1
|
Guo Y, Lin Z, Fan Z, Tian X. Epileptic brain network mechanisms and neuroimaging techniques for the brain network. Neural Regen Res 2024; 19:2637-2648. [PMID: 38595282 PMCID: PMC11168515 DOI: 10.4103/1673-5374.391307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024] Open
Abstract
Epilepsy can be defined as a dysfunction of the brain network, and each type of epilepsy involves different brain-network changes that are implicated differently in the control and propagation of interictal or ictal discharges. Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice. An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tractography, diffusion kurtosis imaging-based fiber tractography, fiber ball imaging-based tractography, electroencephalography, functional magnetic resonance imaging, magnetoencephalography, positron emission tomography, molecular imaging, and functional ultrasound imaging have been extensively used to delineate epileptic networks. In this review, we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy, and extensively analyze the imaging mechanisms, advantages, limitations, and clinical application ranges of each technique. A greater focus on emerging advanced technologies, new data analysis software, a combination of multiple techniques, and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhonghua Lin
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhen Fan
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Chen J, Yu K, Bi Y, Ji X, Zhang D. Strategic Integration: A Cross-Disciplinary Review of the fNIRS-EEG Dual-Modality Imaging System for Delivering Multimodal Neuroimaging to Applications. Brain Sci 2024; 14:1022. [PMID: 39452034 PMCID: PMC11506513 DOI: 10.3390/brainsci14101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Recent years have seen a surge of interest in dual-modality imaging systems that integrate functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) to probe brain function. This review aims to explore the advancements and clinical applications of this technology, emphasizing the synergistic integration of fNIRS and EEG. Methods: The review begins with a detailed examination of the fundamental principles and distinctive features of fNIRS and EEG techniques. It includes critical technical specifications, data-processing methodologies, and analysis techniques, alongside an exhaustive evaluation of 30 seminal studies that highlight the strengths and weaknesses of the fNIRS-EEG bimodal system. Results: The paper presents multiple case studies across various clinical domains-such as attention-deficit hyperactivity disorder, infantile spasms, depth of anesthesia, intelligence quotient estimation, and epilepsy-demonstrating the fNIRS-EEG system's potential in uncovering disease mechanisms, evaluating treatment efficacy, and providing precise diagnostic options. Noteworthy research findings and pivotal breakthroughs further reinforce the developmental trajectory of this interdisciplinary field. Conclusions: The review addresses challenges and anticipates future directions for the fNIRS-EEG dual-modal imaging system, including improvements in hardware and software, enhanced system performance, cost reduction, real-time monitoring capabilities, and broader clinical applications. It offers researchers a comprehensive understanding of the field, highlighting the potential applications of fNIRS-EEG systems in neuroscience and clinical medicine.
Collapse
Affiliation(s)
| | | | | | | | - Dawei Zhang
- Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.C.); (K.Y.); (Y.B.); (X.J.)
| |
Collapse
|
3
|
Tajmirriahi M, Rabbani H. A Review of EEG-based Localization of Epileptic Seizure Foci: Common Points with Multimodal Fusion of Brain Data. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:19. [PMID: 39234592 PMCID: PMC11373807 DOI: 10.4103/jmss.jmss_11_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 05/24/2024] [Indexed: 09/06/2024]
Abstract
Unexpected seizures significantly decrease the quality of life in epileptic patients. Seizure attacks are caused by hyperexcitability and anatomical lesions of special regions of the brain, and cognitive impairments and memory deficits are their most common concomitant effects. In addition to seizure reduction treatments, medical rehabilitation involving brain-computer interfaces and neurofeedback can improve cognition and quality of life in patients with focal epilepsy in most cases, in particular when resective epilepsy surgery has been considered treatment in drug-resistant epilepsy. Source estimation and precise localization of epileptic foci can improve such rehabilitation and treatment. Electroencephalography (EEG) monitoring and multimodal noninvasive neuroimaging techniques such as ictal/interictal single-photon emission computerized tomography (SPECT) imaging and structural magnetic resonance imaging are common practices for the localization of epileptic foci and have been studied in several kinds of researches. In this article, we review the most recent research on EEG-based localization of seizure foci and discuss various methods, their advantages, limitations, and challenges with a focus on model-based data processing and machine learning algorithms. In addition, we survey whether combined analysis of EEG monitoring and neuroimaging techniques, which is known as multimodal brain data fusion, can potentially increase the precision of the seizure foci localization. To this end, we further review and summarize the key parameters and challenges of processing, fusion, and analysis of multiple source data, in the framework of model-based signal processing, for the development of a multimodal brain data analyzing system. This article has the potential to be used as a valuable resource for neuroscience researchers for the development of EEG-based rehabilitation systems based on multimodal data analysis related to focal epilepsy.
