1
|
Calatayud-Jordán J, Carrasco-Vela N, Chimeno-Hernández J, Carles-Fariña M, Olivas-Arroyo C, Bello-Arqués P, Pérez-Enguix D, Martí-Bonmatí L, Torres-Espallardo I. Y-90 PET/MR imaging optimization with a Bayesian penalized likelihood reconstruction algorithm. Phys Eng Sci Med 2024:10.1007/s13246-024-01452-7. [PMID: 38884672 DOI: 10.1007/s13246-024-01452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Positron Emission Tomography (PET) imaging after90 Y liver radioembolization is used for both lesion identification and dosimetry. Bayesian penalized likelihood (BPL) reconstruction algorithms are an alternative to ordered subset expectation maximization (OSEM) with improved image quality and lesion detectability. The investigation of optimal parameters for90 Y image reconstruction of Q.Clear, a commercial BPL algorithm developed by General Electric (GE), in PET/MR is a field of interest and the subject of this study. The NEMA phantom was filled at an 8:1 sphere-to-background ratio. Acquisitions were performed on a PET/MR scanner for clinically relevant activities between 0.7 and 3.3 MBq/ml. Reconstructions with Q.Clear were performed varying the β penalty parameter between 20 and 6000, the acquisition time between 5 and 20 min and pixel size between 1.56 and 4.69 mm. OSEM reconstructions of 28 subsets with 2 and 4 iterations with and without Time-of-Flight (TOF) were compared to Q.Clear with β = 4000. Recovery coefficients (RC), their coefficient of variation (COV), background variability (BV), contrast-to-noise ratio (CNR) and residual activity in the cold insert were evaluated. Increasing β parameter lowered RC, COV and BV, while CNR was maximized at β = 4000; further increase resulted in oversmoothing. For quantification purposes, β = 1000-2000 could be more appropriate. Longer acquisition times resulted in larger CNR due to reduced image noise. Q.Clear reconstructions led to higher CNR than OSEM. A β of 4000 was obtained for optimal image quality, although lower values could be considered for quantification purposes. An optimal acquisition time of 15 min was proposed considering its clinical use.
Collapse
Affiliation(s)
- José Calatayud-Jordán
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Carrasco-Vela
- Radiophysics and Radiological Protection Service, Clinical University Hospital of Valencia, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - José Chimeno-Hernández
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Montserrat Carles-Fariña
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Consuelo Olivas-Arroyo
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Pilar Bello-Arqués
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Daniel Pérez-Enguix
- Department of Radiology, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Department of Radiology, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Irene Torres-Espallardo
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| |
Collapse
|
2
|
Henry EC, Strugari M, Mawko G, Brewer K, Liu D, Gordon AC, Bryan JN, Maitz C, Karnia JJ, Abraham R, Kappadath SC, Syme A. Precision dosimetry in yttrium-90 radioembolization through CT imaging of radiopaque microspheres in a rabbit liver model. EJNMMI Phys 2022; 9:21. [PMID: 35312882 PMCID: PMC8938593 DOI: 10.1186/s40658-022-00447-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To perform precision dosimetry in yttrium-90 radioembolization through CT imaging of radiopaque microspheres in a rabbit liver model and to compare extracted dose metrics to those produced from conventional PET-based dosimetry. MATERIALS AND METHODS A CT calibration phantom was designed containing posts with nominal microsphere concentrations of 0.5 mg/mL, 5.0 mg/mL, and 25.0 mg/mL. The mean Hounsfield unit was extracted from the post volumes to generate a calibration curve to relate Hounsfield units to microsphere concentration. A nominal bolus of 40 mg of microspheres was administered to the livers of eight rabbits, followed by PET/CT imaging. A CT-based activity distribution was calculated through the application of the calibration curve to the CT liver volume. Post-treatment dosimetry was performed through the convolution of yttrium-90 dose-voxel kernels and the PET- and CT-based cumulated activity distributions. The mean dose to the liver in PET- and CT-based dose distributions was compared through linear regression, ANOVA, and Bland-Altman analysis. RESULTS A linear least-squares fit to the average Hounsfield unit and microsphere concentration data from the calibration phantom confirmed a strong correlation (r2 > 0.999) with a slope of 14.13 HU/mg/mL. A poor correlation was found between the mean dose derived from CT and PET (r2 = 0.374), while the ANOVA analysis revealed statistically significant differences (p < 10-12) between the MIRD-derived mean dose and the PET- and CT-derived mean dose. Bland-Altman analysis predicted an offset of 15.0 Gy between the mean dose in CT and PET. The dose within the liver was shown to be more heterogeneous in CT than in PET with an average coefficient of variation equal to 1.99 and 1.02, respectively. CONCLUSION The benefits of a CT-based approach to post-treatment dosimetry in yttrium-90 radioembolization include improved visualization of the dose distribution, reduced partial volume effects, a better representation of dose heterogeneity, and the mitigation of respiratory motion effects. Post-treatment CT imaging of radiopaque microspheres in yttrium-90 radioembolization provides the means to perform precision dosimetry and extract accurate dose metrics used to refine the understanding of the dose-response relationship, which could ultimately improve future patient outcomes.
Collapse
Affiliation(s)
- E Courtney Henry
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada.
| | - Matthew Strugari
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
- Biomedical Translational Imaging Centre, Halifax, NS, Canada
| | - George Mawko
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
- Department of Medical Physics, Nova Scotia Health Authority, Halifax, NS, Canada
- Department of Radiation Oncology, Dalhousie University, Halifax, NS, Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Kimberly Brewer
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
- Biomedical Translational Imaging Centre, Halifax, NS, Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
- Department of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - David Liu
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Andrew C Gordon
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| | - Charles Maitz
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| | - James J Karnia
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| | - Robert Abraham
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
- ABK Biomedical Inc., Halifax, NS, Canada
| | - S Cheenu Kappadath
- Department of Imaging Physics, University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Alasdair Syme
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
- Department of Medical Physics, Nova Scotia Health Authority, Halifax, NS, Canada
- Department of Radiation Oncology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Chiesa C, Sjogreen-Gleisner K, Walrand S, Strigari L, Flux G, Gear J, Stokke C, Gabina PM, Bernhardt P, Konijnenberg M. EANM dosimetry committee series on standard operational procedures: a unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres. EJNMMI Phys 2021; 8:77. [PMID: 34767102 PMCID: PMC8589932 DOI: 10.1186/s40658-021-00394-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
The aim of this standard operational procedure is to standardize the methodology employed for the evaluation of pre- and post-treatment absorbed dose calculations in 90Y microsphere liver radioembolization. Basic assumptions include the permanent trapping of microspheres, the local energy deposition method for voxel dosimetry, and the patient-relative calibration method for activity quantification.The identity of 99mTc albumin macro-aggregates (MAA) and 90Y microsphere biodistribution is also assumed. The large observed discrepancies in some patients between 99mTc-MAA predictions and actual 90Y microsphere distributions for lesions is discussed. Absorbed dose predictions to whole non-tumoural liver are considered more reliable and the basic predictors of toxicity. Treatment planning based on mean absorbed dose delivered to the whole non-tumoural liver is advised, except in super-selective treatments.Given the potential mismatch between MAA simulation and actual therapy, absorbed doses should be calculated both pre- and post-therapy. Distinct evaluation between target tumours and non-tumoural tissue, including lungs in cases of lung shunt, are vital for proper optimization of therapy. Dosimetry should be performed first according to a mean absorbed dose approach, with an optional, but important, voxel level evaluation. Fully corrected 99mTc-MAA Single Photon Emission Computed Tomography (SPECT)/computed tomography (CT) and 90Y TOF PET/CT are regarded as optimal acquisition methodologies, but, for institutes where SPECT/CT is not available, non-attenuation corrected 99mTc-MAA SPECT may be used. This offers better planning quality than non dosimetric methods such as Body Surface Area (BSA) or mono-compartmental dosimetry. Quantitative 90Y bremsstrahlung SPECT can be used if dedicated correction methods are available.The proposed methodology is feasible with standard camera software and a spreadsheet. Available commercial or free software can help facilitate the process and improve calculation time.
Collapse
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine Unit, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Stephan Walrand
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - Lidia Strigari
- Medical Physics Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Glenn Flux
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Caroline Stokke
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Pablo Minguez Gabina
- Department of Medical Physics and Radiation Protection, Gurutzeta/Cruces University Hospital, Barakaldo, Spain
| | - Peter Bernhardt
- Department of Radiation Physics, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Labour J, Boissard P, Baudier T, Khayi F, Kryza D, Durebex PV, Martino SPD, Mognetti T, Sarrut D, Badel JN. Yttrium-90 quantitative phantom study using digital photon counting PET. EJNMMI Phys 2021; 8:56. [PMID: 34318383 PMCID: PMC8316557 DOI: 10.1186/s40658-021-00402-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PET imaging of 90Y-microsphere distribution following radioembolisation is challenging due to the count-starved statistics from the low branching ratio of e+/e- pair production during 90Y decay. PET systems using silicon photo-multipliers have shown better 90Y image quality compared to conventional photo-multiplier tubes. The main goal of the present study was to evaluate reconstruction parameters for different phantom configurations and varying listmode acquisition lengths to improve quantitative accuracy in 90Y dosimetry, using digital photon counting PET/CT. METHODS Quantitative PET and dosimetry accuracy were evaluated using two uniform cylindrical phantoms specific for PET calibration validation. A third body phantom with a 9:1 hot sphere-to-background ratio was scanned at different activity concentrations of 90Y. Reconstructions were performed using OSEM algorithm with varying parameters. Time-of-flight and point-spread function modellings were included in all reconstructions. Absorbed dose calculations were carried out using voxel S-values convolution and were compared to reference Monte Carlo simulations. Dose-volume histograms and root-mean-square deviations were used to evaluate reconstruction parameter sets. Using listmode data, phantom and patient datasets were rebinned into various lengths of time to assess the influence of count statistics on the calculation of absorbed dose. Comparisons between the local energy deposition method and the absorbed dose calculations were performed. RESULTS Using a 2-mm full width at half maximum post-reconstruction Gaussian filter, the dosimetric accuracy was found to be similar to that found with no filter applied but also reduced noise. Larger filter sizes should not be used. An acquisition length of more than 10 min/bed reduces image noise but has no significant impact in the quantification of phantom or patient data for the digital photon counting PET. 3 iterations with 10 subsets were found suitable for large spheres whereas 1 iteration with 30 subsets could improve dosimetry for smaller spheres. CONCLUSION The best choice of the combination of iterations and subsets depends on the size of the spheres. However, one should be careful on this choice, depending on the imaging conditions and setup. This study can be useful in this choice for future studies for more accurate 90Y post-dosimetry using a digital photon counting PET/CT.
