1
|
Kim H, Yun H, Jeong S, Lee S, Cho E, Rho J. Optical Metasurfaces for Biomedical Imaging and Sensing. ACS NANO 2025. [PMID: 39805079 DOI: 10.1021/acsnano.4c14751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields. In particular, metasurfaces have led to breakthroughs in biomedical imaging technologies, such as achromatic imaging, phase imaging, and extended depth-of-focus imaging. They have also advanced cutting-edge biosensing technologies, featuring high-quality factor resonators and near-field enhancements. As the demand for device miniaturization and system integration increases, metasurfaces are expected to play a pivotal role in the development of next-generation biomedical devices. In this review, we explore the latest advancements in the use of metasurfaces for biomedical applications, with a particular focus on imaging and sensing. Additionally, we discuss future directions aimed at transforming the biomedical field by leveraging the full potential of metasurfaces to provide compact, high-performance solutions for a wide range of applications.
Collapse
Affiliation(s)
- Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Heechang Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sebin Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seokho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunseo Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSCTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Xue C, Yin Y, Xu X, Tian K, Su J, Hu G. Particle manipulation under X-force fields. LAB ON A CHIP 2025. [PMID: 39774586 DOI: 10.1039/d4lc00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Particle manipulation is a central technique that enhances numerous scientific and medical applications by exploiting micro- and nanoscale control within fluidic environments. In this review, we systematically explore the multifaceted domain of particle manipulation under the influence of various X-force fields, integral to lab-on-a-chip technologies. We dissect the fundamental mechanisms of hydrodynamic, gravitational, optical, magnetic, electrical, and acoustic forces and detail their individual and synergistic applications. In particular, our discourse extends to advanced multi-modal manipulation strategies that harness the combined power of these forces, revealing their enhanced efficiency and precision in complex assays and diagnostic frameworks. The integration of cutting-edge technologies such as artificial intelligence and autonomous systems further enhances the capabilities of these microfluidic platforms, leading to transformative innovations in personalized medicine and point-of-care diagnostics. This review not only highlights current technological advances, but also forecasts the trajectory of future developments, emphasizing the escalating precision and scalability essential for advancing lab-on-a-chip applications.
Collapse
Affiliation(s)
- Chundong Xue
- Institute of Cardio-cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian 116033, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Yifan Yin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Xiaoyu Xu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Kai Tian
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinghong Su
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Guoqing Hu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
3
|
Yadav DS, Savopol T. Optical tweezers in biomedical research - progress and techniques. J Med Life 2024; 17:978-993. [PMID: 39781305 PMCID: PMC11705474 DOI: 10.25122/jml-2024-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/04/2024] [Indexed: 01/12/2025] Open
Abstract
Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences. The applications of optical tweezers in biomedicine are vast, ranging from the investigation of cellular mechanical properties, such as cell stretching, membrane elasticity, and stiffness, to single-molecule studies encompassing DNA and protein mechanics, protein-DNA interactions, molecular motor functions, and pathogen-host interactions. Advancement of optical tweezers in this field includes their integration with holography, fluorescence microscopy, microfluidics, and enhancements in force sensitivity and positional accuracy. These tools have profoundly impacted the study of cellular mechanics, drug discovery processes, and disease diagnostics, providing unparalleled insights into the biophysical mechanisms underlying health and pathology.
