1
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
2
|
Poplack SP, Park EY, Ferrara KW. Optical Breast Imaging: A Review of Physical Principles, Technologies, and Clinical Applications. JOURNAL OF BREAST IMAGING 2023; 5:520-537. [PMID: 37981994 PMCID: PMC10655724 DOI: 10.1093/jbi/wbad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Optical imaging involves the propagation of light through tissue. Current optical breast imaging technologies, including diffuse optical spectroscopy, diffuse optical tomography, and photoacoustic imaging, capitalize on the selective absorption of light in the near-infrared spectrum by deoxygenated and oxygenated hemoglobin. They provide information on the morphological and functional characteristics of different tissues based on their varied interactions with light, including physiologic information on lesion vascular content and anatomic information on tissue vascularity. Fluorescent contrast agents, such as indocyanine green, are used to visualize specific tissues, molecules, or proteins depending on how and where the agent accumulates. In this review, we describe the physical principles, spectrum of technologies, and clinical applications of the most common optical systems currently being used or developed for breast imaging. Most notably, US co-registered photoacoustic imaging and US-guided diffuse optical tomography have demonstrated efficacy in differentiating benign from malignant breast masses, thereby improving the specificity of diagnostic imaging. Diffuse optical tomography and diffuse optical spectroscopy have shown promise in assessing treatment response to preoperative systemic therapy, and photoacoustic imaging and diffuse optical tomography may help predict tumor phenotype. Lastly, fluorescent imaging using indocyanine green dye performs comparably to radioisotope mapping of sentinel lymph nodes and appears to improve the outcomes of autologous tissue flap breast reconstruction.
Collapse
Affiliation(s)
- Steven P. Poplack
- Stanford University School of Medicine, Department of Radiology, Palo Alto, CA, USA
| | - Eun-Yeong Park
- Stanford University School of Medicine, Department of Radiology, Palo Alto, CA, USA
| | - Katherine W. Ferrara
- Stanford University School of Medicine, Department of Radiology, Palo Alto, CA, USA
| |
Collapse
|
3
|
Zhou X, Xia Y, Uchitel J, Collins-Jones L, Yang S, Loureiro R, Cooper RJ, Zhao H. Review of recent advances in frequency-domain near-infrared spectroscopy technologies [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:3234-3258. [PMID: 37497520 PMCID: PMC10368025 DOI: 10.1364/boe.484044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/29/2023] [Accepted: 05/25/2023] [Indexed: 07/28/2023]
Abstract
Over the past several decades, near-infrared spectroscopy (NIRS) has become a popular research and clinical tool for non-invasively measuring the oxygenation of biological tissues, with particular emphasis on applications to the human brain. In most cases, NIRS studies are performed using continuous-wave NIRS (CW-NIRS), which can only provide information on relative changes in chromophore concentrations, such as oxygenated and deoxygenated hemoglobin, as well as estimates of tissue oxygen saturation. Another type of NIRS known as frequency-domain NIRS (FD-NIRS) has significant advantages: it can directly measure optical pathlength and thus quantify the scattering and absorption coefficients of sampled tissues and provide direct measurements of absolute chromophore concentrations. This review describes the current status of FD-NIRS technologies, their performance, their advantages, and their limitations as compared to other NIRS methods. Significant landmarks of technological progress include the development of both benchtop and portable/wearable FD-NIRS technologies, sensitive front-end photonic components, and high-frequency phase measurements. Clinical applications of FD-NIRS technologies are discussed to provide context on current applications and needed areas of improvement. The review concludes by providing a roadmap toward the next generation of fully wearable, low-cost FD-NIRS systems.
Collapse
Affiliation(s)
- Xinkai Zhou
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
| | - Yunjia Xia
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Julie Uchitel
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Liam Collins-Jones
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Shufan Yang
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
- School of Computing, Engineering & Build Environment, Edinburgh Napier University, Edinburgh, UK
| | - Rui Loureiro
- Aspire CREATe, Department of Orthopaedics & Musculoskeletal Science, UCL, London, HA7 4LP, UK
| | - Robert J. Cooper
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Hubin Zhao
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| |
Collapse
|
4
|
Zhao M, Zhou M, Cao X, Feng J, Pogue BW, Paulsen KD, Jiang S. Stable tissue-mimicking phantoms for longitudinal multimodality imaging studies that incorporate optical, CT, and MRI contrast. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:046006. [PMID: 37091909 PMCID: PMC10118137 DOI: 10.1117/1.jbo.28.4.046006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Significance Tissue phantoms that mimic the optical and radiologic properties of human or animal tissue play an important role in the development, characterization, and evaluation of imaging systems. Phantoms that are easily produced and stable for longitudinal studies are highly desirable. Aim A new type of long-lasting phantom was developed with commercially available materials and was assessed for fabrication ease, stability, and optical property control. Magnetic resonance imaging (MRI) and x-ray computed tomography (CT) contrast properties were also evaluated. Approach A systematic investigation of relationships between concentrations of skin-like pigments and composite optical properties was conducted to realize optical property phantoms in the red and near-infrared (NIR) wavelength range that also offered contrast for CT and MRI. Results Phantom fabrication time was < 1 h and did not involve any heating or cooling processes. Changes in optical properties were < 2 % over a 12-month period. Phantom optical and spectral features were similar to human soft tissue over the red to NIR wavelength ranges. Pigments used in the study also had CT and MRI contrasts for multimodality imaging studies. Conclusions The phantoms described here mimic optical properties of soft tissue and are suitable for multimodality imaging studies involving CT or MRI without adding secondary contrast agents.
