1
|
Liao Y, Wang D, Yang X, Ni L, Lin B, Zhang Y, Feng G, Li J, Gao F, Liao M, Du X, Chen W. High‑intensity focused ultrasound thermal ablation boosts the efficacy of immune checkpoint inhibitors in advanced cancers with liver metastases: A single‑center retrospective cohort study. Oncol Lett 2025; 29:124. [PMID: 39807097 PMCID: PMC11726302 DOI: 10.3892/ol.2025.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
High-intensity focused ultrasound thermal ablation (HIFU) is a novel non-invasive technique in the treatment of liver metastases (LIM) that allows focal destruction and is not affected by dose limits. This retrospective study aimed to explore the efficacy of HIFU in improving survival and the safety of the method in newly diagnosed patients with cancer with LIM who received first-line immune checkpoint inhibitor (ICI) therapy. Between January 2018 and December 2023, data from 438 newly diagnosed patients with cancer and LIM who were treated at Mianyang Central Hospital (Mianyang, China) were reviewed. A total of 94 patients were enrolled in this study, of whom 28 were diagnosed with lung carcinoma, 36 with gastric carcinoma, 11 with esophageal carcinoma, 7 with cholangiocarcinoma and 12 with other malignancies. The patients were divided into groups depending on whether they underwent HIFU. Progression-free survival (PFS), overall survival (OS) and adverse events (AEs) were compared. Clinicopathological features were analyzed using the chi-squared test. Of the 94 patients, 28 received ICI + HIFU as first-line treatment. After a median follow-up of 13.8 months, the median PFS and OS in the HIFU group were 2.38 times [10.95 vs. 4.60 months, 95% confidence interval (CI): 1.087-3.106, P<0.0001] and 1.84 times (19.6 vs. 10.67 months, 95% CI: 1.087-3.106, P=0.0418), respectively, higher than in the group without HIFU. All-cause AEs and immune-mediated AEs were similar between the groups with and without HIFU. However, the incidence of grade 1-2 immune-mediated AEs, troponin elevation, hepatotoxicity and renal dysfunction were more common in the current patients with LIM than those reported previously for the entire population. No immune-mediated AEs of grade ≥3 occurred in either group. HIFU prolonged the PFS and OS of first-line ICI in newly diagnosed patients with advanced cancer with LIM, with manageable safety and tolerability. The efficacy of HIFU in patients with LIM who plan to undergo ICI treatment warrants further prospective clinical investigation.
Collapse
Affiliation(s)
- Yao Liao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Decai Wang
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Xiyue Yang
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Lu Ni
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Binwei Lin
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Yu Zhang
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Gang Feng
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Jie Li
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Feng Gao
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Min Liao
- Department of Information, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Xiaobo Du
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Wenzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
2
|
Peng J, Partanen A, Pichardo S, Staruch R, Perry K, McGuffin M, Huang Y, Chan KK, Wong S, Czarnota G, Hynynen K, Chu W. Mild hyperthermia with magnetic resonance- guided high intensity focused ultrasound combined with salvage chemoradiation for recurrent rectal cancer. Int J Hyperthermia 2024; 41:2365385. [PMID: 38897584 DOI: 10.1080/02656736.2024.2365385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Pelvic recurrences from rectal cancer present a challenging clinical scenario. Hyperthermia represents an innovative treatment option in combination with concurrent chemoradiation to enhance therapeutic effect. We provide the initial results of a prospective single center feasibility study (NCT02528175) for patients undergoing rectal cancer retreatment using concurrent chemoradiation and mild hyperthermia with MR-guided high intensity focused ultrasound (MR-HIFU). METHODS All patients were deemed ineligible for salvage surgery and were evaluated in a multidisciplinary fashion with a surgical oncologist, radiation oncologist and medical oncologist. Radiation was delivered to a dose of 30.6 Gy in 1.8 Gy per fraction with concurrent capecitabine. MR-HIFU was delivered on days 1, 8 and 15 of concurrent chemoradiation. Our primary objective was feasibility and toxicity. RESULTS Six patients (total 11 screened) were treated with concurrent chemoradiation and mild hyperthermia with MR-HIFU. Tumor size varied between 3.1-16.6 cm. Patients spent an average of 228 min in the MRI suite and sonication with the external transducer lasted an average of 35 min. There were no complications on the day of the MR-HIFU procedure and all acute toxicities (no grade >/=3 toxicities) resolved after completion of treatment. There were no late grade >/=3 toxicities. CONCLUSION Mild hyperthermia with MR-HIFU, in combination with concurrent chemoradiation for appropriately selected patients, is safe for localized pelvic recurrences from rectal cancer. The potential for MR-HIFU to be applied in the recurrent setting in rectal cancer treatment requires further technical development and prospective evaluation.
Collapse
Affiliation(s)
- Jonathan Peng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | | | - Samuel Pichardo
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Kaitlyn Perry
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - Merrylee McGuffin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - Yuexi Huang
- Department of Medical Biophysics, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kelvin Kw Chan
- Department of Medical Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - Shun Wong
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - Greg Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
- Department of Medical Biophysics, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kullervo Hynynen
- Department of Medical Biophysics, Sunnybrook Research Institute, Toronto, ON, Canada
| | - William Chu
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Kim K, Gupta P, Narsinh K, Diederich CJ, Ozhinsky E. Volumetric hyperthermia delivery using the ExAblate Body MR-guided focused ultrasound system. Int J Hyperthermia 2024; 41:2349080. [PMID: 38705588 PMCID: PMC11135290 DOI: 10.1080/02656736.2024.2349080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVES To investigate image-guided volumetric hyperthermia strategies using the ExAblate Body MR-guided focused ultrasound ablation system, involving mechanical transducer movement and sector-vortex beamforming. MATERIALS AND METHODS Acoustic and thermal simulations were performed to investigate volumetric hyperthermia using mechanical transducer movement combined with sector-vortex beamforming, specifically for the ExAblate Body transducer. The system control in the ExAblate Body system was modified to achieve fast transducer movement and MR thermometry-based hyperthermia control, mechanical transducer movements and electronic sector-vortex beamforming were combined to optimize hyperthermia delivery. The experimental validation was performed using a tissue-mimicking phantom. RESULTS The developed simulation framework allowed for a parametric study with varying numbers of heating spots, sonication durations, and transducer movement times to evaluate the hyperthermia characteristics for mechanical transducer movement and sector-vortex beamforming. Hyperthermic patterns involving 2-4 sequential focal spots were analyzed. To demonstrate the feasibility of volumetric hyperthermia in the system, a tissue-mimicking phantom was sonicated with two distinct spots through mechanical transducer movement and sector-vortex beamforming. During hyperthermia, the average values of Tmax, T10, Tavg, T90, and Tmin over 200 s were measured within a circular ROI with a diameter of 10 pixels. These values were found to be 8.6, 7.9, 6.6, 5.2, and 4.5 °C, respectively, compared to the baseline temperature. CONCLUSIONS This study demonstrated the volumetric hyperthermia capabilities of the ExAblate Body system. The simulation framework developed in this study allowed for the evaluation of hyperthermia characteristics that could be implemented with the ExAblate MRgFUS system.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| | - Pragya Gupta
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Kazim Narsinh
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| | - Chris J. Diederich
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| |
Collapse
|
4
|
Imashiro C, Jin Y, Hayama M, Yamada TG, Funahashi A, Sakaguchi K, Umezu S, Komotori J. Titanium Culture Vessel Presenting Temperature Gradation for the Thermotolerance Estimation of Cells. CYBORG AND BIONIC SYSTEMS 2023; 4:0049. [PMID: 37554432 PMCID: PMC10405790 DOI: 10.34133/cbsystems.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Hyperthermia can be induced to exploit the thermal intolerance of cancer cells, which is worse than that of normal cells, as a potential noninvasive cancer treatment. To develop an effective hyperthermia treatment, thermal cytotoxicity of cells should be comprehensively investigated. However, to conduct such investigations, the culture temperature must be accurately regulated. We previously reported a culture system in which the culture temperature could be accurately regulated by employing metallic culture vessels. However, appropriate temperature conditions for hyperthermia depend on the cell species. Consequently, several experiments need to be conducted, which is a bottleneck of inducing hyperthermia. Hence, we developed a cell culture system with temperature gradation on a metallic culture surface. Michigan Cancer Foundation-7 cells and normal human dermal fibroblasts were used as cancer and normal cell models, respectively. Normal cells showed stronger thermal tolerance; this was because the novel system immediately exhibited a temperature gradation. Thus, the developed culture system can be used to investigate the optimum thermal conditions for effective hyperthermia treatment. Furthermore, as the reactions of cultured cells can be effectively assessed with the present results, further research involving the thermal stimulation of cells is possible.
Collapse
Affiliation(s)
- Chikahiro Imashiro
- Graduate School of Engineering,
The University of Tokyo, Tokyo 113-0033, Japan
- Department of Mechanical Engineering,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Yangyan Jin
- School of Integrated Design Engineering, Graduate School of Science and Technology,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Motoaki Hayama
- School of Integrated Design Engineering, Graduate School of Science and Technology,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Takahiro G. Yamada
- Department of Biosciences and Informatics,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Akira Funahashi
- Department of Biosciences and Informatics,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Katsuhisa Sakaguchi
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering,
Waseda University, TWIns, Tokyo 162-8480, Japan
| | - Shinjiro Umezu
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering,
Waseda University, TWIns, Tokyo 162-8480, Japan
- Department of Modern Mechanical Engineering,
Waseda University, Tokyo 169-8555, Japan
| | - Jun Komotori
- Department of Mechanical Engineering,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| |
Collapse
|
5
|
Özsoy Ç, Lafci B, Reiss M, Deán-Ben XL, Razansky D. Real-time assessment of high-intensity focused ultrasound heating and cavitation with hybrid optoacoustic ultrasound imaging. PHOTOACOUSTICS 2023; 31:100508. [PMID: 37228577 PMCID: PMC10203775 DOI: 10.1016/j.pacs.2023.100508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
High-intensity focused ultrasound (HIFU) enables localized ablation of biological tissues by capitalizing on the synergistic effects of heating and cavitation. Monitoring of those effects is essential for improving the efficacy and safety of HIFU interventions. Herein, we suggest a hybrid optoacoustic-ultrasound (OPUS) approach for real-time assessment of heating and cavitation processes while providing an essential anatomical reference for accurate localization of the HIFU-induced lesion. Both effects could clearly be observed by exploiting the temperature dependence of optoacoustic (OA) signals and the strong contrast of gas bubbles in pulse-echo ultrasound (US) images. The differences in temperature increase and its rate, as recorded with a thermal camera for different HIFU pressures, evinced the onset of cavitation at the expected pressure threshold. The estimated temperatures based on OA signal variations were also within 10-20 % agreement with the camera readings for temperatures below the coagulation threshold (∼50 °C). Experiments performed in excised tissues as well as in a post-mortem mouse demonstrate that both heating and cavitation effects can be effectively visualized and tracked using the OPUS approach. The good sensitivity of the suggested method for HIFU monitoring purposes was manifested by a significant increase in contrast-to-noise ratio within the ablated region by > 10 dB and > 5 dB for the OA and US images, respectively. The hybrid OPUS-based monitoring approach offers the ease of handheld operation thus can readily be implemented in a bedside setting to benefit several types of HIFU treatments used in the clinics.