Collapse
Key Words
- AFM, Atomic Force Microscopy
- CCD, Charge-Coupled Device
- DNA stretching
- E. Coli, Escherichia coli
- HOT, Holographic Optical Tweezers
- IVF, In-Vitro Fertilization
- ODS, Optical DNA Supercoiling
- RBC, Red Blood Cells
- RNAP, RNA Polymerase
- SLM, Spatial Light Modulator
- cell manipulation
- cell stretching
- dsDNA, Double-Stranded DNA
- elastic properties of cells
- membrane tethering
- optical tweezers
- single molecule studies
Collapse
Affiliation(s)
- Dharm Singh Yadav
- Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
4
|
Egen L, Demmel GS, Grilli M, Studier-Fischer A, Nickel F, Haney CM, Mühlbauer J, Hartung FO, Menold HS, Piazza P, Rivas JG, Checcucci E, Puliatti S, Belenchon IR, Taratkin M, Rodler S, Cacciamani G, Michel MS, Kowalewski KF. Biophotonics-Intraoperative Guidance During Partial Nephrectomy: A Systematic Review and Meta-analysis. Eur Urol Focus 2024; 10:248-258. [PMID: 38278713 DOI: 10.1016/j.euf.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
CONTEXT Partial nephrectomy (PN) with intraoperative guidance by biophotonics has the potential to improve surgical outcomes due to higher precision. However, its value remains unclear since high-level evidence is lacking. OBJECTIVE To provide a comprehensive analysis of biophotonic techniques used for intraoperative real-time assistance during PN. EVIDENCE ACQUISITION We performed a comprehensive database search based on the PICO criteria, including studies published before October 2022. Two independent reviewers screened the titles and abstracts followed by full-text screening of eligible studies. For a quantitative analysis, a meta-analysis was conducted. EVIDENCE SYNTHESIS In total, 35 studies were identified for the qualitative analysis, including 27 studies on near-infrared fluorescence (NIRF) imaging using indocyanine green, four studies on hyperspectral imaging, two studies on folate-targeted molecular imaging, and one study each on optical coherence tomography and 5-aminolevulinic acid. The meta-analysis investigated seven studies on selective arterial clamping using NIRF. There was a significantly shorter warm ischemia time in the NIRF-PN group (mean difference [MD]: -2.9; 95% confidence interval [CI]: -5.6, -0.1; p = 0.04). No differences were noted regarding transfusions (odds ratio [OR]: 0.5; 95% CI: 0.2, 1.7; p = 0.27), positive surgical margins (OR: 0.7; 95% CI: 0.2, 2.0; p = 0.46), or major complications (OR: 0.4; 95% CI: 0.1, 1.2; p = 0.08). In the NIRF-PN group, functional results were favorable at short-term follow-up (MD of glomerular filtration rate decline: 7.6; 95% CI: 4.6, 10.5; p < 0.01), but leveled off at long-term follow-up (MD: 7.0; 95% CI: -2.8, 16.9; p = 0.16). Remarkably, these findings were not confirmed by the included randomized controlled trial. CONCLUSIONS Biophotonics comprises a heterogeneous group of imaging modalities that serve intraoperative decision-making and guidance. Implementation into clinical practice and cost effectiveness are the limitations that should be addressed by future research. PATIENT SUMMARY We reviewed the application of biophotonics during partial removal of the kidney in patients with kidney cancer. Our results suggest that these techniques support the surgeon in successfully performing the challenging steps of the procedure.
Collapse
Affiliation(s)
- Luisa Egen
- Department of Urology and Urosurgery, University Medical Center Mannheim, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany.
