1
|
Shih CP, Tang WC, Chen P, Chen BC. Applications of Lightsheet Fluorescence Microscopy by High Numerical Aperture Detection Lens. J Phys Chem B 2024; 128:8273-8289. [PMID: 39177503 PMCID: PMC11382282 DOI: 10.1021/acs.jpcb.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
This Review explores the evolution, improvements, and recent applications of Light Sheet Fluorescence Microscopy (LSFM) in biological research using a high numerical aperture detection objective (lens) for imaging subcellular structures. The Review begins with an overview of the development of LSFM, tracing its evolution from its inception to its current state and emphasizing key milestones and technological advancements over the years. Subsequently, we will discuss various improvements of LSFM techniques, covering advancements in hardware such as illumination strategies, optical designs, and sample preparation methods that have enhanced imaging capabilities and resolution. The advancements in data acquisition and processing are also included, which provides a brief overview of the recent development of artificial intelligence. Fluorescence probes that were commonly used in LSFM will be highlighted, together with some insights regarding the selection of potential probe candidates for future LSFM development. Furthermore, we also discuss recent advances in the application of LSFM with a focus on high numerical aperture detection objectives for various biological studies. For sample preparation techniques, there are discussions regarding fluorescence probe selection, tissue clearing protocols, and some insights into expansion microscopy. Integrated setups such as adaptive optics, single objective modification, and microfluidics will also be some of the key discussion points in this Review. We hope that this comprehensive Review will provide a holistic perspective on the historical development, technical enhancements, and cutting-edge applications of LSFM, showcasing its pivotal role and future potential in advancing biological research.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106319, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 11529, Taiwan
| | - Wei-Chun Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Peilin Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Feng R, Xie J, Gao L. EDTP enhances and protects the fluorescent signal of GFP in cleared and expanded tissues. Sci Rep 2024; 14:15279. [PMID: 38961181 PMCID: PMC11222453 DOI: 10.1038/s41598-024-66398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Advanced 3D high-resolution imaging techniques are essential for investigating biological challenges, such as neural circuit analysis and tumor microenvironment in intact tissues. However, the fluorescence signal emitted by endogenous fluorescent proteins in cleared or expanded biological samples gradually diminishes with repeated irradiation and prolonged imaging, compromising its ability to accurately depict the underlying scientific problem. We have developed a strategy to preserve fluorescence in cleared and expanded tissue samples during prolonged high-resolution three-dimensional imaging. We evaluated various compounds at different concentrations to determine their ability to enhance fluorescence intensity and resistance to photobleaching while maintaining the structural integrity of the tissue. Specifically, we investigated the impact of EDTP utilization on GFP, as it has been observed to significantly improve fluorescence intensity, resistance to photobleaching, and maintain fluorescence during extended room temperature storage. This breakthrough will facilitate extended hydrophilic and hydrogel-based clearing and expansion methods for achieving long-term high-resolution 3D imaging of cleared biological tissues by effectively safeguarding fluorescent proteins within the tissue.
Collapse
Affiliation(s)
- Ruili Feng
- Fudan University, Shanghai, 200433, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
| | - Jiongfang Xie
- Fudan University, Shanghai, 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Liang Gao
- Fudan University, Shanghai, 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| |
Collapse
|
3
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
4
|
Weiss KR, Voigt FF, Shepherd DP, Huisken J. Tutorial: practical considerations for tissue clearing and imaging. Nat Protoc 2021; 16:2732-2748. [PMID: 34021294 PMCID: PMC10542857 DOI: 10.1038/s41596-021-00502-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Tissue clearing has become a powerful technique for studying anatomy and morphology at scales ranging from entire organisms to subcellular features. With the recent proliferation of tissue-clearing methods and imaging options, it can be challenging to determine the best clearing protocol for a particular tissue and experimental question. The fact that so many clearing protocols exist suggests there is no one-size-fits-all approach to tissue clearing and imaging. Even in cases where a basic level of clearing has been achieved, there are many factors to consider, including signal retention, staining (labeling), uniformity of transparency, image acquisition and analysis. Despite reviews citing features of clearing protocols, it is often unknown a priori whether a protocol will work for a given experiment, and thus some optimization is required by the end user. In addition, the capabilities of available imaging setups often dictate how the sample needs to be prepared. After imaging, careful evaluation of volumetric image data is required for each combination of clearing protocol, tissue type, biological marker, imaging modality and biological question. Rather than providing a direct comparison of the many clearing methods and applications available, in this tutorial we address common pitfalls and provide guidelines for designing, optimizing and imaging in a successful tissue-clearing experiment with a focus on light-sheet fluorescence microscopy (LSFM).