Collapse
Affiliation(s)
- Çağla Özsoy
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Berkan Lafci
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Michael Reiss
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
6
|
Andrés D, Rivens I, Mouratidis P, Jiménez N, Camarena F, ter Haar G. Holographic Focused Ultrasound Hyperthermia System for Uniform Simultaneous Thermal Exposure of Multiple Tumor Spheroids. Cancers (Basel) 2023; 15:2540. [PMID: 37174005 PMCID: PMC10177503 DOI: 10.3390/cancers15092540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Hyperthermia is currently used to treat cancer due to its ability to radio- and chemo-sensitize and to stimulate the immune response. While ultrasound is non-ionizing and can induce hyperthermia deep within the body non-invasively, achieving uniform and volumetric hyperthermia is challenging. This work presents a novel focused ultrasound hyperthermia system based on 3D-printed acoustic holograms combined with a high-intensity focused ultrasound (HIFU) transducer to produce a uniform iso-thermal dose in multiple targets. The system is designed with the aim of treating several 3D cell aggregates contained in an International Electrotechnical Commission (IEC) tissue-mimicking phantom with multiple wells, each holding a single tumor spheroid, with real-time temperature and thermal dose monitoring. System performance was validated using acoustic and thermal methods, ultimately yielding thermal doses in three wells that differed by less than 4%. The system was tested in vitro for delivery of thermal doses of 0-120 cumulative equivalent minutes at 43 °C (CEM43) to spheroids of U87-MG glioma cells. The effects of ultrasound-induced heating on the growth of these spheroids were compared with heating using a polymerase chain reaction (PCR) thermocycler. Results showed that exposing U87-MG spheroids to an ultrasound-induced thermal dose of 120 CEM43 shrank them by 15% and decreased their growth and metabolic activity more than seen in those exposed to a thermocycler-induced heating. This low-cost approach of modifying a HIFU transducer to deliver ultrasound hyperthermia opens new avenues for accurately controlling thermal dose delivery to complex therapeutic targets using tailored acoustic holograms. Spheroid data show that thermal and non-thermal mechanisms are implicated in the response of cancer cells to non-ablative ultrasound heating.
Collapse
Affiliation(s)
- Diana Andrés
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC—Universitat Politècnica de València, Camino de Vera S/N, 46011 Valencia, Spain; (D.A.); (N.J.); (F.C.)
| | - Ian Rivens
- Institute for Cancer Research (ICR), London SM2 5NG, UK; (I.R.); (P.M.)
| | - Petros Mouratidis
- Institute for Cancer Research (ICR), London SM2 5NG, UK; (I.R.); (P.M.)
| | - Noé Jiménez
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC—Universitat Politècnica de València, Camino de Vera S/N, 46011 Valencia, Spain; (D.A.); (N.J.); (F.C.)
| | - Francisco Camarena
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC—Universitat Politècnica de València, Camino de Vera S/N, 46011 Valencia, Spain; (D.A.); (N.J.); (F.C.)
| | - Gail ter Haar
- Institute for Cancer Research (ICR), London SM2 5NG, UK; (I.R.); (P.M.)
| |
Collapse
|
7
|
McNabb E, Sharma D, Sannachi L, Giles A, Yang W, Czarnota GJ. MR-guided ultrasound-stimulated microbubble therapy enhances radiation-induced tumor response. Sci Rep 2023; 13:4487. [PMID: 36934140 PMCID: PMC10024768 DOI: 10.1038/s41598-023-30286-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/20/2023] Open
Abstract
High intensity focused ultrasound (HIFU) systems have been approved for therapeutic ultrasound delivery to cause tissue ablation or induced hyperthermia. Microbubble agents have also been used in combination with sonication exposures. These require temperature feedback and monitoring to prevent unstable cavitation and prevent excess tissue heating. Previous work has utilized lower power and pressure to oscillate microbubbles and transfer energy to endothelial cells in the absence of thermally induced damage that can radiosensitize tumors. This work investigated whether reduced acoustic power and pressure on a commercial available MR-integrated HIFU system could result in enhanced radiation-induced tumor response after exposure to ultrasound-stimulated microbubbles (USMB) therapy. A commercially available MR-integrated HIFU system was used with a hyperthermia system calibration provided by the manufacturer. The ultrasound transducer was calibrated to reach a peak negative pressure of - 750 kPa. Thirty male New Zealand white rabbits bearing human derived PC3 tumors were grouped to receive no treatment, 14 min of USMB, 8 Gy of radiation in a separate irradiation cabinet, or combined treatments. In vivo temperature changes were collected using MR thermometry at the tumor center and far-field muscle region. Tissues specimens were collected 24 h post radiation therapy. Tumor cell death was measured and compared to untreated controls through hematoxylin and eosin staining and immunohistochemical analysis. The desired peak negative pressure of - 750 kPa used for previous USMB occurred at approximately an input power of 5 W. Temperature changes were limited to under 4 °C in ten of twelve rabbits monitored. The median temperature in the far-field muscle region of the leg was 2.50 °C for groups receiving USMB alone or in combination with radiation. Finally, statistically significant tumor cell death was demonstrated using immunohistochemical analysis in the combined therapy group compared to untreated controls. A commercial MR-guided therapy HIFU system was able to effectively treat PC3 tumors in a rabbit model using USMB therapy in combination with radiation exposures. Future work could find the use of reduced power and pressure levels in a commercial MR-guided therapy system to mechanically stimulate microbubbles and damage endothelial cells without requiring high thermal doses to elicit an antitumor response.
Collapse
Affiliation(s)
- Evan McNabb
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Anoja Giles
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Wenyi Yang
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Pattyn A, Kratkiewicz K, Alijabbari N, Carson PL, Littrup P, Fowlkes JB, Duric N, Mehrmohammadi M. Feasibility of ultrasound tomography-guided localized mild hyperthermia using a ring transducer: Ex vivo and in silico studies. Med Phys 2022; 49:6120-6136. [PMID: 35759729 DOI: 10.1002/mp.15829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND As of 2022, breast cancer continues to be the most diagnosed cancer worldwide. This problem persists within the United States as well, as the American Cancer Society has reported that ∼12.5% of women will be diagnosed with invasive breast cancer over the course of their lifetime. Therefore, a clinical need continues to exist to address this disease from a treatment and therapeutic perspective. Current treatments for breast cancer and cancers more broadly include surgery, radiation, and chemotherapy. Adjuncts to these methods have been developed to improve the clinical outcomes for patients. One such adjunctive treatment is mild hyperthermia therapy (MHTh), which has been shown to be successful in the treatment of cancers by increasing effectiveness and reduced dosage requirements for radiation and chemotherapies. MHTh-assisted treatments can be performed with invasive thermal devices, noninvasive microwave induction, heating and recirculation of extracted patient blood, or whole-body hyperthermia with hot blankets. PURPOSE One common method for inducing MHTh is by using microwave for heat induction and magnetic resonance imaging for temperature monitoring. However, this leads to a complex, expensive, and inaccessible therapy platform. Therefore, in this work we aim to show the feasibility of a novel all-acoustic MHTh system that uses focused ultrasound (US) to induce heating while also using US tomography (UST) to provide temperature estimates. Changes in sound speed (SS) have been shown to be strongly correlated with temperature changes and can therefore be used to indirectly monitor heating throughout the therapy. Additionally, these SS estimates allow for heterogeneous SS-corrected phase delays when heating complex and heterogeneous tissue structures. METHODS Feasibility to induce localized heat in tissue was investigated in silico with a simulated breast model, including an embedded tumor using continuous wave US. Here, both heterogenous acoustic and thermal properties were modeled in addition to blood perfusion. We further demonstrate, with ex vivo tissue phantoms, the feasibility of using ring-based UST to monitor temperature by tracking changes in SS. Two phantoms (lamb tissue and human abdominal fat) with latex tubes containing varied temperature flowing water were imaged. The measured SS of the water at each temperature were compared against values that are reported in literature. RESULTS Results from ex vivo tissue studies indicate successful tracking of temperature under various phantom configurations and ranges of water temperature. The results of in silico studies show that the proposed system can heat an acoustically and thermally heterogenous breast model to the clinically relevant temperature of 42°C while accounting for a reasonable time needed to image the current cross section (200 ms). Further, we have performed an initial in silico study demonstrating the feasibility of adjusting the transmit waveform frequency to modify the effective heating height at the focused region. Lastly, we have shown in a simpler 2D breast model that MHTh level temperatures can be maintained by adjusting the transmit pressure intensity of the US ring. CONCLUSIONS This work has demonstrated the feasibility of using a 256-element ring array transducer for temperature monitoring; however, future work will investigate minimizing the difference between measured SS and the values shown in literature. A hypothesis attributes this bias to potential volumetric average artifacts from the ray-based SS inversion algorithm that was used, and that moving to a waveform-based SS inversion algorithm will greatly improve the SS estimates. Additionally, we have shown that an all-acoustic MHTh system is feasible via in silico studies. These studies have indicated that the proposed system can heat a tumor within a heterogenous breast model to 42°C within a narrow time frame. This holds great promise for increasing the accessibility and reducing the complexity of a future all-acoustic MHTh system.