Collapse
Affiliation(s)
- Mengyang Zhao
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Mingwei Zhou
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Xu Cao
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Jinchao Feng
- Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing, China
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Keith D. Paulsen
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Shudong Jiang
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| |
Collapse
|
5
|
Zhang Y, Hu P, Li L, Cao R, Khadria A, Maslov K, Tong X, Zeng Y, Jiang L, Zhou Q, Wang LV. Single-shot 3D photoacoustic tomography using a single-element detector for ultrafast imaging of hemodynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532661. [PMID: 36993341 PMCID: PMC10055152 DOI: 10.1101/2023.03.14.532661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Imaging hemodynamics is crucial for the diagnosis, treatment, and prevention of vascular diseases. However, current imaging techniques are limited due to the use of ionizing radiation or contrast agents, short penetration depth, or complex and expensive data acquisition systems. Photoacoustic tomography shows promise as a solution to these issues. However, existing photoacoustic tomography methods collect signals either sequentially or through numerous detector elements, leading to either low imaging speed or high system complexity and cost. To address these issues, here we introduce a method to capture a 3D photoacoustic image of vasculature using a single laser pulse and a single-element detector that functions as 6,400 virtual ones. Our method enables ultrafast volumetric imaging of hemodynamics in the human body at up to 1 kHz and requires only a single calibration for different objects and for long-term operations. We demonstrate 3D imaging of hemodynamics at depth in humans and small animals, capturing the variability in blood flow speeds. This concept can inspire other imaging technologies and find applications such as home-care monitoring, biometrics, point-of-care testing, and wearable monitoring.
Collapse
Affiliation(s)
- Yide Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peng Hu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anjul Khadria
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xin Tong
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yushun Zeng
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Laiming Jiang
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Wada H, Yoshizawa N, Ohmae E, Ueda Y, Yoshimoto K, Mimura T, Nasu H, Asano Y, Ogura H, Sakahara H, Goshima S. Water and lipid content of breast tissue measured by six-wavelength time-domain diffuse optical spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:105002. [PMID: 36229894 PMCID: PMC9556800 DOI: 10.1117/1.jbo.27.10.105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE The water and lipid content of normal breast tissue showed mammary gland characteristics with less influence from the chest wall using six-wavelength time-domain diffuse optical spectroscopy (TD-DOS) in a reflectance geometry. AIM To determine the depth sensitivity of a six-wavelength TD-DOS system and evaluate whether the optical parameters in normal breast tissue can distinguish dense breasts from non-dense breasts. APPROACH Measurements were performed in normal breast tissue of 37 breast cancer patients. We employed a six-wavelength TD-DOS system to measure the water and lipid content in addition to the hemoglobin concentration. The breast density in mammography and optical parameters were then compared. RESULTS The depth sensitivity of the system for water and lipid content was estimated to be ∼15 mm. Our findings suggest that the influence of the chest wall on the water content is weaker than that on the total hemoglobin concentration. In data with evaluation conditions, the water content was significantly higher (p < 0.001) and the lipid content was significantly lower (p < 0.001) in dense breast tissue. The water and lipid content exhibited a high sensitivity and specificity to distinguish dense from non-dense breasts in receiver-operating-characteristic curve analysis. CONCLUSIONS With less influence from the chest wall, the water and lipid content of normal breast tissue measured by a reflectance six-wavelength TD-DOS system, together with ultrasonography, can be applied to distinguish dense from non-dense breasts.
Collapse
Affiliation(s)
- Hiroko Wada
- Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu, Japan
| | - Nobuko Yoshizawa
- Hamamatsu University School of Medicine, Department of Radiology, Hamamatsu, Japan
| | - Etsuko Ohmae
- Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu, Japan
| | - Yukio Ueda
- Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu, Japan
| | - Kenji Yoshimoto
- Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu, Japan
| | - Tetsuya Mimura
- Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu, Japan
| | - Hatsuko Nasu
- Hamamatsu University School of Medicine, Department of Radiology, Hamamatsu, Japan
| | - Yuko Asano
- Hamamatsu University School of Medicine, Department of Breast Surgery, Hamamatsu, Japan
| | - Hiroyuki Ogura
- Hamamatsu University School of Medicine, Department of Breast Surgery, Hamamatsu, Japan
| | - Harumi Sakahara
- Hamamatsu University School of Medicine, Department of Radiology, Hamamatsu, Japan
- Higashiomicity Gamo Medical Center, PET Center, Higashiomishi, Japan
| | - Satoshi Goshima
- Hamamatsu University School of Medicine, Department of Radiology, Hamamatsu, Japan
| |
Collapse
|
7
|
Reistad N, Sturesson C. Distinguishing tumor from healthy tissue in human liver ex vivo using machine learning and multivariate analysis of diffuse reflectance spectra. JOURNAL OF BIOPHOTONICS 2022; 15:e202200140. [PMID: 35860880 DOI: 10.1002/jbio.202200140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The aim of this work was to evaluate the capability of diffuse reflectance spectroscopy to distinguish malignant liver tissues from surrounding tissues and to determine whether an extended wavelength range (450-1550 nm) offers any advantages over using the conventional wavelength range. Furthermore, multivariate analysis combined with a machine learning algorithm, either linear discriminant analysis or the more advanced support vector machine, was used to discriminate between and classify freshly excised human liver specimens from 18 patients. Tumors were distinguished from surrounding liver tissues with a sensitivity of 99%, specificity of 100%, classification rate of 100% and a Matthews correlation coefficient of 100% using the extended wavelength range and a combination of principal component analysis and support vector techniques. The results indicate that this technology may be useful in clinical applications for real-time tissue diagnostics of tumor margins where rapid classification is important.