Collapse
Affiliation(s)
- Kurt R Weiss
- Morgridge Institute for Research, Madison, WI, USA
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Douglas P Shepherd
- Department of Physics, Arizona State University, Tempe, AZ, USA
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Jan Huisken
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
5
|
Chen Y, Li X, Zhang D, Wang C, Feng R, Li X, Wen Y, Xu H, Zhang XS, Yang X, Chen Y, Feng Y, Zhou B, Chen BC, Lei K, Cai S, Jia JM, Gao L. A Versatile Tiling Light Sheet Microscope for Imaging of Cleared Tissues. Cell Rep 2021; 33:108349. [PMID: 33147464 DOI: 10.1016/j.celrep.2020.108349] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 01/14/2023] Open
Abstract
We present a tiling light sheet microscope compatible with all tissue clearing methods for rapid multicolor 3D imaging of cleared tissues with micron-scale (4 × 4 × 10 μm3) to submicron-scale (0.3 × 0.3 × 1 μm3) spatial resolution. The resolving ability is improved to sub-100 nm (70 × 70 × 200 nm3) via tissue expansion. The microscope uses tiling light sheets to achieve higher spatial resolution and better optical sectioning ability than conventional light sheet microscopes. The illumination light is phase modulated to adjust the position and intensity profile of the light sheet based on the desired spatial resolution and imaging speed and to keep the microscope aligned. The ability of the microscope to align via phase modulation alone also ensures its accuracy for multicolor 3D imaging and makes the microscope reliable and easy to operate. Here we describe the working principle and design of the microscope. We demonstrate its utility by imaging various cleared tissues.
Collapse
Affiliation(s)
- Yanlu Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Xiaoliang Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Dongdong Zhang
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Chunhui Wang
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Ruili Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Yao Wen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Hao Xu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Xinyi Shirley Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yongyi Chen
- Department of Clinical laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bo Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Kai Lei
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Shang Cai
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Liang Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
6
|
Reissig LF, Seyedian Moghaddam A, Prin F, Wilson R, Galli A, Tudor C, White JK, Geyer SH, Mohun TJ, Weninger WJ. Hypoglossal Nerve Abnormalities as Biomarkers for Central Nervous System Defects in Mouse Lines Producing Embryonically Lethal Offspring. Front Neuroanat 2021; 15:625716. [PMID: 33584208 PMCID: PMC7876247 DOI: 10.3389/fnana.2021.625716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
An essential step in researching human central nervous system (CNS) disorders is the search for appropriate mouse models that can be used to investigate both genetic and environmental factors underlying the etiology of such conditions. Identification of murine models relies upon detailed pre- and post-natal phenotyping since profound defects are not only the result of gross malformations but can be the result of small or subtle morphological abnormalities. The difficulties in identifying such defects are compounded by the finding that many mouse lines show quite a variable penetrance of phenotypes. As a result, without analysis of large numbers, such phenotypes are easily missed. Indeed for null mutations, around one-third have proved to be pre- or perinatally lethal, their analysis resting entirely upon phenotyping of accessible embryonic stages.To simplify the identification of potentially useful mouse mutants, we have conducted three-dimensional phenotype analysis of approximately 500 homozygous null mutant embryos, produced from targeting a variety of mouse genes and harvested at embryonic day 14.5 as part of the "Deciphering the Mechanisms of Developmental Disorders" www.dmdd.org.uk program. We have searched for anatomical features that have the potential to serve as biomarkers for CNS defects in such genetically modified lines. Our analysis identified two promising biomarker candidates. Hypoglossal nerve (HGN) abnormalities (absent, thin, and abnormal topology) and abnormal morphology or topology of head arteries are both frequently associated with the full spectrum of morphological CNS defects, ranging from exencephaly to more subtle defects such as abnormal nerve cell migration. Statistical analysis confirmed that HGN abnormalities (especially those scored absent or thin) indeed showed a significant correlation with CNS defect phenotypes. These results demonstrate that null mutant lines showing HGN abnormalities are also highly likely to produce CNS defects whose identification may be difficult as a result of morphological subtlety or low genetic penetrance.