| | - Greta S Demmel
- Department of Urology and Urosurgery, University Medical Center Mannheim, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| | - Maurizio Grilli
- Library of the Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| | - Alexander Studier-Fischer
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Nickel
- Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Caelan M Haney
- Department of Urology, University Hospital Leipzig, Leipzig, Germany
| | - Julia Mühlbauer
- Department of Urology and Urosurgery, University Medical Center Mannheim, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| | - Friedrich O Hartung
- Department of Urology and Urosurgery, University Medical Center Mannheim, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| | - Hanna S Menold
- Department of Urology and Urosurgery, University Medical Center Mannheim, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| | - Pietro Piazza
- Association of Urology Young Academic Urologist-Urotechnology Working Party, Arnhem, The Netherlands; Division of Urology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Juan Gomez Rivas
- Association of Urology Young Academic Urologist-Urotechnology Working Party, Arnhem, The Netherlands; Department of Urology, Hospital Clinico San Carlos, Madrid, Spain
| | - Enrico Checcucci
- Association of Urology Young Academic Urologist-Urotechnology Working Party, Arnhem, The Netherlands; Department of Surgery, FPO-IRCCS Candiolo Cancer Institute, Turin, Italy
| | - Stefano Puliatti
- Association of Urology Young Academic Urologist-Urotechnology Working Party, Arnhem, The Netherlands; Department of Urology, University of Modena, and Reggio Emilia, Modena, Italy
| | - Ines Rivero Belenchon
- Association of Urology Young Academic Urologist-Urotechnology Working Party, Arnhem, The Netherlands; Urology and Nephrology Department, Virgen del Rocío University Hospital, Seville, Spain
| | - Mark Taratkin
- Association of Urology Young Academic Urologist-Urotechnology Working Party, Arnhem, The Netherlands
| | - Severin Rodler
- Association of Urology Young Academic Urologist-Urotechnology Working Party, Arnhem, The Netherlands; Department of Urology, University Hospital LMU Munich, Munich, Germany
| | - Giovanni Cacciamani
- Association of Urology Young Academic Urologist-Urotechnology Working Party, Arnhem, The Netherlands; USC Institute of Urology, University of Southern California, Los Angeles, CA, USA
| | - Maurice S Michel
- Department of Urology and Urosurgery, University Medical Center Mannheim, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| | - Karl-Friedrich Kowalewski
- Department of Urology and Urosurgery, University Medical Center Mannheim, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany; Association of Urology Young Academic Urologist-Urotechnology Working Party, Arnhem, The Netherlands
| |
Collapse
|
5
|
Arias-Gonzalez JR. Optical Tweezers to Study Viruses. Subcell Biochem 2024; 105:359-399. [PMID: 39738952 DOI: 10.1007/978-3-031-65187-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids. Some aspects of the dynamic behavior of viruses and their substrates can be studied using structural and biochemical techniques. By the turn of the millennium, physical techniques have been applied to dynamic studies of viruses in which their intrinsic mechanical activity can be measured directly. Optical tweezers are a technology that can be used to measure the force, torque, and strain produced by molecular motors, as a function of time and at the single-molecule level. Thanks to this technique, some bacteriophages are now known to be powerful nanomachines; they exert force in the piconewton range and their motors work in a highly coordinated fashion for packaging the viral nucleic acid genome. Nucleic acids, whose elasticity and condensation behavior are inherently coupled to the viral packaging mechanisms, virion assembly, and virion-cell interactions are also amenable to examination with optical tweezers. In this chapter, we provide a comprehensive analysis of this laser-based tool, its combination with imaging methods, and its application to the study of viruses and viral molecules.
Collapse
|
6
|
Kollipara PS, Li X, Li J, Chen Z, Ding H, Kim Y, Huang S, Qin Z, Zheng Y. Hypothermal opto-thermophoretic tweezers. Nat Commun 2023; 14:5133. [PMID: 37612299 PMCID: PMC10447564 DOI: 10.1038/s41467-023-40865-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Optical tweezers have profound importance across fields ranging from manufacturing to biotechnology. However, the requirement of refractive index contrast and high laser power results in potential photon and thermal damage to the trapped objects, such as nanoparticles and biological cells. Optothermal tweezers have been developed to trap particles and biological cells via opto-thermophoresis with much lower laser powers. However, the intense laser heating and stringent requirement of the solution environment prevent their use for general biological applications. Here, we propose hypothermal opto-thermophoretic tweezers (HOTTs) to achieve low-power trapping of diverse colloids and biological cells in their native fluids. HOTTs exploit an environmental cooling strategy to simultaneously enhance the thermophoretic trapping force at sub-ambient temperatures and suppress the thermal damage to target objects. We further apply HOTTs to demonstrate the three-dimensional manipulation of functional plasmonic vesicles for controlled cargo delivery. With their noninvasiveness and versatile capabilities, HOTTs present a promising tool for fundamental studies and practical applications in materials science and biotechnology.