Collapse
Affiliation(s)
- Mahnoosh Tajmirriahi
- Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Rabbani
- Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Li B, Li M, Xia J, Jin H, Dong S, Luo J. Hybrid Integrated Wearable Patch for Brain EEG-fNIRS Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:4847. [PMID: 39123894 PMCID: PMC11314658 DOI: 10.3390/s24154847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Synchronous monitoring electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) have received significant attention in brain science research for their provision of more information on neuro-loop interactions. There is a need for an integrated hybrid EEG-fNIRS patch to synchronously monitor surface EEG and deep brain fNIRS signals. Here, we developed a hybrid EEG-fNIRS patch capable of acquiring high-quality, co-located EEG and fNIRS signals. This patch is wearable and provides easy cognition and emotion detection, while reducing the spatial interference and signal crosstalk by integration, which leads to high spatial-temporal correspondence and signal quality. The modular design of the EEG-fNIRS acquisition unit and optimized mechanical design enables the patch to obtain EEG and fNIRS signals at the same location and eliminates spatial interference. The EEG pre-amplifier on the electrode side effectively improves the acquisition of weak EEG signals and significantly reduces input noise to 0.9 μVrms, amplitude distortion to less than 2%, and frequency distortion to less than 1%. Detrending, motion correction algorithms, and band-pass filtering were used to remove physiological noise, baseline drift, and motion artifacts from the fNIRS signal. A high fNIRS source switching frequency configuration above 100 Hz improves crosstalk suppression between fNIRS and EEG signals. The Stroop task was carried out to verify its performance; the patch can acquire event-related potentials and hemodynamic information associated with cognition in the prefrontal area.
Collapse
Affiliation(s)
| | | | | | - Hao Jin
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; (B.L.)
| | - Shurong Dong
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; (B.L.)
| | | |
Collapse
|
5
|
Xu E, Vanegas M, Mireles M, Dementyev A, McCann A, Yücel M, Carp SA, Fang Q. Flexible circuit-based spatially aware modular optical brain imaging system for high-density measurements in natural settings. NEUROPHOTONICS 2024; 11:035002. [PMID: 38975286 PMCID: PMC11224775 DOI: 10.1117/1.nph.11.3.035002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Significance Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in everyday activities and environments. However, achieving robust measurements under such dynamic conditions remains a significant challenge. Aim The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide a real-time probe three-dimensional (3D) shape estimation to improve the use of fNIRS in everyday conditions. Approach The MOBI system utilizes a bendable and lightweight modular circuit-board design to enhance probe conformity to head surfaces and comfort for long-term wearability. Combined with automatic module connection recognition, the built-in orientation sensors on each module can be used to estimate optode 3D positions in real time to enable advanced tomographic data analysis and motion tracking. Results Optical characterization of the MOBI detector reports a noise equivalence power of 8.9 and 7.3 pW / Hz at 735 and 850 nm, respectively, with a dynamic range of 88 dB. The 3D optode shape acquisition yields an average error of 4.2 mm across 25 optodes in a phantom test compared with positions acquired from a digitizer. Results for initial in vivo validations, including a cuff occlusion and a finger-tapping test, are also provided. Conclusions To the best of our knowledge, the MOBI system is the first modular fNIRS system featuring fully flexible circuit boards. The self-organizing module sensor network and automatic 3D optode position acquisition, combined with lightweight modules ( 18 g / module ) and ergonomic designs, would greatly aid emerging explorations of brain function in naturalistic settings.
Collapse
Affiliation(s)
- Edward Xu
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Morris Vanegas
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Miguel Mireles
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Artem Dementyev
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, United States
| | - Ashlyn McCann
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Meryem Yücel
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Toth J, Kurtin DL, Brosnan M, Arvaneh M. Opportunities and obstacles in non-invasive brain stimulation. Front Hum Neurosci 2024; 18:1385427. [PMID: 38562225 PMCID: PMC10982339 DOI: 10.3389/fnhum.2024.1385427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Non-invasive brain stimulation (NIBS) is a complex and multifaceted approach to modulating brain activity and holds the potential for broad accessibility. This work discusses the mechanisms of the four distinct approaches to modulating brain activity non-invasively: electrical currents, magnetic fields, light, and ultrasound. We examine the dual stochastic and deterministic nature of brain activity and its implications for NIBS, highlighting the challenges posed by inter-individual variability, nebulous dose-response relationships, potential biases and neuroanatomical heterogeneity. Looking forward, we propose five areas of opportunity for future research: closed-loop stimulation, consistent stimulation of the intended target region, reducing bias, multimodal approaches, and strategies to address low sample sizes.
Collapse
Affiliation(s)
- Jake Toth
- Automatic Control and Systems Engineering, Neuroscience Institute, Insigneo Institute, University of Sheffield, Sheffield, United Kingdom
| | | | - Méadhbh Brosnan
- School of Psychology, University College Dublin, Dublin, Ireland
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Mahnaz Arvaneh
- Automatic Control and Systems Engineering, Neuroscience Institute, Insigneo Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Shu Z, Wang J, Cheng Y, Lu J, Lin J, Wang Y, Zhang X, Yu Y, Zhu Z, Han J, Wu J, Yu N. fNIRS-based graph frequency analysis to identify mild cognitive impairment in Parkinson's disease. J Neurosci Methods 2024; 402:110031. [PMID: 38040127 DOI: 10.1016/j.jneumeth.2023.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Early identification of mild cognitive impairment (MCI) is essential for its treatment and the prevention of dementia in Parkinson's disease (PD). Existing approaches are mostly based on neuropsychological assessments, while brain activation and connection have not been well considered. NEW METHOD This paper presents a neuroimaging-based graph frequency analysis method and the generated features to quantify the brain functional neurodegeneration and distinguish between PD-MCI patients and healthy controls. The Stroop color-word experiment was conducted with 20 PD-MCI patients and 34 healthy controls, and the brain activation was recorded with functional near-infrared spectroscopy (fNIRS). Then, the functional brain network was constructed based on Pearson's correlation coefficient calculation between every two fNIRS channels. Next, the functional brain network was represented as a graph and decomposed in the graph frequency domain through the graph Fourier transform (GFT) to obtain the eigenvector matrix. Total variation and weighted zero crossings of eigenvectors were defined and integrated to quantify functional interaction between brain regions and the spatial variability of the brain network in specific graph frequency ranges, respectively. After that, the features were employed in training a support vector machine (SVM) classifier. RESULTS The presented method achieved a classification accuracy of 0.833 and an F1 score of 0.877, significantly outperforming existing methods and features. COMPARISON WITH EXISTING METHODS Our method provided improved classification performance in the identification of PD-MCI. CONCLUSION The results suggest that the presented graph frequency analysis method well identify PD-MCI patients and the generated features promise functional brain biomarkers for PD-MCI diagnosis.