Collapse
Affiliation(s)
- Lukas F. Reissig
- Department of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Atieh Seyedian Moghaddam
- Department of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Fabrice Prin
- The Francis Crick Institute, London, United Kingdom
| | | | - Antonella Galli
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Catherine Tudor
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jaqueline K. White
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Stefan H. Geyer
- Department of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | - Wolfgang J. Weninger
- Department of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Tutorial: avoiding and correcting sample-induced spherical aberration artifacts in 3D fluorescence microscopy. Nat Protoc 2020; 15:2773-2784. [PMID: 32737465 DOI: 10.1038/s41596-020-0360-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/18/2020] [Indexed: 11/08/2022]
Abstract
Spherical aberration (SA) occurs when light rays entering at different points of a spherical lens are not focused to the same point of the optical axis. SA that occurs inside the lens elements of a fluorescence microscope is well understood and corrected for. However, SA is also induced when light passes through an interface of refractive index (RI)-mismatched substances (i.e., a discrepancy between the RI of the immersion medium and the RI of the sample). SA due to RI mismatches has many deleterious effects on imaging. Perhaps most important for 3D imaging is that the distance the image plane moves in a sample is not equivalent to the distance traveled by an objective (or stage) during z-stack acquisition. This non-uniform translation along the z axis gives rise to artifactually elongated images (if the objective is immersed in a medium with a higher RI than that of the sample) or compressed images (if the objective is immersed in a medium with a lower RI than that of the sample) and alters the optimal axial sampling rate. In this tutorial, we describe why this distortion occurs, how it impacts quantitative measurements and axial resolution, and what can be done to avoid SA and thereby prevent distorted images. In addition, this tutorial aims to better inform researchers of how to correct RI mismatch-induced axial distortions and provides a practical ImageJ/Fiji-based tool to reduce the prevalence of volumetric measurement errors and lost axial resolution.
Collapse
|
8
|
Ueda HR, Dodt HU, Osten P, Economo MN, Chandrashekar J, Keller PJ. Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy. Neuron 2020; 106:369-387. [PMID: 32380050 PMCID: PMC7213014 DOI: 10.1016/j.neuron.2020.03.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/11/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
Abstract
Tissue clearing and light-sheet microscopy have a 100-year-plus history, yet these fields have been combined only recently to facilitate novel experiments and measurements in neuroscience. Since tissue-clearing methods were first combined with modernized light-sheet microscopy a decade ago, the performance of both technologies has rapidly improved, broadening their applications. Here, we review the state of the art of tissue-clearing methods and light-sheet microscopy and discuss applications of these techniques in profiling cells and circuits in mice. We examine outstanding challenges and future opportunities for expanding these techniques to achieve brain-wide profiling of cells and circuits in primates and humans. Such integration will help provide a systems-level understanding of the physiology and pathology of our central nervous system.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka 565-0871, Japan.
| | - Hans-Ulrich Dodt
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria; Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Pavel Osten
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
9
|
Ding Y, Ma J, Langenbacher AD, Baek KI, Lee J, Chang CC, Hsu JJ, Kulkarni RP, Belperio J, Shi W, Ranjbarvaziri S, Ardehali R, Tintut Y, Demer LL, Chen JN, Fei P, Packard RRS, Hsiai TK. Multiscale light-sheet for rapid imaging of cardiopulmonary system. JCI Insight 2018; 3:121396. [PMID: 30135307 PMCID: PMC6141183 DOI: 10.1172/jci.insight.121396] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ability to image tissue morphogenesis in real-time and in 3-dimensions (3-D) remains an optical challenge. The advent of light-sheet fluorescence microscopy (LSFM) has advanced developmental biology and tissue regeneration research. In this review, we introduce a LSFM system in which the illumination lens reshapes a thin light-sheet to rapidly scan across a sample of interest while the detection lens orthogonally collects the imaging data. This multiscale strategy provides deep-tissue penetration, high-spatiotemporal resolution, and minimal photobleaching and phototoxicity, allowing in vivo visualization of a variety of tissues and processes, ranging from developing hearts in live zebrafish embryos to ex vivo interrogation of the microarchitecture of optically cleared neonatal hearts. Here, we highlight multiple applications of LSFM and discuss several studies that have allowed better characterization of developmental and pathological processes in multiple models and tissues. These findings demonstrate the capacity of multiscale light-sheet imaging to uncover cardiovascular developmental and regenerative phenomena.
