1
|
Knechtle B, Valero D, Villiger E, Thuany M, Andrade MS, Cuk I, Nikolaidis PT, Rosemann T, Weiss K. Sex difference in IRONMAN age group triathletes. PLoS One 2024; 19:e0311202. [PMID: 39374257 PMCID: PMC11458036 DOI: 10.1371/journal.pone.0311202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND The sex difference in athletic performance has been thoroughly investigated in single sport disciplines such as swimming, cycling, and running. In contrast, only small samples of long-distance triathlons, such as the IRONMAN® triathlon, have been investigated so far. AIM The aim of the study was to examine potential sex differences in the three split disciplines by age groups in 5-year intervals in a very large data set of IRONMAN® age group triathletes. METHODS Data from 687,696 (553,608 men and 134,088 women) IRONMAN® age group triathletes (in 5-year intervals from 18-24 to 75+ years) finishing successfully between 2002 and 2022 an official IRONMAN® race worldwide were analyzed. The differences in performance between women and men were determined for each split discipline and for the overall race distance. RESULTS Most finishers were in the age group 40-44 years. The fastest women were in the age group 25-29 years, and the fastest men were in the age group 30-34 years. For all split disciplines and overall race time, men were always faster than women in all groups. The performance difference between the sexes was more pronounced in cycling compared to swimming and running. From the age group 35-39 years until 60-64 years, the sex differences were nearly identical in swimming and running. For both women and men, the smallest sex difference was least significant in age group 18-24 years for all split disciplines and increased in a U-shaped manner until age group 70-74 years. For age groups 75 years and older, the sex difference decreased in swimming and cycling but increased in running. Considering the different characteristics of the race courses, the smallest performance gaps between men and women were found in river swimming, flat surface cycling and rolling running courses. CONCLUSIONS The sex difference in the IRONMAN® triathlon was least significant in age group 18-24 years for all split disciplines and increased in a U-shaped manner until age group 70-74 years. For 75 years and older, the sex difference decreased in swimming and cycling but increased in running.
Collapse
Affiliation(s)
- Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - David Valero
- Ultra Sports Science Foundation, Pierre-Benite, France
| | - Elias Villiger
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Mabliny Thuany
- Department of Physical Education, State University of Para, Pará, Brazil
| | | | - Ivan Cuk
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | | | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Knechtle B, Valero D, Villiger E, Thuany M, Andrade MS, Nikolaidis PT, Cuk I, Weiss K. Comparing the Performance Gap Between Males and Females in the Older Age Groups in IRONMAN® 70.3: An Internet-Based Cross-Sectional Study of More Than 800,000 Race Records. SPORTS MEDICINE - OPEN 2023; 9:88. [PMID: 37733151 PMCID: PMC10514017 DOI: 10.1186/s40798-023-00636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The sex difference in the three split disciplines (swimming, cycling, and running) and overall race times in triathlon races has mainly been investigated for the Olympic distance and IRONMAN® triathlon formats, but not for the half IRONMAN® distance, i.e., the IRONMAN® 70.3. The aim of the present study was to investigate the sex differences in IRONMAN® 70.3 by age group in 5-year intervals for the split disciplines of this race. Data from 823,459 records (625,393 males and 198,066 females) of all age group finishers (in 5-year intervals) competing in all official IRONMAN® 70.3 races held worldwide between 2004 and 2020 were analyzed, and sex differences by age group and split disciplines were evaluated. RESULTS Males were faster than females in all split disciplines and all age groups. The sex difference was lower in swimming than in cycling and running and less pronounced for triathletes between 20 and 50 years of age. After the age of 60 years, females were able to reduce the sex difference to males in swimming and cycling, but not in running, where the reduction in the sex difference started after the age of 70 years. The lowest sex difference was in the age group 75 + years for swimming and cycling and in the age group 30-34 years for running. Across age groups, the sex difference was U-shaped in swimming and running, with an increase after 18-24 years in swimming and after 40-44 years in running. In contrast, the sex difference decreased continuously with the increasing age for cycling. CONCLUSIONS In conclusion, the study found that the sex difference in performance decreases with age in the IRONMAN® 70.3 race distance. However, females did not outperform males at older ages. Notably, sex differences were observed across different disciplines, with swimming displaying lower differences compared to cycling and running. These findings underscore the complex interplay between age, sex, and performance in endurance sports, emphasizing the need for additional research to understand the factors influencing these differences.
Collapse
Affiliation(s)
- Beat Knechtle
- Medbase St. Gallen am Vadianplatz, Vadianstrasse 26, 9001, St. Gallen, Switzerland.
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.
| | - David Valero
- Ultra Sports Science Foundation, Pierre-Benite, France
| | - Elias Villiger
- Klinik für Allgemeine Innere Medizin, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | | | | | - Ivan Cuk
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Origin of the Fastest 5 km, 10 km and 25 km Open-Water Swimmers-An Analysis from 20 Years and 9819 Swimmers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111369. [PMID: 34769884 PMCID: PMC8583531 DOI: 10.3390/ijerph182111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
In elite pool swimmers competing at world class level, mainly athletes from the United States of America and Australia are dominating. Little is known, however, for the nationality of dominating swimmers in elite open-water long-distance swimming races such as the official FINA races over 5 km, 10 km and 25 km-held since 2000. The aim of this study was to investigate the participation and performance trends by nationality of these elite open-water swimmers. Race results from all female and male swimmers competing in 5 km, 10 km and 25 km FINA races between 2000 and 2020 were analyzed. A total of 9819 swimmers competed between 2000 and 2020 in these races. The five countries that figure most times among the top ten in 5 km, 10 km and 25 km races over the years were Italy, Germany, Russia, Brazil and the Netherlands. In 10 km races, considering the all the athletes from each country, male athletes from Germany, Italy, and France presented faster race times than the other countries. In 10 km, female athletes presented no significant difference among the countries. In 5 and 25 km races, there were no differences between countries, for male and female athletes. Moreover, comparing only the 10 best results (top 10) from each country, there were no differences between countries in 5 km, 10 km and 25 km, for male and female athletes. Men were faster than women for all three distances. In summary, male swimmers from Europe (i.e., Germany, Italy, France) are dominating the 10 km FINA races. In the 5 km and 25 km FINA races, there is no dominating nationality, but among the top five countries in the top 10 over the years, three are European countries.
Collapse
|
4
|
Scholz H, Sousa CV, Baumgartner S, Rosemann T, Knechtle B. Changes in Sex Difference in Time-Limited Ultra-Cycling Races from 6 Hours to 24 Hours. ACTA ACUST UNITED AC 2021; 57:medicina57090923. [PMID: 34577846 PMCID: PMC8469116 DOI: 10.3390/medicina57090923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Background and objective: Existing research shows that the sex differences in distance-limited ultra-cycling races decreased with both increasing race distance and increasing age. It is unknown, however, whether the sex differences in time-limited ultra-cycling races will equally decrease with increasing race distance and age. This study aimed to examine the sex differences regarding performance for time-limited ultra-cycling races (6, 12, and 24 h). Methods: Data were obtained from the online database of the Ultra-Cycling Marathon Association (UMCA) of time-limited ultra-cycling races (6, 12, and 24 h) from the years 1983–2019. A total of 18,241 race results were analyzed to compare cycling speed between men and women by calendar year, age group (<29; 30–39; 40–49; 50–59; 60–69; >70 years), and race duration. Results: The participation of both men (85.1%) and women (14.9%) increased between 1983 and 2019. The age of peak performance was between 40 and 59 years for men and between 30 and 59 years for women. Between 2000 and 2019, more men (63.1% of male participants and 52.2% of female participants) competed in 24 h races. In the 24 h races, the sex difference decreased significantly in all age groups. Men cycled 9.6% faster than women in the 12 h races and 4% faster in the 24 h races. Both women and men improved their performance significantly across the decades. Between 2000 and 2019, the improvement in the 24 h races were 15.6% for men and 21.9% for women. Conclusion: The sex differences in cycling speed decreased between men and women with increasing duration of ultra-cycling races and with increasing age. Women showed a greater performance improvement than men in the last 20 years. The average cycling speed of men and women started to converge in the 24 h races.
Collapse
Affiliation(s)
- Heike Scholz
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland; (H.S.); (T.R.)
| | - Caio Victor Sousa
- Health Technology Lab, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA;
| | | | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland; (H.S.); (T.R.)
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland; (H.S.); (T.R.)
