1
|
Hüsser AM, Vannasing P, Tremblay J, Osterman B, Lortie A, Diadori P, Major P, Rossignol E, Roger K, Fourdain S, Provost S, Maalouf Y, Nguyen DK, Gallagher A. Brain language networks and cognitive outcomes in children with frontotemporal lobe epilepsy. Front Hum Neurosci 2023; 17:1253529. [PMID: 37964801 PMCID: PMC10641510 DOI: 10.3389/fnhum.2023.1253529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Pediatric frontal and temporal lobe epilepsies (FLE, TLE) have been associated with language impairments and structural and functional brain alterations. However, there is no clear consensus regarding the specific patterns of cerebral reorganization of language networks in these patients. The current study aims at characterizing the cerebral language networks in children with FLE or TLE, and the association between brain network characteristics and cognitive abilities. Methods Twenty (20) children with FLE or TLE aged between 6 and 18 years and 29 age- and sex-matched healthy controls underwent a neuropsychological evaluation and a simultaneous functional near-infrared spectroscopy and electroencephalography (fNIRS-EEG) recording at rest and during a receptive language task. EEG was used to identify potential subclinical seizures in patients. We removed these time intervals from the fNIRS signal to investigate language brain networks and not epileptogenic networks. Functional connectivity matrices on fNIRS oxy-hemoglobin concentration changes were computed using cross-correlations between all channels. Results and discussion Group comparisons of residual matrices (=individual task-based matrix minus individual resting-state matrix) revealed significantly reduced connectivity within the left and between hemispheres, increased connectivity within the right hemisphere and higher right hemispheric local efficiency for the epilepsy group compared to the control group. The epilepsy group had significantly lower cognitive performance in all domains compared to their healthy peers. Epilepsy patients' local network efficiency in the left hemisphere was negatively associated with the estimated IQ (p = 0.014), suggesting that brain reorganization in response to FLE and TLE does not allow for an optimal cognitive development.
Collapse
Affiliation(s)
- Alejandra M. Hüsser
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Phetsamone Vannasing
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
| | - Julie Tremblay
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
| | - Bradley Osterman
- Division of Neurology, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Division of Pediatric Neurology, Montreal Children’s Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Anne Lortie
- Division of Neurology, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Paola Diadori
- Division of Neurology, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Philippe Major
- Division of Neurology, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Elsa Rossignol
- Division of Neurology, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Kassandra Roger
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Solène Fourdain
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Sarah Provost
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Yara Maalouf
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Dang Khoa Nguyen
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- CHUM Research Center, Université de Montréal, Montreal, QC, Canada
| | - Anne Gallagher
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
2
|
Gallagher A, Wallois F, Obrig H. Functional near-infrared spectroscopy in pediatric clinical research: Different pathophysiologies and promising clinical applications. NEUROPHOTONICS 2023; 10:023517. [PMID: 36873247 PMCID: PMC9982436 DOI: 10.1117/1.nph.10.2.023517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Over its 30 years of existence, functional near-infrared spectroscopy (fNIRS) has matured into a highly versatile tool to study brain function in infants and young children. Its advantages, amongst others, include its ease of application and portability, the option to combine it with electrophysiology, and its relatively good tolerance to movement. As shown by the impressive body of fNIRS literature in the field of cognitive developmental neuroscience, the method's strengths become even more relevant for (very) young individuals who suffer from neurological, behavioral, and/or cognitive impairment. Although a number of studies have been conducted with a clinical perspective, fNIRS cannot yet be considered as a truly clinical tool. The first step has been taken in this direction by studies exploring options in populations with well-defined clinical profiles. To foster further progress, here, we review several of these clinical approaches to identify the challenges and perspectives of fNIRS in the field of developmental disorders. We first outline the contributions of fNIRS in selected areas of pediatric clinical research: epilepsy, communicative and language disorders, and attention-deficit/hyperactivity disorder. We provide a scoping review as a framework to allow the highlighting of specific and general challenges of using fNIRS in pediatric research. We also discuss potential solutions and perspectives on the broader use of fNIRS in the clinical setting. This may be of use to future research, targeting clinical applications of fNIRS in children and adolescents.