Collapse
Affiliation(s)
- Joey Labour
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | | | - Thomas Baudier
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - Fouzi Khayi
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - David Kryza
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- Hospices Civils de Lyon; Université de Lyon; Université Claude Bernard Lyon 1; LAGEPP UMR 5007 CNRS, Lyon, France
| | | | | | | | - David Sarrut
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - Jean-Noël Badel
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| |
Collapse
|
5
|
Thompson BC, Dezarn WA. Retrospective SPECT/CT dosimetry following transarterial radioembolization. J Appl Clin Med Phys 2021; 22:143-150. [PMID: 33710776 PMCID: PMC8035553 DOI: 10.1002/acm2.13213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 01/14/2023] Open
Abstract
Transarterial radioembolization (TARE) effectively treats unresectable primary and metastatic liver tumors through intra‐arterial injection of Yttrium‐90 (90Y) beta particle emitting microspheres which implant around the tumor. Current dosimetry models are highly simplistic and there is a large need for an image‐based dosimetry post‐TARE, which would improve treatment safety and efficacy. Current post‐TARE imaging is 90Y bremsstrahlung SPECT/CT and we study the use of these images for dosimetry. Retrospective image review of ten patients having a Philips HealthcareTM SPECT/CT following TARE SIR‐Spheres® implantation. Emission series with attenuation correction were resampled to 3 mm resolution and used to create image‐based dose distributions. Dose distributions and analysis were performed in MIM Software SurePlanTM utilizing SurePlanTM Local Deposition Method (LDM) and a dose convolution method (WFBH). We sought to implement a patient‐specific background subtraction prior to dose calculation to make these noisy bremsstrahlung SPECT images suitable for post‐TARE dosimetry. On average the percentage of mean background counts to maximum count in the image across all patients was 9.4 ± 4.9% (maximum = 7.6%, minimum = 2.3%). Absolute dose increased and profile line width decreased as background subtraction value increased. The average value of the LDM and WFBH dose methods was statistically the same. As background subtraction value increased, the DVH curves become unrealistic and distorted. Background subtraction on bremsstrahlung SPECT image has a large effect on post‐TARE dosimetry. The background contour defined provides a systematic estimate to the activity background that accounts for the scanner and patient conditions at the time of the image study and is easily implemented using commercially available software. Using the mean count in the background contour as a subtraction across the entire image gave the most realistic dose distributions. This methodology is independent of microsphere and software manufacturer allowing for use with any available products or tools.
Collapse
Affiliation(s)
- Briana C Thompson
- Department of Radiation Oncology, Wake Forest Baptist Hospital, Winston-Salem, NC, USA.,Wake Forest School of Medicine, Molecular Medicine and Translational Sciences, Winston Salem, NC, USA
| | - William A Dezarn
- Department of Radiation Oncology, Wake Forest Baptist Hospital, Winston-Salem, NC, USA.,Wake Forest School of Medicine, Molecular Medicine and Translational Sciences, Winston Salem, NC, USA
| |
Collapse
|
6
|
Hou X, Ma H, Esquinas PL, Uribe C, Tolhurst S, Bénard F, Liu D, Rahmim A, Celler A. Impact of image reconstruction method on dose distributions derived from 90Y PET images: phantom and liver radioembolization patient studies. Phys Med Biol 2020; 65:215022. [PMID: 33245057 DOI: 10.1088/1361-6560/aba8b5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PET images acquired after liver 90Y radioembolization therapies are typically very noisy, which significantly challenges both visualization and quantification of activity distributions. To improve their noise characteristics, regularized iterative reconstruction algorithms such as block sequential regularized expectation maximization (Q.Clear for GE Healthcare, USA) have been proposed. In this study, we aimed to investigate the effects which different reconstruction algorithms may have on patient images, with reconstruction parameters initially narrowed down using phantom studies. Moreover, we evaluated the impact of these reconstruction methods on voxel-based dose distribution in phantom and patient studies (lesions and healthy livers). The International Electrotechnical Commission (IEC)/NEMA phantom, containing six spheres, was filled with 90Y and imaged using a GE Discovery 690 PET/CT scanner with time-of-flight enabled. The images were reconstructed using Q.Clear (with β parameter ranging from 0 to 8000) and ordered subsets expectation maximization. The image quality and quantification accuracy were evaluated by computing the hot ([Formula: see text]) and cold ([Formula: see text]) contrast recovery coefficients, background variability (BV) and activity bias. Next, dose distributions and dose volume histograms were generated using MIM® software's SurePlan LiverY90 toolbox. Subsequently, parameters optimized in these phantom studies were applied to five patient datasets. Dose parameters, such as Dmax, Dmean, D70, and V100Gy, were estimated, and their variability for different reconstruction methods was investigated. Based on phantom studies, the β parameter values optimized for image quality and quantification accuracy were 2500 and 300, respectively. When all investigated reconstructions were applied to patient studies, Dmean, D50, D70, and V100Gy showed coefficients of variation below 8%; whereas the variability of Dmax was up to 30% for both phantom and patient images. Although β = 300-1000 would provide accurate activity quantification for a region of interest, when considering activity/dose voxelized distribution, higher β value (e.g. 4000-5000) would provide the greatest accuracy for dose distributions. In this 90Y radioembolization PET/CT study, the β parameter in regularized iterative (Q.Clear) reconstruction was investigated for image quality, accurate quantification and dose distributions based on phantom experiments and then applied to patient studies. Our results indicate that more accurate dose distribution can be achieved from smoother PET images, reconstructed with larger β values than those yielding the best activity quantifications but noisy images. Most importantly, these results suggest that quantitative measures, which are commonly used in clinics, such as SUVmax or SUVpeak( equivalent of Dmax), should not be employed for 90Y PET images, since their values would highly depend on the image reconstruction.
Collapse
Affiliation(s)
- Xinchi Hou
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Roncali E, Taebi A, Foster C, Vu CT. Personalized Dosimetry for Liver Cancer Y-90 Radioembolization Using Computational Fluid Dynamics and Monte Carlo Simulation. Ann Biomed Eng 2020; 48:1499-1510. [PMID: 32006268 PMCID: PMC7160004 DOI: 10.1007/s10439-020-02469-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
Yttrium-90 (Y-90) transarterial radioembolization uses radioactive microspheres injected into the hepatic artery to irradiate liver tumors internally. One of the major challenges is the lack of reliable dosimetry methods for dose prediction and dose verification. We present a patient-specific dosimetry approach for personalized treatment planning based on computational fluid dynamics (CFD) simulations of the microsphere transport combined with Y-90 physics modeling called CFDose. The ultimate goal is the development of a software to optimize the amount of activity and injection point for optimal tumor targeting. We present the proof-of-concept of a CFD dosimetry tool based on a patient's angiogram performed in standard-of-care planning. The hepatic arterial tree of the patient was segmented from the cone-beam CT (CBCT) to predict the microsphere transport using multiscale CFD modeling. To calculate the dose distribution, the predicted microsphere distribution was convolved with a Y-90 dose point kernel. Vessels as small as 0.45 mm were segmented, the microsphere distribution between the liver segments using flow analysis was predicted, the volumetric microsphere and resulting dose distribution in the liver volume were computed. The patient was imaged with positron emission tomography (PET) 2 h after radioembolization to evaluate the Y-90 distribution. The dose distribution was found to be consistent with the Y-90 PET images. These results demonstrate the feasibility of developing a complete framework for personalized Y-90 microsphere simulation and dosimetry using patient-specific input parameters.
Collapse
Affiliation(s)
- Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Amirtahà Taebi
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Cameron Foster
- Department of Radiology, UC Davis Medical Center, Sacramento, CA, 95817, USA
| | - Catherine Tram Vu
- Department of Radiology, UC Davis Medical Center, Sacramento, CA, 95817, USA
| |
Collapse
|
8
|
|
9
|
Henry EC, Mawko G, Tonkopi E, Frampton J, Kehoe S, Boyd D, Abraham R, Gregoire M, O’Connell K, Kappadath SC, Syme A. Quantification of the inherent radiopacity of glass microspheres for precision dosimetry in yttrium-90 radioembolization. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab36c2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Kafrouni M, Allimant C, Fourcade M, Vauclin S, Guiu B, Mariano-Goulart D, Ben Bouallègue F. Analysis of differences between 99mTc-MAA SPECT- and 90Y-microsphere PET-based dosimetry for hepatocellular carcinoma selective internal radiation therapy. EJNMMI Res 2019; 9:62. [PMID: 31332585 PMCID: PMC6646451 DOI: 10.1186/s13550-019-0533-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Background The aim of this study was to compare predictive and post-treatment dosimetry and analyze the differences, investigating factors related to activity preparation and delivery, imaging modality used, and interventional radiology. Methods Twenty-three HCC patients treated by selective internal radiation therapy with 90Y glass microspheres were included in this study. Predictive and post-treatment dosimetry were calculated at the voxel level based on 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT respectively. Dose distribution was analyzed through mean dose, metrics extracted from dose-volume histograms, and Dice similarity coefficients applied on isodoses. Reproducibility of the radiological gesture and its influence on dose deviation was evaluated. Results 90Y delivered activity was lower than expected in 67% (16/24) of the cases mainly due to the residual activity. A mean deviation of − 6 ± 11% was observed between the delivered activity and the 90Y PET’s FOV activity. In addition, a substantial difference of − 20 ± 8% was measured on 90Y PET images between the activity in the liver and in the whole FOV. After normalization, 99mTc-MAA SPECT dosimetry was highly correlated and concordant with 90Y-microsphere PET dosimetry for all dose metrics evaluated (ρ = 0.87, ρc = 0.86, P = 3.10−8 and ρ = 0.91, ρc = 0.90, P = 7.10−10 for tumor and normal liver mean dose respectively for example). Besides, mean tumor dose deviation was lower when the catheter position was identical than when it differed (16 Gy vs. 37 Gy, P = 0.007). Concordance between predictive and post-treatment dosimetry, evaluated with Dice similarity coefficients applied on isodoses, significantly correlated with the distance of the catheter position from artery bifurcation (P = 0.04, 0.0004, and 0.05, for 50 Gy, 100 Gy, and 150 Gy isodoses respectively). Conclusions Discrepancies between planned activity and activity measured on 90Y PET images were observed and seemed to be mainly related to clinical hazards and equipment issues. Predictive vs. post-treatment comparison of relative dose distributions between tumor and normal liver showed a good correlation and no significant difference highlighting the predictive value of 99mTc MAA SPECT/CT-based dosimetry. Besides, the reproducibility of catheter tip position appears critical in the agreement between predictive and actual dose distribution.