- Medbase St. Gallen Am Vadianplatz, 9001 St. Gallen, Switzerland;
- Correspondence: author:
| |
Collapse
|
5
|
Rodríguez L, Veiga S, García I, González-Ravé JM. Stroking Rates of Open Water Swimmers during the 2019 FINA World Swimming Championships. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136850. [PMID: 34202341 PMCID: PMC8296886 DOI: 10.3390/ijerph18136850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
The aim of the present research was to examine the stroking rate (SR) values of successful and non-successful swimmers in the 10 km and 25 km races of the FINA 2019 World Swimming Championships. Data from 175 participants (95 men and 80 female) were classified according to their finishing positions. There were no meaningful differences in the overall SR values displayed by successful or non-successful participants during the 10 km and 25 km open water races of the FINA 2019 World Swimming Championships. However, there were changes in the SR throughout the races that depended on the swimmer’s performance group and gender. Successful swimmers in the 10 km event typically displayed even SR in the first 5 km but, unlike the remaining performance groups, increased their SR at some point in the second 5 km of the race. In the 25 km race, successful female swimmers presented an even SR profile for most of the race, whereas successful males presented a more variable profile. Nevertheless, no relationships between partial or average SR and finishing positions occurred, either in the 10 km or in the 25 km race. Changes in the SR values should be included in the race plan of open water swimmers according to tactical and pacing strategies.
Collapse
Affiliation(s)
- Luis Rodríguez
- Catalonian Swimming Federation, Diputació St., 237, 08007 Barcelona, Spain;
- Faculty of Sports Sciences, Universidad de Castilla-La Mancha, Carlos III Avenue, 45008 Toledo, Spain
| | - Santiago Veiga
- Health and Human Performance Department, Universidad Politécnica de Madrid, Martin Fierro St., 28024 Madrid, Spain
- Correspondence: ; Tel.: +34-616001963
| | - Iker García
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain;
- High Performance Center, Alcalde Barnils, Av. 3-5, Sant Cugat del Vallès, 08174 Barcelona, Spain
| | - José M González-Ravé
- Sports Training Laboratory, Faculty of Sports Sciences, Universidad de Castilla-La Mancha, Carlos III Avenue, 45008 Toledo, Spain;
| |
Collapse
|
6
|
Risk Factors and Predictors of Hypothermia and Dropouts During Open-Water Swimming Competitions. Int J Sports Physiol Perform 2021; 16:1692-1699. [PMID: 33975279 DOI: 10.1123/ijspp.2020-0875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To measure core temperature (Tcore) in open-water (OW) swimmers during a 25-km competition and identify the predictors of Tcore drop and hypothermia-related dropouts. METHODS Twenty-four national- and international-level OW swimmers participated in the study. Participants completed a personal questionnaire and a body fat/muscle mass assessment before the race. The average speed was calculated on each lap over a 2500-m course. Tcore was continuously recorded via an ingestible temperature sensor (e-Celsius, BodyCap). Hypothermia-related dropouts (H group) were compared with finishers (nH group). RESULTS Average prerace Tcore was 37.5°C (0.3°C) (N = 21). 7 participants dropped out due to hypothermia (H, n = 7) with a mean Tcore at dropout of 35.3°C (1.5°C). Multiple logistic regression analysis found that body fat percentage and initial Tcore were associated with hypothermia (G2 = 17.26, P < .001). Early Tcore drop ≤37.1°C at 2500 m was associated with a greater rate of hypothermia-related dropouts (71.4% vs 14.3%, P = .017). Multiple linear regression found that body fat percentage and previous participation were associated with Tcore drop (F = 4.95, P = .019). There was a positive correlation between the decrease in speed and Tcore drop (r = .462, P < .001). CONCLUSIONS During an OW 25-km competition at 20°C to 21°C, lower initial Tcore and lower body fat, as well as premature Tcore drop, were associated with an increased risk of hypothermia-related dropout. Lower body fat and no previous participation, as well as decrease in swimming speed, were associated with Tcore drop.
Collapse
|
7
|
Do Sex Differences in Physiology Confer a Female Advantage in Ultra-Endurance Sport? Sports Med 2021; 51:895-915. [PMID: 33502701 DOI: 10.1007/s40279-020-01417-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 01/09/2023]
Abstract
Ultra-endurance has been defined as any exercise bout that exceeds 6 h. A number of exceptional, record-breaking performances by female athletes in ultra-endurance sport have roused speculation that they might be predisposed to success in such events. Indeed, while the male-to-female performance gap in traditional endurance sport (e.g., marathon) remains at ~ 10%, the disparity in ultra-endurance competition has been reported as low as 4% despite the markedly lower number of female participants. Moreover, females generally outperform males in extreme-distance swimming. The issue is complex, however, with many sports-specific considerations and caveats. This review summarizes the sex-based differences in physiological functions and draws attention to those which likely determine success in extreme exercise endeavors. The aim is to provide a balanced discussion of the female versus male predisposition to ultra-endurance sport. Herein, we discuss sex-based differences in muscle morphology and fatigability, respiratory-neuromechanical function, substrate utilization, oxygen utilization, gastrointestinal structure and function, and hormonal control. The literature indicates that while females exhibit numerous phenotypes that would be expected to confer an advantage in ultra-endurance competition (e.g., greater fatigue resistance, greater substrate efficiency, and lower energetic demands), they also exhibit several characteristics that unequivocally impinge on performance (e.g., lower O2-carrying capacity, increased prevalence of GI distress, and sex-hormone effects on cellular function/injury risk). Crucially, the advantageous traits may only manifest as ergogenic in the extreme endurance events which, paradoxically, are those that females less often contest. The title question should be revisited in the coming years, when/if the number of female participants increases.
Collapse
|
8
|
Grant AJ, Kanwal A, Shah AB. Swimming: What the Sports Cardiologist Should Know. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2020. [DOI: 10.1007/s11936-020-00876-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Sex Differences in Swimming Disciplines-Can Women Outperform Men in Swimming? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103651. [PMID: 32456109 PMCID: PMC7277665 DOI: 10.3390/ijerph17103651] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 11/26/2022]
Abstract
In recent years, the interest of female dominance in long-distance swimming has grown where several newspaper articles have been published speculating about female performance and dominance—especially in open-water ultra-distance swimming. The aim of this narrative review is to review the scientific literature regarding the difference between the sexes for all swimming strokes (i.e., butterfly, backstroke, breaststroke, freestyle and individual medley), different distances (i.e., from sprint to ultra-distances), extreme conditions (i.e., cold water), different ages and swimming integrated in multi-sports disciplines, such as triathlon, in various age groups and over calendar years. The influence of various physiological, psychological, anthropometrical and biomechanical aspects to potentially explain the female dominance was also discussed. The data bases Scopus and PUBMED were searched by April 2020 for the terms ’sex–difference–swimming’. Long-distance open-water swimmers and pool swimmers of different ages and performance levels were mainly investigated. In open-water long-distance swimming events of the ’Triple Crown of Open Water Swimming’ with the ’Catalina Channel Swim’, the ’English Channel Swim’ and the ’Manhattan Island Marathon Swim’, women were about 0.06 km/h faster than men. In master swimmers (i.e., age groups 25–29 to 90–94 years) competing in the FINA (Fédération Internationale de Natation) World Championships in pool swimming in freestyle, backstroke, butterfly, breaststroke, individual medley and in 3000-m open-water swimming, women master swimmers appeared able to achieve similar performances as men in the oldest age groups (i.e., older than 75–80 years). In boys and girls aged 5–18 years—and listed in the all-time top 100 U.S. freestyle swimming performances from 50 m to 1500 m—the five fastest girls were faster than the five fastest boys until the age of ~10 years. After the age of 10 years, and until the age of 17 years, however, boys were increasingly faster than girls. Therefore, women tended to decrease the existing sex differences in specific age groups (i.e., younger than 10 years and older than 75–80 years) and swimming strokes in pool-swimming or even to overperform men in long-distance open-water swimming (distance of ~30 km), especially under extreme weather conditions (water colder than ~20 °C). Two main variables may explain why women can swim faster than men in open-water swimming events: (i) the long distance of around 30 km, (ii) and water colder than ~20 °C. Future studies may investigate more detailed (e.g., anthropometry) the very young (<10 years) and very old (>75–80 years) age groups in swimming
Collapse
|
10
|
Zamparo P, Cortesi M, Gatta G. The energy cost of swimming and its determinants. Eur J Appl Physiol 2019; 120:41-66. [PMID: 31807901 DOI: 10.1007/s00421-019-04270-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022]
Abstract
The energy expended to transport the body over a given distance (C, the energy cost) increases with speed both on land and in water. At any given speed, C is lower on land (e.g., running or cycling) than in water (e.g., swimming or kayaking) and this difference can be easily understood when one considers that energy should be expended (among the others) to overcome resistive forces since these, at any given speed, are far larger in water (hydrodynamic resistance, drag) than on land (aerodynamic resistance). Another reason for the differences in C between water and land locomotion is the lower capability to exert useful forces in water than on land (e.g., a lower propelling efficiency in the former case). These two parameters (drag and efficiency) not only can explain the differences in C between land and water locomotion but can also explain the differences in C within a given form of locomotion (swimming at the surface, which is the topic of this review): e.g., differences between strokes or between swimmers of different age, sex, and technical level. In this review, the determinants of C (drag and efficiency, as well as energy expenditure in its aerobic and anaerobic components) will, thus, be described and discussed. In aquatic locomotion it is difficult to obtain quantitative measures of drag and efficiency and only a comprehensive (biophysical) approach could allow to understand which estimates are "reasonable" and which are not. Examples of these calculations are also reported and discussed.
