1
|
Thacher JD, Snigireva A, Dauter UM, Delaval MN, Oudin A, Mattisson K, Sørensen M, Borgquist S, Albin M, Broberg K. Road traffic noise and breast cancer: DNA methylation in four core circadian genes. Clin Epigenetics 2024; 16:168. [PMID: 39587706 PMCID: PMC11590349 DOI: 10.1186/s13148-024-01774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Transportation noise has been linked with breast cancer, but existing literature is conflicting. One proposed mechanism is that transportation noise disrupts sleep and the circadian rhythm. We investigated the relationships between road traffic noise, DNA methylation in circadian rhythm genes, and breast cancer. We selected 610 female participants (318 breast cancer cases and 292 controls) enrolled into the Malmö, Diet, and Cancer cohort. DNA methylation of CpGs (N = 29) in regulatory regions of circadian rhythm genes (CRY1, BMAL1, CLOCK, and PER1) was assessed by pyrosequencing of DNA from lymphocytes collected at enrollment. To assess associations between modeled 5-year mean residential road traffic noise and differentially methylated CpG positions, we used linear regression models adjusting for potential confounders, including sociodemographics, shiftwork, and air pollution. Linear mixed effects models were used to evaluate road traffic noise and differentially methylated regions. Unconditional logistic regression was used to investigate CpG methylation and breast cancer. RESULTS We found that higher mean road traffic noise was associated with lower DNA methylation of three CRY1 CpGs (CpG1, CpG2, and CpG12) and three BMAL1 CpGs (CpG2, CpG6, and CpG7). Road traffic noise was also associated with differential methylation of CRY1 and BMAL1 promoters. In CRY1 CpG2 and CpG5 and in CLOCK CpG1, increasing levels of methylation tended to be associated with lower odds of breast cancer, with odds ratios (OR) of 0.88 (95% confidence interval (CI) 0.76-1.02), 0.84 (95% CI 0.74-0.96), and 0.80 (95% CI 0.68-0.94), respectively. CONCLUSIONS In summary, our data suggest that DNA hypomethylation in CRY1 and BMAL1 could be part of a causal chain from road traffic noise to breast cancer. This is consistent with the hypothesis that disruption of the circadian rhythm, e.g., from road traffic noise exposure, increases the risk of breast cancer. Since no prior studies have explored this association, it is essential to replicate our results.
Collapse
Affiliation(s)
- Jesse D Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | | | - Ulrike Maria Dauter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde N Delaval
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Munich, Neuherberg, Germany
| | - Anna Oudin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristoffer Mattisson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Signe Borgquist
- Department of Oncology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Van Gilst D, Puchkina AV, Roelants JA, Kervezee L, Dudink J, Reiss IKM, Van Der Horst GTJ, Vermeulen MJ, Chaves I. Effects of the neonatal intensive care environment on circadian health and development of preterm infants. Front Physiol 2023; 14:1243162. [PMID: 37719464 PMCID: PMC10500197 DOI: 10.3389/fphys.2023.1243162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
The circadian system in mammals ensures adaptation to the light-dark cycle on Earth and imposes 24-h rhythmicity on metabolic, physiological and behavioral processes. The central circadian pacemaker is located in the brain and is entrained by environmental signals called Zeitgebers. From here, neural, humoral and systemic signals drive rhythms in peripheral clocks in nearly every mammalian tissue. During pregnancy, disruption of the complex interplay between the mother's rhythmic signals and the fetal developing circadian system can lead to long-term health consequences in the offspring. When an infant is born very preterm, it loses the temporal signals received from the mother prematurely and becomes totally dependent on 24/7 care in the Neonatal Intensive Care Unit (NICU), where day/night rhythmicity is usually blurred. In this literature review, we provide an overview of the fetal and neonatal development of the circadian system, and short-term consequences of disruption of this process as occurs in the NICU environment. Moreover, we provide a theoretical and molecular framework of how this disruption could lead to later-life disease. Finally, we discuss studies that aim to improve health outcomes after preterm birth by studying the effects of enhancing rhythmicity in light and noise exposure.
