1
|
Zhang L, Chen S, Sun Y. Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea. Front Cell Neurosci 2022; 15:814891. [PMID: 35069120 PMCID: PMC8766678 DOI: 10.3389/fncel.2021.814891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most prevalent sensory deficits in humans, and approximately 360 million people worldwide are affected. The current treatment option for severe to profound hearing loss is cochlear implantation (CI), but its treatment efficacy is related to the survival of spiral ganglion neurons (SGNs). SGNs are the primary sensory neurons, transmitting complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus. In mammals, SGNs have very limited regeneration ability, and SGN loss causes irreversible hearing loss. In most cases of SNHL, SGN damage is the dominant pathogenesis, and it could be caused by noise exposure, ototoxic drugs, hereditary defects, presbycusis, etc. Tremendous efforts have been made to identify novel treatments to prevent or reverse the damage to SGNs, including gene therapy and stem cell therapy. This review summarizes the major causes and the corresponding mechanisms of SGN loss and the current protection strategies, especially gene therapy and stem cell therapy, to promote the development of new therapeutic methods.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Le Prell CG, Hughes LF, Dolan DF, Bledsoe SC. Effects of Calcitonin-Gene-Related-Peptide on Auditory Nerve Activity. Front Cell Dev Biol 2021; 9:752963. [PMID: 34869340 PMCID: PMC8633412 DOI: 10.3389/fcell.2021.752963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Calcitonin-gene-related peptide (CGRP) is a lateral olivocochlear (LOC) efferent neurotransmitter. Depression of sound-driven auditory brainstem response amplitude in CGRP-null mice suggests the potential for endogenous CGRP release to upregulate spontaneous and/or sound-driven auditory nerve (AN) activity. We chronically infused CGRP into the guinea pig cochlea and evaluated changes in AN activity as well as outer hair cell (OHC) function. The amplitude of both round window noise (a measure of ensemble spontaneous activity) and the synchronous whole-nerve response to sound (compound action potential, CAP) were enhanced. Lack of change in both onset adaptation and steady state amplitude of sound-evoked distortion product otoacoustic emission (DPOAE) responses indicated CGRP had no effect on OHCs, suggesting the origin of the observed changes was neural. Combined with results from the CGRP-null mice, these results appear to confirm that endogenous CGRP enhances auditory nerve activity when released by the LOC neurons. However, infusion of the CGRP receptor antagonist CGRP (8–37) did not reliably influence spontaneous or sound-driven AN activity, or OHC function, results that contrast with the decreased ABR amplitude measured in CGRP-null mice.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States.,Department of Speech, Language, and Hearing, University of Texas at Dallas, Richardson, TX, United States
| | - Larry F Hughes
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - David F Dolan
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States
| | - Sanford C Bledsoe
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
4
|
Le Prell CG. Effects of noise exposure on auditory brainstem response and speech-in-noise tasks: a review of the literature. Int J Audiol 2018; 58:S3-S32. [DOI: 10.1080/14992027.2018.1534010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Colleen G. Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
5
|
Amanipour RM, Zhu X, Duvey G, Celanire S, Walton JP, Frisina RD. Noise-Induced Hearing Loss in Mice: Effects of High and Low Levels of Noise Trauma in CBA Mice. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1210-1213. [PMID: 30440607 DOI: 10.1109/embc.2018.8512525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acoustic trauma can induce temporary or permanent noise-induced hearing loss (NIHL). Noise exposed animal models allow us to study the effects of various noise trauma insults on the cochlea and auditory pathways. Here we studied the short-term and long-term functional changes occurring in the auditory system following exposure to two different noise traumas. Several measures of hearing function known to change following noise exposure were examined: Temporary (TTS) and permanent (PTS) threshold shifts were measured using auditory brainstem responses (ABR), outer hair cell function was examined using distortion product otoacoustic emissions (DPOAEs), and auditory temporal processing was assessed using a gap-in-noise (GIN) ABR paradigm. Physiological measures were made before and after the exposure (24 hours, 2 weeks, 4 weeks, and 1 year). The animals were perfused and their brain, and cochlea were collected for future biomarker studies. Young adult mice were exposed to 110 dB and 116 dB octave-band noise levels for 45 minutes, and both groups demonstrated significant threshold shifts 1 day post-noise exposure across all frequencies. However 2 weeks postexposure, PTS within the 110 dB group was significantly reduced compared to 1 day post trauma, this improvement in thresholds was not as great in the 116 dB exposure group. At 2 weeks post-trauma, differences between the measured PTS in the two groups was significant for 4 of the 7 measured frequencies. At this 1 year time point after exposure, mice in the 110 dB group showed very minor PTS, but the 116 dB group showed a large PTS comparable to their 2 and 4 week PTS. At this time point, PTS variation between the two groups was significant across all frequencies. DPOAE amplitudes measured 2 weeks post exposure showed recovery for all frequencies within 10 dB (average) of the baseline in the 110 dB group, however for the 116 dB exposure DP amplitudes were elevated by about 30 dB. The differences in DPOAE amplitudes between the 110 dB and 116 dB groups were significant at 2 weeks, 4 weeks, and 1 year post-trauma in the mid frequency range. At 2 weeks, 4 weeks, and 1 year, DPOAE thresholds returned to within 10 dB of the baseline for the 110 dB group in the low and mid frequency range, whereas the 116 dB group still showed shifts of 30 dB for all frequency ranges. For Gap ABRs, there was a significant decrease in both noise burst 1 (NB1) and noise burst 2 (NB2) amplitudes for peaks 1 and 4 in the 116 dB group relative to the 110 dB group when measured at 1 year post trauma. These results indicate that a 6 dB increase in noise exposure intensity results in a significant increased ototrauma in both the peripheral and central auditory systems.