Collapse
Affiliation(s)
- Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300370, China
| | - Yuanyuan Cheng
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300370, China; Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, China
| | - Jianeng Lin
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, China
| | - Yue Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300370, China
| | - Yang Yu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Zhizhong Zhu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300370, China; Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China.
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin 300350, China.
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China.
| |
Collapse
|
8
|
Khaksari K, Chen WL, Chanvanichtrakool M, Taylor A, Kotla R, Gropman AL. Applications of near-infrared spectroscopy in epilepsy, with a focus on mitochondrial disorders. Neurotherapeutics 2024; 21:e00323. [PMID: 38244258 PMCID: PMC10903079 DOI: 10.1016/j.neurot.2024.e00323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Mitochondrial diseases are inherited disorders that impede the mitochondria's ability to produce sufficient energy for the cells. They can affect different parts of the body, notably the brain. Neurological symptoms and epilepsy are prevalent in patients with mitochondrial disorders. The epileptogenicity of mitochondrial disorder is a complex process involving the intricate interplay between abnormal energy metabolism and neuronal activity. Several modalities have been used to detect seizures in different disorders including mitochondrial disorders. EEG serve as the gold standard for diagnosis and localization, commonly complemented by additional imaging modalities to enhance source localization. In the current work, we propose the use of functional near-infrared spectroscopy (fNIRS) to identify the occurrence of epilepsy and seizure in patients with mitochondrial disorders. fNIRS proves an advantageous imaging technique due to its portability and insensitivity to motion especially for imaging infants and children. It has added a valuable factor to our understanding of energy metabolism and neuronal activity. Its real-time monitoring with high spatial resolution supplements traditional diagnostic tools such as EEG and provides a comprehensive understanding of seizure and epileptogenesis. The utility of fNIRS extends to its ability to detect changes in Cytochrome c oxidase (CcO) which is a crucial enzyme in cellular respiration. This facet enhances our insight into the metabolic dimension of epilepsy related to mitochondrial dysfunction. By providing valuable insights into both energy metabolism and neuronal activity, fNIRS emerges as a promising imaging technique for unveiling the complexities of mitochondrial disorders and their neurological manifestations.
Collapse
Affiliation(s)
- Kosar Khaksari
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA; Department of Neurology, George Washington University, Washington, DC, USA.
| | - Wei-Liang Chen
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA; Department of Neurology, George Washington University, Washington, DC, USA
| | - Mongkol Chanvanichtrakool
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA
| | - Alexa Taylor
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA
| | - Rohan Kotla
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA; Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | - Andrea L Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA; Department of Neurology, George Washington University, Washington, DC, USA
| |
Collapse
|
9
|
Ali MU, Zafar A, Kallu KD, Yaqub MA, Masood H, Hong KS, Bhutta MR. An Isolated CNN Architecture for Classification of Finger-Tapping Tasks Using Initial Dip Images: A Functional Near-Infrared Spectroscopy Study. Bioengineering (Basel) 2023; 10:810. [PMID: 37508837 PMCID: PMC10376657 DOI: 10.3390/bioengineering10070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
This work investigates the classification of finger-tapping task images constructed for the initial dip duration of hemodynamics (HR) associated with the small brain area of the left motor cortex using functional near-infrared spectroscopy (fNIRS). Different layers (i.e., 16-layers, 19-layers, 22-layers, and 25-layers) of isolated convolutional neural network (CNN) designed from scratch are tested to classify the right-hand thumb and little finger-tapping tasks. Functional t-maps of finger-tapping tasks (thumb, little) were constructed for various durations (0.5 to 4 s with a uniform interval of 0.5 s) for the initial dip duration using a three gamma functions-based designed HR function. The results show that the 22-layered isolated CNN model yielded the highest classification accuracy of 89.2% with less complexity in classifying the functional t-maps of thumb and little fingers associated with the same small brain area using the initial dip. The results further demonstrated that the active brain area of the two tapping tasks from the same small brain area are highly different and well classified using functional t-maps of the initial dip (0.5 to 4 s) compared to functional t-maps generated for delayed HR (14 s). This study shows that the images constructed for initial dip duration can be helpful in the future for fNIRS-based diagnosis or cortical analysis of abnormal cerebral oxygen exchange in patients.