Collapse
Affiliation(s)
- Marilyne Kafrouni
- Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France. .,PhyMedExp, Montpellier University, INSERM, CNRS, Montpellier, France. .,DOSIsoft SA, Cachan, France.
| | - Carole Allimant
- Department of Radiology, Montpellier University Hospital, Montpellier, France
| | - Marjolaine Fourcade
- Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France
| | | | - Boris Guiu
- PhyMedExp, Montpellier University, INSERM, CNRS, Montpellier, France.,Department of Radiology, Montpellier University Hospital, Montpellier, France
| | - Denis Mariano-Goulart
- Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France.,PhyMedExp, Montpellier University, INSERM, CNRS, Montpellier, France
| | - Fayçal Ben Bouallègue
- Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France.,PhyMedExp, Montpellier University, INSERM, CNRS, Montpellier, France
| |
Collapse
|
11
|
Vega JCDL, Esquinas PL, Rodríguez-Rodríguez C, Bokharaei M, Moskalev I, Liu D, Saatchi K, Häfeli UO. Radioembolization of Hepatocellular Carcinoma with Built-In Dosimetry: First in vivo Results with Uniformly-Sized, Biodegradable Microspheres Labeled with 188Re. Theranostics 2019; 9:868-883. [PMID: 30809314 PMCID: PMC6376476 DOI: 10.7150/thno.29381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022] Open
Abstract
A common form of treatment for patients with hepatocellular carcinoma (HCC) is transarterial radioembolization (TARE) with non-degradable glass or resin microspheres (MS) labeled with 90Y (90Y-MS). To further simplify the dosimetry calculations in the clinical setting, to have more control over the particle size and to change the permanent embolization to a temporary one, we developed uniformly-sized, biodegradable 188Re-labeled MS (188Re-MS) as a new and easily imageable TARE agent. Methods: MS made of poly(L-lactic acid) were produced in a flow focusing microchip. The MS were labeled with 188Re using a customized kit. An orthotopic HCC animal model was developed in male Sprague Dawley rats by injecting N1-S1 cells directly into the liver using ultrasound guidance. A suspension of 188Re-MS was administered via hepatic intra-arterial catheterization 2 weeks post-inoculation of the N1-S1 cells. The rats were imaged by SPECT 1, 24, 48, and 72 h post-radioembolization. Results: The spherical 188Re-MS had a diameter of 41.8 ± 6.0 µm (CV = 14.5%). The site and the depth of the injection of N1-S1 cells were controlled by visualization of the liver in sonograms. Single 0.5 g tumors were grown in all rats. 188Re-MS accumulated in the liver with no deposition in the lungs. 188Re decays to stable 188Os by emission of β¯ particles with similar energy to those emitted by 90Y while simultaneously emitting γ photons, which were imaged directly by single photon computed tomography (SPECT). Using Monte Carlo methods, the dose to the tumors was calculated to be 3-6 times larger than to the healthy liver tissue. Conclusions:188Re-MS have the potential to become the next generation of β¯-emitting MS for TARE. Future work revolves around the investigation of the therapeutic potential of 188Re-MS in a large-scale, long-term preclinical study as well as the evaluation of the clinical outcomes of using 188Re-MS with different sizes, from 20 to 50 µm.
Collapse
|
12
|
Esquinas PL, Shinto A, Kamaleshwaran KK, Joseph J, Celler A. Biodistribution, pharmacokinetics, and organ-level dosimetry for 188Re-AHDD-Lipiodol radioembolization based on quantitative post-treatment SPECT/CT scans. EJNMMI Phys 2018; 5:30. [PMID: 30523435 PMCID: PMC6283804 DOI: 10.1186/s40658-018-0227-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 08/08/2018] [Indexed: 12/25/2022] Open
Abstract
Background Rhenium-188-labelled-Lipiodol radioembolization is a safe and cost-effective treatment for primary liver cancer. In order to determine correlations between treatment doses and patient response to therapy, accurate patient-specific dosimetry is required. Up to date, the reported dosimetry of 188Re-Lipiodol has been based on whole-body (WB) planar imaging only, which has limited quantitative accuracy. The aim of the present study is to determine the in vivo pharmacokinetics, bio-distribution, and organ-level dosimetry of 188Re-AHDD-Lipiodol radioembolization using a combination of post-treatment planar and quantitative SPECT/CT images. Furthermore, based on the analysis of the pharmacokinetic data, a practical and relatively simple imaging and dosimetry method that could be implemented in clinics for 188Re-AHDD-Lipiodol radioembolization is proposed. Thirteen patients with histologically proven hepatocellular carcinoma underwent 188Re-AHDD-Lipiodol radioembolization. A series of 2–3 WB planar images and one SPECT/CT scan were acquired over 48 h after the treatment. The time-integrated activity coefficients (TIACs, also known as residence-times) and absorbed doses of tumors and organs at risk (OARs) were determined using a hybrid WB/SPECT imaging method. Results Whole-body imaging showed that 188Re-AHDD-Lipiodol accumulated mostly in the tumor and liver tissue but a non-negligible amount of the pharmaceutical was also observed in the stomach, lungs, salivary glands, spleen, kidneys, and urinary bladder. On average, the measured effective half-life of 188Re-AHDD-Lipiodol was 12.5 ± 1.9 h in tumor. The effective half-life in the liver and lungs (the two organs at risk) was 12.6 ± 1.7 h and 12.0 ± 1.9 h, respectively. The presence of 188Re in other organs was probably due to the chemical separation and subsequent release of the free radionuclide from Lipiodol. The average doses per injected activity in the tumor, liver, and lungs were 23.5 ± 40.8 mGy/MBq, 2.12 ± 1.78 mGy/MBq, and 0.11 ± 0.05 mGy/MBq, respectively. The proposed imaging and dosimetry method, consisting of a single SPECT/CT for activity determination followed by 188Re-AHDD-Lipiodol clearance with the liver effective half-life of 12.6 h, resulted in TIACs estimates (and hence, doses) mostly within ± 20% from the reference TIACs (estimated using three WB images and one SPECT/CT). Conclusions The large inter-patient variability of the absorbed doses in tumors and normal tissue in 188Re-HDD-Lipiodol radioembolization patients emphasizes the importance of patient-specific dosimetry calculations based on quantitative post-treatment SPECT/CT imaging. Electronic supplementary material The online version of this article (10.1186/s40658-018-0227-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pedro L Esquinas
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada. .,Medical Imaging Research Group, Vancouver, British Columbia, Canada.
| | - Ajit Shinto
- Department of Nuclear Medicine, Kovai Medical Center and Hospital, Coimbatore, Tamil Nadu, India
| | | | - Jephy Joseph
- Department of Nuclear Medicine, Kovai Medical Center and Hospital, Coimbatore, Tamil Nadu, India
| | - Anna Celler
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Medical Imaging Research Group, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Siman W, Mikell JK, Mawlawi OR, Mourtada F, Kappadath SC. Dose volume histogram-based optimization of image reconstruction parameters for quantitative 90 Y-PET imaging. Med Phys 2018; 46:229-237. [PMID: 30375655 DOI: 10.1002/mp.13269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE 90 Y-microsphere radioembolization or selective internal radiation therapy is increasingly being used as a treatment option for tumors that are not candidates for surgery and external beam radiation therapy. Recently, volumetric 90 Y-dosimetry techniques have been implemented to explore tumor dose-response on the basis of 3D 90 Y-activity distribution from PET imaging. Despite being a theranostic study, the optimization of quantitative 90 Y-PET image reconstruction still uses the mean activity concentration recovery coefficient (RC) as the objective function, which is more relevant to diagnostic and detection tasks than is to dosimetry. The aim of this study was to optimize 90 Y-PET image reconstruction by minimizing errors in volumetric dosimetry via the dose volume histogram (DVH). We propose a joint optimization of the number of equivalent iterations (the product of the iterations and subsets) and the postreconstruction filtration (FWHM) to improve the accuracy of voxel-level 90 Y dosimetry. METHODS A modified NEMA IEC phantom was used to emulate clinically relevant 90 Y-PET imaging conditions through various combinations of acquisition durations, activity concentrations, sphere-to-background ratios, and sphere diameters. PET data were acquired in list mode for 300 min in a single-bed position; we then rebinned the list mode PET data to 60, 45, 30, 15, and 5 min per bed, with 10 different realizations. Errors in the DVH were calculated as root mean square errors (RMSE) of the differences in the image-based DVH and the expected DVH. The new optimization approach was tested in a phantom study, and the results were compared with the more commonly used objective function of the mean activity concentration RC. RESULTS In a wide range of clinically relevant imaging conditions, using 36 equivalent iterations with a 5.2-mm filtration resulted in decreased systematic errors in volumetric 90 Y dosimetry, quantified as image-based DVH, in 90 Y-PET images reconstructed using the ordered subset expectation maximization (OSEM) iterative reconstruction algorithm with time of flight (TOF) and point spread function (PSF) modeling. Our proposed objective function of minimizing errors in DVH, which allows for joint optimization of 90 Y-PET iterations and filtration for volumetric quantification of the 90 Y dose, was shown to be superior to conventional RC-based optimization approaches for image-based absorbed dose quantification. CONCLUSION Our proposed objective function of minimizing errors in DVH, which allows for joint optimization of iterations and filtration to reduce errors in the PET-based volumetric quantification 90 Y dose, is relevant to dosimetry in therapy procedures. The proposed optimization method using DVH as the objective function could be applied to any imaging modality used to assess voxel-level quantitative information.
Collapse
Affiliation(s)
- Wendy Siman
- Department of Radiology, The University of Tennessee Medical Center, Knoxville, TN, USA.,The University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Justin K Mikell
- Department of Radiation Oncology, University of Michigan Hospital and Health Systems, Ann Arbor, MI, USA
| | - Osama R Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | | | - S Cheenu Kappadath
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
14
|
Bastiaannet R, Kappadath SC, Kunnen B, Braat AJAT, Lam MGEH, de Jong HWAM. The physics of radioembolization. EJNMMI Phys 2018; 5:22. [PMID: 30386924 PMCID: PMC6212377 DOI: 10.1186/s40658-018-0221-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Radioembolization is an established treatment for chemoresistant and unresectable liver cancers. Currently, treatment planning is often based on semi-empirical methods, which yield acceptable toxicity profiles and have enabled the large-scale application in a palliative setting. However, recently, five large randomized controlled trials using resin microspheres failed to demonstrate a significant improvement in either progression-free survival or overall survival in both hepatocellular carcinoma and metastatic colorectal cancer. One reason for this might be that the activity prescription methods used in these studies are suboptimal for many patients.In this review, the current dosimetric methods and their caveats are evaluated. Furthermore, the current state-of-the-art of image-guided dosimetry and advanced radiobiological modeling is reviewed from a physics' perspective. The current literature is explored for the observation of robust dose-response relationships followed by an overview of recent advancements in quantitative image reconstruction in relation to image-guided dosimetry.This review is concluded with a discussion on areas where further research is necessary in order to arrive at a personalized treatment method that provides optimal tumor control and is clinically feasible.