Collapse
|
6
|
Inner Ear Hair Cell Protection in Mammals against the Noise-Induced Cochlear Damage. Neural Plast 2018; 2018:3170801. [PMID: 30123244 PMCID: PMC6079343 DOI: 10.1155/2018/3170801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Inner ear hair cells are mechanosensory receptors that perceive mechanical sound and help to decode the sound in order to understand spoken language. Exposure to intense noise may result in the damage to the inner ear hair cells, causing noise-induced hearing loss (NIHL). Particularly, the outer hair cells are the first and the most affected cells in NIHL. After acoustic trauma, hair cells lose their structural integrity and initiate a self-deterioration process due to the oxidative stress. The activation of different cellular death pathways leads to complete hair cell death. This review specifically presents the current understanding of the mechanism exists behind the loss of inner ear hair cell in the auditory portion after noise-induced trauma. The article also explains the recent hair cell protection strategies to prevent the damage and restore hearing function in mammals.
Collapse
|
7
|
Noise-induced cochlear synaptopathy: Past findings and future studies. Hear Res 2017; 349:148-154. [DOI: 10.1016/j.heares.2016.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/08/2016] [Accepted: 12/08/2016] [Indexed: 01/12/2023]
|
8
|
High mobility group box 1 (HMGB1): dual functions in the cochlear auditory neurons in response to stress? Histochem Cell Biol 2016; 147:307-316. [PMID: 27704212 DOI: 10.1007/s00418-016-1506-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 12/19/2022]
Abstract
High mobility group box 1 (HMGB1) is a DNA-binding protein that facilitates gene transcription and may act extracellularly as a late mediator of inflammation. The roles of HMGB1 in the pathogenesis of the spiral ganglion neurons (SGNs) of the cochlea are currently unknown. In the present study, we tested the hypothesis that early phenotypical changes in the SGNs of the amikacin-poisoned rat cochlea are mediated by HMGB1. Our results showed that a marked downregulation of HMGB1 had occurred by completion of amikacin treatment, coinciding with acute damage at the dendrite extremities of the SGNs. A few days later, during the recovery of the SGN dendrites, the protein was re-expressed and transiently accumulated within the nuclei of the SGNs. The phosphorylated form of the transcription factor c-Jun (p-c-Jun) was concomitantly detected in the nuclei of the SGNs where it often co-localized with HMGB1, while the anti-apoptotic protein BCL2 was over-expressed in the cytoplasm. In animals co-treated with amikacin and the histone deacetylase inhibitor trichostatin A, both HMGB1 and p-c-Jun were exclusively found within the cytoplasm. The initial disappearance of HMGB1 from the affected SGNs may be due to its release into the external medium, where it may have a cytokine-like function. Once re-expressed and translocated into the nucleus, HMGB1 may facilitate the transcriptional activity of p-c-Jun, which in turn may promote repair mechanisms. Our study therefore suggests that HMGB1 can positively influence the survival of SGNs following ototoxic exposure via both its extracellular and intranuclear functions.
Collapse
|
9
|
Speech-in-Noise Tests and Supra-threshold Auditory Evoked Potentials as Metrics for Noise Damage and Clinical Trial Outcome Measures. Otol Neurotol 2016; 37:e295-302. [DOI: 10.1097/mao.0000000000001069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Xu YP, Shan XD, Liu YY, Pu Y, Wang CY, Tao QL, Deng Y, Cheng Y, Fan JP. Olfactory epithelium neural stem cell implantation restores noise-induced hearing loss in rats. Neurosci Lett 2016; 616:19-25. [PMID: 26777425 DOI: 10.1016/j.neulet.2016.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In this study, we aimed to elucidate the restorative effects of olfactory epithelium neural stem cells (oe-NSCs) implantation on noise-induced hearing loss and establish their mechanism of action. METHODS To model hearing loss, rats were subjected to consecutive seven-day noise exposure. Then, oe-NSCs were implanted into cochlear tissue by retroauricular approach. Auditory brainstem response (ABR) method was used to evaluate the hearing function. Immunohistochemical staining was utilized to determine cell survival and migration of oe-NSCs. After IL-1β stimulation, nerve growth factor (NGF), neurotrophin-3 (NT-3), and NT-4 levels were evaluated in oe-NSCs. The protective action of oe-NSCs against hydrogen peroxide-induced cell injury was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). RESULTS oe-NSCs implantation into cochlear tissues ameliorated the noise-induced hearing impairment (p<0.05). After implantation, green fluorescent cells were observed in an even suspension in the lymph fluid of the cochlea, and 65% of the GFP(+) cells reached the cochlear duct wall three days after implantation, but did not expand to the Corti-organ. After IL-1β stimulation, olfactory epithelial stem cell increased their secretion of NGF and NT-3 (p<0.05), but not that of NT-4. TUNEL assay results revealed that oe-NSCs co-culturing with injured neurons reduced the apoptotic cell death induced by hydrogen peroxide. CONCLUSION After transplantation into the inner ear, oe-NSCs not only survived, but also migrated around the spiral ganglion neurons (SGNs) in Rosenthal's canal (RC). Hearing loss induced by noise exposure was restored after oe-NSCs implantation. Mechanically, oe-NSCs secreted NGF and NT-3, which likely contributed to the prevention of neuronal injury. This study provides novel data in support of the effective action of implanted oe-NSCs in the restoration of noise-induced hearing loss in a rat model.