Collapse
Affiliation(s)
- Nina Reistad
- Department of Physics, Lund University, Lund, Sweden
| | - Christian Sturesson
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Warren RV, Bar-Yoseph R, Hill B, Reilly D, Chiu A, Radom-Aizik S, Cooper DM, Tromberg BJ. Diffuse optical spectroscopic method for tissue and body composition assessment. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210307R. [PMID: 35676754 PMCID: PMC9176379 DOI: 10.1117/1.jbo.27.6.065002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Growing levels of obesity and metabolic syndrome have driven demand for more advanced forms of body composition assessment. While various techniques exist to measure body composition, devices are typically expensive and not portable, involve radiation [in the case of dual-energy x-ray absorptiometry (DXA)], and are limited to analysis of adiposity while metabolic information from blood supply and oxygenation are not considered. AIM We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used to predict site-specific adiposity and percent fat (whole body) while simultaneously providing information about local tissue hemoglobin levels and oxygenation. APPROACH DOSI measures of tissue composition in gastrocnemius, quadriceps, abdomen, and biceps, DXA whole-body composition, and ultrasound-derived skin and adipose tissue thickness (SATT) in the quadriceps were obtained from 99 individuals aged 7 to 34 years old. RESULTS Various DOSI-derived parameters were correlated with SATT and an optical method is proposed for estimating SATT using a newly defined parameter, the optical fat fraction (OFF), which considers all parameters that correlate with SATT. Broadband absorption and scattering spectra from study participants with the thinnest (SATT ≈ 0.25 ± 0.02 cm) and thickest SATT (SATT ≈ 1.55 ± 0.14 cm), representing best estimates for pure in vivo lean and fatty tissue, respectively, are reported. Finally, a trained prediction model is developed which allows DOSI assessment of OFF to predict DXA body-fat percentage, demonstrating that DOSI can be used to quantify body composition. CONCLUSIONS This study shows that DOSI can be used to assess the adiposity of specific tissues or the entire human body, and the OFF parameter is defined for corroboration and further evaluation in future research.
Collapse
Affiliation(s)
- Robert V. Warren
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Ronen Bar-Yoseph
- University of California, Pediatric Exercise and Genomic Research Center, Irvine, California, United States
- Pediatric Pulmonology Institute, Ruth Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Brian Hill
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States
| | - Drew Reilly
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Abraham Chiu
- University of California, Pediatric Exercise and Genomic Research Center, Irvine, California, United States
| | - Shlomit Radom-Aizik
- University of California, Pediatric Exercise and Genomic Research Center, Irvine, California, United States
| | - Dan M. Cooper
- University of California, Institute of Clinical Translational Science and Pediatric Exercise and Genomics Research Center, School of Medicine, Department of Pediatrics, Irvine, California, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States
- National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland, United States
| |
Collapse
|
9
|
Sun N, He DM, Ye X, Bin L, Zhou Y, Deng X, Qu Y, Li Z, Cheng S, Shao S, Zhao FJ, Zhang TH, Cai J, Sun R, Liang FR. Immediate acupuncture with GB34 for biliary colic: protocol for a randomised controlled neuroimaging trial. BMJ Open 2022; 12:e050413. [PMID: 35027415 PMCID: PMC8762121 DOI: 10.1136/bmjopen-2021-050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION As the main manifestation of gallstone disease, biliary colic (BC) is an episodic attack that brings patients severe pain in the right upper abdominal quadrant. Although acupuncture has been documented with significance to lead to pain relief, the immediate analgesia of acupuncture for BC still needs to be verified, and the underlying mechanism has yet to be covered. Therefore, this trial aims first to verify the immediate pain-alleviation characteristic of acupuncture for BC, then to explore its influence on the peripheral sensitised acupoint and central brain activity. METHODS AND ANALYSIS This is a randomised controlled, paralleled clinical trial, with patients and outcome assessors blinded. Seventy-two patients with gallbladder stone disease presenting with BC will be randomised into a verum acupuncture group and the sham acupuncture group. Both groups will receive one session of immediate acupuncture treatment. Improvements in patients' BC will be evaluated by the Numeric Rating Scale, and the pain threshold of acupoints will also be detected before and after treatment. During treatment, brain neural activity will be monitored with functional near-infrared spectroscopy (fNIRS), and the needle sensation will be rated. Clinical and fNIRS data will be analysed, respectively, to validate the acupuncture effect, and correlation analysis will be conducted to investigate the relationship between pain relief and peripheral-cerebral functional changes. ETHICS AND DISSEMINATION This trial has been approved by the institutional review boards and ethics committees of the First Teaching Hospital of Chengdu University of Traditional Chinese Medicine, with the ethical approval identifier 2019 KL-029, and the institutional review boards and ethics committees of the First People's Hospital of Longquanyi District, with the ethical approval identifier AF-KY-2020071. The results of this trial will be disseminated through peer-reviewed publications and conference abstracts or posters. TRIAL REGISTRATION NUMBER CTR2000034432.