Collapse
Affiliation(s)
- Remco Bastiaannet
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - S. Cheenu Kappadath
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Unit 1352, Houston, TX 77030 USA
| | - Britt Kunnen
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Arthur J. A. T. Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Marnix G. E. H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Hugo W. A. M. de Jong
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
15
|
Kunnen B, van der Velden S, Bastiaannet R, Lam MGEH, Viergever MA, de Jong HWAM. Radioembolization lung shunt estimation based on a 90
Y pretreatment procedure: A phantom study. Med Phys 2018; 45:4744-4753. [DOI: 10.1002/mp.13168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Britt Kunnen
- Radiology and Nuclear Medicine; UMC Utrecht; P.O. Box 85500 3508 GA Utrecht The Netherlands
- Image Sciences Institute; UMC Utrecht; University Utrecht; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Sandra van der Velden
- Radiology and Nuclear Medicine; UMC Utrecht; P.O. Box 85500 3508 GA Utrecht The Netherlands
- Image Sciences Institute; UMC Utrecht; University Utrecht; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Remco Bastiaannet
- Radiology and Nuclear Medicine; UMC Utrecht; P.O. Box 85500 3508 GA Utrecht The Netherlands
- Image Sciences Institute; UMC Utrecht; University Utrecht; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marnix G. E. H. Lam
- Radiology and Nuclear Medicine; UMC Utrecht; P.O. Box 85500 3508 GA Utrecht The Netherlands
| | - Max A. Viergever
- Image Sciences Institute; UMC Utrecht; University Utrecht; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Hugo W. A. M. de Jong
- Radiology and Nuclear Medicine; UMC Utrecht; P.O. Box 85500 3508 GA Utrecht The Netherlands
| |
Collapse
|
16
|
Potrebko PS, Shridhar R, Biagioli MC, Sensakovic WF, Andl G, Poleszczuk J, Fox TH. SPECT/CT image-based dosimetry for Yttrium-90 radionuclide therapy: Application to treatment response. J Appl Clin Med Phys 2018; 19:435-443. [PMID: 29962026 PMCID: PMC6123162 DOI: 10.1002/acm2.12400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
This work demonstrates the efficacy of voxel‐based 90Y microsphere dosimetry utilizing post‐therapy SPECT/CT imaging and applies it to the prediction of treatment response for the management of patients with hepatocellular carcinoma (HCC). A 90Y microsphere dosimetry navigator (RapidSphere) within a commercial platform (Velocity, Varian Medical Systems) was demonstrated for three microsphere cases that were imaged using optimized bremsstrahlung SPECT/CT. For each case, the 90Y SPECT/CT was registered to follow‐up diagnostic MR/CT using deformable image registration. The voxel‐based dose distribution was computed using the local deposition method with known injected activity. The system allowed the visualization of the isodose distributions on any of the registered image datasets and the calculation of dose‐volume histograms (DVHs). The dosimetric analysis illustrated high local doses that are characteristic of blood‐flow directed brachytherapy. In the first case, the HCC mass demonstrated a complete response to treatment indicated by a necrotic region in follow‐up MR imaging. This result was dosimetrically predicted since the gross tumor volume (GTV) was well covered by the prescription isodose volume (V150 Gy = 85%). The second case illustrated a partial response to treatment which was characterized by incomplete necrosis of an HCC mass and a remaining area of solid enhancement in follow‐up MR imaging. This result was predicted by dosimetric analysis because the GTV demonstrated incomplete coverage by the prescription isodose volume (V470 Gy = 18%). The third case demonstrated extrahepatic activity. The dosimetry indicated that the prescription (125 Gy) isodose region extended outside of the liver into the duodenum (178 Gy maximum dose). This was predictive of toxicity as the patient later developed a duodenal ulcer. The ability to predict outcomes and complications using deformable image registration, calculated isodose distributions, and DVHs, points to the clinical utility of patient‐specific dose calculations for 90Y radioembolization treatment planning.
Collapse
Affiliation(s)
- Peter S Potrebko
- College of Medicine, University of Central Florida, Orlando, FL, USA.,Department of Physics, University of Central Florida, Orlando, FL, USA.,Department of Radiation Oncology, Florida Hospital, Orlando, FL, USA
| | - Ravi Shridhar
- Department of Radiation Oncology, Florida Hospital, Orlando, FL, USA
| | | | - William F Sensakovic
- College of Medicine, University of Central Florida, Orlando, FL, USA.,Department of Radiology, Florida Hospital, Orlando, FL, USA
| | | | - Jan Poleszczuk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
17
|
Maughan NM, Eldib M, Faul D, Conti M, Elschot M, Knešaurek K, Leek F, Townsend D, DiFilippo FP, Jackson K, Nekolla SG, Lukas M, Tapner M, Parikh PJ, Laforest R. Multi institutional quantitative phantom study of yttrium-90 PET in PET/MRI: the MR-QUEST study. EJNMMI Phys 2018; 5:7. [PMID: 29616365 PMCID: PMC5882483 DOI: 10.1186/s40658-018-0206-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Background Yttrium-90 (90Y) radioembolization involves the intra-arterial delivery of radioactive microspheres to treat hepatic malignancies. Though this therapy involves careful pre-treatment planning and imaging, little is known about the precise location of the microspheres once they are administered. Recently, there has been growing interest post-radioembolization imaging using positron-emission tomography (PET) for quantitative dosimetry and identifying lesions that may benefit from additional salvage therapy. In this study, we aim to measure the inter-center variability of 90Y PET measurements as measured on PET/MRI in preparation for a multi-institutional prospective phase I/II clinical trial. Eight institutions participated in this study and followed a standardized phantom filling and imaging protocol. The NEMA NU2-2012 body phantom was filled with 3 GBq of 90Y chloride solution. The phantom was imaged for 30 min in listmode on a Siemens Biograph mMR non-TOF PET/MRI scanner at five time points across 10 days (0.3–3.0 GBq). Raw PET data were sent to a central site for image reconstruction and data analysis. Images were reconstructed with optimal parameters determined from a previous study. Volumes of interest (VOIs) matching the known sphere diameters were drawn on the vendor-provided attenuation map and propagated to the PET images. Recovery coefficients (RCs) and coefficient of variation of the RCs (COV) were calculated from these VOIs for each sphere size and activity level. Results Mean RCs ranged from 14.5 to 75.4%, with the lowest mean RC coming from the smallest sphere (10 mm) on the last day of imaging (0.16 MBq/ml) and the highest mean RC coming from the largest sphere (37 mm) on the first day of imaging (2.16 MBq/ml). The smaller spheres tended to exhibit higher COVs. In contrast, the larger spheres tended to exhibit lower COVs. COVs from the 37 mm sphere were < 25.3% in all scans. For scans with ≥ 0.60 MBq/ml, COVs were ≤ 25% in spheres ≥ 22 mm. However, for all other spheres sizes and activity levels, COVs were usually > 25%. Conclusions Post-radioembolization dosimetry of lesions or other VOIs ≥ 22 mm in diameter can be consistently obtained (< 25% variability) at a multi-institutional level using PET/MRI for any clinically significant activity for 90Y radioembolization.
Collapse
Affiliation(s)
- Nichole M Maughan
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Mootaz Eldib
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA.,Department of Biomedical Engineering, City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - David Faul
- Siemens Healthineers, Siemens Medical Solutions USA, Inc., 40 Liberty Boulevard, Malvern, PA, 19355-9998, USA
| | - Maurizio Conti
- Molecular Imaging, Siemens Healthineers, 810 Innovation Dr, Knoxville, TN, 37932, USA
| | - Mattijs Elschot
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Postboks 8905, 7491, Trondheim, Norway
| | - Karin Knešaurek
- Department of Radiology, Icahn School of Medicine at Mt. Sinai, One G. Levy Pl., Box 1141, New York, NY, 10029, USA
| | - Francesca Leek
- Agency for Science Technology and Research, National University of Singapore Clinical Imaging Research Centre, 14 Medical Drive, #B1-01, Singapore, 117599, Singapore
| | - David Townsend
- Agency for Science Technology and Research, National University of Singapore Clinical Imaging Research Centre, 14 Medical Drive, #B1-01, Singapore, 117599, Singapore
| | - Frank P DiFilippo
- Department of Nuclear Medicine, Cleveland Clinic, Mail Code Jb3, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | | | - Stephan G Nekolla
- Klinik und Poliklinik für Nuklearmedizin, TU München, Strasse 22, 81675, Munich, Germany
| | - Mathias Lukas
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Charitépl. 1, 10117, Berlin, Germany.,Siemens Healthcare GmbH, Berlin, Germany
| | - Michael Tapner
- Sirtex Medical Ltd, Level 33, 101 Miller St, North Sydney, NSW, 2060, Australia.,ABX-CRO Advanced Pharmaceutical Services, 1 Begonia Road, Normanhurst, NSW, 2076, Australia
| | - Parag J Parikh
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA.
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, Campus Box 8225, St. Louis, MO, 63110, USA
| |
Collapse
|
18
|
D'Arienzo M, Pimpinella M, Capogni M, De Coste V, Filippi L, Spezi E, Patterson N, Mariotti F, Ferrari P, Chiaramida P, Tapner M, Fischer A, Paulus T, Pani R, Iaccarino G, D'Andrea M, Strigari L, Bagni O. Phantom validation of quantitative Y-90 PET/CT-based dosimetry in liver radioembolization. EJNMMI Res 2017; 7:94. [PMID: 29185067 PMCID: PMC5705539 DOI: 10.1186/s13550-017-0341-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/29/2017] [Indexed: 12/20/2022] Open
Abstract
Background PET/CT has recently been shown to be a viable alternative to traditional post-infusion imaging methods providing good quality images of 90Y-laden microspheres after selective internal radiation therapy (SIRT). In the present paper, first we assessed the quantitative accuracy of 90Y-PET using an anthropomorphic phantom provided with lungs, liver, spine, and a cylindrical homemade lesion located into the hepatic compartment. Then, we explored the accuracy of different computational approaches on dose calculation, including (I) direct Monte Carlo radiation transport using Raydose, (II) Kernel convolution using Philips Stratos, (III) local deposition algorithm, (IV) Monte Carlo technique (MCNP) considering a uniform activity distribution, and (V) MIRD (Medical Internal Radiation Dose) analytical approach. Finally, calculated absorbed doses were compared with those obtained performing measurements with LiF:Mg,Cu,P TLD chips in a liquid environment. Results Our results indicate that despite 90Y-PET being likely to provide high-resolution images, the 90Y low branch ratio, along with other image-degrading factors, may produce non-uniform activity maps, even in the presence of uniform activity. A systematic underestimation of the recovered activity, both for the tumor insert and for the liver background, was found. This is particularly true if no partial volume correction is applied through recovery coefficients. All dose algorithms performed well, the worst case scenario providing an agreement between absorbed dose evaluations within 20%. Average absorbed doses determined with the local deposition method are in excellent agreement with those obtained using the MIRD and the kernel-convolution dose calculation approach. Finally, absorbed dose assessed with MC codes are in good agreement with those obtained using TLD in liquid solution, thus confirming the soundness of both calculation approaches. This is especially true for Raydose, which provided an absorbed dose value within 3% of the measured dose, well within the stated uncertainties. Conclusions Patient-specific dosimetry is possible even in a scenario with low true coincidences and high random fraction, as in 90Y–PET imaging, granted that accurate absolute PET calibration is performed and acquisition times are sufficiently long. Despite Monte Carlo calculations seeming to outperform all dose estimation algorithms, our data provide a strong argument for encouraging the use of the local deposition algorithm for routine 90Y dosimetry based on PET/CT imaging, due to its simplicity of implementation.