Collapse
Affiliation(s)
- Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati 43, 37131, Verona, Italy.
| | - Matteo Cortesi
- Department of Life Quality Studies, University of Bologna, Bologna, Italy
| | - Giorgio Gatta
- Department of Life Quality Studies, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Gajda R, Kowalik E, Rybka S, Rębowska E, Śmigielski W, Nowak M, Kwaśniewska M, Hoffman P, Drygas W. Evaluation of the Heart Function of Swimmers Subjected to Exhaustive Repetitive Endurance Efforts During a 500-km Relay. Front Physiol 2019; 10:296. [PMID: 30967795 PMCID: PMC6438895 DOI: 10.3389/fphys.2019.00296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/06/2019] [Indexed: 12/26/2022] Open
Abstract
Aim: Knowledge of the human body's ability to adapt to repeated endurance efforts during swimming is limited. We echocardiographically assessed the impact of an exhausting and repetitive swimming effort on cardiac activity. Materials: Fourteen well-trained amateur swimmers (8 female swimmers aged 16-43 years and 6 male swimmers aged 13-67 years old) participated in an ultramarathon relay. Over 5 days, swimmers swam 500 km in the Warta River (in 5-km intervals). Each swimmer swam seven intervals, each within 44:46 to 60:02 min. Objective difficulties included low water temperatures, strong winds, rain, and night conditions. Methods: Transthoracic echocardiography (TTE) was performed three times: at baseline (the day before exertion), at peak effort, and during recovery (48 h after the event). The heart rate (HR) of each swimmer was monitored. Results: Swimmers completed the ultramarathon relay within approximately 91 h. The average HR value at the end of each interval was 91% HRmax. TTE test results showed no significant changes indicative of deterioration of myocardial function at peak effort or after 48 h. Significant increases in left ventricular (LV) ejection fraction, LV fractional shortening (LVFS), LV myocardial systolic velocity, and right ventricular (RV) fractional area changes observed on day 2 after swimming were compared to baseline values and peak effort values. No significant changes in diastolic heart function were observed. Conclusion: Echocardiography assessment indicated that prolonged intense swimming does not affect LV or RV function. Supercompensation of the post-event RV function and increased global LV systolic function demonstrated ventricular interaction after prolonged intense swimming.
Collapse
Affiliation(s)
- Robert Gajda
- Center for Sports Cardiology, Gajda-Med Medical Center, Pultusk, Poland
| | - Ewa Kowalik
- Department of Congenital Heart Diseases, The Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Sławomir Rybka
- Internal Diseases Department, Hospital in Śrem, Śrem, Poland
| | - Ewa Rębowska
- Department of Preventive Medicine, Medical University of Łódź, Łódź, Poland
| | - Witold Śmigielski
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, The Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland.,The Unit of Demography and Social Gerontology, University of Łódź, Łódź, Poland
| | - Michał Nowak
- Department of Preventive Medicine, Medical University of Łódź, Łódź, Poland
| | | | - Piotr Hoffman
- Department of Congenital Heart Diseases, The Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Wojciech Drygas
- Department of Preventive Medicine, Medical University of Łódź, Łódź, Poland.,Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, The Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| |
Collapse
|
12
|
Veiga S, Rodriguez L, González-Frutos P, Navandar A. Race Strategies of Open Water Swimmers in the 5-km, 10-km, and 25-km Races of the 2017 FINA World Swimming Championships. Front Psychol 2019; 10:654. [PMID: 30949113 PMCID: PMC6437078 DOI: 10.3389/fpsyg.2019.00654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/08/2019] [Indexed: 11/27/2022] Open
Abstract
Despite literature on the pacing strategies of endurance sports, there is an existing lack of knowledge about the swimmers’ tactical decisions in the open water races. The aims of the present research were (1) to compare the pacing profiles and tactical strategies of successful elite open water swimmers (men and women) in the 5-km, 10-km, and 25-km races and (2) to relate these pacing strategies to the end race results. Intermediate split times, positions and gaps with leaders of the first ten swimmers classified in the 2017 FINA World Swimming Championships races were collected from the public domain and were related to the finishing positions. Overall swimming velocities of the 5-km races were faster than the 10-km (δ 0.03 ± 0.03 m/s) and the 25-km (δ 0.14 ± 0.01 m/s) events with male swimmers achieving relatively faster mean velocities than females in the 5-km (δ 0.12 ± 0.01 m/s) compared to the 25-km (δ 0.08 ± 0.01 m/s) events. Medallist swimmers achieved moderate faster overall velocities than finalists in the 25-km races (0.01 ± 0.01 m/s) only. Inter-level differences were detected in selected splits for each race distance. Pacing profiles presented lap to lap velocity improvements in the 5-km and men’s 10-km races (from +0.02 ± 0.00 to +0.11 ± 0.01 m/s) but also mid-race decreases in the women’s 10-km and on the 25-km races. Successful swimmers were located in the leading positions of the 5-km races but at mid-group in the first part of the 10-km and 25-km races, with time gaps with leaders of 15–20 s. Faster lap swimming velocities, mid-race leading positions and shorter time-gaps were only related to the finishing positions in the last lap of the 10-km and in the three last laps of the 25-km events, but also in the first lap of the women’s 5-km race. Despite different mid-race positioning, successful open water swimmers typically presented negative pacing profiles, a consistent control of mid-race gaps with leaders (15–20 s maximum) and great spurts (4–6% faster than mean race velocities) at the end of races. Coaches and swimmers should be aware of the different race dynamics depending to the event distance in order to select optimal race strategies.
Collapse
Affiliation(s)
- Santiago Veiga
- Department of Health and Human Performance, Technical University of Madrid, Madrid, Spain.,Royal Spanish Swimming Federation, Madrid, Spain
| | | | | | - Archit Navandar
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Nikolaidis PT, Di Gangi S, de Sousa CV, Valeri F, Rosemann T, Knechtle B. Sex difference in open-water swimming-The Triple Crown of Open Water Swimming 1875-2017. PLoS One 2018; 13:e0202003. [PMID: 30157202 PMCID: PMC6114520 DOI: 10.1371/journal.pone.0202003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/26/2018] [Indexed: 12/04/2022] Open
Abstract
The aim of the present study was to compare swimming performances of successful finishers of the 'Triple Crown of Open Water Swimming' from 1875 to 2017, assessing the effects of sex, the place of event and the nationality of swimmers. Data from 535 finishers in ‘Catalina Channel Swim’, 1,606 finishers in ‘English Channel Swim’ and 774 finishers in ‘Manhattan Island Marathon Swim’ were analysed. We performed different analyses and regression model fittings for all swimmers and annual top-5 finishers. Effects (sex, event, time, nationality) and interaction terms (event—time) were examined through a multi-variable spline mixed regression model. Considering all swimmers, we found that (i) women were approximately 0.06 km/h faster than men (p = 0.011) and (ii) Australians were 0.13 km/h faster than Americans (p = 0.004) and Americans were 0.19 km/h faster than British (p<0.001) and 0.21 km/h faster than Canadians (p = 0.015). When considering annual top-5 finishers, we found that (i) women were 0.07 km/h slower than men (p = 0.042) and (ii) Australians were not faster than Americans (p = 0.149) but Americans were 0.21 km/h faster than British (p<0.001). Our findings improved the knowledge about swim performances over time, in the three events, considering the effects of sex and the nationality of swimmers.
