1
|
Woon TH, Tan MJH, Kwan YH, Fong W. Evidence of the interactions between immunosuppressive drugs used in autoimmune rheumatic diseases and Chinese herbal medicine: A scoping review. Complement Ther Med 2024; 80:103017. [PMID: 38218549 DOI: 10.1016/j.ctim.2024.103017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVES Chinese herbal medicine (CHM) has been shown to be effective in autoimmune rheumatic diseases, but harmful herb-drug interactions might be inherent. We aim to review the evidence regarding herb-drug interactions between immunosuppressive drugs used in autoimmune rheumatic diseases and CHM. METHODS We searched PubMed, EMBASE and CINAHL from inception till 30 April 2023 using keywords that encompassed 'herb-drug interactions', 'herbs' and 'immunosuppressants'. Articles were included if they contained reports about interactions between immunosuppressive drugs used in the treatment of rheumatic diseases with CHM. Level of evidence for each pair of interaction was graded using the algorithm developed by Colalto. RESULTS A total of 65 articles and 44 unique pairs of interactions were identified. HDIs were reported for cyclophosphamide, cyclosporine, tacrolimus, methotrexate, mycophenolic acid, glucocorticoids, sulfasalazine, tofacitinib and biologic disease-modifying antirheumatic drugs. Among these, cyclosporine (n = 27, 41.5%) and tacrolimus (n = 19, 29.2%) had the highest number of documented interactions. Hypericum perforatum had the highest level of evidence of interaction with cyclosporine and tacrolimus. Consumption reduced the bioavailability and therapeutic effects of the drugs. Schisandra sphenanthera had the highest level of evidence of interaction with tacrolimus and increased the bioavailability of the drug. Majority of the articles were animal studies. CONCLUSION Overall level of evidence for the included studies were low, though interactions between cyclosporine, tacrolimus, Hypericum perforatum and Schisandra sphenanthera were the most and well-documented. Healthcare professionals should actively enquire about the concurrent use of CHM in patients, especially when drugs with a narrow therapeutic index are consumed.
Collapse
Affiliation(s)
- Ting Hui Woon
- Department of Rheumatology and Immunology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Melissa Jia Hui Tan
- Department of Pharmacy, Sengkang General Hospital, 110 Sengkang E Way, Singapore 544886, Singapore
| | - Yu Heng Kwan
- Department of Rheumatology and Immunology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore; Program in Health Services and Systems Research, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117559, Singapore
| | - Warren Fong
- Department of Rheumatology and Immunology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore; Office of Education, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.
| |
Collapse
|
2
|
Liao M, Wang M, Zhu X, Zhao L, Zhao M. Tacrolimus Population Pharmacokinetic Model in Adult Chinese Patients with Nephrotic Syndrome and Dosing Regimen Identification Using Monte Carlo Simulations. Ther Drug Monit 2022; 44:615-624. [PMID: 36101928 DOI: 10.1097/ftd.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/13/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The study aimed to establish a population pharmacokinetic (PPK) model of tacrolimus for Chinese patients with nephrotic syndrome using the patient's genotype and Wuzhi capsule dosage as the main test factors. METHODS Ninety-six adult patients with nephrotic syndrome, who were receiving tacrolimus treatment, were enrolled. A nonlinear mixed-effects model was used to determine the influencing factors of interindividual tacrolimus metabolism variation and establish a PPK model. To optimize the tacrolimus dosage, 10,000 Monte Carlo simulations were performed. RESULTS The 1-chamber model of first-order absorption and elimination was the most suitable model for the data in this study. The typical population tacrolimus clearance (CL/F) value was 16.9 L/h. The percent relative standard error (RSE%) of CL/F was 12%. Increased Wuzhi capsule and albumin doses both decreased the tacrolimus CL/F. In CYP3A5 homozygous mutation carriers, the CL/F was 39% lower than that of carriers of the wild-type and heterozygous mutation. The tacrolimus CL/F in patients who were coadministered glucocorticoids was 1.23-fold higher than that of the control. According to the patient genotype and combined use of glucocorticoids, 26 combinations of Wuzhi capsule and tacrolimus doses were matched. The Monte Carlo simulation identified the most suitable combination scheme. CONCLUSIONS An improved tacrolimus PPK model for patients with nephrotic syndrome was established, and the most suitable combination of Wuzhi capsule and tacrolimus doses was identified, thus, facilitating the selection of a more economical and safe administration regimen.