Collapse
Affiliation(s)
- Ya-Ping Xu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Dong Shan
- Department of Otolaryngology Head and Neck Surgery, No. 463 Military Hospital, Shenyang, China
| | - Yue-Yang Liu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yu Pu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Cheng-Yu Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qi-Lei Tao
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yue Deng
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yin Cheng
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jing-Ping Fan
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
11
|
Wong ACY, Ryan AF. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci 2015; 7:58. [PMID: 25954196 PMCID: PMC4404918 DOI: 10.3389/fnagi.2015.00058] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/05/2015] [Indexed: 12/20/2022] Open
Abstract
The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss (ARHL). Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed.
Collapse
Affiliation(s)
- Ann C Y Wong
- Department of Surgery/Division of Otolaryngology, University of California, San Diego School of Medicine La Jolla, CA, USA ; Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Allen F Ryan
- Department of Surgery/Division of Otolaryngology, University of California, San Diego School of Medicine La Jolla, CA, USA ; Veterans Administration Medical Center La Jolla, CA, USA ; Department of Neurosciences, University of California, San Diego School of Medicine La Jolla, CA, USA
| |
Collapse
|
12
|
Lim HW, Lee JW, Chung JW. Vulnerability to acoustic trauma in the normal hearing ear with contralateral hearing loss. Ann Otol Rhinol Laryngol 2014; 123:286-92. [PMID: 24671484 DOI: 10.1177/0003489414525339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES We undertook an animal study to investigate the functional and histological changes that occur in the normal hearing ear of following acoustic trauma. METHODS As an animal model of unilateral hearing loss, the right ears of CBA mice were deafened by cochlear destruction at 6 weeks of age (SSD group). The control groups included mice that underwent a sham surgery, and mice that were exposed to noise binaurally and monaurally (by plugging the right ear completely). At 10 weeks of age, all mice were exposed to acoustic trauma (110 dB sound pressure level for 1 hour) that induced a transient threshold shift (TTS). Changes in the hearing thresholds of the left ear were assessed over the next 4 weeks by measuring the auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). RESULTS Following the noise exposure, the SSD group showed a permanent threshold shift (PTS) of about 10 dB, whereas the other groups showed full recovery from the TTS. The threshold of the DPOAEs of the left ears were increased after noise exposure but returned to normal in all groups, with no significant differences among the groups. Histological evaluation showed no apparent cellular loss or apoptosis in the left ears of all groups, including the SSD group. CONCLUSIONS These results suggest that normal hearing ears are more vulnerable to acoustic trauma following contralateral unilateral cochlear ablation. This increased vulnerability may be due to damaged neural structures.
Collapse
Affiliation(s)
- Hyun Woo Lim
- Department of Otolaryngology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | | | | |
Collapse
|
13
|
Mukherjea D, Ghosh S, Bhatta P, Sheth S, Tupal S, Borse V, Brozoski T, Sheehan KE, Rybak LP, Ramkumar V. Early investigational drugs for hearing loss. Expert Opin Investig Drugs 2014; 24:201-17. [PMID: 25243609 DOI: 10.1517/13543784.2015.960076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Sensorineural hearing loss (HL) is becoming a global phenomenon at an alarming rate. Nearly 600 million people have been estimated to have significant HL in at least one ear. There are several different causes of sensorineural HL included in this review of new investigational drugs for HL. They are noise-induced, drug-induced, sudden sensorineural HL, presbycusis and HL due to cytomegalovirus infections. AREAS COVERED This review presents trends in research for new investigational drugs encompassing a variety of causes of HL. The studies presented here are the latest developments either in the research laboratories or in preclinical, Phase 0, Phase I or Phase II clinical trials for drugs targeting HL. EXPERT OPINION While it is important that prophylactic measures are developed, it is extremely crucial that rescue strategies for unexpected or unavoidable cochlear insult be established. To achieve this goal for the development of drugs for HL, innovative strategies and extensive testing are required for progress from the bench to bedside. However, although a great deal of research needs to be done to achieve the ultimate goal of protecting the ear against acquired sensorineural HL, we are likely to see exciting breakthroughs in the near future.