Collapse
Affiliation(s)
- Alexander Pattyn
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA.,Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Naser Alijabbari
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Paul L Carson
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Littrup
- Delphinus Medical Technologies, Novi, Michigan, USA.,Ascension Providence Rochester Radiology, Rochester, Michigan, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Nebojsa Duric
- Delphinus Medical Technologies, Novi, Michigan, USA.,Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA.,Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan, USA.,Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA
| |
Collapse
|
9
|
Andrés D, Jiménez N, Benlloch JM, Camarena F. Numerical Study of Acoustic Holograms for Deep-Brain Targeting through the Temporal Bone Window. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:872-886. [PMID: 35221196 DOI: 10.1016/j.ultrasmedbio.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Acoustic holograms can encode complex wavefronts to compensate the aberrations of a therapeutical ultrasound beam propagating through heterogeneous tissues such as the skull, and simultaneously, they can generate diffraction-limited acoustic images, that is, arbitrary shaped focal spots. In this work, we numerically study the performance of acoustic holograms focusing at the thalamic nuclei when the source is located at the temporal bone window. The temporal window is the thinnest area of the lateral skull and it is mainly hairless, so it is a desirable area through which to transmit ultrasonic waves to the deep brain. However, in targeting from this area the bilateral thalamic nuclei are not aligned with the elongated focal spots of conventional focused transducers, and in addition, skull aberrations can distort the focal spot. We found that by using patient-specific holographic lenses coupled to a single-element 650-kHz-frequency 65-mm-aperture source, the focal spot can be sharply adapted to the thalamic nuclei in a bilateral way while skull aberrations are mitigated. Furthermore, the performance of these holograms was studied under misalignment errors between the source and the skull, concluding that for misalignments up to 5°, acoustic images are correctly restored. This work paves the way to designing clinical applications of transcranial ultrasound such as blood-brain barrier opening for drug delivery or deep-brain neuromodulation using this low-cost and personalized technology, presenting desirable aspects for long-term treatments because the patient's head does not need to be shaved completely and skull heating is low.
Collapse
Affiliation(s)
- Diana Andrés
- Instituto de Instrumentación para Imagen Molecular (i3M), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas (CSIC), València, Spain
| | - Noé Jiménez
- Instituto de Instrumentación para Imagen Molecular (i3M), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas (CSIC), València, Spain.
| | - José M Benlloch
- Instituto de Instrumentación para Imagen Molecular (i3M), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas (CSIC), València, Spain
| | - Francisco Camarena
- Instituto de Instrumentación para Imagen Molecular (i3M), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas (CSIC), València, Spain
| |
Collapse
|
10
|
Sebeke L, Gómez JDC, Heijman E, Rademann P, Maul AC, Ekdawi S, Vlachakis S, Toker D, Mink BL, Schubert-Quecke C, Yeo SY, Schmidt P, Lucas C, Brodesser S, Hossann M, Lindner LH, Grüll H. Hyperthermia-induced doxorubicin delivery from thermosensitive liposomes via MR-HIFU in a pig model. J Control Release 2022; 343:798-812. [DOI: 10.1016/j.jconrel.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
|
11
|
Kim K, Zubair M, Adams M, Diederich CJ, Ozhinsky E. Sonication strategies toward volumetric ultrasound hyperthermia treatment using the ExAblate body MRgFUS system. Int J Hyperthermia 2021; 38:1590-1600. [PMID: 34749579 DOI: 10.1080/02656736.2021.1998658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The ExAblate body MRgFUS system requires advanced beamforming strategies for volumetric hyperthermia. This study aims to develop and evaluate electronic beam steering, multi-focal patterns, and sector vortex beamforming approaches in conjunction with partial array activation using an acoustic and biothermal simulation framework along with phantom experiments. METHODS The simulation framework was developed to calculate the 3D acoustic intensity and temperature distribution resulting from various beamforming and scanning strategies. A treatment cell electronically sweeping a single focus was implemented and evaluated in phantom experiments. The acoustic and thermal focal size of vortex beam propagation was quantified according to the vortex modes, number of active array elements, and focal depth. RESULTS Turning off a percentage of the outer array to increase the f-number increased the focal size with a decrease in focal gain. 60% active elements allowed generating a sonication cell with an off-axis of 10 mm. The vortex mode number 4 with 60% active elements resulted in a larger heating volume than using the full array. Volumetric hyperthermia in the phantom was evaluated with the vortex mode 4 and respectively performed with 100% and 80% active elements. MR thermometry demonstrated that the volumes were found to be 18.8 and 29.7 cm3, respectively, with 80% array activation producing 1.58 times larger volume than the full array. CONCLUSIONS This study demonstrated that both electronic beam steering and sector vortex beamforming approaches in conjunction with partial array activation could generate large volume heating for HT delivery using the ExAblate body array.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Muhammad Zubair
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Matthew Adams
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Chris J Diederich
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Computational modeling of thermal combination therapies by magneto-ultrasonic heating to enhance drug delivery to solid tumors. Sci Rep 2021; 11:19539. [PMID: 34599207 PMCID: PMC8486865 DOI: 10.1038/s41598-021-98554-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/12/2021] [Indexed: 02/02/2023] Open
Abstract
For the first time, inspired by magnetic resonance imaging-guidance high intensity focused ultrasound (MR-HIFU) technology, i.e., medication therapy and thermal ablation in one session, in a preclinical setting based on a developed mathematical model, the performance of doxorubicin (Dox) and its encapsulation have been investigated in this study. Five different treatment methods, that combine medication therapy with mild hyperthermia by MRI contrast (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma -{Fe}_{2}{O}_{3}$$\end{document}γ-Fe2O3) and thermal ablation via HIFU, are investigated in detail. A comparison between classical chemotherapy and thermochemistry shows that temperature can improve the therapeutic outcome by stimulating biological properties. On the other hand, the intravascular release of ThermoDox increases the concentration of free drug by 2.6 times compared to classical chemotherapy. The transport of drug in interstitium relies mainly on the diffusion mechanism to be able to penetrate deeper and reach the cancer cells in the inner regions of the tumor. Due to the low drug penetration into the tumor center, thermal ablation has been used for necrosis of the central areas before thermochemotherapy and ThermoDox therapy. Perfusion of the region around the necrotic zone is found to be damaged, while cells in the region are alive and not affected by medication therapy; so, there is a risk of tumor recurrence. Therefore, it is recommended that ablation be performed after the medication therapy. Our model describes a comprehensive assessment of MR-HIFU technology, taking into account many effective details, which can be a reliable guide towards the optimal use of drug delivery systems.
Collapse
|
13
|
Filippou A, Drakos T, Giannakou M, Evripidou N, Damianou C. Experimental evaluation of the near-field and far-field heating of focused ultrasound using the thermal dose concept. ULTRASONICS 2021; 116:106513. [PMID: 34293620 DOI: 10.1016/j.ultras.2021.106513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Conventional motion algorithms utilized during High Intensity Focused Ultrasound (HIFU) procedures usually sonicate successive tissue cells, thereby inducing excess deposition of thermal dose in the pre-focal region. Long delays (~60 s) are used to reduce the heating around the focal region. In the present study the experimental evaluation of six motion algorithms so as to examine the required delay and algorithm for which the pre-focal (near-field) and post-focal (far-field) heating can be reduced using thermal dose estimations is presented. MATERIALS AND METHODS A single element spherically focused transducer operating at 1.1 MHz and focusing beam at 9 cm, was utilized for sonication on a 400 mm2 area of an agar-based phantom. Movement of the transducer was performed with each algorithm, using 0-60 s (10 s step) delays between sonications. Temperatures were recorded at both near and far-field regions and thermal dose calculations were implemented. RESULTS With the algorithms used in the present study, a delay of 50-60 s was required to reduce heating in the near-field region. A 30 s delay induced a safe thermal dose in the far-field region using all algorithms except sequential which still required 60 s delay. CONCLUSIONS The study verified the conservative need for 60 s delay for the sequential plan treatment. Nevertheless, present findings suggest that prolonged treatment times can be significantly reduced in homogeneous tissues by selection of the optimized nonlinear algorithm and delay.
Collapse
Affiliation(s)
- Antria Filippou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | | | | | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
14
|
Sebeke LC, Rademann P, Maul AC, Yeo SY, Castillo Gómez JD, Deenen DA, Schmidt P, de Jager B, Heemels WPMH, Grüll H, Heijman E. Visualization of thermal washout due to spatiotemporally heterogenous perfusion in the application of a model-based control algorithm for MR-HIFU mediated hyperthermia. Int J Hyperthermia 2021; 38:1174-1187. [PMID: 34374624 DOI: 10.1080/02656736.2021.1933616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE This article will report results from the in-vivo application of a previously published model-predictive control algorithm for MR-HIFU hyperthermia. The purpose of the investigation was to test the controller's in-vivo performance and behavior in the presence of heterogeneous perfusion. MATERIALS AND METHODS Hyperthermia at 42°C was induced and maintained for up to 30 min in a circular section of a thermometry slice in the biceps femoris of German landrace pigs (n=5) using a commercial MR-HIFU system and a recently developed MPC algorithm. The heating power allocation was correlated with heat sink maps and contrast-enhanced MRI images. The temporal change in perfusion was estimated based on the power required to maintain hyperthermia. RESULTS The controller performed well throughout the treatments with an absolute average tracking error of 0.27 ± 0.15 °C and an average difference of 1.25 ± 0.22 °C between T10 and T90. The MPC algorithm allocates additional heating power to sub-volumes with elevated heat sink effects, which are colocalized with blood vessels visible on contrast-enhanced MRI. The perfusion appeared to have increased by at least a factor of ∼1.86 on average. CONCLUSIONS The MPC controller generates temperature distributions with a narrow spectrum of voxel temperatures inside the target ROI despite the presence of spatiotemporally heterogeneous perfusion due to the rapid thermometry feedback available with MR-HIFU and the flexible allocation of heating power. The visualization of spatiotemporally heterogeneous perfusion presents new research opportunities for the investigation of stimulated perfusion in hypoxic tumor regions.