Collapse
Affiliation(s)
- Minghao Liao
- Department of Pharmacy, Shengjing Hospital of China Medical University ; and
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Minglu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University ; and
| | - Xu Zhu
- Department of Pharmacy, Shengjing Hospital of China Medical University ; and
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University ; and
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingming Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University ; and
| |
Collapse
|
3
|
Zhang F, Zhang T, Gong J, Fang Q, Qi S, Li M, Han Y, Liu W, Ge G. The Chinese herb Styrax triggers pharmacokinetic herb-drug interactions via inhibiting intestinal CYP3A. Front Pharmacol 2022; 13:974578. [PMID: 36110541 PMCID: PMC9469097 DOI: 10.3389/fphar.2022.974578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Human cytochrome P450 3A4 (hCYP3A4) is a predominant enzyme to trigger clinically relevant drug/herb-drug interactions (DDIs or HDIs). Although a number of herbal medicines have been found with strong anti-hCYP3A4 effects in vitro, the in vivo modulatory effects of herbal medicines on hCYP3A4 and their potential risks to trigger HDIs are rarely investigated. Herein, we demonstrate a case study to efficiently find the herbal medicine(s) with potent hCYP3A4 inhibition in vitro and to accurately assess the potential HDIs risk in vivo. Following screening over 100 herbal medicines, the Chinese herb Styrax was found with the most potent hCYP3A4 inhibition in HLMs. In vitro assays demonstrated that Styrax could potently inhibit mammalian CYP3A in liver and intestinal microsomes from both humans and rats. In vivo pharmacokinetic assays showed that Styrax (i.g., 100 mg/kg) significantly elevated the plasma exposure of two CYP3A-substrate drugs (midazolam and felodipine) when midazolam or felodipine was administered orally. By contrast, the plasma exposure of either midazolam or felodipine was hardly affected by Styrax (i.g.) when the victim drug was administered intravenously. Further investigations demonstrated that seven pentacyclic triterpenoid acids (PTAs) in Styrax were key substances responsible for CYP3A inhibition, while these PTAs could be exposed to intestinal tract at relatively high exposure levels but their exposure levels in rat plasma and liver were extremely low. These findings well explained why Styrax (i.g.) could elevate the plasma exposure of victim drugs only when these agents were orally administrated. Collectively, our findings demonstrate that Styrax can modulate the pharmacokinetic behavior of CYP3A-substrate drugs via inhibiting intestinal CYP3A, which is very helpful for the clinical pharmacologists to better assess the HDIs triggered by Styrax or Styrax-related herbal products.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiantian Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jiahao Gong
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinqin Fang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenglan Qi
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengting Li
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhang F, Zhai J, Weng N, Gao J, Yin J, Chen W. A Comprehensive Review of the Main Lignan Components of Schisandra chinensis (North Wu Wei Zi) and Schisandra sphenanthera (South Wu Wei Zi) and the Lignan-Induced Drug-Drug Interactions Based on the Inhibition of Cytochrome P450 and P-Glycoprotein Activities. Front Pharmacol 2022; 13:816036. [PMID: 35359848 PMCID: PMC8962666 DOI: 10.3389/fphar.2022.816036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 12/01/2022] Open
Abstract
Wu Wei Zi is the dried fruit of Schisandra chinensis (Turcz.) Baill. or Schisandra sphenanthera Rehd. et Wils. (family Magnoliaceae). As a homology of medicine and food, it has been widely used in China for thousands of years, to tonify the kidney, and ameliorate neurological, cardiovascular, liver, and gastrointestinal disorders. As its increasing health benefits and pharmacological value, many literatures have reported that the combination of Wu Wei Zi in patients has led to fluctuations in the blood level of the combined drug. Therefore, it is extremely important to evaluate its safety concern such as drug-drug interactions (DDIs) when patients are under the poly-therapeutic conditions. This review summarized the effects of Wu Wei Zi extract and its major lignan components on cytochrome P450 and P-glycoprotein activities, the change of which could induce metabolic DDIs. Our review also elaborated on the differences of the major lignan components of the two Schisandra species, as well as the absorption, distribution, metabolism, and elimination of the major lignans. In conclusion, these results would enhance our understanding of the DDI mechanisms involving Wu Wei Zi, and may potentially untangle some differing and conflicting results in the future.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Navl Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Jianxiu Zhai
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, China
| | - Nan Weng