Collapse
Affiliation(s)
- D. Van Gilst
- Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - A. V. Puchkina
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - J. A. Roelants
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Rotterdam-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - L. Kervezee
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - J. Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - I. K. M. Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Rotterdam-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - G. T. J. Van Der Horst
- Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - M. J. Vermeulen
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Rotterdam-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - I. Chaves
- Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
4
|
Ngo HVV, Oster H, Andreou C, Obleser J. Circadian rhythms in auditory hallucinations and psychosis. Acta Physiol (Oxf) 2023; 237:e13944. [PMID: 36744985 DOI: 10.1111/apha.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
Circadian rhythms are imprinted in all organisms and influence virtually all aspects of physiology and behavior in adaptation to the 24-h day-night cycle. This recognition of a circadian timekeeping system permeating essentially all healthy functioning of body and mind quickly leads to the realization that, in turn, human ailments should be probed for the degree to which they are rooted in or marked by disruptions and dysregulations of circadian clock functions in the human body. In this review, we will focus on psychosis as a key mental illness and foremost one of its cardinal symptoms: auditory hallucinations. We will discuss recent empirical evidence and conceptual advances probing the potential role of circadian disruption in auditory hallucinations. Moreover, a dysbalance in excitation and inhibition within cortical networks, which in turn drive a disinhibition of dopaminergic signaling, will be highlighted as central physiological mechanism. Finally, we will propose two avenues for experimentally intervening on the circadian influences to potentially alleviate hallucinations in psychotic disorders.
Collapse
Affiliation(s)
- Hong-Viet V Ngo
- Department of Psychology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Christina Andreou
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Grimm J, Schulze H, Tziridis K. Circadian Sensitivity of Noise Trauma-Induced Hearing Loss and Tinnitus in Mongolian Gerbils. Front Neurosci 2022; 16:830703. [PMID: 35720709 PMCID: PMC9204100 DOI: 10.3389/fnins.2022.830703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Noise-induced hearing loss (HL) has a circadian component: In nocturnal mice, hearing thresholds (HT) have a significantly stronger effect to acoustic trauma when induced during the night compared to rather mild effects on hearing when induced during daytime. Here, we investigate whether such effects are also present in diurnal Mongolian gerbils and determined whether trauma-induced HL correlated with the development of a tinnitus percept in these animals. In particular, we investigated the effects of acoustic trauma (2 kHz, 115 dB SPL, 75 min) on HT and tinnitus development in 34 male gerbils exposed either at 9 AM, 1 PM, 5 PM, or 12 PM. HT was measured by acoustic brainstem response audiometry at defined times 1 day before and 1 week after the trauma. Possible tinnitus percepts were assessed behaviorally by the gap prepulse inhibition of the acoustic startle response at defined times 1 day before and 1 week after the trauma. We found daytime-dependent changes due to trauma in mean HT in a frequency-dependent manner comparable to the results in mice, but the results temporally shifted according to respective activity profiles. Additionally, we found linear correlations of these threshold changes with the strength of the tinnitus percept, with the most prominent correlations in the 5 PM trauma group. Taken together, circadian sensitivity of the HT to noise trauma can also be found in gerbils, and tinnitus strength correlates most strongly with HL only when the trauma is applied at the most sensitive times, which seem to be the evening.
Collapse
|
6
|
Chen H, Ding X, Ding E, Chen M, Wang H, Yang G, Zhu B. A missense variant rs2585405 in clock gene PER1 is associated with the increased risk of noise-induced hearing loss in a Chinese occupational population. BMC Med Genomics 2021; 14:221. [PMID: 34493277 PMCID: PMC8425122 DOI: 10.1186/s12920-021-01075-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To investigate the potential association of cochlear clock genes (CRY1, CRY2, PER1, and PER2), the DNF gene (brain-derived neurotrophic factor), and the NTF3 gene (neurotrophin3) with susceptivity to noise-induced hearing loss (NIHL) among Chinese noise-exposed workers. METHODS A nested case-control study was performed with 2056 noise-exposed workers from a chemical fiber factory and an energy company who underwent occupational health examinations in 2019 as study subjects. Propensity score matching was conducted to screen cases and controls by matching sex, age, and the consumption of tobacco and alcohol. A total of 1269 participants were enrolled. Then, general information and noise exposure of the study subjects were obtained through a questionnaire survey and on-site noise detection. According to the results of audiological evaluations, the participants were divided into the case group (n = 432, high-frequency threshold shift > 25 dB) and the matched control group (n = 837, high-frequency threshold shift ≤ 25 dB) by propensity score matching. Genotyping for PER1 rs2253820 and rs2585405; PER2 rs56386336 and rs934945; CRY1 rs1056560 and rs3809236; CRY2 rs2292910 and rs6798; BDNF rs11030099, rs7124442 and rs6265; and NTF3 rs1805149 was conducted using the TaqMan-PCR technique. RESULTS In the dominant model and the co-dominant model, the distribution of PER1 rs2585405 genotypes between the case group and the control group was significantly different (P = 0.03, P = 0.01). The NIHL risk of the subjects with the GC genotype was 1.41 times the risk of those carrying the GG genotype (95% confidence interval (CI) of odds ratio (OR): 1.01-1.96), and the NIHL risk of the subjects with the CC genotype was 0.93 times the risk of those carrying the GG genotype (95%CI of OR: 0.71-1.21). After the noise exposure period and noise exposure intensities were stratified, in the co-dominant model, the adjusted OR values for noise intensities of ≤ 85 was 1.23 (95%CI: 0.99-1.53). In the dominant model, the adjusted OR values for noise exposure periods of ≤ 16 years and noise intensities of ≤ 85 were 1.88 (95%CI: 1.03-3.42) and 1.64 (95%CI: 1.12-2.38), respectively. CONCLUSION The CC/CG genotype of rs2585405 in the PER1 gene was identified as a potential risk factor for NIHL in Chinese noise-exposed workers, and interaction between rs2585405 and high temperature was found to be associated with NIHL risk.
