 Forlì, Italy; (R.G.); (C.V.)
| | | |
Collapse
|
7
|
Locke A, Fitzgerald S, Mahadevan-Jansen A. Advances in Optical Detection of Human-Associated Pathogenic Bacteria. Molecules 2020; 25:E5256. [PMID: 33187331 PMCID: PMC7696695 DOI: 10.3390/molecules25225256] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial infection is a global burden that results in numerous hospital visits and deaths annually. The rise of multi-drug resistant bacteria has dramatically increased this burden. Therefore, there is a clinical need to detect and identify bacteria rapidly and accurately in their native state or a culture-free environment. Current diagnostic techniques lack speed and effectiveness in detecting bacteria that are culture-negative, as well as options for in vivo detection. The optical detection of bacteria offers the potential to overcome these obstacles by providing various platforms that can detect bacteria rapidly, with minimum sample preparation, and, in some cases, culture-free directly from patient fluids or even in vivo. These modalities include infrared, Raman, and fluorescence spectroscopy, along with optical coherence tomography, interference, polarization, and laser speckle. However, these techniques are not without their own set of limitations. This review summarizes the strengths and weaknesses of utilizing each of these optical tools for rapid bacteria detection and identification.
Collapse
Affiliation(s)
- Andrea Locke
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Sean Fitzgerald
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
8
|
A bench-top model of middle ear effusion diagnosed with optical tympanometry. Int J Pediatr Otorhinolaryngol 2020; 134:110054. [PMID: 32344235 PMCID: PMC7282940 DOI: 10.1016/j.ijporl.2020.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To assess the validity of a bench-top model of an optical tympanometry device to diagnose in vitro model of middle ear effusion (MEE). METHODS AND MATERIALS We illuminated an in vitro model of ear canal and tympanic membrane with broadband light and relayed remitted light to a spectrometer system. We then used our proprietary algorithm to extract spectral features that, together with our logistic regression classifiers, led us to calculate a set of simplified indices related to different middle ear states. Our model included a glass vial covered with a porcine submucosa (representing the tympanic membrane) and filled with air, water, or milk solution (representing different MEE), and a set of cover-glass slips filled with either blood (representing erythema) or cerumen. By interchanging fluid types and cover-glass slips, we made measurements on combinations corresponding to normal healthy ear and purulent or serous MEE. RESULTS Each simulated condition had a distinct spectral profile, which was then employed by our algorithm to discriminate clean and cerumen-covered purulent and serous MEE. Two logistic purulent and serous MEE classifiers correctly classified all in vitro middle ear states with 100% accuracy assessed by leave-one-out and k-fold cross validation. CONCLUSIONS This proof-of-concept in vitro study addressed an unmet need by introducing a device that easily and accurately can assess middle ear effusion. Future in vivo studies aimed at collecting data from clinical settings are warranted to further elucidate the validity of the technology in diagnosing pediatric acute otitis media.
Collapse
|
9
|
Prasad A, Hasan SMA, Gartia MR. Optical Identification of Middle Ear Infection. Molecules 2020; 25:molecules25092239. [PMID: 32397569 PMCID: PMC7248855 DOI: 10.3390/molecules25092239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Ear infection is one of the most commonly occurring inflammation diseases in the world, especially for children. Almost every child encounters at least one episode of ear infection before he/she reaches the age of seven. The typical treatment currently followed by physicians is visual inspection and antibiotic prescription. In most cases, a lack of improper treatment results in severe bacterial infection. Therefore, it is necessary to design and explore advanced practices for effective diagnosis. In this review paper, we present the various types of ear infection and the related pathogens responsible for middle ear infection. We outline the conventional techniques along with clinical trials using those techniques to detect ear infections. Further, we highlight the need for emerging techniques to reduce ear infection complications. Finally, we emphasize the utility of Raman spectroscopy as a prospective non-invasive technique for the identification of middle ear infection.