Collapse
Affiliation(s)
| | - Xiuying Li
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jingang Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Zhihan Chen
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Suichu Huang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 15001, China
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Kamanina N. Refractive Properties of Conjugated Organic Materials Doped with Fullerenes and Other Carbon-Based Nano-Objects. Polymers (Basel) 2023; 15:2819. [PMID: 37447464 DOI: 10.3390/polym15132819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Due to the high demand for optoelectronics for use in new materials and processes, as well as the search for their modeling properties, the expansion of the functionality of modified materials using nanotechnology methods is relevant and timely. In the current paper, a specific nanotechnology approach is shown to increase the refractive and photoconductive parameters of the organic conjugated materials. The sensitization process, along with laser treatment, are presented in order to improve the basic physical-chemical properties of laser, solar energy, and general photonics materials. Effective nanoparticles, such as fullerenes, shungites, reduced graphene oxides, carbon nanotubes, etc., are used in order to obtain the bathochromic shift, increase the laser-induced change in the refractive index, and amplify the charge carrier mobility of the model matrix organics sensitized with these nanoparticles. The four-wave mixing technique is applied to test the main refractive characteristics of the studied materials. Volt-current measurements are used to estimate the increased charge carrier mobility. The areas of application for the modified nanostructured plastic matrixes are discussed and extended, while also taking into account the surface relief.
Collapse
Affiliation(s)
- Natalia Kamanina
- Vavilov State Optical Institute, Kadetskaya Liniya V.O. 5/2, 199053 St. Petersburg, Russia
- Department of Photonics, St. Petersburg Electrotechnical University ("LETI"), ul. Prof. Popova 5, 197376 St. Petersburg, Russia
- Petersburg Nuclear Physics Institute, Part of Kurchatov National Research Center, 1 md. Orlova Roshcha, 188300 Gatchina, Russia
| |
Collapse
|
8
|
Lialys L, Lialys J, Salandrino A, Ackley BD, Fardad S. Optical trapping of sub-millimeter sized particles and microorganisms. Sci Rep 2023; 13:8615. [PMID: 37244967 PMCID: PMC10224970 DOI: 10.1038/s41598-023-35829-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
While optical tweezers (OT) are mostly used for confining smaller size particles, the counter-propagating (CP) dual-beam traps have been a versatile method for confining both small and larger size particles including biological specimen. However, CP traps are complex sensitive systems, requiring tedious alignment to achieve perfect symmetry with rather low trapping stiffness values compared to OT. Moreover, due to their relatively weak forces, CP traps are limited in the size of particles they can confine which is about 100 μm. In this paper, a new class of counter-propagating optical tweezers with a broken symmetry is discussed and experimentally demonstrated to trap and manipulate larger than 100 μm particles inside liquid media. Our technique exploits a single Gaussian beam folding back on itself in an asymmetrical fashion forming a CP trap capable of confining small and significantly larger particles (up to 250 μm in diameter) based on optical forces only. Such optical trapping of large-size specimen to the best of our knowledge has not been demonstrated before. The broken symmetry of the trap combined with the retro-reflection of the beam has not only significantly simplified the alignment of the system, but also made it robust to slight misalignments and enhances the trapping stiffness as shown later. Moreover, our proposed trapping method is quite versatile as it allows for trapping and translating of a wide variety of particle sizes and shapes, ranging from one micron up to a few hundred of microns including microorganisms, using very low laser powers and numerical aperture optics. This in turn, permits the integration of a wide range of spectroscopy techniques for imaging and studying the optically trapped specimen. As an example, we will demonstrate how this novel technique enables simultaneous 3D trapping and light-sheet microscopy of C. elegans worms with up to 450 µm length.
Collapse
Affiliation(s)
- Laurynas Lialys
- Department of Electrical Engineering & Computer Science, University of Kansas, Lawrence, 66045, USA
| | - Justinas Lialys
- Department of Electrical Engineering & Computer Science, University of Kansas, Lawrence, 66045, USA
| | - Alessandro Salandrino
- Department of Electrical Engineering & Computer Science, University of Kansas, Lawrence, 66045, USA
- I2S, Institute for Information Sciences, University of Kansas, Lawrence, 66045, USA
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, 66045, USA
| | - Shima Fardad
- Department of Electrical Engineering & Computer Science, University of Kansas, Lawrence, 66045, USA.