Collapse
Affiliation(s)
- Muhammad Umair Ali
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Amad Zafar
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Karam Dad Kallu
- Department of Robotics and Intelligent Machine Engineering (RIME), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - M Atif Yaqub
- ICFO-Institut de Ciències Fotòniques the Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Haris Masood
- Electrical Engineering Department, Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
- Institute for Future, School of Automation, Qingdao University, Qingdao 266071, China
| | - Muhammad Raheel Bhutta
- Department of Electrical and Computer Engineering, University of UTAH Asia Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
10
|
Gallagher A, Wallois F, Obrig H. Functional near-infrared spectroscopy in pediatric clinical research: Different pathophysiologies and promising clinical applications. NEUROPHOTONICS 2023; 10:023517. [PMID: 36873247 PMCID: PMC9982436 DOI: 10.1117/1.nph.10.2.023517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Over its 30 years of existence, functional near-infrared spectroscopy (fNIRS) has matured into a highly versatile tool to study brain function in infants and young children. Its advantages, amongst others, include its ease of application and portability, the option to combine it with electrophysiology, and its relatively good tolerance to movement. As shown by the impressive body of fNIRS literature in the field of cognitive developmental neuroscience, the method's strengths become even more relevant for (very) young individuals who suffer from neurological, behavioral, and/or cognitive impairment. Although a number of studies have been conducted with a clinical perspective, fNIRS cannot yet be considered as a truly clinical tool. The first step has been taken in this direction by studies exploring options in populations with well-defined clinical profiles. To foster further progress, here, we review several of these clinical approaches to identify the challenges and perspectives of fNIRS in the field of developmental disorders. We first outline the contributions of fNIRS in selected areas of pediatric clinical research: epilepsy, communicative and language disorders, and attention-deficit/hyperactivity disorder. We provide a scoping review as a framework to allow the highlighting of specific and general challenges of using fNIRS in pediatric research. We also discuss potential solutions and perspectives on the broader use of fNIRS in the clinical setting. This may be of use to future research, targeting clinical applications of fNIRS in children and adolescents.
Collapse
Affiliation(s)
- Anne Gallagher
- CHU Sainte-Justine University Hospital, Université de Montréal, LIONLab, Cerebrum, Department of Psychology, Montréal, Quebec, Canada
| | - Fabrice Wallois
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, Amiens, France
| | - Hellmuth Obrig
- University Hospital and Faculty of Medicine Leipzig/Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Clinic for Cognitive Neurology, Leipzig, Germany
| |
Collapse
|
11
|
Xiong Y, Li J, Wu D, Dong F, Liu J, Jiang L, Cao J, Xu Y. Seizure detection algorithm based on fusion of spatio-temporal network constructed with dispersion index. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Eastmond C, Subedi A, De S, Intes X. Deep learning in fNIRS: a review. NEUROPHOTONICS 2022; 9:041411. [PMID: 35874933 PMCID: PMC9301871 DOI: 10.1117/1.nph.9.4.041411] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/22/2022] [Indexed: 05/28/2023]
Abstract
Significance: Optical neuroimaging has become a well-established clinical and research tool to monitor cortical activations in the human brain. It is notable that outcomes of functional near-infrared spectroscopy (fNIRS) studies depend heavily on the data processing pipeline and classification model employed. Recently, deep learning (DL) methodologies have demonstrated fast and accurate performances in data processing and classification tasks across many biomedical fields. Aim: We aim to review the emerging DL applications in fNIRS studies. Approach: We first introduce some of the commonly used DL techniques. Then, the review summarizes current DL work in some of the most active areas of this field, including brain-computer interface, neuro-impairment diagnosis, and neuroscience discovery. Results: Of the 63 papers considered in this review, 32 report a comparative study of DL techniques to traditional machine learning techniques where 26 have been shown outperforming the latter in terms of the classification accuracy. In addition, eight studies also utilize DL to reduce the amount of preprocessing typically done with fNIRS data or increase the amount of data via data augmentation. Conclusions: The application of DL techniques to fNIRS studies has shown to mitigate many of the hurdles present in fNIRS studies such as lengthy data preprocessing or small sample sizes while achieving comparable or improved classification accuracy.
Collapse
Affiliation(s)
- Condell Eastmond
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic, Department of Biomedical Engineering, Troy, New York, United States
| | - Aseem Subedi
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic, Department of Biomedical Engineering, Troy, New York, United States
| | - Suvranu De
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic, Department of Biomedical Engineering, Troy, New York, United States
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic, Department of Biomedical Engineering, Troy, New York, United States
| |
Collapse
|
13
|
Shoeibi A, Moridian P, Khodatars M, Ghassemi N, Jafari M, Alizadehsani R, Kong Y, Gorriz JM, Ramírez J, Khosravi A, Nahavandi S, Acharya UR. An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 149:106053. [DOI: 10.1016/j.compbiomed.2022.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
|
14
|
Bourguignon NJ, Bue SL, Guerrero-Mosquera C, Borragán G. Bimodal EEG-fNIRS in Neuroergonomics. Current Evidence and Prospects for Future Research. FRONTIERS IN NEUROERGONOMICS 2022; 3:934234. [PMID: 38235461 PMCID: PMC10790898 DOI: 10.3389/fnrgo.2022.934234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 01/19/2024]
Abstract
Neuroergonomics focuses on the brain signatures and associated mental states underlying behavior to design human-machine interfaces enhancing performance in the cognitive and physical domains. Brain imaging techniques such as functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) have been considered key methods for achieving this goal. Recent research stresses the value of combining EEG and fNIRS in improving these interface systems' mental state decoding abilities, but little is known about whether these improvements generalize over different paradigms and methodologies, nor about the potentialities for using these systems in the real world. We review 33 studies comparing mental state decoding accuracy between bimodal EEG-fNIRS and unimodal EEG and fNIRS in several subdomains of neuroergonomics. In light of these studies, we also consider the challenges of exploiting wearable versions of these systems in real-world contexts. Overall the studies reviewed suggest that bimodal EEG-fNIRS outperforms unimodal EEG or fNIRS despite major differences in their conceptual and methodological aspects. Much work however remains to be done to reach practical applications of bimodal EEG-fNIRS in naturalistic conditions. We consider these points to identify aspects of bimodal EEG-fNIRS research in which progress is expected or desired.