Collapse
|
10
|
Dsouza R, Spillman DR, Barkalifa R, Monroy GL, Chaney EJ, White KC, Boppart SA. In vivo detection of endotracheal tube biofilms in intubated critical care patients using catheter-based optical coherence tomography. JOURNAL OF BIOPHOTONICS 2019; 12:e201800307. [PMID: 30604487 PMCID: PMC6470036 DOI: 10.1002/jbio.201800307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/21/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
The formation of biofilms in the endotracheal tubes (ETTs) of intubated patients on mechanical ventilation is associated with a greater risk of ventilator-associated pneumonia and death. New technologies are needed to detect and monitor ETTs in vivo for the presence of these biofilms. Longitudinal OCT imaging was performed in mechanically ventilated subjects at 24-hour intervals until extubation to detect the formation and temporal changes of in vivo ETT biofilms. OCT-derived attenuation coefficient images were used to differentiate between mucus and biofilm. Extubated ETTs were examined with optical and electron microscopy, and all imaging results were correlated with standard-of-care clinical test reports. OCT and attenuation coefficient images from four subjects were positive for ETT biofilms and were negative for two subjects. The processed and stained extubated ETTs and clinical reports confirmed the presence/absence of biofilms in all subjects. Our findings confirm that OCT can detect and differentiate between biofilm-positive and biofilm-negative groups (P < 10-5 ). OCT image-based features may serve as biomarkers for direct in vivo detection of ETT biofilms and help drive investigation of new management strategies to reduce the incidence of VAP.
Collapse
Affiliation(s)
- Roshan Dsouza
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois 61801, USA
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois 61801, USA
| | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois 61801, USA
| | - Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, Urbana, Illinois 61801, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois 61801, USA
| | - Karen C. White
- Critical Care Medicine, Carle Foundation Hospital, 611 W. Park Street, Urbana, Illinois 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, Urbana, Illinois 61801, USA
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, 807 S. Wright St., Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N. Wright St., Urbana, Illinois 61801, USA
| |
Collapse
|
11
|
Monroy GL, Won J, Dsouza R, Pande P, Hill MC, Porter RG, Novak MA, Spillman DR, Boppart SA. Automated classification platform for the identification of otitis media using optical coherence tomography. NPJ Digit Med 2019; 2:22. [PMID: 31304369 PMCID: PMC6550205 DOI: 10.1038/s41746-019-0094-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/27/2019] [Indexed: 02/06/2023] Open
Abstract
The diagnosis and treatment of otitis media (OM), a common childhood infection, is a significant burden on the healthcare system. Diagnosis relies on observer experience via otoscopy, although for non-specialists or inexperienced users, accurate diagnosis can be difficult. In past studies, optical coherence tomography (OCT) has been used to quantitatively characterize disease states of OM, although with the involvement of experts to interpret and correlate image-based indicators of infection with clinical information. In this paper, a flexible and comprehensive framework is presented that automatically extracts features from OCT images, classifies data, and presents clinically relevant results in a user-friendly platform suitable for point-of-care and primary care settings. This framework was used to test the discrimination between OCT images of normal controls, ears with biofilms, and ears with biofilms and middle ear fluid (effusion). Predicted future performance of this classification platform returned promising results (90%+ accuracy) in various initial tests. With integration into patient healthcare workflow, users of all levels of medical experience may be able to collect OCT data and accurately identify the presence of middle ear fluid and/or biofilms.
Collapse
Affiliation(s)
- Guillermo L Monroy
- 1Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA.,2Beckman Institute for Advanced Science and Technology, Urbana, IL USA
| | - Jungeun Won
- 1Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA.,2Beckman Institute for Advanced Science and Technology, Urbana, IL USA
| | - Roshan Dsouza
- 2Beckman Institute for Advanced Science and Technology, Urbana, IL USA
| | - Paritosh Pande
- 2Beckman Institute for Advanced Science and Technology, Urbana, IL USA
| | - Malcolm C Hill
- 3Carle Foundation Hospital, Otolaryngology, Urbana, IL USA.,4Carle Illinois College of Medicine, Urbana, IL USA
| | - Ryan G Porter
- 3Carle Foundation Hospital, Otolaryngology, Urbana, IL USA.,4Carle Illinois College of Medicine, Urbana, IL USA
| | - Michael A Novak
- 3Carle Foundation Hospital, Otolaryngology, Urbana, IL USA.,4Carle Illinois College of Medicine, Urbana, IL USA
| | - Darold R Spillman
- 2Beckman Institute for Advanced Science and Technology, Urbana, IL USA
| | - Stephen A Boppart
- 1Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA.,2Beckman Institute for Advanced Science and Technology, Urbana, IL USA.,3Carle Foundation Hospital, Otolaryngology, Urbana, IL USA.,4Carle Illinois College of Medicine, Urbana, IL USA.,5Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
12
|