- I2S, Institute for Information Sciences, University of Kansas, Lawrence, 66045, USA.
| |
Collapse
|
9
|
Suda R, Nishizaki Y, Naruse M, Horisaki R. Double-sided computer-generated holography. OPTICS LETTERS 2023; 48:2102-2105. [PMID: 37058652 DOI: 10.1364/ol.486397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
We present a method for computer-generated holography (CGH) in which different images are reproduced on both sides of a hologram with a single illumination source. In the proposed method, we use a transmissive spatial light modulator (SLM) and a half mirror (HM) located downstream of the SLM. The light modulated by the SLM is partially reflected by the HM, and the reflected light is modulated again by the SLM for the double-sided image reproduction. We derive an algorithm for double-sided CGH and experimentally demonstrate it.
Collapse
|
10
|
Rafferty A, Vennes B, Bain A, Preston TC. Optical trapping and light scattering in atmospheric aerosol science. Phys Chem Chem Phys 2023; 25:7066-7089. [PMID: 36852581 DOI: 10.1039/d2cp05301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Aerosol particles are ubiquitous in the atmosphere, and currently contribute a large uncertainty to climate models. Part of the endeavour to reduce this uncertainty takes the form of improving our understanding of aerosol at the microphysical level, thus enabling chemical and physical processes to be more accurately represented in larger scale models. In addition to modeling efforts, there is a need to develop new instruments and methodologies to interrogate the physicochemical properties of aerosol. This perspective presents the development, theory, and application of optical trapping, a powerful tool for single particle investigations of aerosol. After providing an overview of the role of aerosol in Earth's atmosphere and the microphysics of these particles, we present a brief history of optical trapping and a more detailed look at its application to aerosol particles. We also compare optical trapping to other single particle techniques. Understanding the interaction of light with single particles is essential for interpreting experimental measurements. In the final part of this perspective, we provide the relevant formalism for understanding both elastic and inelastic light scattering for single particles. The developments discussed here go beyond Mie theory and include both how particle and beam shape affect spectra. Throughout the entirety of this work, we highlight numerous references and examples, mostly from the last decade, of the application of optical trapping to systems that are relevant to the atmospheric aerosol.
Collapse
Affiliation(s)
| | - Benjamin Vennes
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada.
| | - Alison Bain
- School of Chemistry, University of Bristol, Bristol, UK
| | - Thomas C Preston
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada. .,Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Pavelyev V, Khonina S, Degtyarev S, Tukmakov K, Reshetnikov A, Gerasimov V, Osintseva N, Knyazev B. Subwavelength Diffractive Optical Elements for Generation of Terahertz Coherent Beams with Pre-Given Polarization State. SENSORS (BASEL, SWITZERLAND) 2023; 23:1579. [PMID: 36772619 PMCID: PMC9920005 DOI: 10.3390/s23031579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Coherent terahertz beams with radial polarization of the 1st, 2nd, and 3rd orders have been generated with the use of silicon subwavelength diffractive optical elements (DOEs). Silicon elements were fabricated by a technology similar to the technology used before for the fabrication of DOEs forming laser terahertz beams with pre-given mode content. The beam of the terahertz Novosibirsk Free Electron Laser was used as the illuminating beam. The experimental results are in good agreement with the results of the computer simulation.