Collapse
Affiliation(s)
- Yichen Ding
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Jianguo Ma
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
| | - Adam D. Langenbacher
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Kyung In Baek
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Juhyun Lee
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | | | - Jeffrey J. Hsu
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Rajan P. Kulkarni
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - John Belperio
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Reza Ardehali
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Yin Tintut
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Linda L. Demer
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Peng Fei
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | | | - Tzung K. Hsiai
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| |
Collapse
|
10
|
Saghafi S, Haghi-Danaloo N, Becker K, Sabdyusheva I, Foroughipour M, Hahn C, Pende M, Wanis M, Bergmann M, Stift J, Hegedus B, Dome B, Dodt HU. Reshaping a multimode laser beam into a constructed Gaussian beam for generating a thin light sheet. JOURNAL OF BIOPHOTONICS 2018; 11:e201700213. [PMID: 29457696 DOI: 10.1002/jbio.201700213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Based on the modal analysis method, we developed a model that describes the output beam of a diode-pumped solid state (DPSS) laser emitting a multimode beam. Measuring the output beam profile in the near field and at the constructed far field the individual modes, their respective contributions, and their optical parameters are determined. Using this information, the beam is optically reshaped into a quasi-Gaussian beam by the interference and superposition of the various modes. This process is controlled by a mode modulator unit that includes different meso-aspheric elements and a soft-aperture. The converted beam is guided into a second optical unit comprising achromatic-aspheric elements to produce a thin light sheet for ultramicroscopy. We found that this light sheet is markedly thinner and exhibits less side shoulders compared with a light sheet directly generated from the output of a DPSS multimode laser.
Collapse
Affiliation(s)
- Saiedeh Saghafi
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Nikoo Haghi-Danaloo
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria
| | - Klaus Becker
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Inna Sabdyusheva
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Massih Foroughipour
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Christian Hahn
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Marko Pende
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Martina Wanis
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of Surgery, Medical University of Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Cancer BioBank, Medical University of Vienna, Vienna, Austria
| | - Judith Stift
- Department of Surgery, Medical University of Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Cancer BioBank, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedus
- Department of Surgery, Medical University of Vienna, Vienna, Austria
- Cancer BioBank, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Department of Surgery, Medical University of Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Cancer BioBank, Medical University of Vienna, Vienna, Austria
| | - Hans-Ulrich Dodt
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Ding Y, Lee J, Hsu JJ, Chang CC, Baek KI, Ranjbarvaziri S, Ardehali R, Packard RRS, Hsiai TK. Light-Sheet Imaging to Elucidate Cardiovascular Injury and Repair. Curr Cardiol Rep 2018; 20:35. [PMID: 29574550 DOI: 10.1007/s11886-018-0979-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Real-time 3-dimensional (3-D) imaging of cardiovascular injury and regeneration remains challenging. We introduced a multi-scale imaging strategy that uses light-sheet illumination to enable applications of cardiovascular injury and repair in models ranging from zebrafish to rodent hearts. RECENT FINDINGS Light-sheet imaging enables rapid data acquisition with high spatiotemporal resolution and with minimal photo-bleaching or photo-toxicity. We demonstrated the capacity of this novel light-sheet approach for scanning a region of interest with specific fluorescence contrast, thereby providing axial and temporal resolution at the cellular level without stitching image columns or pivoting illumination beams during one-time imaging. This cutting-edge imaging technique allows for elucidating the differentiation of stem cells in cardiac regeneration, providing an entry point to discover novel micro-circulation phenomenon with clinical significance for injury and repair. These findings demonstrate the multi-scale applications of this novel light-sheet imaging strategy to advance research in cardiovascular development and regeneration.