Collapse
Affiliation(s)
- Anne Gallagher
- CHU Sainte-Justine University Hospital, Université de Montréal, LIONLab, Cerebrum, Department of Psychology, Montréal, Quebec, Canada
| | - Fabrice Wallois
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, Amiens, France
| | - Hellmuth Obrig
- University Hospital and Faculty of Medicine Leipzig/Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Clinic for Cognitive Neurology, Leipzig, Germany
| |
Collapse
|
3
|
Hüsser A, Caron-Desrochers L, Tremblay J, Vannasing P, Martínez-Montes E, Gallagher A. Parallel factor analysis for multidimensional decomposition of functional near-infrared spectroscopy data. NEUROPHOTONICS 2022; 9:045004. [PMID: 36405999 PMCID: PMC9665873 DOI: 10.1117/1.nph.9.4.045004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Current techniques for data analysis in functional near-infrared spectroscopy (fNIRS), such as artifact correction, do not allow to integrate the information originating from both wavelengths, considering only temporal and spatial dimensions of the signal's structure. Parallel factor analysis (PARAFAC) has previously been validated as a multidimensional decomposition technique in other neuroimaging fields. AIM We aimed to introduce and validate the use of PARAFAC for the analysis of fNIRS data, which is inherently multidimensional (time, space, and wavelength). APPROACH We used data acquired in 17 healthy adults during a verbal fluency task to compare the efficacy of PARAFAC for motion artifact correction to traditional two-dimensional decomposition techniques, i.e., target principal (tPCA) and independent component analysis (ICA). Correction performance was further evaluated under controlled conditions with simulated artifacts and hemodynamic response functions. RESULTS PARAFAC achieved significantly higher improvement in data quality as compared to tPCA and ICA. Correction in several simulated signals further validated its use and promoted it as a robust method independent of the artifact's characteristics. CONCLUSIONS This study describes the first implementation of PARAFAC in fNIRS and provides validation for its use to correct artifacts. PARAFAC is a promising data-driven alternative for multidimensional data analyses in fNIRS and this study paves the way for further applications.
Collapse
Affiliation(s)
- Alejandra Hüsser
- Research Center of the Sainte-Justine University Hospital, Neurodevelopmental Optical Imaging Laboratory (LIONlab), Montreal, Quebec, Canada
- Université de Montréal, Department of Psychology, Montréal, Quebec, Canada
| | - Laura Caron-Desrochers
- Research Center of the Sainte-Justine University Hospital, Neurodevelopmental Optical Imaging Laboratory (LIONlab), Montreal, Quebec, Canada
- Université de Montréal, Department of Psychology, Montréal, Quebec, Canada
| | - Julie Tremblay
- Research Center of the Sainte-Justine University Hospital, Neurodevelopmental Optical Imaging Laboratory (LIONlab), Montreal, Quebec, Canada
| | - Phetsamone Vannasing
- Research Center of the Sainte-Justine University Hospital, Neurodevelopmental Optical Imaging Laboratory (LIONlab), Montreal, Quebec, Canada
| | | | - Anne Gallagher
- Research Center of the Sainte-Justine University Hospital, Neurodevelopmental Optical Imaging Laboratory (LIONlab), Montreal, Quebec, Canada
- Université de Montréal, Department of Psychology, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Lanka P, Bortfeld H, Huppert TJ. Correction of global physiology in resting-state functional near-infrared spectroscopy. NEUROPHOTONICS 2022; 9:035003. [PMID: 35990173 PMCID: PMC9386281 DOI: 10.1117/1.nph.9.3.035003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/08/2022] [Indexed: 05/30/2023]
Abstract
Significance: Resting-state functional connectivity (RSFC) analyses of functional near-infrared spectroscopy (fNIRS) data reveal cortical connections and networks across the brain. Motion artifacts and systemic physiology in evoked fNIRS signals present unique analytical challenges, and methods that control for systemic physiological noise have been explored. Whether these same methods require modification when applied to resting-state fNIRS (RS-fNIRS) data remains unclear. Aim: We systematically examined the sensitivity and specificity of several RSFC analysis pipelines to identify the best methods for correcting global systemic physiological signals in RS-fNIRS data. Approach: Using numerically simulated RS-fNIRS data, we compared the rates of true and false positives for several connectivity analysis pipelines. Their performance was scored using receiver operating characteristic analysis. Pipelines included partial correlation and multivariate Granger causality, with and without short-separation measurements, and a modified multivariate causality model that included a non-traditional zeroth-lag cross term. We also examined the effects of pre-whitening and robust statistical estimators on performance. Results: Consistent with previous work on bivariate correlation models, our results demonstrate that robust statistics and pre-whitening are effective methods to correct for motion artifacts and autocorrelation in the fNIRS time series. Moreover, we found that pre-filtering using principal components extracted from short-separation fNIRS channels as part of a partial correlation model was most effective in reducing spurious correlations due to shared systemic physiology when the two signals of interest fluctuated synchronously. However, when there was a temporal lag between the signals, a multivariate Granger causality test incorporating the short-separation channels was better. Since it is unknown if such a lag exists in experimental data, we propose a modified version of Granger causality that includes the non-traditional zeroth-lag term as a compromising solution. Conclusions: A combination of pre-whitening, robust statistical methods, and partial correlation in the processing pipeline to reduce autocorrelation, motion artifacts, and global physiology are suggested for obtaining statistically valid connectivity metrics with RS-fNIRS. Further studies should validate the effectiveness of these methods using human data.