Collapse
Affiliation(s)
- Vladimir Pavelyev
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Svetlana Khonina
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Sergey Degtyarev
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | | | | | - Vasily Gerasimov
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
| | - Natalya Osintseva
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
| | - Boris Knyazev
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Kollipara PS, Li X, Li J, Chen Z, Ding H, Huang S, Qin Z, Zheng Y. Hypothermal opto-thermophoretic tweezers. RESEARCH SQUARE 2023:rs.3.rs-2389570. [PMID: 36711861 PMCID: PMC9882605 DOI: 10.21203/rs.3.rs-2389570/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Optical tweezers have profound importance across fields ranging from manufacturing to biotechnology. However, the requirement of refractive index contrast and high laser power results in potential photon and thermal damage to the trapped objects, such as nanoparticles and biological cells. Optothermal tweezers have been developed to trap particles and biological cells via opto-thermophoresis with much lower laser powers. However, the intense laser heating and stringent requirement of the solution environment prevent their use for general biological applications. Here, we propose hypothermal opto-thermophoretic tweezers (HOTTs) to achieve low-power trapping of diverse colloids and biological cells in their native fluids. HOTTs exploit an environmental cooling strategy to simultaneously enhance the thermophoretic trapping force at sub-ambient temperatures and suppress the thermal damage to target objects. We further apply HOTTs to demonstrate the three-dimensional manipulation of functional plasmonic vesicles for controlled cargo delivery. With their noninvasiveness and versatile capabilities, HOTTs present a promising tool for fundamental studies and practical applications in materials science and biotechnology.
Collapse
Affiliation(s)
| | - Xiuying Li
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - Jingang Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Texas, 78712, USA
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Zhihan Chen
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Texas, 78712, USA
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Suichu Huang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 15001, China
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Texas, 78712, USA
| |
Collapse
|
13
|
Mahdi Shanei M, Engay E, Käll M. Light-driven transport of microparticles with phase-gradient metasurfaces. OPTICS LETTERS 2022; 47:6428-6431. [PMID: 36538466 DOI: 10.1364/ol.478179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Optical tweezers have opened numerous possibilities for precise control of microscopic particles for applications in life science and soft matter research and technology. However, traditional optical tweezers employ bulky conventional optics that prevents construction of compact optical manipulation systems. As an alternative, we present an ultrathin silicon-based metasurface that enables simultaneous confinement and propulsion of microparticles based on a combination of intensity and phase-gradient optical forces. The metasurface is constructed as a water-immersion line-focusing element that enables trapping and transport of 2μm particles over a wide area within a thin liquid cell. We envisage that the type of multifunctional metasurfaces reported herein will play a central role in miniaturized optical sensing, driving, and sorting of microscopic objects, such as cells or other biological entities.
Collapse
|
14
|
Alali H, Ai Y, Pan YL, Videen G, Wang C. A Collection of Molecular Fingerprints of Single Aerosol Particles in Air for Potential Identification and Detection Using Optical Trapping-Raman Spectroscopy. Molecules 2022; 27:5966. [PMID: 36144702 PMCID: PMC9505655 DOI: 10.3390/molecules27185966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Characterization, identification, and detection of aerosol particles in their native atmospheric states remain a challenge. Recently, optical trapping-Raman spectroscopy (OT-RS) has been developed and demonstrated for characterization of single, airborne particles. Such particles in different chemical groups have been characterized by OT-RS in recent years and many more are being studied. In this work, we collected single-particle Raman spectra measured using the OT-RS technique and began construction of a library of OT-RS fingerprints that may be used as a reference for potential detection and identification of aerosol particles in the atmosphere. We collected OT-RS fingerprints of aerosol particles from eight different categories including carbons, bioaerosols (pollens, fungi, vitamins, spores), dusts, biological warfare agent surrogates, etc. Among the eight categories, spectral fingerprints of six groups of aerosol particles have been published previously and two other groups are new. We also discussed challenges, limitations, and advantages of using single-particle optical trapping-Raman spectroscopy for aerosol-particle characterization, identification, and detection.