Collapse
Affiliation(s)
- Ning Sun
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dong-Mei He
- Emergency Department, The First People's Hospital of Longquanyi District, Chengdu, Sichuan, China
| | - Xiangyin Ye
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lei Bin
- Emergency Department, The First People's Hospital of Longquanyi District, Chengdu, Sichuan, China
| | - Yuanfang Zhou
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaodong Deng
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuzhu Qu
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengjie Li
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shirui Cheng
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuai Shao
- Emergency Department, The First People's Hospital of Longquanyi District, Chengdu, Sichuan, China
| | - Feng-Juan Zhao
- Science and Education Department, The First People's Hospital of Longquanyi District, Chengdu, China
| | - Tie-Huan Zhang
- Emergency Department, The First People's Hospital of Longquanyi District, Chengdu, Sichuan, China
| | - Jing Cai
- Oncology-Blood Department, The First People's Hospital of Longquanyi District, Chengdu, China
| | - Ruirui Sun
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fan-Rong Liang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Lam JH, Tu KJ, Kim S. Accurately calibrated frequency domain diffuse optical spectroscopy compared against chemical analysis of porcine adipose tissue. JOURNAL OF BIOPHOTONICS 2021; 14:e202100169. [PMID: 34498790 DOI: 10.1002/jbio.202100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Frequency domain diffuse optical spectroscopy (fdDOS) is a noninvasive technique to estimate tissue composition and hemodynamics. While fdDOS has been established as a valuable modality for clinical research, comparison of fdDOS with direct chemical analysis (CA) methods has yet to be reported. To compare the two approaches, we propose a procedure to confirm accurate calibration by use of liquid emulsion and solid silicone phantoms. Tissue fat (FAT) and water (H2 O) content of two ex vivo porcine tissue samples were optically measured by fdDOS and compared to CA values. We show an average H2 O error (fdDOS minus CA) and SD of 1.9 ± 0.2% and -0.9 ± 0.2% for the two samples. For FAT, we report a mean error of -9.3 ± 1.3% and 0.8 ± 1.3%. We also measured various body sites of a healthy human subject using fdDOS with results suggesting that accurate calibration may improve device sensitivity.
Collapse
Affiliation(s)
- Jesse H Lam
- Beckman Laser Institute Korea, Dankook University, Cheonan-si, South Korea
- Beckman Laser Institute, University of California, Irvine, California, USA
| | - Kelsey J Tu
- Department of Biomedical Engineering, Dankook University, Cheonan-si, South Korea
| | - Sehwan Kim
- Beckman Laser Institute Korea, Dankook University, Cheonan-si, South Korea
- MEDiThings, Dankook University, Cheonan-si, South Korea
| |
Collapse
|
11
|
Stillwell RA, Kitsmiller VJ, Wei AY, Chong A, Senn L, O’Sullivan TD. A scalable, multi-wavelength, broad bandwidth frequency-domain near-infrared spectroscopy platform for real-time quantitative tissue optical imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:7261-7279. [PMID: 34858713 PMCID: PMC8606133 DOI: 10.1364/boe.435913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 05/25/2023]
Abstract
Frequency-domain near-infrared spectroscopy (FD-NIRS) provides quantitative noninvasive measurements of tissue optical absorption and scattering, as well as a safe and accurate method for characterizing tissue composition and metabolism. However, the poor scalability and high complexity of most FD-NIRS systems assembled to date have contributed to its limited clinical impact. To address these shortcomings, we present a scalable, digital-based FD-NIRS platform capable of measuring optical properties and tissue chromophore concentrations in real-time. The system provides single-channel FD-NIRS amplitude/phase, optical property, and chromophore data at a maximum display rate of 36.6 kHz, 17.9 kHz, and 10.2 kHz, respectively, and can be scaled to multiple channels as well as integrated into a handheld format. The entire system is enabled by several innovations including an ultra-high-speed k-nearest neighbor lookup table method (maximum of 250,000 inversions/s for a large 2500x700 table of absorption and reduced scattering coefficients), embedded FPGA and CPU high-speed co-processing, and high-speed data transfer (due to on-board processing). We show that our 6-wavelength, broad modulation bandwidth (1-400 MHz) system can be used to perform 2D high-density spatial mapping of optical properties and high speed quantification of hemodynamics.