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, China
| | - Jie Gao
- Department of Pharmacy, Changzheng Hospital, Navl Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Yin
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Navl Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
- School of Pharmacy, Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Chen L, Yang Y, Wang X, Wang C, Lin W, Jiao Z, Wang Z. Wuzhi Capsule Dosage Affects Tacrolimus Elimination in Adult Kidney Transplant Recipients, as Determined by a Population Pharmacokinetics Analysis. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1093-1106. [PMID: 34511980 PMCID: PMC8423491 DOI: 10.2147/pgpm.s321997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
Purpose In this study, we aimed to establish a tacrolimus population pharmacokinetic model and better understand the drug-drug interaction between Wuzhi capsule and tacrolimus in Chinese renal transplant recipients. Patients and Methods We performed a population pharmacokinetic analysis using a non-linear mixed-effects model to determine the suitable Wuzhi capsule dose in combination with tacrolimus. Data on 1378 tacrolimus steady-state concentrations were obtained from 142 patients who received kidney transplant in Changhai Hospital and Huashan Hospital. Demographic characteristics, laboratory tests, genetic polymorphisms, and co-medications were evaluated. Results The one-compartment model best described data. Our final model identified creatinine clearance rate, hematocrit, Wuzhi capsule dose, CYP3A5*3 genetic polymorphisms, and tacrolimus daily dose as significant covariates for tacrolimus clearance, with the value of 14.4 L h-1, and the between-subject variability (BSV) was 25.4%. The Wuzhi capsule showed a dose-dependent effect on tacrolimus pharmacokinetics, demonstrating a stronger inhibitory effect than inductive effect. Conclusion Our model can accurately describe population pharmacokinetics of tacrolimus when combined with different doses of Wuzhi capsule. Additionally, this model can be used for individualizing tacrolimus dose following kidney transplantation.
Collapse
Affiliation(s)
- Lizhi Chen
- Department of Pharmacy, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Yunyun Yang
- Department of Pharmacy, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China.,Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Xuebin Wang
- Department of Pharmacy, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Chenyu Wang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Weiwei Lin
- Department of Pharmacology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.,Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Zhuo Wang
- Department of Pharmacy, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
6
|
Chiang TY, Wang HJ, Wang YC, Chia-Hui Tan E, Lee IJ, Yun CH, Ueng YF. Effects of Shengmai San on key enzymes involved in hepatic and intestinal drug metabolism in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113914. [PMID: 33571617 DOI: 10.1016/j.jep.2021.113914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shengmai San (SMS) has been commonly used as a traditional Chinese medicine for the treatment of cardiovascular disorders, of which drug interactions need to be assessed for the safety concern. There is little evidence for the alterations of hepatic and intestinal drug-metabolizing enzymes after repeated SMS treatments to assess drug interactions. AIM OF THE STUDY The studies aim to illustrate the effects of repeated treatments with SMS on cytochrome P450s (CYPs), reduced nicotinamide adenine dinucleotide (phosphate)-quinone oxidoreductase (NQO), uridine diphosphate-glucuronosyltransferase (UGT), and glutathione S-transferase (GST) using in vivo rat model. MATERIALS AND METHODS The SMS was prepared using Schisandrae Fructus, Ginseng Radix, and Ophiopogonis Radix (OR) (1:2:2). Chromatographic analyses of decoctions were performed using ultra-performance liquid chromatography (UPLC) and LC-mass spectrometry. Sprague-Dawley rats were orally treated with the SMS and its component herbal decoctions for 2 or 3 weeks. Hepatic and intestinal enzyme activities were determined. CYP3A expression and the kinetics of intestinal nifedipine oxidation (NFO, a CYP3A marker reaction) were determined. RESULTS Schisandrol A, schisandrin B, ginsenoside Rb1 and ophiopogonin D were identified in SMS. SMS selectively suppressed intestinal, but not hepatic, NFO activity in a dose- and time-dependent manner. Hepatic and intestinal UGT, NQO and GST activities were not affected. A 3-week SMS treatment decreased the maximal velocity of intestinal NFO by 50%, while the CYP3A protein level remained unchanged. Among SMS component herbs, the decoction of OR decreased intestinal NFO activity. CONCLUSIONS These findings demonstrate that 3-week treatment with SMS and OR suppress intestinal, but not hepatic CYP3A function. It suggested that the potential interactions of SMS with CYP 3A drug substrates should be noticed, especially the drugs whose bioavailability depends heavily on intestinal CYP3A.