Collapse
Affiliation(s)
- Pradyumna Lanka
- University of California, Merced, Department of Psychological Sciences, Merced, California, United States
| | - Heather Bortfeld
- University of California, Merced, Department of Psychological Sciences, Merced, California, United States
- University of California, Merced, Department of Cognitive and Information Sciences, Merced, California, United States
| | - Theodore J. Huppert
- University of Pittsburgh, Department of Electrical and Computer Engineering, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
LIONirs: flexible Matlab toolbox for fNIRS data analysis. J Neurosci Methods 2022; 370:109487. [DOI: 10.1016/j.jneumeth.2022.109487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
|
6
|
Tung H, Lin WH, Lan TH, Hsieh PF, Chiang MC, Lin YY, Peng SJ. Network reorganization during verbal fluency task in fronto-temporal epilepsy: A functional near-infrared spectroscopy study. J Psychiatr Res 2021; 138:541-549. [PMID: 33990025 DOI: 10.1016/j.jpsychires.2021.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/25/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
This is the first study to use functional near-infrared spectroscopy (fNIRS) to investigate how the lateralization of the epileptogenic zone affects the reconfiguration of task-related network patterns. Eleven left fronto-temporal epilepsy (L-FTE) and 11 right fronto-temporal epilepsy (R-FTE), as well as 22 age- and gender-matched controls, were enrolled. Signals from 52-channel fNIRS were recorded while the subject was undertaking verbal fluency tasks (VFTs), which included categorical (CFT) and letter (LFT) fluency tasks. Three analytic methods were used to study the network topology: network-based analysis, hub identification, and proportional threshold to select the top 20% strongest connections for both graph theory parameters and clinical correlation. Performance of CFT is accomplished primarily using the ventral pathway, and bilateral ventral pathways are augmented in fronto-temporal epilepsy patients by strengthening the inter-hemispheric connections, especially for R-FTE. LFT mainly employed the dorsal pathway, and further prioritized the left dorsal pathway in strengthening intra-hemispheric connections in fronto-temporal epilepsy, especially L-FTE. The top 20% of the strongest connections only present differences in CFT network compared with the controls. R-FTE increased inter-hemispheric network density, while L-FTE decreased inter-hemispheric average characteristic path length. Accumulative seizure burden only affects L-FTE network. Better LFT performance and longer educational years seem to promote left fronto-temporal networks, and decreased the demand from RR intra-hemispheric connectivity in L-FTE. LFT scores in R-FTE are maintained by preserved RR intra-hemispheric networks. However, CFT scores and educational years seem to have no effect on the CFT network topology in both FTE.
Collapse
Affiliation(s)
- Hsin Tung
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taiwan; Center of Faculty Development, Taichung Veterans General Hospital, Taiwan; Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taiwan
| | - Wei-Hao Lin
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuo-Hung Lan
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Peiyuan F Hsieh
- Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taiwan
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taiwan; Department of Critical Care Medicine, Taipei Veterans General Hospital, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Yeung MK. An optical window into brain function in children and adolescents: A systematic review of functional near-infrared spectroscopy studies. Neuroimage 2020; 227:117672. [PMID: 33359349 DOI: 10.1016/j.neuroimage.2020.117672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Despite decades of research, our understanding of functional brain development throughout childhood and adolescence remains limited due to the challenges posed by certain neuroimaging modalities. Recently, there has been a growing interest in using functional near-infrared spectroscopy (fNIRS) to elucidate the neural basis of cognitive and socioemotional development and identify the factors shaping these types of development. This article, focusing on the fNIRS methods, presents an up-to-date systematic review of fNIRS studies addressing the effects of age and other factors on brain functions in children and adolescents. Literature searches were conducted using PubMed and PsycINFO. A total of 79 fNIRS studies involving healthy individuals aged 3-17 years that were published in peer-reviewed journals in English before July 2020 were included. Six methodological aspects of these studies were evaluated, including the research design, experimental paradigm, fNIRS measurement, data preprocessing, statistical analysis, and result presentation. The risk of bias, such as selective outcome reporting, was assessed throughout the review. A qualitative synthesis of study findings in terms of the factor effects on changes in oxyhemoglobin concentration was also performed. This unregistered review highlights the strengths and limitations of the existing literature and suggests directions for future research to facilitate the improved use of fNIRS in developmental cognitive neuroscience research.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
8
|
Hu Z, Liu G, Dong Q, Niu H. Applications of Resting-State fNIRS in the Developing Brain: A Review From the Connectome Perspective. Front Neurosci 2020; 14:476. [PMID: 32581671 PMCID: PMC7284109 DOI: 10.3389/fnins.2020.00476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Early brain development from infancy through childhood is closely related to the development of cognition and behavior in later life. Human brain connectome is a novel framework for describing topological organization of the developing brain. Resting-state functional near-infrared spectroscopy (fNIRS), with a natural scanning environment, low cost, and high portability, is considered as an emerging imaging technique and has shown valuable potential in exploring brain network architecture and its changes during the development. Here, we review the recent advances involving typical and atypical development of the brain connectome from neonates to children using resting-state fNIRS imaging. This review highlights that the combination of brain connectome and resting-state fNIRS imaging offers a promising framework for understanding human brain development.