Collapse
Affiliation(s)
- Haifa Alali
- Department of Physics and Astronomy, Mississippi State University, Starkville, MS 39759, USA
| | - Yukai Ai
- Department of Physics and Astronomy, Mississippi State University, Starkville, MS 39759, USA
| | - Yong-Le Pan
- DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Gorden Videen
- DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Chuji Wang
- Department of Physics and Astronomy, Mississippi State University, Starkville, MS 39759, USA
| |
Collapse
|
15
|
Lin CL, Wang SG, Tien MT, Chiang CH, Lee YC, Baldeck PL, Shin CS. A Novel Methodology for Detecting Variations in Cell Surface Antigens Using Cell-Tearing by Optical Tweezers. BIOSENSORS 2022; 12:656. [PMID: 36005053 PMCID: PMC9405593 DOI: 10.3390/bios12080656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The quantitative analysis of cell surface antigens has attracted increasing attention due to the antigenic variation recognition that can facilitate early diagnoses. This paper presents a novel methodology based on the optical "cell-tearing" and the especially proposed "dilution regulations" to detect variations in cell surface antigens. The cell attaches to the corresponding antibody-coated slide surface. Then, the cell-binding firmness between a single cell and the functionalized surface is assayed by optically tearing using gradually reduced laser powers incorporated with serial antibody dilutions. Groups B and B3 of red blood cells (RBCs) were selected as the experiment subject. The results indicate that a higher dilution called for lower power to tear off the cell binding. According to the proposed relative-quantitative analysis theory, antigenic variation can be intuitively estimated by comparing the maximum allowable dilution folds. The estimation result shows good consistency with the finding in the literature. This study suggests a novel methodology for examining the variation in cell surface antigens, expected to be widely capable with potential sensor applications not only in biochemistry and biophysics, but also in the micro-/nano- engineering field.
Collapse
Affiliation(s)
- Chih-Lang Lin
- Graduate Institute of Biotechnology and Biomedical Engineering, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
- Department of Automatic Control Engineering, Feng Chia University, Taichung City 407802, Taiwan
| | - Shyang-Guang Wang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
| | - Meng-Tsung Tien
- General Education Center, Feng Chia University, Taichung City 407802, Taiwan
| | - Chung-Han Chiang
- Graduate Institute of Biotechnology and Biomedical Engineering, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
| | - Yi-Chieh Lee
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
| | - Patrice L. Baldeck
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d’Italie, 69364 Lyon, France
| | - Chow-Shing Shin
- Department of Mechanical Engineering, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
16
|
Unksov IN, Korosec CS, Surendiran P, Verardo D, Lyttleton R, Forde NR, Linke H. Through the Eyes of Creators: Observing Artificial Molecular Motors. ACS NANOSCIENCE AU 2022; 2:140-159. [PMID: 35726277 PMCID: PMC9204826 DOI: 10.1021/acsnanoscienceau.1c00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Inspired by molecular motors in biology, there has been significant progress in building artificial molecular motors, using a number of quite distinct approaches. As the constructs become more sophisticated, there is also an increasing need to directly observe the motion of artificial motors at the nanoscale and to characterize their performance. Here, we review the most used methods that tackle those tasks. We aim to help experimentalists with an overview of the available tools used for different types of synthetic motors and to choose the method most suited for the size of a motor and the desired measurements, such as the generated force or distances in the moving system. Furthermore, for many envisioned applications of synthetic motors, it will be a requirement to guide and control directed motions. We therefore also provide a perspective on how motors can be observed on structures that allow for directional guidance, such as nanowires and microchannels. Thus, this Review facilitates the future research on synthetic molecular motors, where observations at a single-motor level and a detailed characterization of motion will promote applications.
Collapse
Affiliation(s)
- Ivan N. Unksov
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Chapin S. Korosec
- Department
of Physics, Simon Fraser University, V5A 1S6 Burnaby, British Columbia, Canada
| | | | - Damiano Verardo
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
- AlignedBio
AB, Medicon Village, Scheeletorget 1, 223 63 Lund, Sweden
| | - Roman Lyttleton
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Nancy R. Forde
- Department
of Physics, Simon Fraser University, V5A 1S6 Burnaby, British Columbia, Canada
| | - Heiner Linke
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
17
|
Song Y, Ma Z, Zhang W. Manipulation of a Single Polymer Chain: From the Nanomechanical Properties to Dynamic Structure Evolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
18
|
Lee CJ. Limits of the adiabaticity assumption and conditions for improving laser focusing of atomic matter wave. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chang Jae Lee
- Division of Basic Technologies Sunmoon University Asan Korea
| |
Collapse
|