Collapse
Affiliation(s)
| | - Stefania Di Gangi
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Caio Victor de Sousa
- Graduate Program in Physical Education, Catholic University of Brasilia, Brasilia, Brazil
| | - Fabio Valeri
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Nature Versus Nurture: Have Performance Gaps Between Men and Women Reached an Asymptote? Int J Sports Physiol Perform 2018; 13:530-535. [PMID: 29466055 DOI: 10.1123/ijspp.2017-0866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Men outperform women in sports requiring muscular strength and/or endurance, but the relative influence of "nurture" versus "nature" remains difficult to quantify. Performance gaps between elite men and women are well documented using world records in second, centimeter, or kilogram sports. However, this approach is biased by global disparity in reward structures and opportunities for women. Despite policies enhancing female participation (Title IX legislation), US women only closed performance gaps by 2% and 5% in Olympic Trial swimming and running, respectively, from 1972 to 1980 (with no change thereafter through 2016). Performance gaps of 13% in elite middistance running and 8% in swimming (∼4-min duration) remain, the 5% differential between sports indicative of load carriage disadvantages of higher female body fatness in running. Conversely, sprint swimming exhibits a greater sex difference than sprint running, suggesting anthropometric/power advantages unique to swim-block starts. The ∼40-y plateau in the performance gap suggests a persistent dominance of biological influences (eg, longer limb levers, greater muscle mass, greater aerobic capacity, and lower fat mass) on performance. Current evidence suggests that women will not swim or run as fast as men in Olympic events, which speaks against eliminating sex segregation in these individual sports. Whether hormone reassignment sufficiently levels the playing field in Olympic sports for transgender females (born and socialized male) remains an issue to be tackled by sport-governing bodies.
Collapse
|
15
|
Nikolaidis PT, de Sousa CV, Knechtle B. Sex difference in long-distance open-water swimming races - does nationality play a role? Res Sports Med 2018; 26:332-344. [PMID: 29508650 DOI: 10.1080/15438627.2018.1447471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In open-water swimming events with non-elite swimmers held in the USA, but not in Europe, women were faster than men. We examined the sex difference in elite long-distance open-water swimming races and the role of nationality by investigating 7,468 swimmers competing in 5 km, 10 km and 25 km FINA races held between 2000 and 2016. More men participated in 10 km and 25 km than in 5km races. Men were faster than women and the sex difference was similar in all race distances. Swimming speed was faster for 5km than for 10km, which in turn was faster than 25km. There was a major effect of nationality on swimming speed at 5 km and 10 km, but not at 25km. No dominance of a particular nationality was observed for all race distances. In summary, men were faster than women in all FINA race distances from 5km to 25km but nationality played no role in the sex difference.
Collapse
Affiliation(s)
| | - Caio V de Sousa
- b Graduate Program in Physical Education , Catholic University of Brasília , Brazil
| | - Beat Knechtle
- c Institute of Primary Care, University of Zurich , Zurich , Switzerland.,d Gesundheitszentrum St. Gallen , St. Gallen , Switzerland
| |
Collapse
|
16
|
Nikolaidis PT, Sousa CV, Knechtle B. The relationship of wearing a wetsuit in long-distance open-water swimming with sex, age, calendar year, performance, and nationality - crossing the "Strait of Gibraltar". Open Access J Sports Med 2018; 9:27-36. [PMID: 29503588 PMCID: PMC5825996 DOI: 10.2147/oajsm.s158502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim The aim of the present study was to investigate the relationship of wearing a wetsuit with sex, age group, nationality, calendar year, and performance in crossing the “Strait of Gibraltar”(14.3 km). Materials and methods A sample of 1,130 open-water (females, n=180, age 35.9±11.9 years; males, n=950, age 40.0±10.2 years) ultra-distance swimmers crossing the “Strait of Gibraltar” since 1950 was analyzed. Results Male, older, and Spanish swimmers used wetsuits more often than female, younger, and athletes of other nationalities, respectively, and the use of the wetsuit has increased during the past three decades. Swimmers with wetsuits were faster than those without. Male athletes aged 30–34 years were faster than athletes >60 years. Female athletes were younger than male athletes, and swimmers with wetsuits were older than those without. The Spanish were faster than the American swimmers and athletes from other nationalities, and the American swimmers were the oldest. Conclusion In summary, swimmers were faster when using a wetsuit, and local Spanish swimmers were the fastest and also used wetsuits most frequently. Male and older swimmers used wetsuits more often than other swimmers, and the use of wetsuits has increased in the last three decades.
Collapse
Affiliation(s)
| | - Caio Victor Sousa
- Graduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
| | - Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland.,Institute of Primary Care, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Characteristics and Challenges of Open-Water Swimming Performance: A Review. Int J Sports Physiol Perform 2018; 12:1275-1284. [PMID: 28459347 DOI: 10.1123/ijspp.2017-0230] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CONTEXT Although the popularity of open-water swimming (OWS) events has significantly increased in the last decades, specific studies regarding performance of elite or age-group athletes in these events are scarce. PURPOSE To analyze the existing literature on OWS. METHODS Relevant literature was located via computer-generated citations. During August 2016, online computer searches on PubMed and Scopus databases were conducted to locate published research. RESULTS The number of participants in ultraendurance swimming events has substantially increased in the last 10 y. In elite athletes there is a higher overall competitive level of women than of men. The body composition of female athletes (different percentage and distribution of fat tissue) shows several advantages (more buoyancy and less drag) in aquatic conditions that determine the small difference between males and females. The main physiological characteristics of open-water swimmers (OW swimmers) are the ability to swim at high percentage of [Formula: see text] (80-90%) for many hours. Furthermore, to sustain high velocity for many hours, endurance swimmers need a high propelling efficiency and a low energy cost. CONCLUSION Open-water races may be characterized by extreme environmental conditions (water temperature, tides, currents, and waves) that have an overall impact on performance, influencing tactics and pacing. Future studies are needed to study OWS in both training and competition.
Collapse
|
18
|
Sex Differences in World-Record Performance: The Influence of Sport Discipline and Competition Duration. Int J Sports Physiol Perform 2018; 13:2-8. [DOI: 10.1123/ijspp.2017-0196] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The current review summarizes scientific knowledge concerning sex differences in world-record performance and the influence of sport discipline and competition duration. In addition, the way that physiological factors relate to sex dimorphism is discussed. While cultural factors played a major role in the rapid improvement of performance of women relative to men up until the 1990s, sex differences between the world’s best athletes in most events have remained relatively stable at approximately 8–12%. The exceptions are events in which upper-body power is a major contributor, where this difference is more than 12%, and ultraendurance swimming, where the gap is now less than 5%. The physiological advantages in men include a larger body size with more skeletal-muscle mass, a lower percentage of body fat, and greater maximal delivery of anaerobic and aerobic energy. The greater strength and anaerobic capacity in men normally disappear when normalized for fat-free body mass, whereas the higher hemoglobin concentrations lead to 5–10% greater maximal oxygen uptake in men with such normalization. The higher percentage of muscle mass in the upper body of men results in a particularly large sex difference in power production during upper-body exercise. While the exercise efficiency of men and women is usually similar, women have a better capacity to metabolize fat and demonstrate better hydrodynamics and more even pacing, which may be advantageous, in particular during long-lasting swimming competitions.