Tan HEI, Santa Maria PL, Wijesinghe P, Francis Kennedy B, Allardyce BJ, Eikelboom RH, Atlas MD, Dilley RJ. Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review. Otolaryngol Head Neck Surg 2018; 159:424-438. [PMID: 29787354 DOI: 10.1177/0194599818775711] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective To evaluate the recent developments in optical coherence tomography (OCT) for tympanic membrane (TM) and middle ear (ME) imaging and to identify what further development is required for the technology to be integrated into common clinical use. Data Sources PubMed, Embase, Google Scholar, Scopus, and Web of Science. Review Methods A comprehensive literature search was performed for English language articles published from January 1966 to January 2018 with the keywords "tympanic membrane or middle ear,""optical coherence tomography," and "imaging." Conclusion Conventional imaging techniques cannot adequately resolve the microscale features of TM and ME, sometimes necessitating diagnostic exploratory surgery in challenging otologic pathology. As a high-resolution noninvasive imaging technique, OCT offers promise as a diagnostic aid for otologic conditions, such as otitis media, cholesteatoma, and conductive hearing loss. Using OCT vibrometry to image the nanoscale vibrations of the TM and ME as they conduct acoustic waves may detect the location of ossicular chain dysfunction and differentiate between stapes fixation and incus-stapes discontinuity. The capacity of OCT to image depth and thickness at high resolution allows 3-dimensional volumetric reconstruction of the ME and has potential use for reconstructive tympanoplasty planning and the follow-up of ossicular prostheses. Implications for Practice To achieve common clinical use beyond these initial discoveries, future in vivo imaging devices must feature low-cost probe or endoscopic designs and faster imaging speeds and demonstrate superior diagnostic utility to computed tomography and magnetic resonance imaging. While such technology has been available for OCT, its translation requires focused development through a close collaboration between engineers and clinicians.
Collapse
Affiliation(s)
- Hsern Ern Ivan Tan
- 1 Ear Science Institute Australia, Subiaco, Australia.,2 Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands, Australia.,3 Department of Otolaryngology-Head and Neck Surgery, Sir Charles Gairdner Hospital, Perth, Australia
| | - Peter Luke Santa Maria
- 1 Ear Science Institute Australia, Subiaco, Australia.,2 Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands, Australia.,4 Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Philip Wijesinghe
- 5 BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre; Centre for Medical Research, The University of Western Australia, Nedlands, Australia.,6 Department of Electrical, Electronic, and Computer Engineering, School of Engineering, The University of Western Australia, Nedlands, Australia
| | - Brendan Francis Kennedy
- 5 BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre; Centre for Medical Research, The University of Western Australia, Nedlands, Australia.,6 Department of Electrical, Electronic, and Computer Engineering, School of Engineering, The University of Western Australia, Nedlands, Australia
| | | | - Robert Henry Eikelboom
- 1 Ear Science Institute Australia, Subiaco, Australia.,2 Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands, Australia.,8 Department of Speech Language Pathology and Audiology, University of Pretoria, Pretoria, South Africa
| | - Marcus David Atlas
- 1 Ear Science Institute Australia, Subiaco, Australia.,2 Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands, Australia
| | - Rodney James Dilley
- 1 Ear Science Institute Australia, Subiaco, Australia.,2 Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
13
|
Monroy GL, Hong W, Khampang P, Porter RG, Novak MA, Spillman DR, Barkalifa R, Chaney EJ, Kerschner JE, Boppart SA. Direct Analysis of Pathogenic Structures Affixed to the Tympanic Membrane during Chronic Otitis Media. Otolaryngol Head Neck Surg 2018; 159:117-126. [PMID: 29587128 DOI: 10.1177/0194599818766320] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objective To characterize otitis media-associated structures affixed to the mucosal surface of the tympanic membrane (TM) in vivo and in surgically recovered in vitro samples. Study Design Prospective case series without comparison. Setting Outpatient surgical care center. Subjects and Methods Forty pediatric subjects scheduled for tympanostomy tube placement surgery were imaged intraoperatively under general anesthesia. Postmyringotomy, a portable optical coherence tomography (OCT) imaging system assessed for the presence of any biofilm affixed to the mucosal surface of the TM. Samples of suspected microbial infection-related structures were collected through the myringotomy incision. The sampled site was subsequently reimaged with OCT to confirm collection from the original image site on the TM. In vitro analysis based on confocal laser scanning microscope (CLSM) images of fluorescence in situ hybridization-tagged samples and polymerase chain reaction (PCR) provided microbiological characterization and verification of biofilm activity. Results OCT imaging was achieved for 38 of 40 subjects (95%). Images from 38 of 38 (100%) of subjects observed with OCT showed the presence of additional microbial infection-related structures. Thirty-four samples were collected from these 38 subjects. CLSM images provided evidence of clustered bacteria in 32 of 33 (97%) of samples. PCR detected the presence of active bacterial DNA signatures in 20 of 31 (65%) of samples. Conclusion PCR and CLSM analysis of fluorescence in situ hybridization-stained samples validates the presence of active bacteria that have formed into a middle ear biofilm that extends across the mucosal layer of the TM. OCT can rapidly and noninvasively identify middle ear biofilms in subjects with severe and persistent cases of otitis media.