Collapse
Affiliation(s)
- Debashree Mukherjea
- Southern Illinois University School of Medicine, Department of Surgery , P.O. Box 19629, Springfield, IL 62794-9629 , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Topographic and quantitative evaluation of gentamicin-induced damage to peripheral innervation of mouse cochleae. Neurotoxicology 2013; 40:86-96. [PMID: 24308912 DOI: 10.1016/j.neuro.2013.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 11/24/2022]
Abstract
Ototoxicity induced by aminoglycoside antibiotics appears to occur both in hair cells (HCs) and the cochlear nerves that innervate them. Although HC loss can be easily quantified, neuronal lesions are difficult to quantify because two types of afferent dendrites and two types of efferent axons are tangled beneath the hair cells. In the present study, ototoxicity was induced by gentamicin in combination with the diuretic agent furosemide. Neuronal lesions were quantified in cochlear whole-mount preparations combined with microsections across the habenular perforate (HP) openings to achieve a clear picture of the topographic relationship between neuronal damage and HC loss. Multiple immunostaining methods were employed to differentiate the two types of afferent dendrites and two types of efferent axons. The results show that co-administration of gentamicin and furosemide resulted in a typical dynamic pattern of HC loss that spread from the basal turn to the outer hair cells to the apex and inner hair cells, depending on the dose and survival time after drug administration. Lesions of the innervation appeared to occur at two stages. At the early stage (2-4 days), the loss of labeling of the two types of afferent dendrites was more obvious than the loss of labeled efferent axons. At the late stage (2-4 weeks), the loss of labeled efferent axons was more rapid. In the high-dose gentamicin group, the loss of outer HCs was congruent with afferent dendrite loss at the early stage and efferent axon loss at the late stage. In the low-dose gentamicin group, the loss of labeling for cochlear innervation was more severe and widespread. Thus, we hypothesize that the gentamicin-induced damage to cochlear innervation occurs independently of hair cell loss.
Collapse
|
15
|
Lobarinas E, Salvi R, Ding D. Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res 2013; 302:113-20. [PMID: 23566980 DOI: 10.1016/j.heares.2013.03.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 11/25/2022]
Abstract
Noise trauma, aging, and ototoxicity preferentially damage the outer hair cells of the inner ear, leading to increased hearing thresholds and poorer frequency resolution. Whereas outer hair cells make synaptic connections with less than 10% of afferent auditory nerve fibers (type-II), inner hair cells make connections with over 90% of afferents (type-I). Despite these extensive connections, little is known about how selective inner hair cell loss impacts hearing. In chinchillas, moderate to high doses of the anticancer compound carboplatin produce selective inner hair cell and type-I afferent loss with little to no effect on outer hair cells. To determine the effects of carboplatin-induced inner hair cell loss on the most widely used clinical measure of hearing, the audiogram, pure-tone thresholds were determined behaviorally before and after 75 mg/kg carboplatin. Following carboplatin treatment, small effects on audiometric thresholds were observed even with extensive inner hair cell losses that exceed 80%. These results suggest that conventional audiometry is insensitive to inner hair cell loss and that only small populations of inner hair cells appear to be necessary for detecting tonal stimuli in a quiet background.
Collapse
Affiliation(s)
- Edward Lobarinas
- University of Florida, Department of Speech, Language, and Hearing Sciences, Gainesville, FL, USA.
| | | | | |
Collapse
|
16
|
Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus. Brain Res 2013; 1499:80-108. [DOI: 10.1016/j.brainres.2013.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/12/2022]
|
17
|
Momin SR, Melki SJ, Obokhare JO, Fares SA, Semaan MT, Megerian CA. Hearing preservation in Guinea pigs with long-standing endolymphatic hydrops. Otol Neurotol 2011; 32:1583-9. [PMID: 22015942 PMCID: PMC3220888 DOI: 10.1097/mao.0b013e3182382a64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Interruption of the excitotoxic and inflammatory pathways implicated in endolymphatic hydrops (ELH)-associated hearing loss (HL) should afford hearing protection at the neuronal level. BACKGROUND Previous work in our laboratory in the mouse model of ELH shows that dimethyl sulfoxide (DMSO), an anti-inflammatory solvent, can slow the progression of HL before neuronal degeneration occurs. Riluzole, a glutamate release inhibitor, may provide synergistic benefit. This study was designed to quantify the effects of DMSO and riluzole in a long-term model. METHODS Guinea pigs with surgically induced ELH were sorted into 3 groups: riluzole+DMSO (Group 1), DMSO alone (Group 2), and untreated controls (Group 3). Animals in Groups 1 and 2 received daily injections of the study drug(s). All animals underwent auditory-evoked brainstem response evaluation every 4 weeks until 24 weeks, when they were sacrificed. Cochleae were preserved; spiral ganglion density was quantified. Animals without hydrops were excluded from the study as surgical failures. RESULTS Animals from all groups developed unilateral HL. At the end of the experiment, HL was significantly lower in Group 1 relative to Group 3 (p = 0.049) and trended toward lower in Group 2 relative to Group 3 (p = 0.097). Groups 1 and 2 were not different (p = 0.311). At the cellular level, there is no evidence of neuronal degeneration in either treated group, whereas there is a significant neuronal degeneration in the untreated group. CONCLUSION These results confirm the hearing protection observed with DMSO in short-term studies. However, unlike the previous study, which showed no additive benefit to riluzole, the combined treatment group in this study showed a hearing-protective effect at 24 weeks. This indicates a potential additive benefit conferred by riluzole toward long-term hearing protection. The study also finds evidence of statistically significant neuronal protection with both treatment groups. Overall, study provides additional evidence that DMSO and riluzole may preserve or slow the long-term progression of ELH-associated HL.