Collapse
|
19
|
Knechtle B, Nikolaidis PT, Rosemann T, Rüst CA. Performance Trends in Master Butterfly Swimmers Competing in the FINA World Championships. J Hum Kinet 2017; 57:199-211. [PMID: 28713472 PMCID: PMC5504592 DOI: 10.1515/hukin-2017-0061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Performance trends in elite butterfly swimmers are well known, but less information is available regarding master butterfly swimmers. We investigated trends in participation, performance and sex differences in 9,606 female and 13,250 male butterfly race times classified into five-year master groups, from 25-29 to 90-94 years, competing in the FINA World Masters Championships between 1986 and 2014. Trends in participation were analyzed using linear regression analysis. Trends in performance changes were investigated using mixed-effects regression analyses with sex, distance and a calendar year as fixed variables. We also considered interaction effects between sex and distance. Participation increased in master swimmers older than ~30-40 years. The men-to-women ratio remained unchanged across calendar years and master groups, but was lower in 200 m compared to 50 m and 100 m. Men were faster than women from 25-29 to 85-89 years (p < 0.05), although not for 90-94 years. Sex and distance showed a significant interaction in all master groups from 25-29 to 90-94 years for 200m (p < 0.05). For 50 m and 100 m, a significant sex × distance interaction was observed from 25-29 to 75-79 years (p < 0.05), but not in the older groups. In 50 m, women reduced the sex difference in master groups 30-34 to 60-64 years (p < 0.05). In 100 m, women decreased the gap to men in master groups 35-39 to 55-59 years (p < 0.05). In 200 m, the sex difference was reduced in master groups 30-34 to 40-44 years (p < 0.05). In summary, women and men improved performance at all distances, women were not slower compared to men in the master group 90-94 years; moreover, women reduced the gap to men between ~30 and ~60 years, although not in younger or older master groups.
Collapse
Affiliation(s)
- Beat Knechtle
- Gesundheitszentrum St. Gallen, St. Gallen, Switzerland.,Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Pantelis T Nikolaidis
- Department of Physical and Cultural Education, Hellenic Army Academy, Athens, Greece
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Christoph A Rüst
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Knechtle B, Nikolaidis PT, Rosemann T, Rüst CA. Performance trends in 3000 m open-water age group swimmers from 25 to 89 years competing in the FINA World Championships from 1992 to 2014. Res Sports Med 2016; 25:67-77. [PMID: 27868433 DOI: 10.1080/15438627.2016.1258647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We investigated trends in participation, performance and sex difference in performance in 3000 m freestyle in age groups swimmers (25-29 to 85-89 years) competing in the Fédération Internationale de Natation World Masters Championships between 1992 and 2014. During this period, participation increased in women and men. Women and men improved race times across years in all age groups. Women were slower in age groups 25-29 to 70-74 years. In age groups 75-79 and 85-89 years, however, race times were similar for both women and men. Sex difference in performance remained unchanged across years. In summary, performance improved across years in all age groups, men were faster than women up to the age group 70-74 years and women were not able to reduce the sex difference in performance to men across years. For athletes and coaches, an increase in participation and a continuous improvement in performance can be expected in these age group athletes.
Collapse
Affiliation(s)
- Beat Knechtle
- a Gesundheitszentrum St. Gallen , St. Gallen , Switzerland.,b Institute of Primary Care , University of Zurich , Zurich , Switzerland
| | - Pantelis T Nikolaidis
- c Department of Physical and Cultural Education , Hellenic Army Academy , Athens , Greece
| | - Thomas Rosemann
- b Institute of Primary Care , University of Zurich , Zurich , Switzerland
| | - Christoph A Rüst
- b Institute of Primary Care , University of Zurich , Zurich , Switzerland
| |
Collapse
|
21
|
Knechtle B, Nikolaidis PT, Zingg MA, Rosemann T, Rüst CA. Half-marathoners are younger and slower than marathoners. SPRINGERPLUS 2016; 5:76. [PMID: 26844023 PMCID: PMC4726642 DOI: 10.1186/s40064-016-1704-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022]
Abstract
Age and performance trends of elite and recreational marathoners are well investigated, but not for half-marathoners. We analysed age and performance trends in 508,108 age group runners (125,894 female and 328,430 male half-marathoners and 10,205 female and 43,489 male marathoners) competing between 1999 and 2014 in all flat half-marathons and marathons held in Switzerland using single linear regression analyses, mixed-effects regression analyses and analyses of variance. The number of women and men increased across years in both half-marathons and marathons. There were 12.3 times more female half-marathoners than female marathoners and 7.5 times more male half-marathoners than male marathoners. For both half-marathons and marathons, most of the female and male finishers were recorded in age group 40-44 years. In half-marathons, women (10.29 ± 3.03 km/h) were running 0.07 ± 0.06 km/h faster (p < 0.001) than men (10.22 ± 3.06 km/h). Also in marathon, women (14.77 ± 4.13 km/h) were running 0.28 ± 0.16 km/h faster (p < 0.001) than men (14.48 ± 4.07 km/h). In marathon, women (42.18 ± 10.63 years) were at the same age than men (42.06 ± 10.45 years) (p > 0.05). Also in half-marathon, women (41.40 ± 10.63 years) were at the same age than men (41.31 ± 10.30 years) (p > 0.05). However, women and men marathon runners were older than their counterpart half-marathon runners (p < 0.001). In summary, (1) more athletes competed in half-marathons than in marathons, (2) women were running faster than men, (3) half-marathoners were running slower than marathoners, and (4) half-marathoners were younger than marathoners.
Collapse
Affiliation(s)
- Beat Knechtle
- Gesundheitszentrum St. Gallen, St. Gallen, Switzerland ; Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Pantelis T Nikolaidis
- Department of Physical and Cultural Education, Hellenic Army Academy, Athens, Greece
| | - Matthias A Zingg
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Christoph A Rüst
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Knechtle B, Rosemann T, Rüst CA. Ice swimming - 'Ice Mile' and '1 km Ice event'. BMC Sports Sci Med Rehabil 2015; 7:20. [PMID: 26339489 PMCID: PMC4559290 DOI: 10.1186/s13102-015-0014-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/27/2015] [Indexed: 11/29/2022]
Abstract
Background Ice swimming for 1 mile and 1 km is a new discipline in open-water swimming since 2009. This study examined female and male performances in swimming 1 mile (‘Ice Mile’) and 1 km (‘1 km Ice event’) in water of 5 °C or colder between 2009 and 2015 with the hypothesis that women would be faster than men. Methods Between 2009 and 2015, 113 men and 38 women completed one ‘Ice Mile’ and 26 men and 13 completed one ‘1 km Ice event’ in water colder than +5 °C following the rules of International Ice Swimming Association (IISA). Differences in performance between women and men were determined. Sex difference (%) was calculated using the equation ([time for women] – [time for men]/[time for men] × 100). For ‘Ice Mile’, a mixed-effects regression model with interaction analyses was used to investigate the influence of sex and environmental conditions on swimming speed. The association between water temperature and swimming speed was assessed using Pearson correlation analyses. Results For ‘Ice Mile’ and ‘1 km Ice event’, the best men were faster than the best women. In ‘Ice Mile’, calendar year, number of attempts, water temperature and wind chill showed no association with swimming speed for both women and men. For both women and men, water temperature was not correlated to swimming speed in both ‘Ice Mile’ and ‘1 km Ice event’. Conclusions In water colder than 5 °C, men were faster than women in ‘Ice Mile’ and ‘1 km Ice event’. Water temperature showed no correlation to swimming speed.
Collapse
Affiliation(s)
- Beat Knechtle
- Gesundheitszentrum St. Gallen, Vadianstrasse 26 9001, St. Gallen, Switzerland ; Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Christoph A Rüst
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Knechtle B, Rosemann T, Rüst CA. Women cross the 'Catalina Channel' faster than men. SPRINGERPLUS 2015; 4:332. [PMID: 26180752 PMCID: PMC4495100 DOI: 10.1186/s40064-015-1086-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/07/2015] [Indexed: 12/03/2022]
Abstract
Open-water ultra-distance swimming has a long history where the ‘English Channel’ (~33 km) was crossed in 1875 for the first time. Nowadays, the three most challenging open-water swims worldwide are the 21-miles (34 km) ‘English Channel Swim’, the 20.1-miles (32.2 km) ‘Catalina Channel Swim’ and the 28.5-miles (45.9 km) ‘Manhattan Island Marathon Swim’, also called the ‘Triple Crown of Open Water Swimming’. Recent studies showed that women were able to achieve men’s performance in the ‘English Channel Swim’ or to even outperform men in the ‘Manhattan Island Marathon Swim’. However, the analysis of the ‘Catalina Channel Swim’ as part of the ‘Triple Crown of Open Water Swimming’ is missing. We investigated performance and sex difference in performance for successful women and men crossing the ‘Catalina Channel’ between 1927 and 2014. The fastest woman ever was ~22 min faster than the fastest man ever. Although the three fastest women ever were ~20 min faster than the three fastest men ever, the difference reached not statistical significance (p > 0.05). Similarly for the ten fastest ever, the ~1 min difference for women was not significant (p > 0.05). However, when the swimming times of the annual fastest women (n = 39) and the annual fastest men (n = 50) competing between 1927 and 2014 were compared, women (651 ± 173 min) were 52.9 min (16 ± 12%) faster than men (704 ± 279 min) (p < 0.0001). Across years, swimming times decreased non-linearly in the annual fastest men (polynomial 2nd degree) and women (polynomial 3rd degree) whereas the sex difference decreased linearly from 52.4% (1927) to 7.1% (2014). In summary, the annual fastest women crossed the ‘Catalina Channel’ faster than the annual fastest men. The non-linear decrease in swimming times suggests that female and male swimmers have reached a limit in this event. However, the linear decrease in the sex difference may indicate that women continuously narrow the gap to men.