Collapse
Affiliation(s)
- Marco D'Arienzo
- ENEA, Italian National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123, Rome, Italy. .,Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, Rome, Italy.
| | - Maria Pimpinella
- ENEA, Italian National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123, Rome, Italy
| | - Marco Capogni
- ENEA, Italian National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123, Rome, Italy
| | - Vanessa De Coste
- ENEA, Italian National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123, Rome, Italy
| | - Luca Filippi
- Nuclear Medicine Department, Santa Maria Goretti Hospital, Latina, Italy
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom.,Department of Medical Physics, Velindre Cancer Centre, Cardiff, UK
| | - Nick Patterson
- Department of Medical Physics, Velindre Cancer Centre, Cardiff, UK
| | - Francesca Mariotti
- ENEA, Radiation Protection Institute, Bologna Via Martiri di Monte Sole 4, 40129, Bologna, Italy
| | - Paolo Ferrari
- ENEA, Radiation Protection Institute, Bologna Via Martiri di Monte Sole 4, 40129, Bologna, Italy
| | | | | | - Alexander Fischer
- Philips Technologie GmbH Innovative Technologies, Research Laboratories Pauwelsstr, 17, 52074, Aachen, Germany
| | - Timo Paulus
- Philips Technologie GmbH Innovative Technologies, Research Laboratories Pauwelsstr, 17, 52074, Aachen, Germany
| | - Roberto Pani
- Depertment of Medico-surgical Sciences and Biotecnologies, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Iaccarino
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Marco D'Andrea
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Oreste Bagni
- Nuclear Medicine Department, Santa Maria Goretti Hospital, Latina, Italy
| |
Collapse
|
19
|
Li T, Ao ECI, Lambert B, Brans B, Vandenberghe S, Mok GSP. Quantitative Imaging for Targeted Radionuclide Therapy Dosimetry - Technical Review. Theranostics 2017; 7:4551-4565. [PMID: 29158844 PMCID: PMC5695148 DOI: 10.7150/thno.19782] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
Targeted radionuclide therapy (TRT) is a promising technique for cancer therapy. However, in order to deliver the required dose to the tumor, minimize potential toxicity in normal organs, as well as monitor therapeutic effects, it is important to assess the individualized internal dosimetry based on patient-specific data. Advanced imaging techniques, especially radionuclide imaging, can be used to determine the spatial distribution of administered tracers for calculating the organ-absorbed dose. While planar scintigraphy is still the mainstream imaging method, SPECT, PET and bremsstrahlung imaging have promising properties to improve accuracy in quantification. This article reviews the basic principles of TRT and discusses the latest development in radionuclide imaging techniques for different theranostic agents, with emphasis on their potential to improve personalized TRT dosimetry.
Collapse
Affiliation(s)
- Tiantian Li
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Edwin C. I. Ao
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Bieke Lambert
- Dept of Radiology and Nuclear medicine, Ghent University, De Pintelaan 185 9000 Gent, Belgium
- AZ Maria Middelares, Buiten-Ring-Sint-Denijs 30, 9000 Gent, Belgium
| | - Boudewijn Brans
- Dept of Nuclear Medicine, UZ Ghent-Ghent University, St-Pietersnieuwstraat 41, 9000 Gent, Belgium
| | - Stefaan Vandenberghe
- MEDISIP-ELIS-IBITECH-IMEC, Ghent University, St-Pietersnieuwstraat 41, 9000 Gent, Belgium
| | - Greta S. P. Mok
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
20
|
Siman W, Mikell JK, Kappadath SC. Practical reconstruction protocol for quantitative (90)Y bremsstrahlung SPECT/CT. Med Phys 2017; 43:5093. [PMID: 27587040 DOI: 10.1118/1.4960629] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To develop a practical background compensation (BC) technique to improve quantitative (90)Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. METHODS All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2-16 cm) positioned below a (90)Y source and set at different distances (15-35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images. The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar (90)Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical (90)Y images. RESULTS The authors found that the most appropriate imaging EW range was 90-125 keV. BC was modeled as 0.53× images in the EW of 310-410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. CONCLUSIONS The proposed EW-based BC model was developed for (90)Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion detectability and activity quantification compared to SPECT with AC only. The proposed methodology can readily be used to tailor (90)Y SPECT/CT acquisition and reconstruction protocols with different SPECT/CT systems for quantification and improved image quality in clinical settings.
Collapse
Affiliation(s)
- W Siman
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - J K Mikell
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - S C Kappadath
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| |
Collapse
|
21
|
Strydhorst J, Carlier T, Dieudonné A, Conti M, Buvat I. A gate evaluation of the sources of error in quantitative 90 Y PET. Med Phys 2017; 43:5320-5329. [PMID: 28105711 DOI: 10.1118/1.4961747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/28/2016] [Accepted: 08/13/2016] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Accurate reconstruction of the dose delivered by 90 Y microspheres using a postembolization PET scan would permit the establishment of more accurate dose-response relationships for treatment of hepatocellular carcinoma with 90 Y. However, the quality of the PET data obtained is compromised by several factors, including poor count statistics and a very high random fraction. This work uses Monte Carlo simulations to investigate what impact factors other than low count statistics have on the quantification of90 Y PET. METHODS PET acquisitions of two phantoms-a NEMA PET phantom and the NEMA IEC PET body phantom-containing either 90 Y or 18 F were simulated using gate. Simulated projections were created with subsets of the simulation data allowing the contributions of random, scatter, and LSO background to be independently evaluated. The simulated projections were reconstructed using the commercial software for the simulated scanner, and the quantitative accuracy of the reconstruction and the contrast recovery of the reconstructed images were evaluated. RESULTS The quantitative accuracy of the 90 Y reconstructions were not strongly influenced by the high random fraction present in the projection data, and the activity concentration was recovered to within 5% of the known value. The contrast recovery measured for simulated 90 Y data was slightly poorer than that for simulated 18 F data with similar count statistics. However, the degradation was not strongly linked to any particular factor. Using a more restricted energy range to reduce the random fraction in the projections had no significant effect. CONCLUSIONS Simulations of 90 Y PET confirm that quantitative 90 Y is achievable with the same approach as that used for 18 F, and that there is likely very little margin for improvement by attempting to model aspects unique to 90 Y, such as the much higher random fraction or the presence of bremsstrahlung in the singles data.
Collapse
Affiliation(s)
- Jared Strydhorst
- IMIV, U1023 Inserm/CEA/Université Paris-Sud and ERL 9218 CNRS, Université Paris-Saclay, CEA/SHFJ, Orsay 91401, France
| | - Thomas Carlier
- Department of Nuclear Medicine, Centre Hospitalier Universitaire de Nantes and CRCNA, Inserm U892, Nantes 44000, France
| | - Arnaud Dieudonné
- Department of Nuclear Medicine, Hôpital Beaujon, HUPNVS, APHP and Inserm U1149, Clichy 92110, France
| | - Maurizio Conti
- Siemens Healthcare Molecular Imaging, Knoxville, Tennessee, 37932
| | - Irène Buvat
- IMIV, U1023 Inserm/CEA/Université Paris-Sud and ERL 9218 CNRS, Université Paris-Saclay, CEA/SHFJ, Orsay 91401, France
| |
Collapse
|
22
|
Siman W, Mawlawi OR, Mikell JK, Mourtada F, Kappadath SC. Effects of image noise, respiratory motion, and motion compensation on 3D activity quantification in count-limited PET images. Phys Med Biol 2016; 62:448-464. [DOI: 10.1088/1361-6560/aa5088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Eldib M, Oesingmann N, Faul DD, Kostakoglu L, Knešaurek K, Fayad ZA. Optimization of yttrium-90 PET for simultaneous PET/MR imaging: A phantom study. Med Phys 2016; 43:4768. [DOI: 10.1118/1.4958958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
24
|
|
25
|
Maughan NM, Eldib M, Conti M, Knešaurek K, Faul D, Parikh PJ, Fayad ZA, Laforest R. Phantom study to determine optimal PET reconstruction parameters for PET/MR imaging of
90
Y microspheres following radioembolization. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/1/015009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Sun L, Gai Y, Anderson CJ, Zeng D. Highly-efficient and versatile fluorous-tagged Cu(I)-catalyzed azide-alkyne cycloaddition ligand for preparing bioconjugates. Chem Commun (Camb) 2015; 51:17072-5. [PMID: 26426419 PMCID: PMC4654650 DOI: 10.1039/c5cc06858d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel ligand (FBTTBE) for Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) has been developed, which demonstrates not only superior catalytic efficiency but also the ease of removing toxic copper species. FBTTBE has also been successfully applied in the synthesis of radiometal-labeled peptide and antibody without observable transchelation with the non-radioactive Cu(i) catalyst.
Collapse
Affiliation(s)
- Lingyi Sun
- Department of Radiology, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15219, USA.
| | - Yongkang Gai
- Department of Radiology, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15219, USA.
| | - Carolyn J Anderson
- Department of Radiology, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15219, USA.
| | - Dexing Zeng
- Department of Radiology, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
27
|
Bailey DL, Hennessy TM, Willowson KP, Henry EC, Chan DLH, Aslani A, Roach PJ. In vivo quantification of (177)Lu with planar whole-body and SPECT/CT gamma camera imaging. EJNMMI Phys 2015; 2:20. [PMID: 26501821 PMCID: PMC4573647 DOI: 10.1186/s40658-015-0123-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/25/2015] [Indexed: 11/24/2022] Open
Abstract
Background Advances in gamma camera technology and the emergence of a number of new theranostic radiopharmaceutical pairings have re-awakened interest in in vivo quantification with single-photon-emitting radionuclides. We have implemented and validated methodology to provide quantitative imaging of 177Lu for 2D whole-body planar studies and for 3D tomographic imaging with single-photon emission computed tomography (SPECT)/CT. Methods Whole-body planar scans were performed on subjects to whom a known amount of [177Lu]-DOTA-octreotate had been administered for therapy. The total radioactivity estimated from the images was compared with the known amount of the radionuclide therapy administered. In separate studies, venous blood samples were withdrawn from subjects after administration of [177Lu]-DOTA-octreotate while a SPECT acquisition was in progress and the concentration of the radionuclide in the venous blood sample compared with that estimated from large blood pool structures in the SPECT reconstruction. The total radioactivity contained within an internal SPECT calibration standard was also assessed. Results In the whole-body planar scans (n = 28), the estimated total body radioactivity was accurate to within +4.6 ± 5.9 % (range −17.1 to +11.2 %) of the correct value. In the SPECT reconstructions (n = 12), the radioactivity concentration in the cardiac blood pool was accurate to within −4.0 ± 7.8 % (range −16.1 to +7.5 %) of the true value and the internal standard measurements (n = 89) were within 2.0 ± 8.5 % (range −16.3 to +24.2 %) of the known amount of radioactivity contained. Conclusions In our hands, state-of-the-art hybrid SPECT/CT gamma cameras were able to provide accurate estimates of in vivo radioactivity to better than, on average, ±10 % for use in biodistribution and radionuclide dosimetry calculations.