Collapse
Affiliation(s)
- Zhishan Hu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Guangfang Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Optics Based Label-Free Techniques and Applications in Brain Monitoring. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) has been utilized already around three decades for monitoring the brain, in particular, oxygenation changes in the cerebral cortex. In addition, other optical techniques are currently developed for in vivo imaging and in the near future can be potentially used more in human brain research. This paper reviews the most common label-free optical technologies exploited in brain monitoring and their current and potential clinical applications. Label-free tissue monitoring techniques do not require the addition of dyes or molecular contrast agents. The following optical techniques are considered: fNIRS, diffuse correlations spectroscopy (DCS), photoacoustic imaging (PAI) and optical coherence tomography (OCT). Furthermore, wearable optical brain monitoring with the most common applications is discussed.
Collapse
|
10
|
Almajidy RK, Mankodiya K, Abtahi M, Hofmann UG. A Newcomer's Guide to Functional Near Infrared Spectroscopy Experiments. IEEE Rev Biomed Eng 2019; 13:292-308. [PMID: 31634142 DOI: 10.1109/rbme.2019.2944351] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review presents a practical primer for functional near-infrared spectroscopy (fNIRS) with respect to technology, experimentation, and analysis software. Its purpose is to jump-start interested practitioners considering utilizing a non-invasive, versatile, nevertheless challenging window into the brain using optical methods. We briefly recapitulate relevant anatomical and optical foundations and give a short historical overview. We describe competing types of illumination (trans-illumination, reflectance, and differential reflectance) and data collection methods (continuous wave, time domain and frequency domain). Basic components (light sources, detection, and recording components) of fNIRS systems are presented. Advantages and limitations of fNIRS techniques are offered, followed by a list of very practical recommendations for its use. A variety of experimental and clinical studies with fNIRS are sampled, shedding light on many brain-related ailments. Finally, we describe and discuss a number of freely available analysis and presentation packages suited for data analysis. In conclusion, we recommend fNIRS due to its ever-growing body of clinical applications, state-of-the-art neuroimaging technique and manageable hardware requirements. It can be safely concluded that fNIRS adds a new arrow to the quiver of neuro-medical examinations due to both its great versatility and limited costs.
Collapse
|
11
|
Soltanlou M, Sitnikova MA, Nuerk HC, Dresler T. Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Studying Cognitive Development: The Case of Mathematics and Language. Front Psychol 2018; 9:277. [PMID: 29666589 PMCID: PMC5891614 DOI: 10.3389/fpsyg.2018.00277] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
In this review, we aim to highlight the application of functional near-infrared spectroscopy (fNIRS) as a useful neuroimaging technique for the investigation of cognitive development. We focus on brain activation changes during the development of mathematics and language skills in schoolchildren. We discuss how technical limitations of common neuroimaging techniques such as functional magnetic resonance imaging (fMRI) have resulted in our limited understanding of neural changes during development, while fNIRS would be a suitable and child-friendly method to examine cognitive development. Moreover, this technique enables us to go to schools to collect large samples of data from children in ecologically valid settings. Furthermore, we report findings of fNIRS studies in the fields of mathematics and language, followed by a discussion of the outlook of fNIRS in these fields. We suggest fNIRS as an additional technique to track brain activation changes in the field of educational neuroscience.
Collapse
Affiliation(s)
- Mojtaba Soltanlou
- Department of Psychology, University of Tübingen, Tübingen, Germany.,LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| | | | - Hans-Christoph Nuerk
- Department of Psychology, University of Tübingen, Tübingen, Germany.,LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany.,Leibniz-Institut für Wissensmedien, Tübingen, Germany
| | - Thomas Dresler
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Sair HI, Agarwal S, Pillai JJ. Application of Resting State Functional MR Imaging to Presurgical Mapping. Neuroimaging Clin N Am 2017; 27:635-644. [DOI: 10.1016/j.nic.2017.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|