Collapse
Affiliation(s)
- Beat Knechtle
- Gesundheitszentrum St. Gallen, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
24
|
König S, Valeri F, Wild S, Rosemann T, Rüst CA, Knechtle B. Change of the age and performance of swimmers across World Championships and Olympic Games finals from 1992 to 2013 - a cross-sectional data analysis. SPRINGERPLUS 2014; 3:652. [PMID: 25485195 PMCID: PMC4237683 DOI: 10.1186/2193-1801-3-652] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/28/2014] [Indexed: 12/05/2022]
Abstract
The aims of the present study were to investigate the changes in the age and in swimming performance of finalists in World Championships (1994–2013) and Olympic Games (1992–2012) competing in all events/races (stroke and distance). Data of 3,295 performances from 1,615 women and 1,680 men were analysed using correlation analyses and magnitudes of effect sizes. In the World Championships, the age of the finalists increased for all strokes and distances with exception of 200 m backstroke in women, and 400 m freestyle and 200 m breaststroke in men where the age of the finalists decreased. The magnitudes of the effects were small to very large (mean ± SD 2.8 ± 2.7), but extremely large (13.38) for 1,500 m freestyle in women. In the Olympic Games, the age of the finalists increased for all strokes and distances with exception of 800 m freestyle in women and 400 m individual medley in men. The magnitudes of the effects were small to very large (mean ± SD 4.1 ± 7.1), but extremely large for 50 m freestyle in women (10.5) and 200 m butterfly in men (38.0). Swimming performance increased across years in both women and men for all strokes and distances in both the World Championships and the Olympic Games. The magnitudes of the effects were all extremely large in World Championships (mean ± SD 20.1 ± 8.4) and Olympic Games (mean ± SD 52.1 ± 47.6); especially for 100 m and 200 m breaststroke (198) in women in the Olympic Games. To summarize, in the last ~20 years the age of the finalists increased in both the World Championships and the Olympic Games with some minor exceptions (200 m backstroke in women, 400 m freestyle and 200 m breaststroke in men in World Championships and 800 m freestyle in women and 400 m individual medley in men in Olympic Games) and performance of the finalists improved.
Collapse
Affiliation(s)
- Stefan König
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Fabio Valeri
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Stefanie Wild
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | | | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland ; Gesundheitszentrum St. Gallen, Vadianstrasse 26, 9001 St, Gallen, Switzerland
| |
Collapse
|
25
|
Rüst CA, Zingg MA, Rosemann T, Knechtle B. Will the age of peak ultra-marathon performance increase with increasing race duration? BMC Sports Sci Med Rehabil 2014; 6:36. [PMID: 25337390 PMCID: PMC4204392 DOI: 10.1186/2052-1847-6-36] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/22/2014] [Indexed: 11/10/2022]
Abstract
Background Recent studies found that the athlete’s age of the best ultra-marathon performance was higher than the athlete’s age of the best marathon performance and it seemed that the athlete’s age of peak ultra-marathon performance increased in distance-limited races with rising distance. Methods We investigated the athlete’s age of peak ultra-marathon performance in the fastest finishers in time-limited ultra-marathons from 6 hrs to 10 d. Running performance and athlete’s age of the fastest women and men competing in 6 hrs, 12 hrs, 24 hrs, 48 hrs, 72 hrs, 144 hrs (6 d) and 240 hrs (10 d) were analysed for races held between 1975 and 2012 using analysis of variance and multi-level regression analysis. Results The athlete’s ages of the ten fastest women ever in 6 hrs, 12 hrs, 24 hrs, 48 hrs, 72 hrs, 6 d and 10 d were 41 ± 9, 41 ± 6, 42 ± 5, 46 ± 5, 44 ± 6, 42 ± 4, and 37 ± 4 yrs, respectively. The athlete’s age of the ten fastest women was different between 48 hrs and 10 d. For men, the athlete’s ages were 35 ± 6, 37 ± 9, 39 ± 8, 44 ± 7, 48 ± 3, 48 ± 8 and 48 ± 6 yrs, respectively. The athlete’s age of the ten fastest men in 6 hrs and 12 hrs was lower than the athlete’s age of the ten fastest men in 72 hrs, 6 d and 10 d, respectively. Conclusion The athlete’s age of peak ultra-marathon performance did not increase with rising race duration in the best ultra-marathoners. For the fastest women ever in time-limited races, the athlete’s age was lowest in 10 d (~37 yrs) and highest in 48 hrs (~46 yrs). For men, the athlete’s age of the fastest ever in 6 hrs (~35 yrs) and 12 hrs (~37 yrs) was lower than the athlete’s age of the ten fastest in 72 hrs (~48 yrs), 6 d (~48 yrs) and 10 d (~48 yrs). The differences in the athlete’s age of peak performance between female and male ultra-marathoners for the different race durations need further investigations.
Collapse
Affiliation(s)
| | | | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland ; Gesundheitszentrum St. Gallen, St. Gallen, Switzerland ; Facharzt FMH für Allgemeinmedizin, Gesundheitszentrum St. Gallen, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
26
|
Knechtle B, Rosemann T, Rüst CA. Participation and performance trends by nationality in the 'English Channel Swim' from 1875 to 2013. BMC Sports Sci Med Rehabil 2014; 6:34. [PMID: 25210622 PMCID: PMC4160141 DOI: 10.1186/2052-1847-6-34] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/18/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND The aim of the present study was to investigate participation and performance trends regarding the nationality of successful solo swimmers in the 'English Channel Swim'. METHODS The nationality and swim times for all swimmers who successfully crossed the 33.8-km 'English Channel' from 1875 to 2013 were analysed. RESULTS Between 1875 and 2013, the number of successful female (571, 31.4%) and male (1,246, 68.6%) solo swimmers increased exponentially; especially for female British and American swimmers and male British, US-American and Australian swimmers. Most of the swimmers were crossing the 'English Channel' from England to France and most of the competitors were from Great Britain, the United States of America, Australia and Ireland. For women, athletes from the United States of America, Australia and Great Britain achieved the fastest swim times. For men, the fastest swim times were achieved by athletes from the United States of America, Great Britain and Australia. Swim times of the annual fastest women from Great Britain and the United States of America decreased across years. For men, swim times decreased across years in the annual fastest swimmers from Australia, Great Britain, Ireland, South Africa and the United States of America. Men were swimming faster from England to France than from France to England compared to women. Swim times became faster across years for both women and men for both directions. CONCLUSIONS Between 1875 and 2013, the most representative nations in the 'English Channel Swim' were Great Britain, the United States of America, Australia and Ireland. The fastest swim times were achieved by athletes from the United States of America, Australia and Great Britain.