Collapse
Affiliation(s)
- Hao Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Xuexue Ding
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Enmin Ding
- Institute of Occupational Disease Prevention, Jiangsu Province Center for Disease Prevention and Control, Nanjing, 21009, Jiangsu, China
| | - Mengyao Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Huimin Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210003, Jiangsu, China
| | - Guangzhi Yang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210003, Jiangsu, China
| | - Baoli Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
- Institute of Occupational Disease Prevention, Jiangsu Province Center for Disease Prevention and Control, Nanjing, 21009, Jiangsu, China.
| |
Collapse
|
7
|
Le Prell CG, Hammill TL, Murphy WJ. Noise-induced hearing loss and its prevention: Integration of data from animal models and human clinical trials. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4051. [PMID: 31795668 PMCID: PMC7195863 DOI: 10.1121/1.5132951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/19/2019] [Indexed: 05/07/2023]
Abstract
Animal models have been used to gain insight into the risk of noise-induced hearing loss (NIHL) and its potential prevention using investigational new drug agents. A number of compounds have yielded benefit in pre-clinical (animal) models. However, the acute traumatic injury models commonly used in pre-clinical testing are fundamentally different from the chronic and repeated exposures experienced by many human populations. Diverse populations that are potentially at risk and could be considered for enrollment in clinical studies include service members, workers exposed to occupational noise, musicians and other performing artists, and children and young adults exposed to non-occupational (including recreational) noise. Both animal models and clinical populations were discussed in this special issue, followed by discussion of individual variation in vulnerability to NIHL. In this final contribution, study design considerations for NIHL otoprotection in pre-clinical and clinical testing are integrated and broadly discussed with evidence-based guidance offered where possible, drawing on the contributions to this special issue as well as other existing literature. The overarching goals of this final paper are to (1) review and summarize key information across contributions and (2) synthesize information to facilitate successful translation of otoprotective drugs from animal models into human application.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Tanisha L Hammill
- Department of Defense, Defense Health Agency, Falls Church, Virginia 22042, USA
| | - William J Murphy
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinanati, Ohio 45226-1998, USA
| |
Collapse
|
8
|
Le Prell CG, Hammill TL, Murphy WJ. Noise-induced hearing loss: Translating risk from animal models to real-world environments. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3646. [PMID: 31795692 PMCID: PMC7341677 DOI: 10.1121/1.5133385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Noise-induced hearing loss (NIHL) is a common injury for service members and civilians. Effective prevention of NIHL with drug agents would reduce the prevalence of NIHL. There are a host of challenges in translation of investigational new drug agents from animals into human clinical testing, however. Initial articles in this special issue describe common pre-clinical (animal) testing paradigms used to assess potential otoprotective drug agents and design-related factors that impact translation of promising agents into human clinical trials. Additional articles describe populations in which NIHL has a high incidence and factors that affect individual vulnerability. While otoprotective drugs will ultimately be developed for use by specific noise-exposed populations, there has been little effort to develop pre-clinical (animal) models that accurately model exposure hazards across diverse human populations. To facilitate advances in the translational framework for NIHL otoprotection in pre-clinical and clinical testing, the overarching goals of the current series are to (1) review the animal models that have been used, highlighting the relevance to the human populations of interest, (2) provide insight into the populations for whom pharmaceutical interventions might, or might not, be appropriate, and (3) highlight the factors that drive the significant individual variability observed in humans.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Tanisha L Hammill
- Department of Defense, Defense Health Agency, Falls Church, Virginia 22042, USA
| | - William J Murphy
- National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, Ohio 45226, USA
| |
Collapse
|