Collapse
Affiliation(s)
- Tzu-Yi Chiang
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei, Taiwan; Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei, Taiwan
| | - Hong-Jaan Wang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Cih Wang
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Elise Chia-Hui Tan
- Division of Clinical Chinese Medicine, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - I-Jung Lee
- Department of Herbal Medicine, Yokohama University of Pharmacy, Yokohama, Japan
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Yune-Fang Ueng
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei, Taiwan; Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei, Taiwan; Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Investigation of the Impact of CYP3A5 Polymorphism on Drug-Drug Interaction between Tacrolimus and Schisantherin A/Schisandrin A Based on Physiologically-Based Pharmacokinetic Modeling. Pharmaceuticals (Basel) 2021; 14:ph14030198. [PMID: 33673653 PMCID: PMC7997453 DOI: 10.3390/ph14030198] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/04/2022] Open
Abstract
Wuzhi capsule (WZC) is commonly prescribed with tacrolimus in China to ease drug-induced hepatotoxicity. Two abundant active ingredients, schisantherin A (STA) and schisandrin A (SIA) are known to inhibit CYP3A enzymes and increase tacrolimus’s exposure. Our previous study has quantitatively demonstrated the contribution of STA and SIA to tacrolimus pharmacokinetics based on physiologically-based pharmacokinetic (PBPK) modeling. In the current work, we performed reversible inhibition (RI) and time-dependent inhibition (TDI) assays with CYP3A5 genotyped human liver microsomes (HLMs), and further integrated the acquired parameters into the PBPK model to predict the drug–drug interaction (DDI) in patients with different CYP3A5 alleles. The results indicated STA was a time-dependent and reversible inhibitor of CYP3A4 while only a reversible inhibitor of CYP3A5; SIA inhibited CYP3A4 and 3A5 in a time-dependent manner but also reversibly inhibited CYP3A5. The predicted fold-increases of tacrolimus exposure were 2.70 and 2.41, respectively, after the multidose simulations of STA. SIA also increased tacrolimus’s exposure but to a smaller extent compared to STA. An optimized physiologically-based pharmacokinetic (PBPK) model integrated with CYP3A5 polymorphism was successfully established, providing more insights regarding the long-term DDI between tacrolimus and Wuzhi capsules in patients with different CYP3A5 genotypes.
Collapse
|
8
|
Multifaceted Factors Causing Conflicting Outcomes in Herb-Drug Interactions. Pharmaceutics 2020; 13:pharmaceutics13010043. [PMID: 33396770 PMCID: PMC7824553 DOI: 10.3390/pharmaceutics13010043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic enzyme and/or transporter-mediated pharmacokinetic (PK) changes in a drug caused by concomitant herbal products have been a primary issue of herb and drug interactions (HDIs), because PK changes of a drug may result in the alternation of efficacy and toxicity. Studies on HDIs have been carried out by predictive in vitro and in vivo preclinical studies, and clinical trials. Nevertheless, the discrepancies between predictive data and the clinical significance on HDIs still exist, and different reports of HDIs add to rather than clarify the confusion regarding the use of herbal products and drug combinations. Here, we briefly review the underlying mechanisms causing PK-based HDIs, and more importantly summarize challenging issues, such as dose and treatment period effects, to be considered in study designs and interpretations of HDI evaluations.