Collapse
Affiliation(s)
- Lukas Christian Sebeke
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Pia Rademann
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine, Cologne, Germany
| | - Alexandra Claudia Maul
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine, Cologne, Germany
| | - Sin Yuin Yeo
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Profound Medical GmbH, Hamburg, Germany
| | - Juan Daniel Castillo Gómez
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Daniel A Deenen
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - Patrick Schmidt
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Bram de Jager
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - W P M H Heemels
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - Holger Grüll
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Edwin Heijman
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
15
|
Hydralazine augmented ultrasound hyperthermia for the treatment of hepatocellular carcinoma. Sci Rep 2021; 11:15553. [PMID: 34330960 PMCID: PMC8324788 DOI: 10.1038/s41598-021-94323-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
This study investigates the use of hydralazine to enhance ultrasound hyperthermia for the treatment of hepatocellular carcinoma (HCC) by minimizing flow-mediated heat loss from the tumor. Murine HCC tumors were treated with a continuous mode ultrasound with or without an intravenous administration of hydralazine (5 mg/kg). Tumor blood flow and blood vessels were evaluated by contrast-enhanced ultrasound (CEUS) imaging and histology, respectively. Hydralazine markedly enhanced ultrasound hyperthermia through the disruption of tumor blood flow in HCC. Ultrasound treatment with hydralazine significantly reduced peak enhancement (PE), perfusion index (PI), and area under the curve (AUC) of the CEUS time-intensity curves by 91.9 ± 0.9%, 95.7 ± 0.7%, and 96.6 ± 0.5%, compared to 71.4 ± 1.9%, 84.7 ± 1.1%, and 85.6 ± 0.7% respectively without hydralazine. Tumor temperature measurements showed that the cumulative thermal dose delivered by ultrasound treatment with hydralazine (170.8 ± 11.8 min) was significantly higher than that without hydralazine (137.7 ± 10.7 min). Histological assessment of the ultrasound-treated tumors showed that hydralazine injection formed larger hemorrhagic pools and increased tumor vessel dilation consistent with CEUS observations illustrating the augmentation of hyperthermic effects by hydralazine. In conclusion, we demonstrated that ultrasound hyperthermia can be enhanced significantly by hydralazine in murine HCC tumors by modulating tumor blood flow. Future studies demonstrating the safety of the combined use of ultrasound and hydralazine would enable the clinical translation of the proposed technique.
Collapse
|
16
|
Zhu L, Huang Y, Lam D, Gach HM, Zoberi I, Hallahan DE, Grigsby PW, Chen H, Altman MB. Targetability of cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated hyperthermia (HT) for patients receiving radiation therapy. Int J Hyperthermia 2021; 38:498-510. [PMID: 33757406 DOI: 10.1080/02656736.2021.1895330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To evaluate the targetability of late-stage cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced hyperthermia (HT) as an adjuvant to radiation therapy (RT). METHODS Seventy-nine cervical cancer patients (stage IIIB-IVA) who received RT with lesions visible on positron emission tomography-computed tomography (PET-CT) were retrospectively analyzed for targetability using a commercially-available HT-capable MRgHIFU system. Targetability was assessed for both primary targets and/or any metastatic lymph nodes using both posterior (supine) and anterior (prone) patient setups relative to the transducer. Thirty-four different angles of rotation along subjects' longitudinal axis were analyzed. Targetability was categorized as: (1) Targetable with/without minimal intervention; (2) Not targetable. To determine if any factors could be used for prospective screening of patients, potential associations between demographic/anatomical factors and targetability were analyzed. RESULTS 72.15% primary tumors and 33.96% metastatic lymph nodes were targetable from at least one angle. 49.37% and 39.24% of primary tumors could be targeted with patient laying in supine and prone positions, respectively. 25°-30° rotation and 0° rotation had the highest rate of the posterior and anterior targetability, respectively. The ventral depth of the tumor and its distance to the coccyx were statistically correlated with the anterior and posterior targetability, respectively. CONCLUSION Most late-stage cervical cancer primaries were targetable by MRgHIFU HT requiring either no/minimal intervention. A rotation of 0° or 25°-30° relative to the transducer might benefit anterior and posterior targetability, respectively. Certain demographic/anatomic parameters might be useful in screening patients for treatability.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yi Huang
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dao Lam
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - H Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Dennis E Hallahan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.,Institute of Clinical and Translational Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Perry W Grigsby
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael B Altman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
17
|
Cheng B, Bing C, Staruch RM, Shaikh S, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch TW, Chopra R. The effect of injected dose on localized tumor accumulation and cardiac uptake of doxorubicin in a Vx2 rabbit tumor model using MR-HIFU mild hyperthermia and thermosensitive liposomes. Int J Hyperthermia 2021; 37:1052-1059. [PMID: 32892667 DOI: 10.1080/02656736.2020.1812737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE When doxorubicin (DOX) is administered via lyso-thermosensitive liposomes (LTLD), mild hyperthermia enhances localized delivery to heated vs. unheated tumors. The optimal LTLD dose and the impact of different doses on systemic drug distribution are unknown. Materials and methods: In this study, we evaluated local and systemic DOX delivery with three LTLD doses (0.1, 0.5, and 2.5 mg/kg) in a Vx2 rabbit tumor model. Temporally and spatially accurate controlled hyperthermia was achieved using a clinical MR-HIFU system for the intended heating duration (40 min). Results: DOX concentration in tissues delivered from LTLD combined with MR-HIFU mild hyperthermia are dose-dependent, including heated/unheated tumor, heart, and other healthy organs. Higher DOX accumulation and tumor-to-heart drug concentration ratio, defined as the ratio of DOX delivered into the tumor vs the heart, were observed in heated tumors compared to unheated tumors in all three tested doses. The DOX uptake efficiency for each mg/kg of LTLD injected IV of heated tumor was significantly higher than that of unheated tumor and heart within the tested dose range (0.1-2.5 mg/kg). The DOX uptake for the heart linearly scaled up as a function of dose while that for the heated tumor showed some evidence of saturation at the high dose of 2.5 mg/kg. Conclusions: These results provide guidance on clinical protocol design of hyperthermia-triggered drug delivery.
Collapse
Affiliation(s)
- Bingbing Cheng
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Robert M Staruch
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Profound Medical, Mississauga, Canada
| | - Sumbul Shaikh
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Debra Szczepanski
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Theodore W Laetsch
- Children's Health, Dallas, TX, USA.,Department of Pediatrics, Division of Hematology-Oncology and Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2021; 37:711-741. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christopher L Brace
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Gail Ter Haar
- Department of Physics, The Institute of Cancer Research, London, UK
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Lyon PC, Mannaris C, Gray M, Carlisle R, Gleeson FV, Cranston D, Wu F, Coussios CC. Large-Volume Hyperthermia for Safe and Cost-Effective Targeted Drug Delivery Using a Clinical Ultrasound-Guided Focused Ultrasound Device. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:982-997. [PMID: 33451816 DOI: 10.1016/j.ultrasmedbio.2020.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Lyso-thermosensitive liposomes (LTSLs) are specifically designed to release chemotherapy agents under conditions of mild hyperthermia. Preclinical studies have indicated that magnetic resonance (MR)-guided focused ultrasound (FUS) systems can generate well-controlled volumetric hyperthermia using real-time thermometry. However, high-throughput clinical translation of these approaches for drug delivery is challenging, not least because of the significant cost overhead of MR guidance and the much larger volumes that need to be heated clinically. Using an ultrasound-guided extracorporeal clinical FUS device (Chongqing HAIFU, JC200) with thermistors in a non-perfused ex vivo bovine liver tissue model with ribs, we present an optimised strategy for rapidly inducing (5-15 min) and sustaining (>30 min) mild hyperthermia (ΔT <+4°C) in large tissue volumes (≤92 cm3). We describe successful clinical translation in a first-in-human clinical trial of targeted drug delivery of LTSLs (TARDOX: a phase I study to investigate drug release from thermosensitive liposomes in liver tumours), in which targeted tumour hyperthermia resulted in localised chemo-ablation. The heating strategy is potentially applicable to other indications and ultrasound-guided FUS devices.
Collapse
Affiliation(s)
- Paul Christopher Lyon
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK; Nuffield Department of Surgical Sciences, Oxford, UK; Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | | | - Michael Gray
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Fergus V Gleeson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Feng Wu
- Nuffield Department of Surgical Sciences, Oxford, UK
| | | |
Collapse
|
20
|
Clinical Performance and Future Potential of Magnetic Resonance Thermometry in Hyperthermia. Cancers (Basel) 2020; 13:cancers13010031. [PMID: 33374176 PMCID: PMC7794787 DOI: 10.3390/cancers13010031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hyperthermia is a treatment for cancer patients, which consists of heating the body to 43 °C. The temperature during treatment is usually measured by placing temperature probes intraluminal or invasively. The only clinically used option to measure temperature distributions non-invasively and in 3D is by MR thermometry (MRT). However, in order to be able to replace conventional temperature probes, MRT needs to become more reliable. In this review paper, we propose standardized performance thresholds for MRT, based on our experience of treating nearly 4000 patients. We then review the literature to assess to what extent these requirements are already being met in the clinic today and identify common problems. Lastly, using pre-clinical results in the literature, we assess where the biggest potential is to solve the problems identified. We hope that by standardizing MRT parameters as well as highlighting current and promising developments, progress in the field will be accelerated. Abstract Hyperthermia treatments in the clinic rely on accurate temperature measurements to guide treatments and evaluate clinical outcome. Currently, magnetic resonance thermometry (MRT) is the only clinical option to non-invasively measure 3D temperature distributions. In this review, we evaluate the status quo and emerging approaches in this evolving technology for replacing conventional dosimetry based on intraluminal or invasively placed probes. First, we define standardized MRT performance thresholds, aiming at facilitating transparency in this field when comparing MR temperature mapping performance for the various scenarios that hyperthermia is currently applied in the clinic. This is based upon our clinical experience of treating nearly 4000 patients with superficial and deep hyperthermia. Second, we perform a systematic literature review, assessing MRT performance in (I) clinical and (II) pre-clinical papers. From (I) we identify the current clinical status of MRT, including the problems faced and from (II) we extract promising new techniques with the potential to accelerate progress. From (I) we found that the basic requirements for MRT during hyperthermia in the clinic are largely met for regions without motion, for example extremities. In more challenging regions (abdomen and thorax), progress has been stagnating after the clinical introduction of MRT-guided hyperthermia over 20 years ago. One clear difficulty for advancement is that performance is not or not uniformly reported, but also that studies often omit important details regarding their approach. Motion was found to be the common main issue hindering accurate MRT. Based on (II), we reported and highlighted promising developments to tackle the issues resulting from motion (directly or indirectly), including new developments as well as optimization of already existing strategies. Combined, these may have the potential to facilitate improvement in MRT in the form of more stable and reliable measurements via better stability and accuracy.