Collapse
Affiliation(s)
- Suhael R. Momin
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center
| | - Sami J. Melki
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center
| | - Joy O. Obokhare
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center
| | - Souha A. Fares
- Department of Biostatistics and Epidemiology, Case Western Reserve University Cleveland, Ohio
| | - Maroun T. Semaan
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center
| | - Cliff A. Megerian
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center
| |
Collapse
|
18
|
Le Prell CG, Gagnon PM, Bennett DC, Ohlemiller KK. Nutrient-enhanced diet reduces noise-induced damage to the inner ear and hearing loss. Transl Res 2011; 158:38-53. [PMID: 21708355 PMCID: PMC3132794 DOI: 10.1016/j.trsl.2011.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 01/13/2023]
Abstract
Oxidative stress has been implicated broadly as a cause of cell death and neural degeneration in multiple disease conditions; however, the evidence for successful intervention with dietary antioxidant manipulations has been mixed. In this study, we investigated the potential for protection of cells in the inner ear using a dietary supplement with multiple antioxidant components, which were selected for their potential interactive effectiveness. Protection against permanent threshold shift (PTS) was observed in CBA/J mice maintained on a diet supplemented with a combination of β-carotene, vitamins C and E, and magnesium when compared with PTS in control mice maintained on a nutritionally complete control diet. Although hair cell survival was not enhanced, noise-induced loss of type II fibrocytes in the lateral wall was significantly reduced (P < 0.05), and there was a trend toward less noise-induced loss in strial cell density in animals maintained on the supplemented diet. Taken together, our data suggest that prenoise oral treatment with the high-nutrient diet can protect cells in the inner ear and reduce PTS in mice. The demonstration of functional and morphologic preservation of cells in the inner ear with oral administration of this antioxidant supplemented diet supports the possibility of translation to human patients and suggests an opportunity to evaluate antioxidant protection in mouse models of oxidative stress-related disease and pathology.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Sciences, University of Florida, Box 100174, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
19
|
Le Prell CG, Dolan DF, Bennett DC, Boxer PA. Nutrient plasma levels achieved during treatment that reduces noise-induced hearing loss. Transl Res 2011; 158:54-70. [PMID: 21708356 PMCID: PMC3125531 DOI: 10.1016/j.trsl.2011.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
Hearing loss encompasses both temporary and permanent deficits. If temporary threshold shift (TTS) and permanent threshold shift (PTS) share common pathological mechanisms, then agents that reduce PTS also should reduce TTS. Several antioxidant agents have reduced PTS in rodent models; however, reductions in TTS have been inconsistent. This study first determined whether dietary antioxidants (beta-carotene and vitamins C and E) delivered in combination with magnesium (Mg) reliably increase plasma concentrations of the active agents. Then, additional manipulations tested the hypothesis that these nutrients reduce acute TTS insult in the first 24 h after loud sound as well as longer lasting changes in hearing measured up to 7 days postnoise. Saline or nutrients were administered to guinea pigs prior to and after noise exposure. Sound-evoked electrophysiological responses were measured before noise, with tests repeated 1-h postnoise, as well as 1-day, 3-days, 5-days, and 7-days postnoise. All subjects showed significant functional recovery; subjects treated with nutrients recovered more rapidly and had better hearing outcomes at early postnoise times as well as the final test time. Thus, this combination of nutrients, which produced significant increases in plasma concentrations of vitamins C and E and Mg, effectively reduced hearing loss at multiple postnoise times. These data suggest that free radical formation contributes to TTS as well as PTS insults and suggest a potential opportunity to prevent TTS in human populations.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
Glutamate neurotoxicity in cochlear hair cells was investigated by administering the glutamate agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) into the scala tympani of Mongolian gerbils. AMPA administration caused the formation of large number of vacuoles in the inner hair cells (IHCs) and dendritic terminals. The number of degenerated hair cells was counted using rhodamine-phalloidin and Hoechst 33342 staining. The administration of 50 microM AMPA caused reversible elevation of the auditory brainstem response threshold without loss of IHCs. In contrast, 200 microM AMPA induced a substantial elevation of the auditory brainstem response threshold with the characteristic disappearance of IHCs. As cochlear ischemia involves excessive glutamate release, these results suggest that an elevated glutamate level in the cochlea is responsible for the progressive IHC death related to ischemic injury.
Collapse
|
21
|
Bledsoe SC, Koehler S, Tucci DL, Zhou J, Le Prell C, Shore SE. Ventral cochlear nucleus responses to contralateral sound are mediated by commissural and olivocochlear pathways. J Neurophysiol 2009; 102:886-900. [PMID: 19458143 PMCID: PMC2724362 DOI: 10.1152/jn.91003.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 05/15/2009] [Indexed: 11/22/2022] Open
Abstract
In the normal guinea pig, contralateral sound inhibits more than a third of ventral cochlear nucleus (VCN) neurons but excites <4% of these neurons. However, unilateral conductive hearing loss (CHL) and cochlear ablation (CA) result in a major enhancement of contralateral excitation. The response properties of the contralateral excitation produced by CHL and CA are similar, suggesting similar pathways are involved for both types of hearing loss. Here we used the neurotoxin melittin to test the hypothesis that this "compensatory" contralateral excitation is mediated either by direct glutamatergic CN-commissural projections or by cholinergic neurons of the olivocochlear bundle (OCB) that send collaterals to the VCN. Unit responses were recorded from the left VCN of anesthetized, unilaterally deafened guinea pigs (CHL via ossicular disruption, or CA via mechanical destruction). Neural responses were obtained with 16-channel electrodes to enable simultaneous data collection from a large number of single- and multiunits in response to ipsi- and contralateral tone burst and noise stimuli. Lesions of each pathway had differential effects on the contralateral excitation. We conclude that contralateral excitation has a fast and a slow component. The fast excitation is likely mediated by glutamatergic neurons located in medial regions of VCN that send their commissural axons to the other CN via the dorsal/intermediate acoustic striae. The slow component is likely mediated by the OCB collateral projections to the CN. Commissural neurons that leave the CN via the trapezoid body are an additional source of fast, contralateral excitation.