Collapse
Affiliation(s)
- Roy A. Stillwell
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Vincent J. Kitsmiller
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Alicia Y. Wei
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Alyssa Chong
- St. Mary’s College, Notre Dame, Indiana 46556, USA
| | - Lyla Senn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Thomas D. O’Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
12
|
Performance Assessment of a Commercial Continuous-Wave Near-Infrared Spectroscopy Tissue Oximeter for Suitability for Use in an International, Multi-Center Clinical Trial. SENSORS 2021; 21:s21216957. [PMID: 34770264 PMCID: PMC8587042 DOI: 10.3390/s21216957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 01/17/2023]
Abstract
Despite the wide range of clinical and research applications, the reliability of the absolute oxygenation measurements of continuous wave near-infrared spectroscopy sensors is often questioned, partially due to issues of standardization. In this study, we have compared the performances of 13 units of a continuous wave near-infrared spectroscopy device (PortaMon, Artinis Medical Systems, NL) to test their suitability for being used in the HEMOCOVID-19 clinical trial in 10 medical centers around the world. Detailed phantom and in vivo tests were employed to measure the precision and reproducibility of measurements of local blood oxygen saturation and total hemoglobin concentration under different conditions: for different devices used, different operators, for probe repositioning over the same location, and over time (hours/days/months). We have detected systematic differences between devices when measuring phantoms (inter-device variability, <4%), which were larger than the intra-device variability (<1%). This intrinsic variability is in addition to the variability during in vivo measurements on the forearm muscle resulting from errors in probe positioning and intrinsic physiological noise (<9%), which was also larger than the inter-device differences (<3%) during the same test. Lastly, we have tested the reproducibility of the protocol of the HEMOCOVID-19 clinical trial; that is, forearm muscle oxygenation monitoring during vascular occlusion tests over days. Overall, our conclusion is that these devices can be used in multi-center trials but care must be taken to characterize, follow-up, and statistically account for inter-device variability.
Collapse
|
13
|
Cochran JM, Leproux A, Busch DR, O’Sullivan TD, Yang W, Mehta RS, Police AM, Tromberg BJ, Yodh AG. Breast cancer differential diagnosis using diffuse optical spectroscopic imaging and regression with z-score normalized data. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200331RR. [PMID: 33624457 PMCID: PMC7901858 DOI: 10.1117/1.jbo.26.2.026004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Current imaging paradigms for differential diagnosis of suspicious breast lesions suffer from high false positive rates that force patients to undergo unnecessary biopsies. Diffuse optical spectroscopic imaging (DOSI) noninvasively probes functional hemodynamic and compositional parameters in deep tissue and has been shown to be sensitive to contrast between normal and malignant tissues. AIM DOSI methods are under investigation as an adjunct to mammography and ultrasound that could reduce false positive rates and unnecessary biopsies, particularly in radiographically dense breasts. METHODS We performed a retrospective analysis of 212 subjects with suspicious breast lesions who underwent DOSI imaging. Physiological tissue parameters were z-score normalized to the patient's contralateral breast tissue and input to univariate logistic regression models to discriminate between malignant tumors and the surrounding normal tissue. The models were then used to differentiate malignant lesions from benign lesions. RESULTS Models incorporating several individual hemodynamic parameters were able to accurately distinguish malignant tumors from both the surrounding background tissue and benign lesions with area under the curve (AUC) ≥0.85. Z-score normalization improved the discriminatory ability and calibration of these predictive models relative to unnormalized or ratio-normalized data. CONCLUSIONS Findings from a large subject population study show how DOSI data normalization that accounts for normal tissue heterogeneity and quantitative statistical regression approaches can be combined to improve the ability of DOSI to diagnose malignant lesions. This improved diagnostic accuracy, combined with the modality's inherent logistical advantages of portability, low cost, and nonionizing radiation, could position DOSI as an effective adjunct modality that could be used to reduce the number of unnecessary invasive biopsies.
Collapse
Affiliation(s)
- Jeffrey M. Cochran
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Anais Leproux
- University of California Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - David R. Busch
- University of Texas Southwestern Medical Center, Departments of Anesthesiology and Pain Management & Neurology and Neurotherapeutics, Dallas, Texas, United States
| | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Wei Yang
- University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, Texas, United States
| | - Rita S. Mehta
- University of California Irvine, Department of Medicine, Irvine, California, United States
| | - Alice M. Police
- Northwell Health Breast Care Centers, Sleepy Hollow, New York, United States
| | - Bruce J. Tromberg
- University of California Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| |
Collapse
|
14
|
Campbell C, O’Sullivan TD. Quantitative diffuse optical spectroscopy for noninvasive measurements of the malaria pigment hemozoin. BIOMEDICAL OPTICS EXPRESS 2020; 11:5800-5813. [PMID: 33149987 PMCID: PMC7587291 DOI: 10.1364/boe.401771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 05/15/2023]
Abstract
Hemozoin (Hz) is a crystal by-product of hemoglobin consumption by malaria parasites. There are currently no in vivo deep tissue sensing methods that can quantify Hz presence noninvasively, which would be advantageous for malaria research and treatment. In this work, we describe the broadband near-infrared optical characterization of synthetic Hz in static and dynamic tissue-simulating phantoms. Using hybrid frequency domain and continuous-wave near-infrared spectroscopy, we quantified the broadband optical absorption and scattering spectra of Hz and identified the presence of Hz at a minimum tissue-equivalent concentration of 0.014 µg/mL in static lipid emulsion phantoms simulating human adipose. We then constructed a whole blood-containing tissue-simulating phantom and demonstrated the detection of Hz at physiologically-relevant tissue oxygen saturations ranging from 70-90%. Our results suggest that quantitative diffuse optical spectroscopy may be useful for detecting deep tissue Hz in vivo.