Collapse
|
21
|
Lutz NW, Bernard M. Contactless Thermometry by MRI and MRS: Advanced Methods for Thermotherapy and Biomaterials. iScience 2020; 23:101561. [PMID: 32954229 PMCID: PMC7489251 DOI: 10.1016/j.isci.2020.101561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Control of temperature variation is of primordial importance in particular areas of biomedicine. In this context, medical treatments such as hyperthermia and cryotherapy, and also the development and use of hydrogel-based biomaterials, are of particular concern. To enable accurate temperature measurement without perturbing or even destroying the biological tissue or material to be monitored, contactless thermometry methods are preferred. Among these, the most suitable are based on magnetic resonance imaging and spectroscopy (MRI, MRS). Here, we address the latest developments in this field as well as their current and anticipated practical applications. We highlight recent progress aimed at rendering MR thermometry faster and more reproducible, versatile, and sophisticated and provide our perspective on how these new techniques broaden the range of applications in medical treatments and biomaterial development by enabling insight into finer details of thermal behavior. Thus, these methods facilitate optimization of clinical and industrial heating and cooling protocols.
Collapse
Affiliation(s)
- Norbert W. Lutz
- Aix-Marseille University, CNRS, CRMBM, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Monique Bernard
- Aix-Marseille University, CNRS, CRMBM, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
22
|
Zhu L, Lam D, Pacia CP, Gach HM, Partanen A, Talcott MR, Greco SC, Zoberi I, Hallahan DE, Chen H, Altman MB. Characterization of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced large-volume hyperthermia in deep and superficial targets in a porcine model. Int J Hyperthermia 2020; 37:1159-1173. [DOI: 10.1080/02656736.2020.1825836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dao Lam
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - H. Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| | - Ari Partanen
- Clinical Science, Profound Medical Inc, Mississauga, Ontario, Canada
| | - Michael R. Talcott
- Division of Comparative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Suellen C. Greco
- Division of Comparative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| | - Dennis E. Hallahan
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| | - Michael B. Altman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Lau LW, Eranki A, Celik H, Kim A, Kim PCW, Sharma KV, Yarmolenko PS. Are Current Technical Exclusion Criteria for Clinical Trials of Magnetic Resonance-Guided High-Intensity Focused Ultrasound Too Restrictive?: Early Experiences at a Pediatric Hospital. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1849-1855. [PMID: 32227606 DOI: 10.1002/jum.15259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Certain technical criteria must be met to ensure the treatment safety of magnetic resonance-guided high-intensity focused ultrasound. We retrospectively reviewed how our enrollment criteria were applied from 2014 to 2017 in a clinical trial of magnetic resonance-guided high-intensity focused ultrasound ablation of recurrent malignant and locally aggressive benign solid tumors. Among the 36 screened patients between 2014 and 2017, more than one-third were excluded for technical exclusion criteria such as the anatomic location and proximity to prosthetics. Overall, patients were difficult to accrue for this trial, given the incidence of these tumors. To increase potential accrual, screening exclusion criteria could be more generalized and centered on the ability to achieve an acceptable treatment safety margin, rather than specifically excluding on the basis of general anatomic areas.
Collapse
Affiliation(s)
- Lung W Lau
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
- Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Avinash Eranki
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Haydar Celik
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
- Center for Interventional Oncology, Radiology, and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - AeRang Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Peter C W Kim
- Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Karun V Sharma
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Pavel S Yarmolenko
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| |
Collapse
|
24
|
Raiko J, Koskensalo K, Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature (Austin) 2020; 7:363-388. [PMID: 33251282 PMCID: PMC7678923 DOI: 10.1080/23328940.2020.1769006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Noninvasive imaging methods of internal body temperature are in high demand in both clinical medicine and physiological research. Thermography and thermometry can be used to assess tissue temperature during thermal therapies: ablative and hyperthermia treatments to ensure adequate temperature rise in target tissues but also to avoid collateral damage by heating healthy tissues. In research use, measurement of internal body temperature enables us the production of thermal maps on muscles, internal organs, and other tissues of interest. The most used methods for noninvasive imaging of internal body temperature are based on different parameters acquired with magnetic resonance imaging, ultrasound, computed tomography, microwave radiometry, photoacoustic imaging, and near-infrared spectroscopy. In the current review, we examine the aforementioned imaging methods, their use in estimating internal body temperature in vivo with their advantages and disadvantages, and the physical phenomena the thermography or thermometry modalities are based on.
Collapse
Affiliation(s)
- Juho Raiko
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kalle Koskensalo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Teija Sainio
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| |
Collapse
|
25
|
Kokuryo D, Kumamoto E, Kuroda K. Recent technological advancements in thermometry. Adv Drug Deliv Rev 2020; 163-164:19-39. [PMID: 33217482 DOI: 10.1016/j.addr.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/25/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Thermometry is the key factor for achieving successful thermal therapy. Although invasive thermometry with a probe has been used for more than four decades, this method can only detect the local temperature within the probing volume. Noninvasive temperature imaging using a tomographic technique is ideal for monitoring hot-spot formation in the human body. Among various techniques, such as X-ray computed tomography, microwave tomography, echo sonography, and magnetic resonance (MR) imaging, the proton resonance frequency shift method of MR thermometry is the only method currently available for clinical practice because its temperature sensitivity is consistent in most aqueous tissues and can be easily observed using common clinical scanners. New techniques are being proposed to improve the robustness of this method against tissue motion. MR techniques for fat thermometry were also developed based on relaxation times. One of the latest non-MR techniques to attract attention is photoacoustic imaging.
Collapse
Affiliation(s)
- Daisuke Kokuryo
- Graduate School of System Informatics, Kobe University, Japan
| | - Etsuko Kumamoto
- Information Science and Technology Center, Kobe University, Japan
| | - Kagayaki Kuroda
- School of Information Science and Technology, Tokai University, Japan; Center for Frontier Medical Engineering, Chiba University, Japan.
| |
Collapse
|
26
|
Sebeke L, Deenen DA, Maljaars E, Heijman E, de Jager B, Heemels WPMH, Grüll H. Model predictive control for MR-HIFU-mediated, uniform hyperthermia. Int J Hyperthermia 2019; 36:1040-1050. [DOI: 10.1080/02656736.2019.1668065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- L. Sebeke
- Department of Mechanical Engineering, Computational Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Medicine and University Hospital of Cologne, Department of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - D. A. Deenen
- Department of Mechanical Engineering, Control Systems Technology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - E. Maljaars
- Department of Mechanical Engineering, Control Systems Technology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - E. Heijman
- Faculty of Medicine and University Hospital of Cologne, Department of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
- Philips Research Eindhoven, Eindhoven, The Netherlands
| | - B. de Jager
- Department of Mechanical Engineering, Control Systems Technology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W. P. M. H. Heemels
- Department of Mechanical Engineering, Control Systems Technology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - H. Grüll
- Department of Mechanical Engineering, Computational Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Medicine and University Hospital of Cologne, Department of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
Magnetic Resonance-guided High-intensity Focused Ultrasound (MRgHIFU) Virtual Treatment Planning for Abdominal Neuroblastoma Utilizing Retrospective Diagnostic 3D CT Images. J Pediatr Hematol Oncol 2019; 41:e443-e449. [PMID: 31449496 DOI: 10.1097/mph.0000000000001563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is a novel treatment for neuroblastoma using ultrasound-induced thermal ablation with real-time MR thermometry. It is unclear which patients would be amenable to MRgHIFU given the retroperitoneal location of many neuroblastomas within the smaller pediatric abdomen. In addition, planning relies on MR scans, which are not routine in the standard pediatric neuroblastoma workup. This study sought to demonstrate that neuroblastomas are targetable with MRgHIFU and available computed tomographic imaging could be utilized for MRgHIFU virtual treatment. Cross-sectional images of 88 pediatric abdominal neuroblastoma patients were retrospectively processed with custom software to be made compatible with the Sonalleve MRgHIFU platform. Targetability measured percent treatment to lesion volume, within adequate safety margins from critical structures. All images were successfully converted into treatment planning files. Median lesion size was 191±195 cm and depth was 29±17 mm. Up to 78 (85%) patients had targetable lesions with a median targetable volume of 15% and ranging up to 79%. Targetability was highest in superficial, right upper quadrant lesions >200 cm, but limited by proximity to bowel and ribs. This study demonstrates the capacity for MRgHIFU to potentially treat the majority of abdominal neuroblastomas and the feasibility of using computed tomographic images for MRgHIFU virtual treatment planning.
Collapse
|
28
|
Zhu L, Altman MB, Laszlo A, Straube W, Zoberi I, Hallahan DE, Chen H. Ultrasound Hyperthermia Technology for Radiosensitization. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1025-1043. [PMID: 30773377 PMCID: PMC6475527 DOI: 10.1016/j.ultrasmedbio.2018.12.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 05/08/2023]
Abstract
Hyperthermia therapy (HT) raises tissue temperature to 40-45°C for up to 60 min. Hyperthermia is one of the most potent sensitizers of radiation therapy (RT). Ultrasound-mediated HT for radiosensitization has been used clinically since the 1960s. Recently, magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU), which has been approved by the United States Food and Drug Administration for thermal ablation therapy, has been adapted for HT. With emerging clinical trials using MRgHIFU HT for radiosensitization, there is a pressing need to review the ultrasound HT technology. The objective of this review is to overview existing HT technology, summarize available ultrasound HT devices, evaluate clinical studies combining ultrasound HT with RT and discuss challenges and future directions.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Michael B Altman
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Andrei Laszlo
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - William Straube
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA.