Collapse
Affiliation(s)
- Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia. .,Faculty of Health Sciences, University of Sydney, Cumberland, NSW, Australia. .,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia. .,NETwork, Sydney Vital, St Leonards, Sydney, NSW, Australia.
| | - Thomas M Hennessy
- Institute of Medical Physics, University of Sydney, Camperdown, NSW, Australia
| | - Kathy P Willowson
- Institute of Medical Physics, University of Sydney, Camperdown, NSW, Australia
| | - E Courtney Henry
- Institute of Medical Physics, University of Sydney, Camperdown, NSW, Australia
| | - David L H Chan
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,NETwork, Sydney Vital, St Leonards, Sydney, NSW, Australia
| | - Alireza Aslani
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Paul J Roach
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
28
|
Soderlund AT, Chaal J, Tjio G, Totman JJ, Conti M, Townsend DW. Beyond 18F-FDG: Characterization of PET/CT and PET/MR Scanners for a Comprehensive Set of Positron Emitters of Growing Application--18F, 11C, 89Zr, 124I, 68Ga, and 90Y. J Nucl Med 2015; 56:1285-91. [PMID: 26135111 DOI: 10.2967/jnumed.115.156711] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/23/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED This study aimed to investigate image quality for a comprehensive set of isotopes ((18)F, (11)C, (89)Zr, (124)I, (68)Ga, and (90)Y) on 2 clinical scanners: a PET/CT scanner and a PET/MR scanner. METHODS Image quality and spatial resolution were tested according to NU 2-2007 of the National Electrical Manufacturers Association. An image-quality phantom was used to measure contrast recovery, residual bias in a cold area, and background variability. Reconstruction methods available on the 2 scanners were compared, including point-spread-function correction for both scanners and time of flight for the PET/CT scanner. Spatial resolution was measured using point sources and filtered backprojection reconstruction. RESULTS With the exception of (90)Y, small differences were seen in the hot-sphere contrast recovery of the different isotopes. Cold-sphere contrast recovery was similar across isotopes for all reconstructions, with an improvement seen with time of flight on the PET/CT scanner. The lower-statistic (90)Y scans yielded substantially lower contrast recovery than the other isotopes. When isotopes were compared, there was no difference in measured spatial resolution except for PET/MR axial spatial resolution, which was significantly higher for (124)I and (68)Ga. CONCLUSION Overall, both scanners produced good images with (18)F, (11)C, (89)Zr, (124)I, (68)Ga, and (90)Y.
Collapse
Affiliation(s)
| | - Jasper Chaal
- A*STAR-NUS Clinical Imaging Research Center, Singapore
| | - Gabriel Tjio
- A*STAR-NUS Clinical Imaging Research Center, Singapore
| | - John J Totman
- A*STAR-NUS Clinical Imaging Research Center, Singapore
| | - Maurizio Conti
- Siemens Healthcare Molecular Imaging, Knoxville, Tennessee; and
| | - David W Townsend
- A*STAR-NUS Clinical Imaging Research Center, Singapore Department of Diagnostic Radiology, National University Hospital, Singapore
| |
Collapse
|
29
|
Carlier T, Willowson KP, Fourkal E, Bailey DL, Doss M, Conti M. 90Y -PET imaging: Exploring limitations and accuracy under conditions of low counts and high random fraction. Med Phys 2015; 42:4295-309. [DOI: 10.1118/1.4922685] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
30
|
Theranostic Imaging of Yttrium-90. BIOMED RESEARCH INTERNATIONAL 2015; 2015:481279. [PMID: 26106608 PMCID: PMC4464848 DOI: 10.1155/2015/481279] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023]
Abstract
This paper overviews Yttrium-90 ((90)Y) as a theranostic and nuclear medicine imaging of (90)Y radioactivity with bremsstrahlung imaging and positron emission tomography. In addition, detection and optical imaging of (90)Y radioactivity using Cerenkov luminescence will also be reviewed. Methods and approaches for qualitative and quantitative (90)Y imaging will be briefly discussed. Although challenges remain for (90)Y imaging, continued clinical demand for predictive imaging response assessment and target/nontarget dosimetry will drive research and technical innovation to provide greater clinical utility of (90)Y as a theranostic agent.
Collapse
|
31
|
Willowson KP, Tapner M, Bailey DL. A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes after radioembolization with resin microspheres : The QUEST Phantom Study. Eur J Nucl Med Mol Imaging 2015; 42:1202-22. [PMID: 25967868 PMCID: PMC4480824 DOI: 10.1007/s00259-015-3059-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/01/2015] [Indexed: 01/02/2023]
Abstract
Purpose To investigate and compare the quantitative accuracy of 90Y imaging across different generation PET/CT scanners, for the purpose of dosimetry after radioembolization with resin microspheres. Methods A strict experimental and imaging protocol was followed by 47 international sites using the NEMA 2007/IEC 2008 PET body phantom with an 8-to-1 sphere-to-background ratio of 90Y solution. The phantom was imaged over a 7-day period (activity ranging from 0.5 to 3.0 GBq) and all reconstructed data were analysed at a core laboratory for consistent processing. Quantitative accuracy was assessed through measures of total phantom activity, activity concentration in background and hot spheres, misplaced counts in a nonradioactive insert, and background variability. Results Of the 69 scanners assessed, 37 had both time-of-flight (ToF) and resolution recovery (RR) capability. These current generation scanners from GE, Philips and Siemens could reconstruct background concentration measures to within 10 % of true values over the evaluated range, with greater deviations on the Philips systems at low count rates, and demonstrated typical partial volume effects on hot sphere recovery, which dominated spheres of diameter <20 mm. For spheres >20 mm in diameter, activity concentrations were consistently underestimated by about 20 %. Non-ToF scanners from GE Healthcare and Siemens were capable of producing accurate measures, but with inferior quantitative recovery compared with ToF systems. Conclusion Current generation ToF scanners can consistently reconstruct 90Y activity concentrations, but they underestimate activity concentrations in small structures (≤37 mm diameter) within a warm background due to partial volume effects and constraints of the reconstruction algorithm. At the highest count rates investigated, measures of background concentration (about 300 kBq/ml) could be estimated on average to within 1 %, 5 % and 2 % for GE Healthcare (all-pass filter, RR + ToF), Philips (4i8s ToF) and Siemens (2i21s all-pass filter, RR + ToF) ToF systems, respectively. Over the range of activities investigated, comparable performance between GE Healthcare and Siemens ToF systems suggests suitability for quantitative analysis in a scenario analogous to that of postradioembolization imaging for treatment of liver cancer.
Collapse
Affiliation(s)
- Kathy P Willowson
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, 2006, NSW, Australia,
| | | | | | | |
Collapse
|
32
|
Fabbri C, Bartolomei M, Mattone V, Casi M, De Lauro F, Bartolini N, Gentili G, Amadori S, Agostini M, Sarti G. (90)Y-PET/CT Imaging Quantification for Dosimetry in Peptide Receptor Radionuclide Therapy: Analysis and Corrections of the Impairing Factors. Cancer Biother Radiopharm 2015; 30:200-10. [PMID: 25860616 DOI: 10.1089/cbr.2015.1819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE We evaluated the possibility to assess (90)Y-PET/CT imaging quantification for dosimetry in (90)Y-peptide receptor radionuclide therapy. METHODS Tests were performed by Discovery 710 Elite (GE) PET/CT equipment. A body-phantom containing radioactive-coplanar-spheres was filled with (90)Y water solution to reproduce different signal-to-background-activity-ratios (S/N). We studied minimum detectable activity (MDA) concentration, contrast-to-noise ratio (CNR), and full-width-at-half-maximum (FWHM). Subsequently, three recovery coefficients (RC)-based correction approaches were evaluated: maximum-RC, resolution-RC, and isovolume-RC. The analysis of the volume segmentation thresholding method was also assessed to derive a relationship between the true volume of the targets and the threshold to be applied to the PET images. (90)Y-PET/CT imaging quantification was then achieved on some patients and related with preclinical tests. Moreover, the dosimetric evaluation was obtained on the target regions. RESULTS CNR value was greater than 5 if the MDA was greater than 0.2 MBq/mL with no background activity and 0.5-0.7 MBq/mL with S/N ranging from 3 to 6. FWHM was equal to 7 mm. An exponential fitting of isovolume RCs-based correction technique was adopted for activity quantification. Adaptive segmentation thresholding exponential curves were obtained and applied for target volume identification in three signal-to-background-activity-ratios. The imaging quantification study and dosimetric evaluations in clinical cases was feasible and the results were coherent with those obtained in preclinical tests. CONCLUSIONS (90)Y-PET/CT imaging quantification is possible both in phantoms and in patients. Absorbed dose evaluations in clinical applications are strongly related to targets activity concentration.
Collapse
Affiliation(s)
- Cinzia Fabbri
- 1 Physics and Biomedical Technologies Unit, Bufalini Hospital , AUSL della Romagna, Cesena, Italy .,2 Medical Physics Unit, AORMN , Pesaro, Italy
| | - Mirco Bartolomei
- 3 Nuclear Medicine Unit, Bufalini Hospital , AUSL della Romagna, Cesena, Italy
| | - Vincenzo Mattone
- 3 Nuclear Medicine Unit, Bufalini Hospital , AUSL della Romagna, Cesena, Italy
| | - Michela Casi
- 3 Nuclear Medicine Unit, Bufalini Hospital , AUSL della Romagna, Cesena, Italy
| | - Francesco De Lauro
- 3 Nuclear Medicine Unit, Bufalini Hospital , AUSL della Romagna, Cesena, Italy
| | - Nerio Bartolini
- 3 Nuclear Medicine Unit, Bufalini Hospital , AUSL della Romagna, Cesena, Italy
| | - Giovanni Gentili
- 3 Nuclear Medicine Unit, Bufalini Hospital , AUSL della Romagna, Cesena, Italy
| | - Sonia Amadori
- 3 Nuclear Medicine Unit, Bufalini Hospital , AUSL della Romagna, Cesena, Italy
| | - Monica Agostini
- 3 Nuclear Medicine Unit, Bufalini Hospital , AUSL della Romagna, Cesena, Italy
| | - Graziella Sarti
- 1 Physics and Biomedical Technologies Unit, Bufalini Hospital , AUSL della Romagna, Cesena, Italy
| |
Collapse
|
33
|
Abstract
PURPOSE Flood sources of (57)Co are commonly used for quality control of gamma cameras. Flood uniformity may be affected by the contaminants (56)Co and (58)Co, which emit higher energy photons. Although vendors specify a maximum combined (56)Co and (58)Co activity, a convenient test for flood source purity that is feasible in a clinical environment would be desirable. METHODS Both (56)Co and (58)Co emit positrons with branching 19.6% and 14.9%, respectively. As is known from (90)Y imaging, a positron emission tomography (PET) scanner is capable of quantitatively imaging very weak positron emission in a high single-photon background. To evaluate this approach, two (57)Co flood sources were scanned with a clinical PET/CT multiple times over a period of months. The (56)Co and (58)Co activity was clearly visible in the reconstructed PET images. Total impurity activity was quantified from the PET images after background subtraction of prompt gamma coincidences. RESULTS Time-of-flight PET reconstruction was highly beneficial for accurate image quantification. Repeated measurements of the positron-emitting impurities showed excellent agreement with an exponential decay model. For both flood sources studied, the fit parameters indicated a zero intercept and a decay half-life consistent with a mixture of (56)Co and (58)Co. The total impurity activity at the reference date was estimated to be 0.06% and 0.07% for the two sources, which was consistent with the vendor's specification of <0.12%. CONCLUSIONS The robustness of the repeated measurements and a thorough analysis of the detector corrections and physics suggest that the accuracy is acceptable and that the technique is feasible. Further work is needed to validate the accuracy of this technique with a calibrated high resolution gamma spectrometer as a gold standard, which was not available for this study, and for other PET detector models.