Collapse
|
15
|
Leyba KA, Vasudevan S, O'Sullivan TD, Goergen CJ. Evaluation of Hemodynamics in a Murine Hindlimb Ischemia Model Using Spatial Frequency Domain Imaging. Lasers Surg Med 2020; 53:557-566. [PMID: 32956499 PMCID: PMC7981275 DOI: 10.1002/lsm.23320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/09/2020] [Accepted: 08/30/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Spatial frequency domain imaging (SFDI), an optical imaging technique capable of quantitatively measuring tissue hemodynamics over a large field-of-view, has captured the interest of scientists and clinicians due to its ability to image rapidly and noninvasively. The goal of this study was to apply SFDI in a preclinical murine model to assess its ability to measure hemodynamic changes due to hindlimb ischemia in vivo longitudinally. STUDY DESIGN/MATERIALS AND METHODS Complete unilateral femoral artery ligation was performed on a total of nine C57BL/6J mice to induce ischemia in the left hindlimb. Changes in vascular perfusion in each mouse were monitored through SFDI acquisition of both the ischemic and control limbs throughout the course of 4 weeks. High-frequency pulsed-wave Doppler ultrasound was also acquired to confirm occlusion of the left femoral artery post-ligation compared with the control limb, while histological analysis was used to quantify femoral artery lumen shape and size. RESULTS Tissue oxygen saturation in the ischemic limb normalized to the control limb decreased from a ratio of 0.96 ± 0.06 at baseline to 0.86 ± 0.10 at day 1, then 0.94 ± 0.06 at day 3, followed by 0.95 ± 0.14 at day 7, 0.91 ± 0.09 at day 14, 0.90 ± 0.09 at day 21, and 1.01 ± 0.09 at day 28. CONCLUSION The results of this study indicate the utility of SFDI to detect hemodynamic changes in a preclinical murine model, as well as how to effectively use this tool to extract information regarding ischemia-induced hindlimb changes. In our model, we observed a decline in tissue oxygen saturation within one day post-ischemic injury, followed by a return to baseline values over the 4-week study period. While reducing skin artifacts and modifying camera hardware could still improve this murine imaging approach, our multimodality study presented here suggests that SFDI can be used to reliably characterize ischemia-mediated changes in a clinically relevant mouse model of peripheral arterial disease. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Katherine A Leyba
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Sandhya Vasudevan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Thomas D O'Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
16
|
de Boer LL, Kho E, Jóźwiak K, Van de Vijver KK, Vrancken Peeters MJTFD, van Duijnhoven F, Hendriks BHW, Sterenborg HJCM, Ruers TJM. Influence of neoadjuvant chemotherapy on diffuse reflectance spectra of tissue in breast surgery specimens. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:115004. [PMCID: PMC7003145 DOI: 10.1117/1.jbo.24.11.115004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 05/28/2023]
Abstract
Diffuse reflectance spectroscopy (DRS) can discriminate different tissue types based on optical characteristics. Since this technology has the ability to detect tumor tissue, several groups have proposed to use DRS for margin assessment during breast-conserving surgery for breast cancer. Nowadays, an increasing number of patients with breast cancer are being treated by neoadjuvant chemotherapy. Limited research has been published on the influence of neoadjuvant chemotherapy on the optical characteristics of the tissue. Hence, it is unclear whether margin assessment based on DRS is feasible in this specific group of patients. We investigate whether there is an effect of neoadjuvant chemotherapy on optical measurements of breast tissue. To this end, DRS measurements were performed on 92 ex-vivo breast specimens from 92 patients, treated with neoadjuvant chemotherapy and without neoadjuvant chemotherapy. Generalized estimating equation (GEE) models were generated, comparing the measurements of patients with and without neoadjuvant chemotherapy in datasets of different tissue types using a significance level of 5%. As input for the GEE models, either the intensity at a specific wavelength or a fit parameter, derived from the spectrum, was used. In the evaluation of the intensity, no influence of neoadjuvant chemotherapy was found, since none of the wavelengths were significantly different between the measurements with and the measurements without neoadjuvant chemotherapy in any of the datasets. These results were confirmed by the analysis of the fit parameters, which showed a significant difference for the amount of collagen in only one dataset. All other fit parameters were not significant for any of the datasets. These findings may indicate that assessment of the resection margin with DRS is also feasible in the growing population of breast cancer patients who receive neoadjuvant chemotherapy. However, it is possible that we did not detect neoadjuvant chemotherapy effect in the some of the datasets due to the small number of measurements in those datasets.