Collapse
Affiliation(s)
- Guillermo L Monroy
- 1 Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,2 Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Wenzhou Hong
- 3 Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Ryan G Porter
- 4 Department of Otolaryngology-Head and Neck Surgery, Carle Foundation Hospital, Urbana, Illinois, USA.,5 Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael A Novak
- 4 Department of Otolaryngology-Head and Neck Surgery, Carle Foundation Hospital, Urbana, Illinois, USA.,5 Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Darold R Spillman
- 2 Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Ronit Barkalifa
- 2 Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Eric J Chaney
- 2 Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | | | - Stephen A Boppart
- 1 Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,2 Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA.,5 Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
14
|
Monroy GL, Won J, Spillman DR, Dsouza R, Boppart SA. Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-30. [PMID: 29260539 PMCID: PMC5735247 DOI: 10.1117/1.jbo.22.12.121715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 05/21/2023]
Abstract
Since the inception of optical coherence tomography (OCT), advancements in imaging system design and handheld probes have allowed for numerous advancements in disease diagnostics and characterization of the structural and optical properties of tissue. OCT system developers continue to reduce form factor and cost, while improving imaging performance (speed, resolution, etc.) and flexibility for applicability in a broad range of fields, and nearly every clinical specialty. An extensive array of components to construct customized systems has also become available, with a range of commercial entities that produce high-quality products, from single components to full systems, for clinical and research use. Many advancements in the development of these miniaturized and portable systems can be linked back to a specific challenge in academic research, or a clinical need in medicine or surgery. Handheld OCT systems are discussed and explored for various applications. Handheld systems are discussed in terms of their relative level of portability and form factor, with mention of the supporting technologies and surrounding ecosystem that bolstered their development. Additional insight from our efforts to implement systems in several clinical environments is provided. The trend toward well-designed, efficient, and compact handheld systems paves the way for more widespread adoption of OCT into point-of-care or point-of-procedure applications in both clinical and commercial settings.
Collapse
Affiliation(s)
- Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Jungeun Won
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Roshan Dsouza
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- Carle-Illinois College of Medicine, Urbana, Illinois, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|
15
|
Monroy GL, Pande P, Nolan RM, Shelton RL, Porter RG, Novak MA, Spillman DR, Chaney EJ, McCormick DT, Boppart SA. Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-11. [PMID: 29275547 PMCID: PMC5745859 DOI: 10.1117/1.jbo.22.12.121614] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 12/15/2017] [Indexed: 05/12/2023]
Abstract
In an institutional review board-approved study, 25 pediatric subjects diagnosed with chronic or recurrent otitis media were observed over a period of six months with optical coherence tomography (OCT). Subjects were followed throughout their treatment at the initial patient evaluation and preoperative consultation, surgery (intraoperative imaging), and postoperative follow-up, followed by an additional six months of records-based observation. At each time point, the tympanic membrane (at the light reflex region) and directly adjacent middle-ear cavity were observed in vivo with a handheld OCT probe and portable system. Imaging results were compared with clinical outcomes to correlate the clearance of symptoms in relation to changes in the image-based features of infection. OCT images of most all participants showed the presence of additional infection-related biofilm structures during their initial consultation visit and similarly for subjects imaged intraoperatively before myringotomy. Subjects with successful treatment (no recurrence of infectious symptoms) had no additional structures visible in OCT images during the postoperative visit. OCT image findings suggest surgical intervention consisting of myringotomy and tympanostomy tube placement provides a means to clear the middle ear of infection-related components, including middle-ear fluid and biofilms. Furthermore, OCT was demonstrated as a rapid diagnostic tool to prospectively monitor patients in both outpatient and surgical settings.
Collapse
Affiliation(s)
- Guillermo L. Monroy
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Paritosh Pande
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Ryan M. Nolan
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Ryan L. Shelton
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Ryan G. Porter
- Carle Foundation Hospital, Department of Otolaryngology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Carle–Illinois College of Medicine, Urbana, Illinois, United States
| | - Michael A. Novak
- Carle Foundation Hospital, Department of Otolaryngology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Carle–Illinois College of Medicine, Urbana, Illinois, United States
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | | | - Stephen A. Boppart
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Carle–Illinois College of Medicine, Urbana, Illinois, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|