| |
Collapse
|
29
|
Bing F, Cabras P, De Mathelin M, Gangi A, Vappou J. MR-guided high intensity focused ultrasound (MRgHIFU) ablation of bone lesions: Impact of the ultrasound focusing on the thermal curves and of dissection needles interposition on the ultrasound field. J Neuroradiol 2019. [DOI: 10.1016/j.neurad.2019.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Zhu L, Partanen A, Talcott MR, Gach HM, Greco SC, Henke LE, Contreras JA, Zoberi I, Hallahan DE, Chen H, Altman MB. Feasibility and safety assessment of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated mild hyperthermia in pelvic targets evaluated using an in vivo porcine model. Int J Hyperthermia 2019; 36:1147-1159. [PMID: 31752562 PMCID: PMC7105895 DOI: 10.1080/02656736.2019.1685684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/02/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose: To evaluate the feasibility and assess safety parameters of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated hyperthermia (HT; heating to 40-45 °C) in various pelvic targets in a porcine model in vivo.Methods: Thirteen HT treatments were performed in six pigs with a commercial MRgHIFU system (Sonalleve V2, Profound Medical Inc., Mississauga, Canada) to muscle adjacent to the ventral/dorsal bladder wall and uterus to administer 42 °C (±1°) for 30 min (±5%) using an 18-mm target diameter and 100 W power. Feasibility was assessed using accuracy, uniformity, and MR-thermometry performance-based metrics. Safety parameters were assessed for tissues in the targets and beam-path by contrast-enhanced MRI, gross-pathology and histopathology.Results: Across all HT sessions, the mean difference between average temperature (Tavg) and the target temperature within the target region-of-interest (tROI, the cross-section of the heated volume at focal depth) was 0.51 ± 0.33 °C. Within the tROI, the temperature standard deviation averaged 1.55 ± 0.31 °C, the average 30-min Tavg variation was 0.80 ± 0.17 °C, and the maximum difference between Tavg and the 10th- or 90th-percentile temperature averaged 2.01 ± 0.44 °C. The average time to reach ≥41 °C and cool to ≤40 °C within the tROI at the beginning and end of treatment was 47.25 ± 27.47 s and 66.37 ± 62.68 s, respectively. Compared to unheated controls, no abnormally-perfused tissue or permanent damage was evident in the MR images, gross pathology or histological analysis.Conclusions: MRgHIFU-mediated HT is feasible and safety assessment is satisfactory for treating an array of clinically-mimicking pelvic geometries in a porcine model in vivo, implying the technique may have utility in treating pelvic targets in human patients.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Ari Partanen
- Clinical Science, Profound Medical Inc., Mississauga, Ontario, Canada
| | - Michael R. Talcott
- Division of Comparative Medicine, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - H. Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, 63108, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Suellen C. Greco
- Division of Comparative Medicine, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Lauren E. Henke
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Jessika A. Contreras
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Dennis E. Hallahan
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Michael B. Altman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| |
Collapse
|
31
|
Bing C, Cheng B, Staruch RM, Nofiele J, Staruch MW, Szczepanski D, Farrow-Gillespie A, Yang A, Laetsch TW, Chopra R. Breath-hold MR-HIFU hyperthermia: phantom and in vivo feasibility. Int J Hyperthermia 2019; 36:1084-1097. [PMID: 31707872 PMCID: PMC6873809 DOI: 10.1080/02656736.2019.1679893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/04/2019] [Accepted: 10/06/2019] [Indexed: 01/01/2023] Open
Abstract
Background: The use of magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) to deliver mild hyperthermia requires stable temperature mapping for long durations. This study evaluates the effects of respiratory motion on MR thermometry precision in pediatric subjects and determines the in vivo feasibility of circumventing breathing-related motion artifacts by delivering MR thermometry-controlled HIFU mild hyperthermia during repeated forced breath holds.Materials and methods: Clinical and preclinical studies were conducted. Clinical studies were conducted without breath-holds. In phantoms, breathing motion was simulated by moving an aluminum block towards the phantom along a sinusoidal trajectory using an MR-compatible motion platform. In vivo experiments were performed in ventilated pigs. MR thermometry accuracy and stability were evaluated.Results: Clinical data confirmed acceptable MR thermometry accuracy (0.12-0.44 °C) in extremity tumors, but not in the tumors in the chest/spine and pelvis. In phantom studies, MR thermometry accuracy and stability improved to 0.37 ± 0.08 and 0.55 ± 0.18 °C during simulated breath-holds. In vivo MR thermometry accuracy and stability in porcine back muscle improved to 0.64 ± 0.22 and 0.71 ± 0.25 °C during breath-holds. MR-HIFU hyperthermia delivered during intermittent forced breath holds over 10 min duration heated an 18-mm diameter target region above 41 °C for 10.0 ± 1.0 min, without significant overheating. For a 10-min mild hyperthermia treatment, an optimal treatment effect (TIR > 9 min) could be achieved when combining 36-60 s periods of forced apnea with 60-155.5 s free-breathing.Conclusion: MR-HIFU delivery during forced breath holds enables stable control of mild hyperthermia in targets adjacent to moving anatomical structures.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bingbing Cheng
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert M. Staruch
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
- Clinical Sites Research Program, Philips Research North America, Cambridge, MA
| | - Joris Nofiele
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Debra Szczepanski
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Alan Farrow-Gillespie
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX
| | - Adeline Yang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Theodore W. Laetsch
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
- Pauline Allen Gill Center for Cancer and Blood Disorders, Children’s Health, Dallas, TX
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
32
|
Bing C, Patel P, Staruch RM, Shaikh S, Nofiele J, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch T, Chopra R. Longer heating duration increases localized doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. Int J Hyperthermia 2018; 36:196-203. [PMID: 30541350 PMCID: PMC6430695 DOI: 10.1080/02656736.2018.1550815] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022] Open
Abstract
Thermosensitive liposomal doxorubicin (LTSL-Dox) combined with mild hyperthermia enhances the localized delivery of doxorubicin (Dox) within a heated region. The optimal heating duration and the impact of extended heating on systemic drug distribution are unknown. Here we evaluated local and systemic Dox delivery with two different mild hyperthermia durations (42 °C for 10 or 40 minutes) in a Vx2 rabbit tumor model. We hypothesized that longer duration of hyperthermia would increase Dox concentration in heated tumors without increasing systemic exposure. Temporally and spatially accurate controlled hyperthermia was achieved using a clinical MR-HIFU system for the prescribed heating durations. Forty-minutes of heating resulted in a nearly 6-fold increase in doxorubicin concentration in heated vs unheated tumors in the same animals. Therapeutic ratio, defined as the ratio of Dox delivered into the heated tumor vs the heart, increased from 1.9-fold with 10 minutes heating to 4.4-fold with 40 minutes heating. MR-HIFU can be used to guide, deliver and monitor mild hyperthermia of a Vx2 tumor model in a rabbit model, and an increased duration of heating leads to higher Dox deposition from LTSL-Dox in a target tumor without a concomitant increase in systemic exposure. Results from this preclinical study can be used to help establish clinical treatment protocols for hyperthermia mediated drug delivery.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Robert M. Staruch
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
- Profound Medical, Mississauga, ON, Canada
| | - Sumbul Shaikh
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joris Nofiele
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Debra Szczepanski
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Theodore Laetsch
- Children’s Health, Dallas, TX, USA
- Department of Pediatrics, Division of Hematology-Oncology and Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
33
|
Abraham CB, Loree-Spacek J, Andrew Drainville R, Pichardo S, Curiel L. Development of custom RF coils for use in a small animal platform for magnetic resonance-guided focused ultrasound hyperthermia compatible with a clinical MRI scanner. Int J Hyperthermia 2018; 35:348-360. [PMID: 30295125 DOI: 10.1080/02656736.2018.1503344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Three different magnetic resonance imaging (MRI) coils were developed and assessed for use with an experimental platform designed to generate hyperthermia in mice using magnetic resonance-guided focused ultrasound (MRgFUS). An ergonomic animal treatment bed was integrated with MRI coils. Three different coil designs optimized for small targets were tested, and performance in targeting and conducting accurate temperature imaging was evaluated. Two transmit/receive surface coils of different diameters (4 and 7 cm) and a transmit-only/receive-only (TORO) coil were used. A software platform was developed to provide real-time targeting and temperature maps and to deliver controlled ultrasound exposure. MR thermometry was conducted on different targets, including fresh chicken breasts and mouse cadavers. Multiple experiments were performed in which tissues were targeted with high reproducibility. The TORO coil was the most resilient to temperature drift, resulting in an increase in the calculated temperature of 0.29 ± 0.12 °C, compared to 1.27 ± 0.13 °C and 0.47 ± 0.04 °C for the medium and small coils, respectively. Controlled closed-loop hyperthermia exposure was successfully performed with all three coils. Considering all assessments, the TORO coil exhibited the best overall performance for thermometry acquisition when accounting for stability, precision, temperature spread and resilience to temperature drift. B1 maps of the three coils confirmed that the TORO coil exhibited the most homogeneous B1 field, which explained the improved thermometry performance. The use of coils specifically designed for small targets within the proposed experimental platform allowed accurate thermometry during hyperthermia.
Collapse
Affiliation(s)
| | - Jak Loree-Spacek
- a Electrical Engineering , Lakehead University , Thunder Bay , ON , Canada
| | | | - Samuel Pichardo
- c Radiology and Clinical Neurosciences , University of Calgary , Calgary , AB , Canada
| | - Laura Curiel
- a Electrical Engineering , Lakehead University , Thunder Bay , ON , Canada.,d Electrical and Computer Engineering , University of Calgary , Calgary , AB , Canada
| |
Collapse
|
34
|
Bing F, Vappou J, de Mathelin M, Gangi A. Targetability of osteoid osteomas and bone metastases by MR-guided high intensity focused ultrasound (MRgHIFU). Int J Hyperthermia 2018; 35:471-479. [DOI: 10.1080/02656736.2018.1508758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Fabrice Bing
- Radiology Department, Hôpital d’Annecy, Metz-Tessy, France
- ICube, University of Strasbourg, Strasbourg, France
- Interventional Radiology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | - Afshin Gangi
- ICube, University of Strasbourg, Strasbourg, France
- Interventional Radiology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
35
|
Ozhinsky E, Salgaonkar VA, Diederich CJ, Rieke V. MR thermometry-guided ultrasound hyperthermia of user-defined regions using the ExAblate prostate ablation array. J Ther Ultrasound 2018; 6:7. [PMID: 30123506 PMCID: PMC6088423 DOI: 10.1186/s40349-018-0115-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 01/21/2023] Open
Abstract
Background Hyperthermia therapy (HT) has shown to be an effective adjuvant to radiation, chemotherapy, and immunotherapy. In order to be safe and effective, delivery of HT requires maintenance of target tissue temperature within a narrow range (40-44 °C) for 30-60 min, which necessitates conformal heat delivery and accurate temperature monitoring. The goal of this project was to develop an MR thermometry-guided hyperthermia delivery platform based upon the ExAblate prostate array that would achieve uniform stable heating over large volumes within the prostate, while allowing the user to precisely control the power deposition patterns and shape of the region of treatment (ROT). Methods The HT platform incorporates an accelerated multi-slice real time MR thermometry pulse sequence and reconstruction pipeline. Temperature uniformity over a large contiguous area was achieved by multi-point temperature sampling with multi-focal feedback power control. The hyperthermia delivery system was based on an InSightec ExAblate 2100 prostate focused ultrasound ablation system, and HeartVista's RTHawk real-time MRI system integrated with a 3 T MRI scanner. The integrated system was evaluated in experiments with a tissue-mimicking phantom for prolonged exposures with a target temperature increase of 7 °C from baseline. Results Five various shapes of the region of treatment, defined on a 5 × 5 grid (35 × 35 mm, 11-25 focal spots per shape), were implemented to evaluate the performance of the system. MR temperature images, acquired after steady state was reached, showed different patterns of heating that closely matched the prescribed regions. Temperature uncertainty of the thermometry acquisition was 0.5 °C. The time to reach the target temperature (2:58-7:44 min) depended on the chosen ROT shape and on the distance from transducer to focal plane. Pre-cooling with circulating water helped to reduce near-field heating. Conclusions We have implemented a real-time MR thermometry-guided system for hyperthermia delivery within user-defined regions with the ExAblate prostate array and evaluated it in phantom experiments for different shapes and focal depths. Our results demonstrate the feasibility of using a commercially available endorectal FUS transducer to perform spatially-conformal hyperthermia therapy and could lead to a new set of exciting applications for these devices.