Collapse
Affiliation(s)
- Frank P DiFilippo
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
34
|
Attarwala AA, Molina-Duran F, Büsing KA, Schönberg SO, Bailey DL, Willowson K, Glatting G. Quantitative and qualitative assessment of Yttrium-90 PET/CT imaging. PLoS One 2014; 9:e110401. [PMID: 25369020 PMCID: PMC4219690 DOI: 10.1371/journal.pone.0110401] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/22/2014] [Indexed: 11/24/2022] Open
Abstract
Yttrium-90 is known to have a low positron emission decay of 32 ppm that may allow for personalized dosimetry of liver cancer therapy with 90Y labeled microspheres. The aim of this work was to image and quantify 90Y so that accurate predictions of the absorbed dose can be made. The measurements were performed within the QUEST study (University of Sydney, and Sirtex Medical, Australia). A NEMA IEC body phantom containing 6 fillable spheres (10–37 mm ∅) was used to measure the 90Y distribution with a Biograph mCT PET/CT (Siemens, Erlangen, Germany) with time-of-flight (TOF) acquisition. A sphere to background ratio of 8∶1, with a total 90Y activity of 3 GBq was used. Measurements were performed for one week (0, 3, 5 and 7 d). he acquisition protocol consisted of 30 min-2 bed positions and 120 min-single bed position. mages were reconstructed with 3D ordered subset expectation maximization (OSEM) and point spread function (PSF) for iteration numbers of 1–12 with 21 (TOF) and 24 (non-TOF) subsets and CT based attenuation and scatter correction. Convergence of algorithms and activity recovery was assessed based on regions-of-interest (ROI) analysis of the background (100 voxels), spheres (4 voxels) and the central low density insert (25 voxels). For the largest sphere, the recovery coefficient (RC) values for the 30 min –2-bed position, 30 min-single bed and 120 min-single bed were 1.12±0.20, 1.14±0.13, 0.97±0.07 respectively. For the smaller diameter spheres, the PSF algorithm with TOF and single bed acquisition provided a comparatively better activity recovery. Quantification of Y-90 using Biograph mCT PET/CT is possible with a reasonable accuracy, the limitations being the size of the lesion and the activity concentration present. At this stage, based on our study, it seems advantageous to use different protocols depending on the size of the lesion.
Collapse
Affiliation(s)
- Ali Asgar Attarwala
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Flavia Molina-Duran
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karen-Anett Büsing
- Institute of Clinical Radiology and Nuclear Medicine, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan O. Schönberg
- Institute of Clinical Radiology and Nuclear Medicine, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dale L. Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Kathy Willowson
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
35
|
Srinivas SM, Natarajan N, Kuroiwa J, Gallagher S, Nasr E, Shah SN, DiFilippo FP, Obuchowski N, Bazerbashi B, Yu N, McLennan G. Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post-Radioembolization (90)Y PET. Front Oncol 2014; 4:255. [PMID: 25353006 PMCID: PMC4195277 DOI: 10.3389/fonc.2014.00255] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/05/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Radioembolization with Yttrium-90 ((90) Y) microspheres is becoming a more widely used transcatheter treatment for unresectable hepatocellular carcinoma (HCC). Using post-treatment (90) Y positron emission tomography/computerized tomography (PET/CT) scans, the distribution of microspheres within the liver can be determined and quantitatively assessed. We studied the radiation dose of (90) Y delivered to liver and treated tumors. METHODS This retrospective study of 56 patients with HCC, including analysis of 98 liver tumors, measured and correlated the dose of radiation delivered to liver tumors and normal liver tissue using glass microspheres (TheraSpheres(®)) to the frequency of complications with modified response evaluation criteria in solid tumors (mRECIST). (90) Y PET/CT and triphasic liver CT scans were used to contour treated tumor and normal liver regions and determine their respective activity concentrations. An absorbed dose factor was used to convert the measured activity concentration (Bq/mL) to an absorbed dose (Gy). RESULTS The 98 studied tumors received a mean dose of 169 Gy (mode 90-120 Gy; range 0-570 Gy). Tumor response by mRECIST criteria was performed for 48 tumors that had follow-up scans. There were 21 responders (mean dose 215 Gy) and 27 non-responders (mean dose 167 Gy). The association between mean tumor absorbed dose and response suggests a trend but did not reach statistical significance (p = 0.099). Normal liver tissue received a mean dose of 67 Gy (mode 60-70 Gy; range 10-120 Gy). There was a statistically significant association between absorbed dose to normal liver and the presence of two or more severe complications (p = 0.036). CONCLUSION Our cohort of patients showed a possible dose-response trend for the tumors. Collateral dose to normal liver is non-trivial and can have clinical implications. These methods help us understand whether patient adverse events, treatment success, or treatment failure can be attributed to the dose that the tumor or normal liver received.
Collapse
Affiliation(s)
- Shyam M Srinivas
- Department of Nuclear Medicine, Cleveland Clinic , Cleveland, OH , USA
| | - Navin Natarajan
- Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Joshua Kuroiwa
- Ohio University Heritage College of Osteopathic Medicine , Athens, OH , USA
| | - Sean Gallagher
- Ohio University Heritage College of Osteopathic Medicine , Athens, OH , USA
| | - Elie Nasr
- Department of Nuclear Medicine, Cleveland Clinic , Cleveland, OH , USA
| | - Shetal N Shah
- Department of Nuclear Medicine, Cleveland Clinic , Cleveland, OH , USA
| | - Frank P DiFilippo
- Department of Nuclear Medicine, Cleveland Clinic , Cleveland, OH , USA
| | - Nancy Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic , Cleveland, OH , USA
| | - Bana Bazerbashi
- Section of Vascular and Interventional Radiology, Cleveland Clinic , Cleveland, OH , USA
| | - Naichang Yu
- Department of Radiation Oncology, Cleveland Clinic , Cleveland, OH , USA
| | - Gordon McLennan
- Section of Vascular and Interventional Radiology, Cleveland Clinic , Cleveland, OH , USA
| |
Collapse
|
36
|
Martí-Climent JM, Prieto E, Elosúa C, Rodríguez-Fraile M, Domínguez-Prado I, Vigil C, García-Velloso MJ, Arbizu J, Peñuelas I, Richter JA. PET optimization for improved assessment and accurate quantification of 90
Y-microsphere biodistribution after radioembolization. Med Phys 2014; 41:092503. [DOI: 10.1118/1.4892383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
37
|
D’Arienzo M, Capogni M, Smyth V, Cox M, Johansson L, Solc J, Bobin C, Rabus H, Joulaeizadeh L. Metrological Issues in Molecular Radiotherapy. EPJ WEB OF CONFERENCES 2014. [DOI: 10.1051/epjconf/20147700022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Cremonesi M, Chiesa C, Strigari L, Ferrari M, Botta F, Guerriero F, De Cicco C, Bonomo G, Orsi F, Bodei L, Di Dia A, Grana CM, Orecchia R. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol 2014; 4:210. [PMID: 25191640 PMCID: PMC4137387 DOI: 10.3389/fonc.2014.00210] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/23/2014] [Indexed: 12/18/2022] Open
Abstract
Radioembolization (RE) of liver cancer with 90Y-microspheres has been applied in the last two decades with notable responses and acceptable toxicity. Two types of microspheres are available, glass and resin, the main difference being the activity/sphere. Generally, administered activities are established by empirical methods and differ for the two types. Treatment planning based on dosimetry is a prerogative of few centers, but has notably gained interest, with evidence of predictive power of dosimetry on toxicity, lesion response, and overall survival (OS). Radiobiological correlations between absorbed doses and toxicity to organs at risk, and tumor response, have been obtained in many clinical studies. Dosimetry methods have evolved from the macroscopic approach at the organ level to voxel analysis, providing absorbed dose spatial distributions and dose–volume histograms (DVH). The well-known effects of the external beam radiation therapy (EBRT), such as the volume effect, underlying disease influence, cumulative damage in parallel organs, and different tolerability of re-treatment, have been observed also in RE, identifying in EBRT a foremost reference to compare with. The radiobiological models – normal tissue complication probability and tumor control probability – and/or the style (DVH concepts) used in EBRT are introduced in RE. Moreover, attention has been paid to the intrinsic different activity distribution of resin and glass spheres at the microscopic scale, with dosimetric and radiobiological consequences. Dedicated studies and mathematical models have developed this issue and explain some clinical evidences, e.g., the shift of dose to higher toxicity thresholds using glass as compared to resin spheres. This paper offers a comprehensive review of the literature incident to dosimetry and radiobiological issues in RE, with the aim to summarize the results and to identify the most useful methods and information that should accompany future studies.
Collapse
Affiliation(s)
| | | | - Lidia Strigari
- Istituto Nazionale dei Tumori Regina Elena , Rome , Italy
| | | | | | | | | | | | - Franco Orsi
- Istituto Europeo di Oncologia , Milan , Italy
| | - Lisa Bodei
- Istituto Europeo di Oncologia , Milan , Italy
| | | | | | | |
Collapse
|
39
|
Elschot M, Smits MLJ, Nijsen JFW, Lam MGEH, Zonnenberg BA, van den Bosch MAAJ, Viergever MA, de Jong HWAM. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction. Med Phys 2014; 40:112502. [PMID: 24320461 DOI: 10.1118/1.4823788] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ((166)Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative (166)Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum. METHODS A fast Monte Carlo (MC) simulator was developed for simulation of (166)Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full (166)Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A(est)) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six (166)Ho RE patients. RESULTS At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥ 17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96-106.21 ml were improved from 32%-63% (SPECT-DSW) and 50%-80% (SPECT-ppMC+DSW) to 76%-103% (SPECT-fMC). Furthermore, SPECT-fMC recovered whole-body activities were most accurate (A(est) = 1.06 × A - 5.90 MBq, R(2) = 0.97) and SPECT-fMC tumor absorbed doses were significantly higher than with SPECT-DSW (p = 0.031) and SPECT-ppMC+DSW (p = 0.031). CONCLUSIONS The quantitative accuracy of (166)Ho SPECT is improved by Monte Carlo-based modeling of the image degrading factors. Consequently, the proposed reconstruction method enables accurate estimation of the radiation absorbed dose in clinical practice.
Collapse
Affiliation(s)
- Mattijs Elschot
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tapp KN, Lea WB, Johnson MS, Tann M, Fletcher JW, Hutchins GD. The Impact of Image Reconstruction Bias on PET/CT 90Y Dosimetry After Radioembolization. J Nucl Med 2014; 55:1452-8. [DOI: 10.2967/jnumed.113.133629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Pasciak AS, Bourgeois AC, Bradley YC. A Comparison of Techniques for (90)Y PET/CT Image-Based Dosimetry Following Radioembolization with Resin Microspheres. Front Oncol 2014; 4:121. [PMID: 24904832 PMCID: PMC4033229 DOI: 10.3389/fonc.2014.00121] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/09/2014] [Indexed: 11/13/2022] Open
Abstract
90Y PET/CT following radioembolization has recently been established as a viable diagnostic tool, capable of producing images that are both quantitative and have superior image quality than alternative 90Y imaging modalities. Because radioembolization is assumed to be a permanent implant, it is possible to convert quantitative 90Y PET image sets into data representative of spatial committed absorbed-dose. Multiple authors have performed this transformation using dose-point kernel (DPK) convolution to account for the transport of the high-energy 90Y β-particles. This article explores a technique called the Local Deposition Method (LDM), an alternative to DPK convolution for 90Y image-based dosimetry. The LDM assumes that the kinetic energy from each 90Y β-particle is deposited locally, within the voxel where the decay occurred. Using the combined analysis of phantoms scanned using 90Y PET/CT and ideal mathematical phantoms, an accuracy comparison of DPK convolution and the LDM has been performed. Based on the presented analysis, DPK convolution provides no detectible accuracy benefit over the LDM for 90Y PET-based dosimetry. For PET systems with 90Y resolution poorer than 3.25 mm at full-width and half-max using a small voxel size, the LDM may produce a dosimetric solution that is more accurate than DPK convolution under ideal conditions; however, image noise can obscure some of the perceived benefit. As voxel size increases and resolution decreases, differences between the LDM and DPK convolution are reduced. The LDM method of post-radioembolization dosimetry has the advantage of not requiring additional post-processing. The provided conversion factors can be used to determine committed absorbed-dose using conventional PET image analysis tools. The LDM is a recommended option for routine post-radioembolization 90Y dosimetry based on PET/CT imaging.