Collapse
Affiliation(s)
- Lisanne L. de Boer
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Esther Kho
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Katarzyna Jóźwiak
- The Netherlands Cancer Institute, Department of Epidemiology and Biostatistics, The Netherlands
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Koen K. Van de Vijver
- The Netherlands Cancer Institute, Department of Pathology, Amsterdam, The Netherlands
- Ghent University Hospital, Department of Pathology, Gent, Belgium
| | | | | | - Benno H. W. Hendriks
- Philips Research, Eindhoven, The Netherlands
- Delft University of Technology, Biomechanical Engineering Department, Delft, The Netherlands
| | - Henricus J. C. M. Sterenborg
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
- Amsterdam University Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Theo J. M. Ruers
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
- University of Twente, TNW, Technical Medical Centre, Enschede, The Netherlands
| |
Collapse
|
17
|
Cochran JM, Busch DR, Leproux A, Zhang Z, O’Sullivan TD, Cerussi AE, Carpenter PM, Mehta RS, Roblyer D, Yang W, Paulsen KD, Pogue B, Jiang S, Kaufman PA, Chung SH, Schnall M, Snyder BS, Hylton N, Carp SA, Isakoff SJ, Mankoff D, Tromberg BJ, Yodh AG. Tissue oxygen saturation predicts response to breast cancer neoadjuvant chemotherapy within 10 days of treatment. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-11. [PMID: 30338678 PMCID: PMC6194199 DOI: 10.1117/1.jbo.24.2.021202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/30/2018] [Indexed: 05/20/2023]
Abstract
Ideally, neoadjuvant chemotherapy (NAC) assessment should predict pathologic complete response (pCR), a surrogate clinical endpoint for 5-year survival, as early as possible during typical 3- to 6-month breast cancer treatments. We introduce and demonstrate an approach for predicting pCR within 10 days of initiating NAC. The method uses a bedside diffuse optical spectroscopic imaging (DOSI) technology and logistic regression modeling. Tumor and normal tissue physiological properties were measured longitudinally throughout the course of NAC in 33 patients enrolled in the American College of Radiology Imaging Network multicenter breast cancer DOSI trial (ACRIN-6691). An image analysis scheme, employing z-score normalization to healthy tissue, produced models with robust predictions. Notably, logistic regression based on z-score normalization using only tissue oxygen saturation (StO2) measured within 10 days of the initial therapy dose was found to be a significant predictor of pCR (AUC = 0.92; 95% CI: 0.82 to 1). This observation suggests that patients who show rapid convergence of tumor tissue StO2 to surrounding tissue StO2 are more likely to achieve pCR. This early predictor of pCR occurs prior to reductions in tumor size and could enable dynamic feedback for optimization of chemotherapy strategies in breast cancer.
Collapse
Affiliation(s)
- Jeffrey M. Cochran
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- Address all correspondence to: Jeffrey M. Cochran, E-mail:
| | - David R. Busch
- University of Texas Southwestern, Department of Anesthesiology and Pain Management, Dallas, Texas, United States
| | - Anaïs Leproux
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Zheng Zhang
- Brown University School of Public Health, Department of Biostatistics and Center for Statistical Sciences, Providence, Rhode Island, United States
| | - Thomas D. O’Sullivan
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Albert E. Cerussi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Philip M. Carpenter
- University of Southern California, Keck School of Medicine, Department of Pathology, Los Angeles, California, United States
| | - Rita S. Mehta
- University of California Irvine, Department of Medicine, Irvine, California, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wei Yang
- University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, Texas, United States
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Brian Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Peter A. Kaufman
- Dartmouth-Hitchcock Medical Center, Department of Hematology and Oncology, Lebanon, New Hampshire, United States
| | - So Hyun Chung
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Mitchell Schnall
- University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Bradley S. Snyder
- Brown University School of Public Health, Center for Statistical Sciences, Providence, Rhode Island, United States
| | - Nola Hylton
- University of California, Department of Radiology, San Francisco, California, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, Massachusetts, United States
| | - Steven J. Isakoff
- Massachusetts General Hospital, Department of Hematology and Oncology, Boston, Massachusetts, United States
| | - David Mankoff
- University of Pennsylvania, Division of Nuclear Medicine, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| |
Collapse
|
18
|
Kitsmiller VJ, Dummer MM, Johnson K, Cole GD, O'Sullivan TD. Frequency domain diffuse optical spectroscopy with a near-infrared tunable vertical cavity surface emitting laser. OPTICS EXPRESS 2018; 26:21033-21043. [PMID: 30119409 DOI: 10.1364/oe.26.021033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present an approach for performing frequency domain diffuse optical spectroscopy (fd-DOS) utilizing a near-infrared tunable vertical cavity surface emitting laser (VCSEL) that enables high spectral resolution optical sensing in a miniature format. The tunable VCSEL, designed specifically for deep tissue imaging and sensing, utilizes an electrothermally tunable microelectromechanical systems topside mirror to tune the laser cavity resonance. At room temperature, the laser is tunable across 14nm from 769 to 782nm with single mode CW output and a peak output power of 1.3mW. We show that the tunable VCSEL is suitable for use in fd-DOS by measuring the optical properties of a tissue-simulating phantom over the tunable range. Optical properties were recovered within 0.0006mm-1 (absorption) and 0.09mm-1 (reduced scattering) compared to a broadband fd-DOS reference system. Our results indicate that tunable VCSELs may be an attractive choice to enable high spectral resolution optical sensing in a wearable format.