Collapse
Affiliation(s)
- Sanford C Bledsoe
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan 48109-5616, USA
| | | | | | | | | | | |
Collapse
|
22
|
Jin DX, Lin Z, Lei D, Bao J. The role of glucocorticoids for spiral ganglion neuron survival. Brain Res 2009; 1277:3-11. [PMID: 19233145 PMCID: PMC2700197 DOI: 10.1016/j.brainres.2009.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 12/20/2022]
Abstract
Glucocorticoids, which are steroidal stress hormones, have a broad array of biological functions. Synthetic glucocorticoids are frequently used therapeutically for many pathologic conditions, including diseases of the inner ear; however, their exact functions in the cochlea are not completely understood. Recent work has clearly demonstrated the presence of glucocorticoid signaling pathways in the cochlea and elucidated their protective roles against noise-induced hearing loss. Furthermore, indirect evidence suggests the involvement of glucocorticoids in age-related loss of spiral ganglion neurons and extensive studies in the central nervous system demonstrate profound effects of glucocorticoids on neuronal functions. With the advancement of recent pharmacologic and genetic tools, the role of these pathways in the survival of spiral ganglion neurons after noise exposure and during aging should be revealed.
Collapse
Affiliation(s)
- David Xu Jin
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Zhaoyu Lin
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Debin Lei
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Jianxin Bao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110
- Center for Aging, Washington University School of Medicine, St. Louis, Missouri, 63110
- The Division of Biology & Biomedical Science and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri, 63110
| |
Collapse
|
23
|
Chen Z, Peppi M, Kujawa SG, Sewell WF. Regulated expression of surface AMPA receptors reduces excitotoxicity in auditory neurons. J Neurophysiol 2009; 102:1152-9. [PMID: 19515954 DOI: 10.1152/jn.00288.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dynamic regulation of the expression of surface AMPA receptors (AMPARs) is a key mechanism to modulate synaptic strength and efficacy in the CNS and also to regulate auditory sensitivity. Here we address the role of surface AMPAR expression in excitotoxicity by blocking clathrin-mediated AMPAR endocytosis in auditory neurons. We used a membrane-permeable, dynamin-derived, myristoylated peptide (myr-Dyn) to inhibit surface AMPAR endocytosis induced by glutamate receptor agonists in culture and by noise exposure in vivo. Myr-Dyn infused into the mouse cochlea induced excitotoxic responses to acoustic stimuli that were normally not excitotoxic. These included vacuolization in the nerve terminals and spiral ganglion as well as irreversible auditory brain stem response threshold shifts. In cultured spiral ganglion neuronal cells, blockade of the reduction of surface AMPARs exacerbated neuronal death by incubation with N-methyl-d-aspartate and AMPA. This excitotoxic neuronal death could be prevented by calpeptin, a calpain-specific inhibitor. These results suggest that the reduction of surface AMPAR by endocytosis during excitatory stimulation plays an important role in limiting the excitotoxic damage to the neuron.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
24
|
Xiao J, Braun CB. Objective threshold estimation and measurement of the residual background noise in auditory evoked potentials of goldfish. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:3053-63. [PMID: 19045791 PMCID: PMC2677356 DOI: 10.1121/1.2982366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A survey of papers using auditory evoked potentials (AEPs) published over the last 10 years (Table I) demonstrates that most AEP studies in animals have used subjective methods for auditory threshold determination. Subjective methods greatly reduce the value of statistical hypothesis testing and jeopardize tests of hypothetical experimental group differences in hearing sensitivity. Correspondingly, many attempts have been made to develop objective threshold determination methods, but these have not been used widely. Further, they seldom include an appreciation of the effects of residual noise in the AEP. In this study, AEPs evoked by tonal and noise stimuli in goldfish (Carassius auratus) were recorded and the residual background noise was measured and analyzed in detail. High variability was found in residual noise, but can be effectively controlled with a simple modification of averaging routines. Considerable interobserver disagreements were found using subjective threshold estimation. An objective method of threshold determination was developed based on comparison between AEP amplitude and controlled residual noise, using a signal detection theory approach to set specific threshold criteria. The usefulness of AEP in hypothesis testing for auditory function requires more control over residual background noise amplitudes and the use of objective threshold determination techniques.
Collapse
Affiliation(s)
- Jianqiang Xiao
- Department of Psychology, Hunter College, The City University of New York, 695 Park Avenue, New York City, New York 10021, USA
| | | |
Collapse
|
25
|
Miller JM, Le Prell CG, Prieskorn DM, Wys NL, Altschuler RA. Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain-derived neurotrophic factor and fibroblast growth factor. J Neurosci Res 2007; 85:1959-69. [PMID: 17492794 DOI: 10.1002/jnr.21320] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The extent to which neurotrophic factors are able to not only rescue the auditory nerve from deafferentation-induced degeneration but also promote process regrowth is of basic and clinical interest, as regrowth may enhance the therapeutic efficacy of cochlear prostheses. The use of neurotrophic factors is also relevant to interventions to promote regrowth and repair at other sites of nerve trauma. Therefore, auditory nerve survival and peripheral process regrowth were assessed in the guinea pig cochlea following chronic infusion of BDNF + FGF(1) into scala tympani, with treatment initiated 4 days, 3 weeks, or 6 weeks after deafferentation from deafening. Survival of auditory nerve somata (spiral ganglion neurons) was assessed from midmodiolar sections. Peripheral process regrowth was assessed using pan-Trk immunostaining to selectively label afferent fibers. Significantly enhanced survival was seen in each of the treatment groups compared to controls receiving artificial perilymph. A large increase in peripheral processes was found with BDNF + FGF(1) treatment after a 3-week delay compared to the artificial perilymph controls and a smaller enhancement after a 6-week delay. Neurotrophic factor treatment therefore has the potential to improve the benefits of cochlear implants by maintaining a larger excitable population of neurons and inducing neural regrowth.