Collapse
Affiliation(s)
| | - Salvatore Lo Bue
- Department of Life Sciences, Royal Military Academy of Belgium, Brussels, Belgium
| | | | - Guillermo Borragán
- Center for Research in Cognition and Neuroscience, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Li R, Yang D, Fang F, Hong KS, Reiss AL, Zhang Y. Concurrent fNIRS and EEG for Brain Function Investigation: A Systematic, Methodology-Focused Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155865. [PMID: 35957421 PMCID: PMC9371171 DOI: 10.3390/s22155865] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 05/29/2023]
Abstract
Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) stand as state-of-the-art techniques for non-invasive functional neuroimaging. On a unimodal basis, EEG has poor spatial resolution while presenting high temporal resolution. In contrast, fNIRS offers better spatial resolution, though it is constrained by its poor temporal resolution. One important merit shared by the EEG and fNIRS is that both modalities have favorable portability and could be integrated into a compatible experimental setup, providing a compelling ground for the development of a multimodal fNIRS-EEG integration analysis approach. Despite a growing number of studies using concurrent fNIRS-EEG designs reported in recent years, the methodological reference of past studies remains unclear. To fill this knowledge gap, this review critically summarizes the status of analysis methods currently used in concurrent fNIRS-EEG studies, providing an up-to-date overview and guideline for future projects to conduct concurrent fNIRS-EEG studies. A literature search was conducted using PubMed and Web of Science through 31 August 2021. After screening and qualification assessment, 92 studies involving concurrent fNIRS-EEG data recordings and analyses were included in the final methodological review. Specifically, three methodological categories of concurrent fNIRS-EEG data analyses, including EEG-informed fNIRS analyses, fNIRS-informed EEG analyses, and parallel fNIRS-EEG analyses, were identified and explained with detailed description. Finally, we highlighted current challenges and potential directions in concurrent fNIRS-EEG data analyses in future research.
Collapse
Affiliation(s)
- Rihui Li
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
| | - Dalin Yang
- School of Mechanical Engineering, Pusan National University, Pusan 43241, Korea
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, St. Louis, MO 63110, USA
| | - Feng Fang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Pusan 43241, Korea
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
16
|
Ho TKK, Kim M, Jeon Y, Kim BC, Kim JG, Lee KH, Song JI, Gwak J. Deep Learning-Based Multilevel Classification of Alzheimer’s Disease Using Non-invasive Functional Near-Infrared Spectroscopy. Front Aging Neurosci 2022; 14:810125. [PMID: 35557842 PMCID: PMC9087351 DOI: 10.3389/fnagi.2022.810125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
The timely diagnosis of Alzheimer’s disease (AD) and its prodromal stages is critically important for the patients, who manifest different neurodegenerative severity and progression risks, to take intervention and early symptomatic treatments before the brain damage is shaped. As one of the promising techniques, functional near-infrared spectroscopy (fNIRS) has been widely employed to support early-stage AD diagnosis. This study aims to validate the capability of fNIRS coupled with Deep Learning (DL) models for AD multi-class classification. First, a comprehensive experimental design, including the resting, cognitive, memory, and verbal tasks was conducted. Second, to precisely evaluate the AD progression, we thoroughly examined the change of hemodynamic responses measured in the prefrontal cortex among four subject groups and among genders. Then, we adopted a set of DL architectures on an extremely imbalanced fNIRS dataset. The results indicated that the statistical difference between subject groups did exist during memory and verbal tasks. This presented the correlation of the level of hemoglobin activation and the degree of AD severity. There was also a gender effect on the hemoglobin changes due to the functional stimulation in our study. Moreover, we demonstrated the potential of distinguished DL models, which boosted the multi-class classification performance. The highest accuracy was achieved by Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) using the original dataset of three hemoglobin types (0.909 ± 0.012 on average). Compared to conventional machine learning algorithms, DL models produced a better classification performance. These findings demonstrated the capability of DL frameworks on the imbalanced class distribution analysis and validated the great potential of fNIRS-based approaches to be further contributed to the development of AD diagnosis systems.