Collapse
Affiliation(s)
- Eugene Ozhinsky
- 1Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, Box 0946, San Francisco, CA 94107 USA
| | - Vasant A Salgaonkar
- 2Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, S331, Box 1708, San Francisco, CA 94115 USA
| | - Chris J Diederich
- 2Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, S331, Box 1708, San Francisco, CA 94115 USA
| | - Viola Rieke
- 1Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, Box 0946, San Francisco, CA 94107 USA
| |
Collapse
|
36
|
Magnetic Resonance Imaging-guided High-intensity Focused Ultrasound Applications in Pediatrics: Early Experience at Children's National Medical Center. Top Magn Reson Imaging 2018; 27:45-51. [PMID: 29406415 DOI: 10.1097/rmr.0000000000000163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) is a novel technology that integrates magnetic resonance imaging with therapeutic ultrasound. This unique approach provides a completely noninvasive method for precise thermal ablation of targeted tissues with real-time imaging feedback. Over the past 2 decades, MR-HIFU has shown clinical success in several adult applications ranging from treatment of painful bone metastases to uterine fibroids to prostate cancer and essential tremor. Although clinical experience in pediatrics is relatively small, the advantages of a completely noninvasive and radiation-free therapy are especially attractive to growing children. Unlike elderly patients, young children must deal with an entire lifetime of negative effects related to collateral tissue damage associated with invasive surgery, side effects of chemotherapy, and risk of secondary malignancy due to radiation exposure. These reasons provide a clear rationale and strong motivation to further advance clinical utility of MR-HIFU in pediatrics. We begin with an introduction to MR-HIFU technology and the clinical experience in adults. We then describe our early institutional experience in using MR-HIFU ablation to treat symptomatic benign, locally aggressive, and metastatic tumors in children and young adults. We also review some limitations and challenges encountered in treating pediatric patients and highlight additional pediatric applications which may be feasible in the near future.
Collapse
|
37
|
Interleaved Mapping of Temperature and Longitudinal Relaxation Rate to Monitor Drug Delivery During Magnetic Resonance-Guided High-Intensity Focused Ultrasound-Induced Hyperthermia. Invest Radiol 2018; 52:620-630. [PMID: 28598900 DOI: 10.1097/rli.0000000000000392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a method to heat lesions noninvasively to a stable, elevated temperature and a well-suited method to induce local hyperthermia (41°C-43°C) in deep-seated tissues. Magnetic Resonance (MR) imaging provides therapy planning on anatomical images and offers temperature feedback based on near-real-time MR thermometry. Although constant acquisition of MR thermometry data is crucial to ensure prolonged hyperthermia, it limits the freedom to perform measurements of other MR parameters, which are of interest during hyperthermia treatments. In image-guided drug delivery applications, co-encapsulation of paramagnetic MR contrast agents with a drug inside temperature-sensitive liposomes (TSLs) allows to visualize hyperthermia-triggered drug delivery through changes of the longitudinal relaxation rate R1. While the drug accumulates in the heated tumor tissue, R1 changes can be used for an estimate of the tumor drug concentration. The main objective of this study was to demonstrate that interleaved MR sequences are able to monitor temperature with an adequate temporal resolution and could give a reasonable estimate of the achieved tumor drug concentration through R1 changes. To this aim, in vitro validation tests and an in vivo proof-of-concept study were performed. MATERIALS AND METHODS All experiments were performed on a clinical 3-T MR-HIFU system adapted with a preclinical setup. The validity of the R1 values and the temperature maps stability were evaluated in phantom experiments and in ex vivo porcine muscle tissue. In vivo experiments were performed on rats bearing a 9L glioma tumor on their hind limb. All animals (n = 4 HIFU-treated, n = 4 no HIFU) were injected intravenously with TSLs co-encapsulating doxorubicin and gadoteridol as contrast agent. The TSL injection was followed by either 2 times 15 minutes of MR-HIFU-induced hyperthermia or a sham treatment. R1 maps were acquired before, during, and after sonication, using a single slice Inversion Recovery Look-Locker (IR-LL) sequence (field of view [FOV], 50 × 69 mm; in-plane resolution, 0.52 × 0.71 mm; slice thickness, 3 mm; 23 phases of 130 milliseconds; 1 full R1 map every 2 minutes). The R1 maps acquired during treatment were interleaved with 2 perpendicular proton resonance frequency shift (PRFS) MR thermometry slices (dynamic repetition time, 8.6 seconds; FOV, 250 × 250 mm; 1.4 × 1.4 mm in-plane resolution; 4 mm slice thickness). Tumor doxorubicin concentrations were determined fluorometrically. RESULTS In vitro results showed a slight but consistent overestimation of the measured R1 values compared with calibrated R1 values, regardless whether the R1 was acquired with noninterleaved IR-LL or interleaved. The average treatment cell temperature had a slightly higher temporal standard deviation for the interleaved PRFS sequence compared with the noninterleaved PRFS sequence (0.186°C vs 0.101°C, respectively). The prolonged time in between temperature maps due to the interleaved IR-LL sequence did not degrade the temperature stability during MR-HIFU treatment (Taverage = 40.9°C ± 0.3°C). Upon heat treatment, some tumors showed an R1 increase in a large part of the tumor while other tumors hardly showed any ΔR1. The tumor doxorubicin concentration showed a linear correlation with the average ΔR1 during both sonications (n = 8, Radj = 0.933), which was higher than for the ΔR1 measured after tumor cooldown (averaged for both sonications, n = 8, Radj = 0.877). CONCLUSIONS The new approach of interleaving different MR sequences was applied to simultaneously acquire R1 maps and PRFS thermometry scans during a feedback-controlled MR-HIFU-induced hyperthermia treatment. Interleaved acquisition did not compromise speed or accuracy of each scan. The ΔR1 acquired during treatment was used to visualize and quantify hyperthermia-triggered release of gadoteridol from TSLs and better reflected the intratumoral doxorubicin concentrations than the ΔR1 measured after cooldown of the tumor, exemplifying the benefit of interleaving R1 maps with temperature maps during drug delivery. Our study serves as an example for interleaved MR acquisition schemes, which introduce a higher flexibility in speed, sequence optimization, and timing.
Collapse
|
38
|
V. V. N. Kothapalli S, Altman MB, Zhu L, Partanen A, Cheng G, Gach HM, Straube W, Zoberi I, Hallahan DE, Chen H. Evaluation and selection of anatomic sites for magnetic resonance imaging-guided mild hyperthermia therapy: a healthy volunteer study. Int J Hyperthermia 2018; 34:1381-1389. [DOI: 10.1080/02656736.2017.1418536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Michael B. Altman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ari Partanen
- Clinical Science MR Therapy, Philips Healthcare, Andover, MA, USA
| | - Galen Cheng
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - H. Michael Gach
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - William Straube
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis E. Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
39
|
Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound. Proc Natl Acad Sci U S A 2017; 114:E4802-E4811. [PMID: 28566498 DOI: 10.1073/pnas.1700790114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several thermal-therapy strategies such as thermal ablation, hyperthermia-triggered drug delivery from temperature-sensitive liposomes (TSLs), and combinations of the above were investigated in a rhabdomyosarcoma rat tumor model (n = 113). Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) was used as a noninvasive heating device with precise temperature control for image-guided drug delivery. For the latter, TSLs were prepared, coencapsulating doxorubicin (dox) and [Gd(HPDO3A)(H2O)], and injected in tumor-bearing rats before MR-HIFU treatment. Four treatment groups were defined: hyperthermia, ablation, hyperthermia followed by ablation, or no HIFU. The intratumoral TSL and dox distribution were analyzed by single-photon emission computed tomography (SPECT)/computed tomography (CT), autoradiography, and fluorescence microscopy. Dox biodistribution was quantified and compared with that of nonliposomal dox. Finally, the treatment efficacy of all heating strategies plus additional control groups (saline, free dox, and Caelyx) was assessed by tumor growth measurements. All HIFU heating strategies combined with TSLs resulted in cellular uptake of dox deep into the interstitial space and a significant increase of tumor drug concentrations compared with a treatment with free dox. Ablation after TSL injection showed [Gd(HPDO3A)(H2O)] and dox release along the tumor rim, mirroring the TSL distribution pattern. Hyperthermia either as standalone treatment or before ablation ensured homogeneous TSL, [Gd(HPDO3A)(H2O)], and dox delivery across the tumor. The combination of hyperthermia-triggered drug delivery followed by ablation showed the best therapeutic outcome compared with all other treatment groups due to direct induction of thermal necrosis in the tumor core and efficient drug delivery to the tumor rim.