Collapse
|
19
|
Deng B, Lundqvist M, Fang Q, Carp SA. Impact of errors in experimental parameters on reconstructed breast images using diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2018; 9:1130-1150. [PMID: 29541508 PMCID: PMC5846518 DOI: 10.1364/boe.9.001130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 05/18/2023]
Abstract
Near-infrared diffuse optical tomography (NIR-DOT) is an emerging technology that offers hemoglobin based, functional imaging tumor biomarkers for breast cancer management. The most promising clinical translation opportunities are in the differential diagnosis of malignant vs. benign lesions, and in early response assessment and guidance for neoadjuvant chemotherapy. Accurate quantification of the tissue oxy- and deoxy-hemoglobin concentration across the field of view, as well as repeatability during longitudinal imaging in the context of therapy guidance, are essential for the successful translation of NIR-DOT to clinical practice. The ill-posed and ill-condition nature of the DOT inverse problem makes this technique particularly susceptible to model errors that may occur, for example, when the experimental conditions do not fully match the assumptions built into the image reconstruction process. To evaluate the susceptibility of DOT images to experimental errors that might be encountered in practice for a parallel-plate NIR-DOT system, we simulated 7 different types of errors, each with a range of magnitudes. We generated simulated data by using digital breast phantoms derived from five actual mammograms of healthy female volunteers, to which we added a 1-cm tumor. After applying each of the experimental error types and magnitudes to the simulated measurements, we reconstructed optical images with and without structural prior guidance and assessed the overall error in the total hemoglobin concentrations (HbT) and in the HbT contrast between the lesion and surrounding area vs. the best-case scenarios. It is found that slight in-plane probe misalignment and plate rotation did not result in large quantification errors. However, any out-of-plane probe tilting could result in significant deterioration in lesion contrast. Among the error types investigated in this work, optical images were the least likely to be impacted by breast shape inaccuracies but suffered the largest deterioration due to cross-talk between signal channels. However, errors in optical images could be effectively controlled when experimental parameters were properly estimated during data acquisition and accounted for in the image processing procedure. Finally, optical images recovered using structural priors were, in general, less susceptible to experimental errors; however, lesion contrasts were more sensitive to errors when tumor locations were used as a priori info. Findings in this simulation study can provide guidelines for system design and operation in optical breast imaging studies.
Collapse
Affiliation(s)
- Bin Deng
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Mats Lundqvist
- Philips Healthcare, Torshamnsgatan 30A, 164 40 Kista, Sweden
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| |
Collapse
|
20
|
O’Sullivan TD, No K, Matlock A, Warren RV, Hill B, Cerussi AE, Tromberg BJ. Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-8. [PMID: 28986966 PMCID: PMC5629456 DOI: 10.1117/1.jbo.22.10.105001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/15/2017] [Indexed: 05/15/2023]
Abstract
Frequency-domain photon migration (FDPM) uses modulated laser light to measure the bulk optical properties of turbid media and is increasingly applied for noninvasive functional medical imaging in the near-infrared. Although semiconductor edge-emitting laser diodes have been traditionally used as miniature light sources for this application, we show that vertical-cavity surface-emitting lasers (VCSELs) exhibit output power and modulation performance characteristics suitable for FDPM measurements of tissue optical properties at modulation frequencies exceeding 1 GHz. We also show that an array of multiple VCSEL devices can be coherently modulated at frequencies suitable for FDPM and can improve optical power. In addition, their small size and simple packaging make them an attractive choice as components in wearable sensors and clinical FDPM-based optical spectroscopy systems. We demonstrate the benefits of VCSEL technology by fabricating and testing a unique, compact VCSEL-based optical probe with an integrated avalanche photodiode. We demonstrate sensitivity of the VCSEL-based probe to subcutaneous tissue hemodynamics that was induced during an arterial cuff occlusion of the upper arm in a human subject.
Collapse
Affiliation(s)
- Thomas D. O’Sullivan
- University of California Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, Irvine, California, United States
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Keunsik No
- Infit and Co. Inc., Seocho-gu, Seoul, Republic of Korea
| | - Alex Matlock
- University of California Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, Irvine, California, United States
| | - Robert V. Warren
- University of California Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, Irvine, California, United States
| | - Brian Hill
- University of California Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, Irvine, California, United States
| | - Albert E. Cerussi
- University of California Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, Irvine, California, United States
| | - Bruce J. Tromberg
- University of California Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, Irvine, California, United States
| |
Collapse
|