Collapse
Affiliation(s)
- Thi Kieu Khanh Ho
- Department of Software, Korea National University of Transportation, Chungju, South Korea
| | - Minhee Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Younghun Jeon
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, South Korea
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Kun Ho Lee
- Gwangju Alzheimer’s Disease and Related Dementias Cohort Research Center, Chosun University, Gwangju, South Korea
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
- Korea Brain Research Institute, Daegu, South Korea
| | - Jong-In Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jeonghwan Gwak
- Department of Software, Korea National University of Transportation, Chungju, South Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, South Korea
- Department of AI Robotics Engineering, Korea National University of Transportation, Chungju, South Korea
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, South Korea
- *Correspondence: Jeonghwan Gwak, ;
| |
Collapse
|
17
|
Chu H, Cao Y, Jiang J, Yang J, Huang M, Li Q, Jiang C, Jiao X. Optimized electroencephalogram and functional near-infrared spectroscopy-based mental workload detection method for practical applications. Biomed Eng Online 2022; 21:9. [PMID: 35109879 PMCID: PMC8812267 DOI: 10.1186/s12938-022-00980-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 01/21/2022] [Indexed: 11/14/2022] Open
Abstract
Background Mental workload is a critical consideration in complex man–machine systems design. Among various mental workload detection techniques, multimodal detection techniques integrating electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals have attracted considerable attention. However, existing EEG–fNIRS-based mental workload detection methods have certain defects, such as complex signal acquisition channels and low detection accuracy, which restrict their practical application. Methods The signal acquisition configuration was optimized by analyzing the feature importance in mental workload recognition model and a more accurate and convenient EEG–fNIRS-based mental workload detection method was constructed. A classical Multi-Task Attribute Battery (MATB) task was conducted with 20 participating volunteers. Subjective scale data, 64-channel EEG data, and two-channel fNIRS data were collected. Results A higher number of EEG channels correspond to higher detection accuracy. However, there is no obvious improvement in accuracy once the number of EEG channels reaches 26, with a four-level mental workload detection accuracy of 76.25 ± 5.21%. Partial results of physiological analysis verify the results of previous studies, such as that the θ power of EEG and concentration of O2Hb in the prefrontal region increase while the concentration of HHb decreases with task difficulty. It was further observed, for the first time, that the energy of each band of EEG signals was significantly different in the occipital lobe region, and the power of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta_{1}$$\end{document}β1 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta_{2}$$\end{document}β2 bands in the occipital region increased significantly with task difficulty. The changing range and the mean amplitude of O2Hb in high-difficulty tasks were significantly higher compared with those in low-difficulty tasks. Conclusions The channel configuration of EEG–fNIRS-based mental workload detection was optimized to 26 EEG channels and two frontal fNIRS channels. A four-level mental workload detection accuracy of 76.25 ± 5.21% was obtained, which is higher than previously reported results. The proposed configuration can promote the application of mental workload detection technology in military, driving, and other complex human–computer interaction systems.
Collapse
Affiliation(s)
- Hongzuo Chu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China.,Space Engineering University, Beijing, China
| | - Yong Cao
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Jin Jiang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Jiehong Yang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China.,Space Engineering University, Beijing, China
| | - Mengyin Huang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China.,Space Engineering University, Beijing, China
| | - Qijie Li
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Changhua Jiang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China.
| | - Xuejun Jiao
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China. .,Space Engineering University, Beijing, China.
| |
Collapse
|
18
|
Abstract
In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model's fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.
Collapse
|
19
|
Cooney C, Folli R, Coyle D. A bimodal deep learning architecture for EEG-fNIRS decoding of overt and imagined speech. IEEE Trans Biomed Eng 2021; 69:1983-1994. [PMID: 34874850 DOI: 10.1109/tbme.2021.3132861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Brain-computer interfaces (BCI) studies are increasingly leveraging different attributes of multiple signal modalities simultaneously. Bimodal data acquisition protocols combining the temporal resolution of electroencephalography (EEG) with the spatial resolution of functional near-infrared spectroscopy (fNIRS) require novel approaches to decoding. METHODS We present an EEG-fNIRS Hybrid BCI that employs a new bimodal deep neural network architecture consisting of two convolutional sub-networks (subnets) to decode overt and imagined speech. Features from each subnet are fused before further feature extraction and classification. Nineteen participants performed overt and imagined speech in a novel cue-based paradigm enabling investigation of stimulus and linguistic effects on decoding. RESULTS Using the hybrid approach, classification accuracies (46.31% and 34.29% for overt and imagined speech, respectively (chance: 25%)) indicated a significant improvement on EEG used independently for imagined speech (p=0.020) while tending towards significance for overt speech (p=0.098). In comparison with fNIRS, significant improvements for both speech-types were achieved with bimodal decoding (p<0.001). There was a mean difference of ~12.02% between overt and imagined speech with accuracies as high as 87.18% and 53%. Deeper subnets enhanced performance while stimulus effected overt and imagined speech in significantly different ways. CONCLUSION The bimodal approach was a significant improvement on unimodal results for several tasks. Results indicate the potential of multi-modal deep learning for enhancing neural signal decoding. SIGNIFICANCE This novel architecture can be used to enhance speech decoding from bimodal neural signals.