Collapse
Affiliation(s)
- Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland ; Gesundheitszentrum St. Gallen, St. Gallen, Switzerland ; Facharzt FMH für Allgemeinmedizin, Gesundheitszentrum St. Gallen, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
27
|
Wild S, Rüst CA, Rosemann T, Knechtle B. Changes in sex difference in swimming speed in finalists at FINA World Championships and the Olympic Games from 1992 to 2013. BMC Sports Sci Med Rehabil 2014; 6:25. [PMID: 25120914 PMCID: PMC4129435 DOI: 10.1186/2052-1847-6-25] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/19/2014] [Indexed: 11/11/2022]
Abstract
Background This study investigated swimming speeds and sex differences of finalists competing at the Olympic Games (i.e. 624 female and 672 male athletes) and FINA World Championships (i.e. 990 women and 1008 men) between 1992 and 2013. Methods Linear, non-linear and multi-level regression models were used to investigate changes in swimming speeds and sex differences for champions and finalists. Results Regarding finalists in FINA World Championships and Olympic Games, swimming speed increased linearly in both women and men in all disciplines and race distances. Male world champions’ swimming speed remained stable in 200 m butterfly, 400 m, 800 m and 1,500 m freestyle. Considering women, swimming speed remained unchanged in 50 m and 400 m freestyle. In the Olympic Games, swimming speed of male champions remained unchanged in 200 m breaststroke, 50 m, 400 m, 800 m and 1,500 m freestyle. Female Olympic champions’ swimming speed remained stable in 100 m and 200 m backstroke, 100 m butterfly, 200 m individual medley, 50 m and 200 m freestyle. Evaluating sex differences between finalists in FINA World Championships, results showed a linear decrease in 100 m breaststroke and 200 m butterfly and a non-linear increase in 100 m backstroke. In finals at the Olympic Games, the sex difference decreased linearly for 100 m backstroke, 400 m and 800 m freestyle. However, a linear increase for 200 m butterfly can be reported. Considering Olympic and world champions, the sex difference remained stable in all disciplines and race distances. Conclusion Swimming speed of the finalists at the Olympic Games and FINA World Championships increased linearly. The top annual female swimmers increased swimming speed rather at longer race distances (i.e. 800 m and 1,500 m freestyle, 200 m butterfly, and 400 m individual medley), whereas the top annual male swimmers increased it rather at shorter race distances (i.e. 100 m and 200 m freestyle, 100 m butterfly, and 100 m breaststroke). Sex difference in swimming was unchanged in Olympic and world champions. Finalists and champions at the Olympic Games and FINA World Championships reduced the sex difference with increasing race distance.
Collapse
Affiliation(s)
- Stefanie Wild
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
| | - Christoph Alexander Rüst
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland ; Gesundheitszentrum St. Gallen, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
28
|
Rüst CA, Rosemann T, Lepers R, Knechtle B. Gender difference in cycling speed and age of winning performers in ultra-cycling – the 508-mile “Furnace Creek” from 1983 to 2012. J Sports Sci 2014; 33:198-210. [DOI: 10.1080/02640414.2014.934705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Knechtle B, Zingg MA, Rosemann T, Rüst CA. Sex difference in top performers from Ironman to double deca iron ultra-triathlon. Open Access J Sports Med 2014; 5:159-72. [PMID: 25114605 PMCID: PMC4079634 DOI: 10.2147/oajsm.s65977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This study investigated changes in performance and sex difference in top performers for ultra-triathlon races held between 1978 and 2013 from Ironman (3.8 km swim, 180 km cycle, and 42 km run) to double deca iron ultra-triathlon distance (76 km swim, 3,600 km cycle, and 844 km run). The fastest men ever were faster than the fastest women ever for split and overall race times, with the exception of the swimming split in the quintuple iron ultra-triathlon (19 km swim, 900 km cycle, and 210.1 km run). Correlation analyses showed an increase in sex difference with increasing length of race distance for swimming (r2=0.67, P=0.023), running (r2=0.77, P=0.009), and overall race time (r2=0.77, P=0.0087), but not for cycling (r2=0.26, P=0.23). For the annual top performers, split and overall race times decreased across years nonlinearly in female and male Ironman triathletes. For longer distances, cycling split times decreased linearly in male triple iron ultra-triathletes, and running split times decreased linearly in male double iron ultra-triathletes but increased linearly in female triple and quintuple iron ultra-triathletes. Overall race times increased nonlinearly in female triple and male quintuple iron ultra-triathletes. The sex difference decreased nonlinearly in swimming, running, and overall race time in Ironman triathletes but increased linearly in cycling and running and nonlinearly in overall race time in triple iron ultra-triathletes. These findings suggest that women reduced the sex difference nonlinearly in shorter ultra-triathlon distances (ie, Ironman), but for longer distances than the Ironman, the sex difference increased or remained unchanged across years. It seems very unlikely that female top performers will ever outrun male top performers in ultratriathlons. The nonlinear change in speed and sex difference in Ironman triathlon suggests that female and male Ironman triathletes have reached their limits in performance.
Collapse
Affiliation(s)
- Beat Knechtle
- Gesundheitszentrum St Gallen, St Gallen, Switzerland
| | - Matthias A Zingg
- Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland
| | - Christoph A Rüst
- Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Ulsamer S, Rüst CA, Rosemann T, Lepers R, Knechtle B. Swimming performances in long distance open-water events with and without wetsuit. BMC Sports Sci Med Rehabil 2014; 6:20. [PMID: 24891942 PMCID: PMC4041346 DOI: 10.1186/2052-1847-6-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 05/14/2014] [Indexed: 11/18/2022]
Abstract
Background Existing literature showed improved swimming performances for swimmers wearing wetsuits competing under standardized conditions in races held in pools on short to middle distances. Data about the influence of wetsuits on swimming performances in long and ultra-long open-water swimming races are missing. It is unknown whether the benefit of wearing wetsuits is comparable in men and women. The aim of this study was to investigate the influence of wearing a wetsuit on open-water swimming performances at the 26.4 km ‘Marathon Swim in Lake Zurich’ in Lake Zurich, Switzerland, and the 3.8 km Lake Ontario Swim Team-Race (LOST-Race) in Lake Ontario, Canada. Methods Race times of the fastest female and male swimmers competing with and without wetsuit were compared using multi-level regression analyses and analysis of variance. Results In the ‘Marathon Swim’ in Lake Zurich, wearing a wetsuit had no effect on race time regarding the gender where athletes wearing a wetsuit were not faster than athletes without wetsuit. However, the ten fastest men wearing a wetsuit (410.6 ± 26.7 min) were faster (32.7%, p < 0.01) than the ten fastest women without wetsuit (544.9 ± 81.3 min). In the ‘LOST-Race’, the top ten men wearing a wetsuit (51.7 ± 2.5 min) were faster (13.2%, p < 0.01) than the top ten women wearing a wetsuit (58.5 ± 3.2 min). Additionally, the top ten men without wetsuit (52.1 ± 2.4 min) were faster (19.6%, p < 0.01) than the top ten women without wetsuit (62.3 ± 2.5 min). The top ten women wearing a wetsuit (58.5 ± 3.2 min) were faster (6.5%, p < 0.01) than top ten women without a wetsuit (62.3 ± 25 min). Conclusions These results suggest that wearing a wetsuit had a positive influence on swimming speed for both women and men but the benefit of the use of wetsuits seemed to depend on additional factors (i.e. race distance). Women seemed to benefit more from wearing wetsuits than men in longer open-water ultra-distance swimming races.
Collapse
Affiliation(s)
- Sebastian Ulsamer
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
| | - Christoph Alexander Rüst
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
| | - Romuald Lepers
- INSERM U1093, Faculty of Sport Sciences, University of Burgundy, Dijon, France
| | - Beat Knechtle
- Facharzt FMH für Allgemeinmedizin, Vadianstrasse 26, Gesundheitszentrum St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
31
|
Rüst CA, Rosemann T, Knechtle B. Performance and sex difference in ultra-triathlon performance from Ironman to Double Deca Iron ultra-triathlon between 1978 and 2013. SPRINGERPLUS 2014; 3:219. [PMID: 24877030 PMCID: PMC4035499 DOI: 10.1186/2193-1801-3-219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/22/2014] [Indexed: 05/28/2023]
Abstract
It was assumed that women would be able to outperform men in ultra-marathon running. The present study investigated the sex difference in performance for all ultra-triathlon distances from the Ironman distance (i.e. 3.8 km swimming, 180 km cycling and 42 km running) in the ‘Ironman Hawaii’ to the Double Deca Iron ultra-triathlon distance (i.e. 76 km swimming, 3,600 km cycling and 840 km running) between 1978 and 2013. The changes in performance and in the sex difference in performance for the annual three fastest finishers were analysed using linear, non-linear and multi-variate regression analyses from 46,123 athletes (i.e. 9,802 women and 46,123 men). Women accounted for 11.9 ± 5.8% of the total field and their percentage was highest in ‘Ironman Hawaii’ (22.1%) and lowest in Deca Iron ultra-triathlon (6.5%). In ‘Ironman Hawaii’, the sex difference decreased non-linearly in swimming, cycling, running and overall race time. In Double Iron ultra-triathlon, the sex difference increased non-linearly in overall race time. In Triple Iron ultra-triathlon, the sex difference increased non-linearly in cycling and overall race time but linearly in running. For the three fastest finishers ever, the sex difference in performance showed no change with increasing race distance with the exception for the swimming split where the sex difference increased with increasing race distance (r2 = 0.93, P = 0.001). The sex differences for the three fastest finishers ever for swimming, cycling, running and overall race times for all distances from Ironman to Deca Iron ultra-triathlon were 27.0 ± 17.8%, 24.3 ± 9.9%, 24.5 ± 11.0%, and 24.0 ± 6.7%, respectively. To summarize, these findings showed that women reduced the sex difference in the shorter ultra-triathlon distances (i.e. Ironman distance) but extended the sex difference in longer distances (i.e. Double and Triple Iron ultra-triathlon). It seems very unlikely that women will ever outperform men in ultra-triathlons from Ironman to Double Iron ultra-triathlon.