Collapse
Affiliation(s)
- Yichen Ding
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Juhyun Lee
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.,Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Jeffrey J Hsu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Sara Ranjbarvaziri
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Reza Ardehali
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - René R Sevag Packard
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Tzung K Hsiai
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA. .,Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA. .,Medical Engineering, California Institute of Technology, Pasadena, CA, 91106, USA.
| |
Collapse
|
12
|
McNamara G, Difilippantonio M, Ried T, Bieber FR. Microscopy and Image Analysis. ACTA ACUST UNITED AC 2018; 94:4.4.1-4.4.89. [DOI: 10.1002/cphg.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Michael Difilippantonio
- Division of Cancer Treatment and Diagnosis National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Thomas Ried
- Section of Cancer Genomics Genetics Branch Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | | |
Collapse
|
13
|
Ding Y, Abiri A, Abiri P, Li S, Chang CC, Baek KI, Hsu JJ, Sideris E, Li Y, Lee J, Segura T, Nguyen TP, Bui A, Sevag Packard RR, Fei P, Hsiai TK. Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics. JCI Insight 2017; 2:97180. [PMID: 29202458 PMCID: PMC5752380 DOI: 10.1172/jci.insight.97180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 11/17/2022] Open
Abstract
Currently, there is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3D architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3D and 4D (3D spatial + 1D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods, such as routine optical microscopes. We hereby demonstrate multiscale applicability of VR-LSFM to (a) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, (b) navigate through the endocardial trabecular network during zebrafish development, and (c) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation algorithm with deformable image registration to interface a VR environment with imaging computation for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Yichen Ding
- Department of Medicine
- Department of Bioengineering, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Arash Abiri
- Department of Medicine
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Parinaz Abiri
- Department of Medicine
- Department of Bioengineering, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Shuoran Li
- Chemical and Biomolecular Engineering Department
| | - Chih-Chiang Chang
- Department of Bioengineering, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Kyung In Baek
- Department of Bioengineering, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | - Yilei Li
- Electrical Engineering Department, and
| | - Juhyun Lee
- Department of Bioengineering, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Tatiana Segura
- Department of Bioengineering, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Chemical and Biomolecular Engineering Department
| | | | - Alexander Bui
- Department of Bioengineering, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Medical Imaging Informatics Group, Department of Radiological Sciences, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Tzung K. Hsiai
- Department of Medicine
- Department of Bioengineering, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Medical Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
14
|
Gusachenko I, Nylk J, Tello JA, Dholakia K. Multimode fibre based imaging for optically cleared samples. BIOMEDICAL OPTICS EXPRESS 2017; 8:5179-5190. [PMID: 29188112 PMCID: PMC5695962 DOI: 10.1364/boe.8.005179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 05/27/2023]
Abstract
Optical clearing is emerging as a popular approach particularly for studies in neuroscience. However the use of corrosive clearing solutions typically requires sophisticated objectives or extreme care with optical components chosen for single- or multi-photon imaging. In contrast to the use of complex, custom-made microscope objectives, we show that the use of a corrected multimode fibre (MMF) offers a route that is resistant to corrosion, can be used in clearing media, is not constrained by the refractive index of the immersion medium and offers flexible working distances. Using a corrected MMF, we demonstrate fluorescence imaging of beads and stained neuroblastoma cells through optically cleared mouse brain tissue, as well as imaging in an extreme oxidative environment to show the versatility of our approach. Additionally, we perform Raman imaging of polystyrene beads in clearing media to demonstrate that this approach may be used for vibrational spectroscopy of optically cleared samples.
Collapse
Affiliation(s)
- Ivan Gusachenko
- SUPA, School of Physics and Astronomy, University of St. Andrews, Fife, KY16 9SS,
UK
| | - Jonathan Nylk
- SUPA, School of Physics and Astronomy, University of St. Andrews, Fife, KY16 9SS,
UK
| | - Javier A. Tello
- School of Medicine, University of St. Andrews, Fife, KY16 9TF,
UK
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St. Andrews, Fife, KY16 9SS,
UK
| |
Collapse
|
15
|
Saghafi S, Becker K, Hahn C, Pende M, Jährling N, Wanis M, Sabdyusheva‐Litschauer I, Foroughipour M, Niendorf A, Dodt H. O