Collapse
|
40
|
VanOsdol J, Ektate K, Ramasamy S, Maples D, Collins W, Malayer J, Ranjan A. Sequential HIFU heating and nanobubble encapsulation provide efficient drug penetration from stealth and temperature sensitive liposomes in colon cancer. J Control Release 2016; 247:55-63. [PMID: 28042085 DOI: 10.1016/j.jconrel.2016.12.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023]
Abstract
Mild hyperthermia generated using high intensity focused ultrasound (HIFU) and microbubbles (MBs) can improve tumor drug delivery from non-thermosensitive liposomes (NTSLs) and low temperature sensitive liposomes (LTSLs). However, MB and HIFU are limited by the half-life of the contrast agent and challenges in accurate control of large volume tumor hyperthermia for longer duration (>30min.). The objectives of this study were to: 1) synthesize and characterized long-circulating echogenic nanobubble encapsulated LTSLs (ELTSLs) and NTSLs (ENTSLs), 2) evaluate in vivo drug release following short duration (~20min each) HIFU treatments administered sequentially over an hour in a large volume of mouse xenograft colon tumor, and 3) determine the impact of the HIFU/nanobubble combination on intratumoral drug distribution. LTSLs and NTSLs containing doxorubicin (Dox) were co-loaded with a nanobubble contrast agent (perfluoropentane, PFP) using a one-step sonoporation method to create ELTSLs and ENTSLs, which then were characterized for size, release in a physiological buffer, and ability to encapsulate PFP. For the HIFU group, mild hyperthermia (40-42°C) was completed within 90min after liposome infusion administered sequentially in three regions of the tumor. Fluorescence microscopy and high performance liquid chromatography analysis were performed to determine the spatial distribution and concentration of Dox in the treated regions. PFP encapsulation within ELTSLs and ENTSLs did not impact size or caused premature drug release in physiological buffer. As time progressed, the delivery of Dox decreased in HIFU-treated tumors with ELTSLs, but this phenomenon was absent in the LTSL, NTSL, and ENTSL groups. Most importantly, PFP encapsulation improved Dox penetration in the tumor periphery and core and did not impact the distribution of Dox in non-tumor organs/tissues. Data from this study suggest that short duration and sequential HIFU treatment could have significant benefits and that its action can be potentiated by nanobubble agents to result in improved drug penetration.
Collapse
Affiliation(s)
- Joshua VanOsdol
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Kalyani Ektate
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Selvarani Ramasamy
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Danny Maples
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Willie Collins
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Jerry Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
41
|
Fast and high temperature hyperthermia coupled with radiotherapy as a possible new treatment for glioblastoma. J Ther Ultrasound 2016; 4:32. [PMID: 27980785 PMCID: PMC5143464 DOI: 10.1186/s40349-016-0078-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background A new transcranial focused ultrasound device has been developed that can induce hyperthermia in a large tissue volume. The purpose of this work is to investigate theoretically how glioblastoma multiforme (GBM) can be effectively treated by combining the fast hyperthermia generated by this focused ultrasound device with external beam radiotherapy. Methods/Design To investigate the effect of tumor growth, we have developed a mathematical description of GBM proliferation and diffusion in the context of reaction–diffusion theory. In addition, we have formulated equations describing the impact of radiotherapy and heat on GBM in the reaction–diffusion equation, including tumor regrowth by stem cells. This formulation has been used to predict the effectiveness of the combination treatment for a realistic focused ultrasound heating scenario. Our results show that patient survival could be significantly improved by this combined treatment modality. Discussion High priority should be given to experiments to validate the therapeutic benefit predicted by our model. Electronic supplementary material The online version of this article (doi:10.1186/s40349-016-0078-3) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Shim J, Staruch R, Koral K, Xie XJ, Chopra R, Laetsch TW. Pediatric Sarcomas Are Targetable by MR-Guided High Intensity Focused Ultrasound (MR-HIFU): Anatomical Distribution and Radiological Characteristics. Pediatr Blood Cancer 2016; 63:1753-60. [PMID: 27199087 PMCID: PMC6016837 DOI: 10.1002/pbc.26079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Despite intensive therapy, children with metastatic and recurrent sarcoma or neuroblastoma have a poor prognosis. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is a noninvasive technique allowing the delivery of targeted ultrasound energy under MR imaging guidance. MR-HIFU may be used to ablate tumors without ionizing radiation or target chemotherapy using hyperthermia. Here, we evaluated the anatomic locations of tumors to assess the technical feasibility of MR-HIFU therapy for children with solid tumors. PROCEDURE Patients with sarcoma or neuroblastoma with available cross-sectional imaging were studied. Tumors were classified based on the location and surrounding structures within the ultrasound beam path as (i) not targetable, (ii) completely or partially targetable with the currently available MR-HIFU system, and (iii) potentially targetable if a respiratory motion compensation technique was used. RESULTS Of the 121 patients with sarcoma and 61 patients with neuroblastoma, 64% and 25% of primary tumors were targetable at diagnosis, respectively. Less than 20% of metastases at diagnosis or relapse were targetable for both sarcoma and neuroblastoma. Most targetable lesions were located in extremities or in the pelvis. Respiratory motion compensation may increase the percentage of targetable tumors by 4% for sarcomas and 10% for neuroblastoma. CONCLUSIONS Many pediatric sarcomas are localized at diagnosis and are targetable by current MR-HIFU technology. Some children with neuroblastoma have bony tumors targetable by MR-HIFU at relapse, but few newly diagnosed children with neuroblastoma have tumors amenable to MR-HIFU therapy. Clinical trials of MR-HIFU should focus on patients with anatomically targetable tumors.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Children’s Health, Dallas, Texas, USA
| | - Robert Staruch
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Philips Research North America, Cambridge, Massachusetts, USA
| | - Korgun Koral
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xian-Jin Xie
- Department of Clinical Sciences, Simmons Comprehensive Cancer Center, Dallas, Texas, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Texas, USA
| | - Theodore W. Laetsch
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Pauline Allen Gill Center for Cancer and Blood Disorders, Children’s Health, Dallas, Texas, USA
| |
Collapse
|
43
|
Frazier N, Payne A, de Bever J, Dillon C, Panda A, Subrahmanyam N, Ghandehari H. High intensity focused ultrasound hyperthermia for enhanced macromolecular delivery. J Control Release 2016; 241:186-193. [PMID: 27686583 DOI: 10.1016/j.jconrel.2016.09.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/11/2016] [Accepted: 09/24/2016] [Indexed: 12/25/2022]
Abstract
Mild hyperthermia has been used in combination with polymer therapeutics to further increase delivery to solid tumors and enhance efficacy. An attractive method for generating heat is through non-invasive high intensity focused ultrasound (HIFU). HIFU is often used for ablative therapies and must be adapted to produce uniform mild hyperthermia in a solid tumor. In this work a magnetic resonance imaging guided HIFU (MRgHIFU) controlled feedback system was developed to produce a spatially uniform 43°C heating pattern in a subcutaneous mouse tumor. MRgHIFU was employed to create hyperthermic conditions that enhance macromolecular delivery. Using a mouse model with two subcutaneous tumors, it was demonstrated that MRgHIFU enhanced delivery of both Evans blue dye (EBD) and Gadolinium-chelated N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. The EBD accumulation in the heated tumors increased by nearly 2-fold compared to unheated tumors. The Gadolinium-chelated HPMA copolymers also showed significant enhancement in accumulation over control as evaluated through MRI T1-mapping measurements. Results show the potential of HIFU-mediated hyperthermia for enhanced delivery of polymer therapeutics.
Collapse
Affiliation(s)
- Nick Frazier
- Department of Bioengineering, University of Utah, Salt Lake City, 84112, USA; Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, 84112, USA
| | - Allison Payne
- Department of Radiology, University of Utah, Salt Lake City, 84112, USA
| | - Joshua de Bever
- Department of Radiology, University of Utah, Salt Lake City, 84112, USA
| | | | - Apoorva Panda
- Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, 84112, USA
| | - Nithya Subrahmanyam
- Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, 84112, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, 84112, USA; Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, 84112, USA.
| |
Collapse
|
44
|
Magnetic Resonance–Guided High-Intensity Focused Ultrasound Hyperthermia for Recurrent Rectal Cancer: MR Thermometry Evaluation and Preclinical Validation. Int J Radiat Oncol Biol Phys 2016; 95:1259-67. [DOI: 10.1016/j.ijrobp.2016.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 11/19/2022]
|
45
|
Bing C, Staruch RM, Tillander M, Köhler MO, Mougenot C, Ylihautala M, Laetsch TW, Chopra R. Drift correction for accurate PRF-shift MR thermometry during mild hyperthermia treatments with MR-HIFU. Int J Hyperthermia 2016; 32:673-87. [PMID: 27210733 DOI: 10.1080/02656736.2016.1179799] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED There is growing interest in performing hyperthermia treatments with clinical magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) therapy systems designed for tissue ablation. During hyperthermia treatment, however, due to the narrow therapeutic window (41-45 °C), careful evaluation of the accuracy of proton resonant frequency (PRF) shift MR thermometry for these types of exposures is required. PURPOSE The purpose of this study was to evaluate the accuracy of MR thermometry using a clinical MR-HIFU system equipped with a hyperthermia treatment algorithm. METHODS Mild heating was performed in a tissue-mimicking phantom with implanted temperature sensors using the clinical MR-HIFU system. The influence of image-acquisition settings and post-acquisition correction algorithms on the accuracy of temperature measurements was investigated. The ability to achieve uniform heating for up to 40 min was evaluated in rabbit experiments. RESULTS Automatic centre-frequency adjustments prior to image-acquisition corrected the image-shifts in the order of 0.1 mm/min. Zero- and first-order phase variations were observed over time, supporting the use of a combined drift correction algorithm. The temperature accuracy achieved using both centre-frequency adjustment and the combined drift correction algorithm was 0.57° ± 0.58 °C in the heated region and 0.54° ± 0.42 °C in the unheated region. CONCLUSION Accurate temperature monitoring of hyperthermia exposures using PRF shift MR thermometry is possible through careful implementation of image-acquisition settings and drift correction algorithms. For the evaluated clinical MR-HIFU system, centre-frequency adjustment eliminated image shifts, and a combined drift correction algorithm achieved temperature measurements with an acceptable accuracy for monitoring and controlling hyperthermia exposures.
Collapse
Affiliation(s)
- Chenchen Bing
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas , USA
| | - Robert M Staruch
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas , USA ;,c Clinical Sites Research Program, Philips Research , Cambridge , Massachusetts , USA
| | | | | | | | | | - Theodore W Laetsch
- f Department of Pediatrics , University of Texas Southwestern Medical Center , Dallas , Texas , USA ;,g Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health System of Texas , Dallas , Texas , USA
| | - Rajiv Chopra
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas , USA ;,b Advanced Imaging Research Center, University of Texas Southwestern Medical Center , Dallas , Texas , USA
| |
Collapse
|