Collapse
Affiliation(s)
- Christoph A Rüst
- Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Gesundheitszentrum St. Gallen, Vadianstrasse 26, St. Gallen, 9001 Switzerland
| |
Collapse
|
32
|
Rüst CA, Rosemann T, Knechtle B. Sex difference in age and performance in elite Swiss freestyle swimmers competing from 50 m to 1,500 m. SPRINGERPLUS 2014; 3:228. [PMID: 24834376 PMCID: PMC4021034 DOI: 10.1186/2193-1801-3-228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/30/2014] [Indexed: 12/03/2022]
Abstract
Recent studies reported different ages for peak freestyle swimming performances for 50 m and 1,500 m. The aims of the present study were (i) to determine the age of peak freestyle swimming speed for distances including 50 m, 100 m, 200 m, 400 m, 800 m, and 1,500 m and to (ii) analyze the sex difference in peak freestyle swimming speed for all distances between 50 m and 1,500 m for elite female and male swimmers competing at national level. Data from the ‘Swiss Swimming Federation’ between 2006 and 2010 from 10,405 men and 9,552 women were analyzed using regression analyses and analyses of variance (ANOVA). Women achieved peak freestyle swimming speed at ~20–21 years from 50 m to 400 m, at ~24–25 years in 1,500 m and at ~25–27 years in 800 m. In men, the age of peak freestyle swimming speed varied between ~22–23 years and ~25–27 years for 50 m to 1,500 m. Between the age of 10 and 29 years, the sex difference in freestyle swimming speed increased from 2.2 ± 0.4% to 19.0 ± 6.7% in 50 m (r2 = 0.87, P < 0.001), from 2.4 ± 0.7% to 10.8 ± 2.8% in 100 m (r2 = 0.67, P = 0.004) and from 3.6 ± 1.9% to 10.2 ± 3.4% in 200 m (r2 = 0.60, P = 0.008). In 400 m (r2 = 0.24), 800 m (r2 = 0.39) and 1,500 m (r2 = 0.34), the sex difference showed no changes (P > 0.05) with 6.9 ± 3.0%, 5.8 ± 3.5%, and 9.7 ± 8.6%, respectively. The sex difference in freestyle swimming speed showed no change with increasing race distance (r2 = 0.12, P > 0.05). To summarize, the age of peak freestyle swimming speed increased for women with the length of the race distance from 50 m to 200 m, but not from 400 m to 1,500 m. For men, the age of peak freestyle swimming speed varied between ~22–23 years and ~25–27 years from 50 m to 1,500 m. The sex difference in freestyle swimming speed of 9.1 ± 2.5% showed no change with increasing race distance. Future studies need to confirm these findings in elite swimmers competing at international level such as the World Championships and the Olympic Games.
Collapse
Affiliation(s)
- Christoph Alexander Rüst
- Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Gesundheitszentrum St. Gallen, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
33
|
Wolfrum M, Rüst CA, Rosemann T, Lepers R, Knechtle B. Changes in breaststroke swimming performances in national and international athletes competing between 1994 and 2011 -a comparison with freestyle swimming performances. BMC Sports Sci Med Rehabil 2014; 6:18. [PMID: 24826211 PMCID: PMC4018624 DOI: 10.1186/2052-1847-6-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 04/30/2014] [Indexed: 11/26/2022]
Abstract
Background The purpose of the present study was to analyse potential changes in performance of elite breaststroke swimmers competing at national and international level and to compare to elite freestyle swimming performance. Methods Temporal trends in performance of elite breaststroke swimmers were analysed from records of the Swiss Swimming Federation and the FINA (Fédération Internationale de Natation) World Swimming Championships during the 1994–2011 period. Swimming speeds of elite female and male breaststroke swimmers competing in 50 m, 100 m, and 200 m were examined using linear regression, non-linear regression and analysis of variance. Results of breaststroke swimmers were compared to results of freestyle swimmers. Results Swimming speed in both strokes improved significantly (p < 0.0001-0.025) over time for both sexes, with the exception of 50 m breaststroke for FINA men. Sex differences in swimming speed increased significantly over time for Swiss freestyle swimmers (p < 0.0001), but not for FINA swimmers for freestyle, while the sex difference remained stable for Swiss and FINA breaststroke swimmers. The sex differences in swimming speed decreased significantly (p < 0.0001) with increasing race distance. Conclusions The present study showed that elite male and female swimmers competing during the 1994–2011 period at national and international level improved their swimming speed in both breaststroke and freestyle. The sex difference in freestyle swimming speed consistently increased in athletes competing at national level, whereas it remained unchanged in athletes competing at international level. Future studies should investigate temporal trends for recent time in other strokes, to determine whether this improvement is a generalized phenomenon.
Collapse
Affiliation(s)
- Mathias Wolfrum
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland ; Cardiovascular Center Cardiology, University Hospital Zürich, Zürich, Switzerland
| | - Christoph Alexander Rüst
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
| | - Romuald Lepers
- INSERM U1093, Faculty of Sport Sciences, University of Burgundy, Dijon, France
| | - Beat Knechtle
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland ; Gesundheitszentrum St. Gallen, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
34
|
Pozzi L, Knechtle B, Knechtle P, Rosemann T, Lepers R, Rüst CA. Sex and age-related differences in performance in a 24-hour ultra-cycling draft-legal event - a cross-sectional data analysis. BMC Sports Sci Med Rehabil 2014; 6:19. [PMID: 24883191 PMCID: PMC4039327 DOI: 10.1186/2052-1847-6-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/09/2014] [Indexed: 11/25/2022]
Abstract
Background The purpose of this study was to examine the sex and age-related differences in performance in a draft-legal ultra-cycling event. Methods Age-related changes in performance across years were investigated in the 24-hour draft-legal cycling event held in Schötz, Switzerland, between 2000 and 2011 using multi-level regression analyses including age, repeated participation and environmental temperatures as co-variables. Results For all finishers, the age of peak cycling performance decreased significantly (β = −0.273, p = 0.036) from 38 ± 10 to 35 ± 6 years in females but remained unchanged (β = −0.035, p = 0.906) at 41.0 ± 10.3 years in males. For the annual fastest females and males, the age of peak cycling performance remained unchanged at 37.3 ± 8.5 and 38.3 ± 5.4 years, respectively. For all female and male finishers, males improved significantly (β = 7.010, p = 0.006) the cycling distance from 497.8 ± 219.6 km to 546.7 ± 205.0 km whereas females (β = −0.085, p = 0.987) showed an unchanged performance of 593.7 ± 132.3 km. The mean cycling distance achieved by the male winners of 960.5 ± 51.9 km was significantly (p < 0.001) greater than the distance covered by the female winners with 769.7 ± 65.7 km but was not different between the sexes (p > 0.05). The sex difference in performance for the annual winners of 19.7 ± 7.8% remained unchanged across years (p > 0.05). The achieved cycling distance decreased in a curvilinear manner with advancing age. There was a significant age effect (F = 28.4, p < 0.0001) for cycling performance where the fastest cyclists were in age group 35–39 years. Conclusion In this 24-h cycling draft-legal event, performance in females remained unchanged while their age of peak cycling performance decreased and performance in males improved while their age of peak cycling performance remained unchanged. The annual fastest females and males were 37.3 ± 8.5 and 38.3 ± 5.4 years old, respectively. The sex difference for the fastest finishers was ~20%. It seems that women were not able to profit from drafting to improve their ultra-cycling performance.
Collapse
Affiliation(s)
- Lara Pozzi
- Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland ; Gesundheitszentrum St. Gallen, St. Gallen, Switzerland
| | | | - Thomas Rosemann
- Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland
| | - Romuald Lepers
- INSERM U1093, University of Burgundy, Faculty of Sport Sciences, Dijon, France
| | - Christoph Alexander Rüst
- Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|