Collapse
|
20
|
Wearable, Integrated EEG-fNIRS Technologies: A Review. SENSORS 2021; 21:s21186106. [PMID: 34577313 PMCID: PMC8469799 DOI: 10.3390/s21186106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 02/04/2023]
Abstract
There has been considerable interest in applying electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) simultaneously for multimodal assessment of brain function. EEG–fNIRS can provide a comprehensive picture of brain electrical and hemodynamic function and has been applied across various fields of brain science. The development of wearable, mechanically and electrically integrated EEG–fNIRS technology is a critical next step in the evolution of this field. A suitable system design could significantly increase the data/image quality, the wearability, patient/subject comfort, and capability for long-term monitoring. Here, we present a concise, yet comprehensive, review of the progress that has been made toward achieving a wearable, integrated EEG–fNIRS system. Significant marks of progress include the development of both discrete component-based and microchip-based EEG–fNIRS technologies; modular systems; miniaturized, lightweight form factors; wireless capabilities; and shared analogue-to-digital converter (ADC) architecture between fNIRS and EEG data acquisitions. In describing the attributes, advantages, and disadvantages of current technologies, this review aims to provide a roadmap toward the next generation of wearable, integrated EEG–fNIRS systems.
Collapse
|
21
|
Eken A. Assessment of flourishing levels of individuals by using resting-state fNIRS with different functional connectivity measures. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
|
23
|
Kim B, Kim H, Kim S, Hwang YR. A brief review of non-invasive brain imaging technologies and the near-infrared optical bioimaging. Appl Microsc 2021; 51:9. [PMID: 34170436 PMCID: PMC8227874 DOI: 10.1186/s42649-021-00058-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders seriously affect life quality. Therefore, non-invasive neuroimaging has received attention to monitoring and early diagnosing neural disorders to prevent their progress to a severe level. This short review briefly describes the current MRI and PET/CT techniques developed for non-invasive neuroimaging and the future direction of optical imaging techniques to achieve higher resolution and specificity using the second near-infrared (NIR-II) region of wavelength with organic molecules.
Collapse
Affiliation(s)
- Beomsue Kim
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea.
| | - Hongmin Kim
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Songhui Kim
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Young-Ran Hwang
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| |
Collapse
|
24
|
Yoo SH, Santosa H, Kim CS, Hong KS. Decoding Multiple Sound-Categories in the Auditory Cortex by Neural Networks: An fNIRS Study. Front Hum Neurosci 2021; 15:636191. [PMID: 33994978 PMCID: PMC8113416 DOI: 10.3389/fnhum.2021.636191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
This study aims to decode the hemodynamic responses (HRs) evoked by multiple sound-categories using functional near-infrared spectroscopy (fNIRS). The six different sounds were given as stimuli (English, non-English, annoying, nature, music, and gunshot). The oxy-hemoglobin (HbO) concentration changes are measured in both hemispheres of the auditory cortex while 18 healthy subjects listen to 10-s blocks of six sound-categories. Long short-term memory (LSTM) networks were used as a classifier. The classification accuracy was 20.38 ± 4.63% with six class classification. Though LSTM networks' performance was a little higher than chance levels, it is noteworthy that we could classify the data subject-wise without feature selections.
Collapse
Affiliation(s)
- So-Hyeon Yoo
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Hendrik Santosa
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
25
|
Sen K, Anderson AA, Whitehead MT, Gropman AL. Review of Multi-Modal Imaging in Urea Cycle Disorders: The Old, the New, the Borrowed, and the Blue. Front Neurol 2021; 12:632307. [PMID: 33995244 PMCID: PMC8113618 DOI: 10.3389/fneur.2021.632307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The urea cycle disorders (UCD) are rare genetic disorder due to a deficiency of one of six enzymes or two transport proteins that act to remove waste nitrogen in form of ammonia from the body. In this review, we focus on neuroimaging studies in OTCD and Arginase deficiency, two of the UCD we have extensively studied. Ornithine transcarbamylase deficiency (OTCD) is the most common of these, and X-linked. Hyperammonemia (HA) in OTCD is due to deficient protein handling. Cognitive impairments and neurobehavioral disorders have emerged as the major sequelae in Arginase deficiency and OTCD, especially in relation to executive function and working memory, impacting pre-frontal cortex (PFC). Clinical management focuses on neuroprotection from HA, as well as neurotoxicity from other known and yet unclassified metabolites. Prevention and mitigation of neurological injury is a major challenge and research focus. Given the impact of HA on neurocognitive function of UCD, neuroimaging modalities, especially multi-modality imaging platforms, can bring a wealth of information to understand the neurocognitive function and biomarkers. Such information can further improve clinical decision making, and result in better therapeutic interventions. In vivo investigations of the affected brain using multimodal neuroimaging combined with clinical and behavioral phenotyping hold promise. MR Spectroscopy has already proven as a tool to study biochemical aberrations such as elevated glutamine surrounding HA as well as to diagnose partial UCD. Functional Near Infrared Spectroscopy (fNIRS), which assesses local changes in cerebral hemodynamic levels of cortical regions, is emerging as a non-invasive technique and will serve as a surrogate to fMRI with better portability. Here we review two decades of our research using non-invasive imaging and how it has contributed to an understanding of the cognitive effects of this group of genetic conditions.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| | - Afrouz A Anderson
- Department of Research, Focus Foundation, Crofton, MD, United States
| | - Matthew T Whitehead
- Department of Radiology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| | - Andrea L Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