Collapse
Affiliation(s)
- Josef M Miller
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0506, USA.
| | | | | | | | | |
Collapse
|
26
|
Le Prell CG, Hughes LF, Miller JM. Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma. Free Radic Biol Med 2007; 42:1454-63. [PMID: 17395018 PMCID: PMC1950331 DOI: 10.1016/j.freeradbiomed.2007.02.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 01/05/2007] [Accepted: 02/06/2007] [Indexed: 12/20/2022]
Abstract
Free radical formation in the cochlea plays a key role in the development of noise-induced hearing loss (NIHL). The amount, distribution, and time course of free radical formation have been defined, including a clinically significant formation of both reactive oxygen species and reactive nitrogen species 7-10 days after noise exposure. Reduction in cochlear blood flow as a result of free radical formation has also been described. Here we report that the antioxidant agents vitamins A, C, and E act in synergy with magnesium to effectively prevent noise-induced trauma. Neither the antioxidant agents nor the magnesium reliably reduced NIHL or sensory cell death with the doses we used when these agents were delivered alone. In combination, however, they were highly effective in reducing both hearing loss and cell death even with treatment initiated just 1 h before noise exposure. This study supports roles for both free radical formation and noise-induced vasoconstriction in the onset and progression of NIHL. Identification of this safe and effective antioxidant intervention that attenuates NIHL provides a compelling rationale for human trials in which free radical scavengers are used to eliminate this single major cause of acquired hearing loss.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Kresge Hearing Research Institute, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109-0506, USA.
| | | | | |
Collapse
|
27
|
Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res 2007; 226:22-43. [PMID: 17141991 PMCID: PMC1995566 DOI: 10.1016/j.heares.2006.10.006] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 12/20/2022]
Abstract
Recent research has shown the essential role of reduced blood flow and free radical formation in the cochlea in noise-induced hearing loss (NIHL). The amount, distribution, and time course of free radical formation have been defined, including a clinically significant late formation 7-10 days following noise exposure, and one mechanism underlying noise-induced reduction in cochlear blood flow has finally been identified. These new insights have led to the formulation of new hypotheses regarding the molecular mechanisms of NIHL; and, from these, we have identified interventions that prevent NIHL, even with treatment onset delayed up to 3 days post-noise. It is essential to now assess the additive effects of agents intervening at different points in the cell death pathway to optimize treatment efficacy. Finding safe and effective interventions that attenuate NIHL will provide a compelling scientific rationale to justify human trials to eliminate this single major cause of acquired hearing loss.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Kresge Hearing Research Institute, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109-0506, USA.
| | | | | | | | | |
Collapse
|
28
|
Le Prell CG, Kawamoto K, Raphael Y, Dolan DF. Electromotile hearing: acoustic tones mask psychophysical response to high-frequency electrical stimulation of intact guinea pig cochleae. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 120:3889-900. [PMID: 17225416 PMCID: PMC3132799 DOI: 10.1121/1.2359238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
When sinusoidal electric stimulation is applied to the intact cochlea, a frequency-specific acoustic emission can be recorded in the ear canal. Acoustic emissions are produced by basilar membrane motion, and have been used to suggest a corresponding acoustic sensation termed "electromotile hearing." Electromotile hearing has been specifically attributed to electric stimulation of outer hair cells in the intact organ of Corti. To determine the nature of the auditory perception produced by electric stimulation of a cochlea with intact outer hair cells, guinea pigs were tested in a psychophysical task. First, subjects were trained to report detection of sinusoidal acoustic stimuli and dynamic range was assessed using response latency. Subjects were then implanted with a ball electrode placed into scala tympani. Following the surgical implant procedure, subjects were transferred to a task in which acoustic signals were replaced by sinusoidal electric stimulation, and dynamic range was assessed again. Finally, the ability of acoustic pure-tone stimuli to mask the detection of the electric signals was assessed. Based on the masking effects, it is concluded that sinusoidal electric stimulation of the intact cochlea results in perception of a tonal (rather than a broadband or noisy) sound at a frequency of 8 kHz or above.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Kresge Hearing Research Institute, 1301 East Ann Street, Ann Arbor, Michigan 48109-0506, USA.