utlook on optimizing ultramicroscopy imaging technique through optical characterization. Microsc Res Tech 2016; 81:929-935. [DOI: 10.1002/jemt.22815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Saiedeh Saghafi
- Department of Bioelectronics, FKEVienna University TechnologyVienna Austria
- Center for Brain Research, Medical University of ViennaVienna Austria
| | - Klaus Becker
- Department of Bioelectronics, FKEVienna University TechnologyVienna Austria
- Center for Brain Research, Medical University of ViennaVienna Austria
| | - Christian Hahn
- Department of Bioelectronics, FKEVienna University TechnologyVienna Austria
- Center for Brain Research, Medical University of ViennaVienna Austria
| | - Marko Pende
- Department of Bioelectronics, FKEVienna University TechnologyVienna Austria
- Center for Brain Research, Medical University of ViennaVienna Austria
| | - Nina Jährling
- Department of Bioelectronics, FKEVienna University TechnologyVienna Austria
- Center for Brain Research, Medical University of ViennaVienna Austria
| | - Martina Wanis
- Department of Bioelectronics, FKEVienna University TechnologyVienna Austria
- Center for Brain Research, Medical University of ViennaVienna Austria
| | - Inna Sabdyusheva‐Litschauer
- Department of Bioelectronics, FKEVienna University TechnologyVienna Austria
- Center for Brain Research, Medical University of ViennaVienna Austria
| | - Massih Foroughipour
- Department of Bioelectronics, FKEVienna University TechnologyVienna Austria
- Center for Brain Research, Medical University of ViennaVienna Austria
| | - Axel Niendorf
- Pathologie Hamburg‐West, Histology Diagnostics Department, Lornsenstraße 4Hamburg22767 Germany
| | - Hans‐Ulrich Dodt
- Department of Bioelectronics, FKEVienna University TechnologyVienna Austria
- Center for Brain Research, Medical University of ViennaVienna Austria
| |
Collapse
|
16
|
Nylk J, McCluskey K, Aggarwal S, Tello JA, Dholakia K. Enhancement of image quality and imaging depth with Airy light-sheet microscopy in cleared and non-cleared neural tissue. BIOMEDICAL OPTICS EXPRESS 2016; 7:4021-4033. [PMID: 27867712 PMCID: PMC5102539 DOI: 10.1364/boe.7.004021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 05/07/2023]
Abstract
We have investigated the effect of Airy illumination on the image quality and depth penetration of digitally scanned light-sheet microscopy in turbid neural tissue. We used Fourier analysis of images acquired using Gaussian and Airy light-sheets to assess their respective image quality versus penetration into the tissue. We observed a three-fold average improvement in image quality at 50 μm depth with the Airy light-sheet. We also used optical clearing to tune the scattering properties of the tissue and found that the improvement when using an Airy light-sheet is greater in the presence of stronger sample-induced aberrations. Finally, we used homogeneous resolution probes in these tissues to quantify absolute depth penetration in cleared samples with each beam type. The Airy light-sheet method extended depth penetration by 30% compared to a Gaussian light-sheet.
Collapse
Affiliation(s)
- Jonathan Nylk
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS,
UK
| | - Kaley McCluskey
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS,
UK
| | - Sanya Aggarwal
- School of Medicine, University of St. Andrews, St. Andrews, KY16 9TF,
UK
| | - Javier A. Tello
- School of Medicine, University of St. Andrews, St. Andrews, KY16 9TF,
UK
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS,
UK
| |
Collapse
|
17
|
Silvestri L, Costantini I, Sacconi L, Pavone FS. Clearing of fixed tissue: a review from a microscopist's perspective. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:081205. [PMID: 27020691 DOI: 10.1117/1.jbo.21.8.081205] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/26/2016] [Indexed: 05/18/2023]
Abstract
Chemical clearing of fixed tissues is becoming a key instrument for the three-dimensional reconstruction of macroscopic tissue portions, including entire organs. Indeed, the growing interest in this field has both triggered and been stimulated by recent advances in high-throughput microscopy and data analysis methods, which allowed imaging and management of large samples. The strong entanglement between clearing methods and imaging technology is often overlooked, as typical classification of the former is based only on the chemicals used. Here, we review the recent literature in the field, proposing a taxonomy of clearing techniques based on their mating with the major high-throughput microscopies. We hope that this application-oriented classification can help researchers to find the protocol best suited to their experiment among the many present in the literature.
Collapse
Affiliation(s)
- Ludovico Silvestri
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence, ItalybEuropean Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence, Italy
| | - Irene Costantini
- European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence, Italy
| | - Leonardo Sacconi
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence, ItalybEuropean Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence, ItalybEuropean Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence, ItalycUniversity of Florence, Dep
| |
Collapse
|
18
|
Trichobilharzia regenti (Schistosomatidae): 3D imaging techniques in characterization of larval migration through the CNS of vertebrates. Micron 2016; 83:62-71. [DOI: 10.1016/j.micron.2016.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 01/12/2023]
|