Collapse
Affiliation(s)
- Alexander S Pasciak
- Department of Radiology, The University of Tennessee Medical Center , Knoxville, TN , USA ; Department of Radiology, The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| | - Austin C Bourgeois
- Department of Radiology, The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| | - Yong C Bradley
- Department of Radiology, The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| |
Collapse
|
42
|
Pasciak AS, Bourgeois AC, McKinney JM, Chang TT, Osborne DR, Acuff SN, Bradley YC. Radioembolization and the Dynamic Role of (90)Y PET/CT. Front Oncol 2014; 4:38. [PMID: 24579065 PMCID: PMC3936249 DOI: 10.3389/fonc.2014.00038] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/12/2014] [Indexed: 11/13/2022] Open
Abstract
Before the advent of tomographic imaging, it was postulated that decay of (90) Y to the 0(+) excited state of (90)Zr may result in emission of a positron-electron pair. While the branching ratio for pair-production is small (~32 × 10(-6)), PET has been successfully used to image (90) Y in numerous recent patients and phantom studies. (90) Y PET imaging has been performed on a variety of PET/CT systems, with and without time-of-flight (TOF) and/or resolution recovery capabilities as well as on both bismuth-germanate and lutetium yttrium orthosilicate (LYSO)-based scanners. On all systems, resolution and contrast superior to bremsstrahlung SPECT has been reported. The intrinsic radioactivity present in LYSO-based PET scanners is a potential limitation associated with accurate quantification of (90) Y. However, intrinsic radioactivity has been shown to have a negligible effect at the high activity concentrations common in (90) Y radioembolization. Accurate quantification is possible on a variety of PET scanner models, with or without TOF, although TOF improves accuracy at lower activity concentrations. Quantitative (90) Y PET images can be transformed into 3-dimensional (3D) maps of absorbed dose based on the premise that the (90) Y activity distribution does not change after infusion. This transformation has been accomplished in several ways, although the most common is with the use of 3D dose-point-kernel convolution. From a clinical standpoint, (90) Y PET provides a superior post-infusion evaluation of treatment technical success owing to its improved resolution. Absorbed dose maps generated from quantitative PET data can be used to predict treatment efficacy and manage patient follow-up. For patients who receive multiple treatments, this information can also be used to provide patient-specific treatment-planning for successive therapies, potentially improving response. The broad utilization of (90) Y PET has the potential to provide a wealth of dose-response information, which may lead to development of improved radioembolization treatment-planning models in the future.
Collapse
Affiliation(s)
- Alexander S Pasciak
- The University of Tennessee Medical Center , Knoxville, TN , USA ; The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| | - Austin C Bourgeois
- The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| | | | - Ted T Chang
- The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA ; University of Virginia Medical Center , Charlotte, VA , USA
| | - Dustin R Osborne
- The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| | - Shelley N Acuff
- The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| | - Yong C Bradley
- The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| |
Collapse
|
43
|
Ahmadzadehfar H, Duan H, Haug AR, Walrand S, Hoffmann M. The role of SPECT/CT in radioembolization of liver tumours. Eur J Nucl Med Mol Imaging 2014; 41 Suppl 1:S115-24. [PMID: 24442600 DOI: 10.1007/s00259-013-2675-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/14/2023]
Abstract
Radioembolization (RE) with (90)Y microspheres is a promising catheter-based therapeutic option for patients with unresectable primary and metastatic liver tumours. Its rationale arises from the dual blood supply of liver tissue through the hepatic artery and the portal vein. Metastatic hepatic tumours measuring >3 mm derive 80 - 100 % of their blood supply from the arterial rather than the portal hepatic circulation. Typically, an angiographic evaluation combined with (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) scan precedes therapy to map the tumour feeding vessels as well as to avoid the inadvertent deposition of microspheres in organs other than the liver. Prior to administration of (99m)Tc-MAA, prophylactic coil embolization of the gastroduodenal artery is recommended to avoid extrahepatic deposition of the microspheres. SPECT/CT allows direct correlation of anatomic and functional information in patients with unresectable liver disease. SPECT/CT is recommended to assess intrahepatic distribution as well as extrahepatic gastrointestinal uptake in these patients. Pretherapeutic SPECT/CT is an important component of treatment planning including catheter positioning and dose finding. A post-therapy bremsstrahlung (BS) scan should follow RE to verify the distribution of the administered tracer. BS SPECT/CT imaging enables better localization and definition of intrahepatic and possible extrahepatic sphere distribution and to a certain degree allows posttreatment dosimetry. In this paper we address the usefulness and significance of SPECT/CT in therapy planning and therapy monitoring of RE.
Collapse
|
44
|
Positron Emission Tomography/CT after Yttrium-90 Radioembolization: Current and Future Applications. J Vasc Interv Radiol 2013; 24:1153-5. [DOI: 10.1016/j.jvir.2013.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 01/17/2023] Open
|
45
|
Elschot M, Lam MGEH, van den Bosch MAAJ, Viergever MA, de Jong HWAM. Quantitative Monte Carlo-based 90Y SPECT reconstruction. J Nucl Med 2013; 54:1557-63. [PMID: 23907758 DOI: 10.2967/jnumed.112.119131] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The evaluation of radiation absorbed doses in tumorous and healthy tissues is of increasing interest for (90)Y microsphere radioembolization of liver malignancies. The objectives of this work were to introduce and validate a new reconstruction method for quantitative (90)Y bremsstrahlung SPECT to improve posttreatment dosimetry. METHODS A fast Monte Carlo simulator was adapted for (90)Y and incorporated into a statistical reconstruction algorithm (SPECT-MC). Photon scatter and attenuation for all photons sampled from the full (90)Y energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled with precalculated convolution kernels. The National Electrical Manufacturers Association 2007/International Electrotechnical Commission 2008 image quality phantom was used to quantitatively evaluate the performance of SPECT-MC in comparison with those of state-of-the-art clinical SPECT reconstruction and PET. The liver radiation absorbed doses estimated by SPECT, PET, and SPECT-MC were evaluated in 5 patients consecutively treated with radioembolization. RESULTS In comparison with state-of-the-art clinical (90)Y SPECT reconstruction, SPECT-MC substantially improved image contrast (e.g., from 25% to 88% for the 37-mm sphere) and decreased the mean residual count error in the lung insert (from 73% to 15%) at the cost of higher image noise. Image noise and the mean count error were lower for SPECT-MC than for PET. Image contrast was higher in the larger spheres (diameter of ≥28 mm) but lower in the smaller spheres (≤22 mm) for SPECT-MC than for PET. In the clinical study, mean absorbed dose estimates in liver regions with high absorbed doses were consistently higher for SPECT-MC than for SPECT (P = 0.0625) and consistently higher for SPECT-MC than for PET (P = 0.0625). CONCLUSION The quantitative accuracy of (90)Y bremsstrahlung SPECT is substantially improved by Monte Carlo-based modeling of the image-degrading factors. Consequently, (90)Y bremsstrahlung SPECT may be used as an alternative to (90)Y PET.
Collapse
Affiliation(s)
- Mattijs Elschot
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Kao YH, Steinberg JD, Tay YS, Lim GK, Yan J, Townsend DW, Takano A, Burgmans MC, Irani FG, Teo TK, Yeow TN, Gogna A, Lo RH, Tay KH, Tan BS, Chow PK, Satchithanantham S, Tan AE, Ng DC, Goh AS. Post-radioembolization yttrium-90 PET/CT - part 1: diagnostic reporting. EJNMMI Res 2013; 3:56. [PMID: 23883566 PMCID: PMC3726297 DOI: 10.1186/2191-219x-3-56] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/16/2013] [Indexed: 11/15/2022] Open
Abstract
Background Yttrium-90 (90Y) positron emission tomography with integrated computed tomography (PET/CT) represents a technological leap from 90Y bremsstrahlung single-photon emission computed tomography with integrated computed tomography (SPECT/CT) by coincidence imaging of low abundance internal pair production. Encouraged by favorable early experiences, we implemented post-radioembolization 90Y PET/CT as an adjunct to 90Y bremsstrahlung SPECT/CT in diagnostic reporting. Methods This is a retrospective review of all paired 90Y PET/CT and 90Y bremsstrahlung SPECT/CT scans over a 1-year period. We compared image resolution, ability to confirm technical success, detection of non-target activity, and providing conclusive information about 90Y activity within targeted tumor vascular thrombosis. 90Y resin microspheres were used. 90Y PET/CT was performed on a conventional time-of-flight lutetium-yttrium-oxyorthosilicate scanner with minor modifications to acquisition and reconstruction parameters. Specific findings on 90Y PET/CT were corroborated by 90Y bremsstrahlung SPECT/CT, 99mTc macroaggregated albumin SPECT/CT, follow-up diagnostic imaging or review of clinical records. Results Diagnostic reporting recommendations were developed from our collective experience across 44 paired scans. Emphasis on the continuity of care improved overall diagnostic accuracy and reporting confidence of the operator. With proper technique, the presence of background noise did not pose a problem for diagnostic reporting. A counter-intuitive but effective technique of detecting non-target activity is proposed, based on the pattern of activity and its relation to underlying anatomy, instead of its visual intensity. In a sub-analysis of 23 patients with a median follow-up of 5.4 months, 90Y PET/CT consistently outperformed 90Y bremsstrahlung SPECT/CT in all aspects of qualitative analysis, including assessment for non-target activity and tumor vascular thrombosis. Parts of viscera closely adjacent to the liver remain challenging for non-target activity detection, compounded by a tendency for mis-registration. Conclusions Adherence to proper diagnostic reporting technique and emphasis on continuity of care are vital to the clinical utility of post-radioembolization 90Y PET/CT. 90Y PET/CT is superior to 90Y bremsstrahlung SPECT/CT for the assessment of target and non-target activity.
Collapse
Affiliation(s)
- Yung-Hsiang Kao
- Department of Nuclear Medicine and PET, Singapore General Hospital, Outram Road, Singapore 169608, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
D’Arienzo M, Filippi L, Chiaramida P, Chiacchiararelli L, Cianni R, Salvatori R, Scopinaro F, Bagni O. Absorbed dose to lesion and clinical outcome after liver radioembolization with 90Y microspheres: a case report of PET-based dosimetry. Ann Nucl Med 2013; 27:676-80. [DOI: 10.1007/s12149-013-0726-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/01/2013] [Indexed: 11/24/2022]
|
48
|
Emission of β+ Particles Via Internal Pair Production in the 0+ – 0+ Transition of 90Zr: Historical Background and Current Applications in Nuclear Medicine Imaging. ATOMS 2013. [DOI: 10.3390/atoms1010002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|