| | | | | | | |
Collapse
|
29
|
Darrow KN, Maison SF, Liberman MC. Selective removal of lateral olivocochlear efferents increases vulnerability to acute acoustic injury. J Neurophysiol 2006; 97:1775-85. [PMID: 17093118 PMCID: PMC1805782 DOI: 10.1152/jn.00955.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cochlear sensory cells and neurons receive efferent feedback from the olivocochlear (OC) system. The myelinated medial component of the OC system and its effects on outer hair cells (OHCs) have been implicated in protection from acoustic injury. The unmyelinated lateral (L)OC fibers target ipsilateral cochlear nerve dendrites and pharmacological studies suggest the LOC's dopaminergic component may protect these dendrites from excitotoxic effects of acoustic overexposure. Here, we explore LOC function in vivo by selective stereotaxic destruction of LOC cell bodies in mouse. Lesion success in removing the LOC, and sparing the medial (M)OC, was assessed by histological analysis of brain stem sections and cochlear whole mounts. Auditory brain stem responses (ABRs), a neural-based metric, and distortion product otoacoustic emissions (DPOAEs), an OHC-based metric, were measured in control and surgical mice. In cases where the LOC was at least partially destroyed, there were increases in suprathreshold neural responses that were frequency- and level-independent and not attributable to OHC-based effects. These interaural response asymmetries were not found in controls or in cases where the lesion missed the LOC. In LOC-lesion cases, after exposure to a traumatic stimulus, temporary threshold shifts were greater in the ipsilateral ear, but only when measured in the neural response; OHC-based measurements were always bilaterally symmetric, suggesting OHC vulnerability was unaffected. Interaural asymmetries in threshold shift were not found in either unlesioned controls or in cases that missed the LOC. These findings suggest that the LOC modulates cochlear nerve excitability and protects the cochlea from neural damage in acute acoustic injury.
Collapse
Affiliation(s)
- Keith N. Darrow
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard and MIT, Cambridge, MA
| | - Stéphane F. Maison
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114
| | - M. Charles Liberman
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114
- Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard and MIT, Cambridge, MA
| |
Collapse
|
30
|
Lang H, Schulte BA, Zhou D, Smythe N, Spicer SS, Schmiedt RA. Nuclear factor kappaB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 2006; 26:3541-50. [PMID: 16571762 PMCID: PMC2897814 DOI: 10.1523/jneurosci.2488-05.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Degeneration of the spiral ganglion neurons (SGNs) of the auditory nerve occurs with age and in response to acoustic injury. Histopathological observations suggest that the neural degeneration often begins with an excitotoxic process affecting the afferent dendrites under the inner hair cells (IHCs), however, little is known about the sequence of cellular or molecular events mediating this excitotoxicity. Nuclear factor kappaB (NFkappaB) is a transcription factor involved in regulating inflammatory responses and apoptosis in many cell types. NFkappaB is also associated with intracellular calcium regulation, an important factor in neuronal excitotoxicity. Here, we provide evidence that NFkappaB can play a central role in the degeneration of SGNs. Mice lacking the p50 subunit of NFkappaB (p50(-/-) mice) showed an accelerated hearing loss with age that was highly associated with an exacerbated excitotoxic-like damage in afferent dendrites under IHCs and an accelerated loss of SGNs. Also, as evidenced by immunostaining intensity, calcium-buffering proteins were significantly elevated in SGNs of the p50(-/-) mice. Finally, the knock-out mice exhibited an increased sensitivity to low-level noise exposure. The accelerated hearing loss and neural degeneration with age in the p50(-/-) mice occurred in the absence of concomitant hair cell loss and decline of the endocochlear potential. These results indicate that NFkappaB activity plays an important role in protecting the primary auditory neurons from excitotoxic damage and age-related degeneration. A possible mechanism underlying this protection is that the NFkappaB activity may help to maintain calcium homeostasis in SGNs.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Le Prell CG, Halsey K, Hughes LF, Dolan DF, Bledsoe SC. Disruption of lateral olivocochlear neurons via a dopaminergic neurotoxin depresses sound-evoked auditory nerve activity. J Assoc Res Otolaryngol 2005; 6:48-62. [PMID: 15735934 PMCID: PMC2504639 DOI: 10.1007/s10162-004-5009-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 10/29/2004] [Indexed: 11/30/2022] Open
Abstract
We applied the dopaminergic (DA) neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the guinea pig cochlear perilymph. Immunolabeling of lateral olivocochlear (LOC) neurons using antibodies against synaptophysin was reduced after the MPTP treatment. In contrast, labeling of the medial olivocochlear innervation remained intact. As after brainstem lesions of the lateral superior olive (LSO), the site of origin of the LOC neurons, the main effect of disrupting LOC innervation of the cochlea via MPTP was a depression of the amplitude of the compound action potential (CAP). CAP amplitude depression was similar to that produced by LSO lesions. Latency of the N1 component of the CAP, and distortion product otoacoustic emission amplitude and adaptation were unchanged by the MPTP treatment. This technique for selectively lesioning descending LOC efferents provides a new opportunity for examining LOC modulation of afferent activity and behavioral measures of perception.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Action Potentials
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/physiology
- Animals
- Cochlear Nerve/physiology
- Cochlear Nucleus/pathology
- Cochlear Nucleus/physiology
- Denervation
- Dopamine/physiology
- Dopamine Agents/pharmacology
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Female
- Guinea Pigs
- Immunohistochemistry
- Male
- Neurotoxins/pharmacology
- Olivary Nucleus/pathology
- Olivary Nucleus/physiology
- Otoacoustic Emissions, Spontaneous/drug effects
- Otoacoustic Emissions, Spontaneous/physiology
Collapse
Affiliation(s)
- Colleen G Le Prell
- Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, MI 48109-0506, USA.
| | | | | | | | | |
Collapse
|