26
|
Khan H, Naseer N, Yazidi A, Eide PK, Hassan HW, Mirtaheri P. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review. Front Hum Neurosci 2021; 14:613254. [PMID: 33568979 PMCID: PMC7868344 DOI: 10.3389/fnhum.2020.613254] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Human gait is a complex activity that requires high coordination between the central nervous system, the limb, and the musculoskeletal system. More research is needed to understand the latter coordination's complexity in designing better and more effective rehabilitation strategies for gait disorders. Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) are among the most used technologies for monitoring brain activities due to portability, non-invasiveness, and relatively low cost compared to others. Fusing EEG and fNIRS is a well-known and established methodology proven to enhance brain-computer interface (BCI) performance in terms of classification accuracy, number of control commands, and response time. Although there has been significant research exploring hybrid BCI (hBCI) involving both EEG and fNIRS for different types of tasks and human activities, human gait remains still underinvestigated. In this article, we aim to shed light on the recent development in the analysis of human gait using a hybrid EEG-fNIRS-based BCI system. The current review has followed guidelines of preferred reporting items for systematic reviews and meta-Analyses (PRISMA) during the data collection and selection phase. In this review, we put a particular focus on the commonly used signal processing and machine learning algorithms, as well as survey the potential applications of gait analysis. We distill some of the critical findings of this survey as follows. First, hardware specifications and experimental paradigms should be carefully considered because of their direct impact on the quality of gait assessment. Second, since both modalities, EEG and fNIRS, are sensitive to motion artifacts, instrumental, and physiological noises, there is a quest for more robust and sophisticated signal processing algorithms. Third, hybrid temporal and spatial features, obtained by virtue of fusing EEG and fNIRS and associated with cortical activation, can help better identify the correlation between brain activation and gait. In conclusion, hBCI (EEG + fNIRS) system is not yet much explored for the lower limb due to its complexity compared to the higher limb. Existing BCI systems for gait monitoring tend to only focus on one modality. We foresee a vast potential in adopting hBCI in gait analysis. Imminent technical breakthroughs are expected using hybrid EEG-fNIRS-based BCI for gait to control assistive devices and Monitor neuro-plasticity in neuro-rehabilitation. However, although those hybrid systems perform well in a controlled experimental environment when it comes to adopting them as a certified medical device in real-life clinical applications, there is still a long way to go.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet—Oslo Metropolitan University, Oslo, Norway
| | - Noman Naseer
- Department of Mechatronics and Biomedical Engineering, Air University, Islamabad, Pakistan
| | - Anis Yazidi
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Hafiz Wajahat Hassan
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet—Oslo Metropolitan University, Oslo, Norway
| | - Peyman Mirtaheri
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet—Oslo Metropolitan University, Oslo, Norway
- Department of Biomedical Engineering, Michigan Technological University, Michigan, MI, United States
| |
Collapse
|
27
|
Rim B, Sung NJ, Min S, Hong M. Deep Learning in Physiological Signal Data: A Survey. SENSORS (BASEL, SWITZERLAND) 2020; 20:E969. [PMID: 32054042 PMCID: PMC7071412 DOI: 10.3390/s20040969] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
Abstract
Deep Learning (DL), a successful promising approach for discriminative and generative tasks, has recently proved its high potential in 2D medical imaging analysis; however, physiological data in the form of 1D signals have yet to be beneficially exploited from this novel approach to fulfil the desired medical tasks. Therefore, in this paper we survey the latest scientific research on deep learning in physiological signal data such as electromyogram (EMG), electrocardiogram (ECG), electroencephalogram (EEG), and electrooculogram (EOG). We found 147 papers published between January 2018 and October 2019 inclusive from various journals and publishers. The objective of this paper is to conduct a detailed study to comprehend, categorize, and compare the key parameters of the deep-learning approaches that have been used in physiological signal analysis for various medical applications. The key parameters of deep-learning approach that we review are the input data type, deep-learning task, deep-learning model, training architecture, and dataset sources. Those are the main key parameters that affect system performance. We taxonomize the research works using deep-learning method in physiological signal analysis based on: (1) physiological signal data perspective, such as data modality and medical application; and (2) deep-learning concept perspective such as training architecture and dataset sources.
Collapse
Affiliation(s)
- Beanbonyka Rim
- Department of Computer Science, Soonchunhyang University, Asan 31538, Korea
| | - Nak-Jun Sung
- Department of Computer Science, Soonchunhyang University, Asan 31538, Korea
| | - Sedong Min
- Department of Medical IT Engineering, Soonchunhyang University, Asan 31538, Korea
| | - Min Hong
- Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
28
|
Li LZ, Busch D, Yodh AG. Special Section Guest Editorial: Celebration of the Britton Chance Legacy. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-2. [PMID: 31020821 PMCID: PMC6992860 DOI: 10.1117/1.jbo.24.5.051401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This guest editorial introduces the Special Section on Metabolic Imaging and Spectroscopy: Britton Chance 105th Birthday Commemorative.
Collapse
Affiliation(s)
- Lin Z Li
- University of Pennsylvania, Department of Radiology, Perelman School of Medicine, Philadelphia, Penn
| | - David Busch
- University of Texas Southwestern Medical Center, Department of Anesthesiology and Pain Management, D
| | - Arjun G Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United
| |
Collapse
|