Collapse
|
9
|
Wang S, Li W, Yang J, Yang Z, Yang C, Jin H. Research Progress of Herbal Medicines on Drug Metabolizing Enzymes: Consideration Based on Toxicology. Curr Drug Metab 2020; 21:913-927. [PMID: 32819254 DOI: 10.2174/1389200221999200819144204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/22/2022]
Abstract
The clinical application of herbal medicines is increasing, but there is still a lack of comprehensive safety data and in-depth research into mechanisms of action. The composition of herbal medicines is complex, with each herb containing a variety of chemical components. Each of these components may affect the activity of metabolizing enzymes, which may lead to herb-drug interactions. It has been reported that the combined use of herbs and drugs can produce some unexpected interactions. Therefore, this study reviews the progress of research on safety issues caused by the effects of herbs on metabolizing enzymes with reference to six categories of drugs, including antithrombotic drugs, non-steroidal anti-inflammatory drugs, anti-diabetic drugs, statins lipid-lowering drugs, immunosuppressants, and antineoplastic drugs. Understanding the effects of herbs on the activity of metabolizing enzymes could help avoid the toxicity and adverse drug reactions resulting from the co-administration of herbs and drugs, and help doctors to reduce the risk of prescription incompatibility.
Collapse
Affiliation(s)
- Shuting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Zengyan Yang
- Guangxi International Zhuang Medicine Hospital, Nanning, 530001, China
| | - Cuiping Yang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
10
|
Combination Therapy of Wuweizi ( Schisandrae Chinensis Fructus) and Dexamethasone Alleviated Dexamethasone-Induced Glucocorticoid Osteoporosis in Rats with Idiopathic Pulmonary Fibrosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6301697. [PMID: 32280693 PMCID: PMC7115146 DOI: 10.1155/2020/6301697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Objective To investigate the therapeutic effect of combined application of Wuweizi (Schisandrae Chinensis Fructus) and dexamethasone in rats with idiopathic pulmonary fibrosis (IPF) and the possible protective effect of Wuweizi against dexamethasone-induced glucocorticoid osteoporosis (GIOP). Methods There were five groups in this study, including the sham operation group, model group, Wuweizi group, dexamethasone group, and the combination group. A rat IPF model was made by the endotracheal injection of bleomycin. After modeling, rats were given drug interventions for 7 and 28 days. Rats were sacrificed for pathological morphology examination of the bone and lung and quantitative determination of biochemical markers of bone metabolism and angiogenesis-related cytokine to observe therapeutic efficacy on the 7th and 28th day. ELISA was used for the quantitative determination of tartrate-resistant acid phosphatase (TRACP), bone alkaline phosphatase (BALP), hypoxia-inducible factor (HIF-1α), platelet-derived growth factor (PDGF), pigment epithelium-derived factor (PEDF), and endostatin in serum. The concentrations of calcium (Ca) and phosphorus (P) were detected with the automatic biochemical analyzer. Results After drug interventions for 7 and 28 days, alveolitis and pulmonary fibrosis in treatment groups showed significant improvement compared with those in the model group (P < 0.05). Bone histopathological figures showed severely damaged trabecular bone and bone marrow cavity in the dexamethasone group, but it was significantly alleviated in the combination group. The concentrations of BALP and Ca in the combination group were significantly higher than those in the dexamethasone group after treatment, while the concentrations of TRACP and P were lower than those in the dexamethasone group (P < 0.05). Bone histopathological figures showed severely damaged trabecular bone and bone marrow cavity in the dexamethasone group, but it was significantly alleviated in the combination group. The concentrations of BALP and Ca in the combination group were significantly higher than those in the dexamethasone group after treatment, while the concentrations of TRACP and P were lower than those in the dexamethasone group (α), platelet-derived growth factor (PDGF), pigment epithelium-derived factor (PEDF), and endostatin in serum. The concentrations of calcium (Ca) and phosphorus (P) were detected with the automatic biochemical analyzer. P < 0.05). Bone histopathological figures showed severely damaged trabecular bone and bone marrow cavity in the dexamethasone group, but it was significantly alleviated in the combination group. The concentrations of BALP and Ca in the combination group were significantly higher than those in the dexamethasone group after treatment, while the concentrations of TRACP and P were lower than those in the dexamethasone group (P < 0.05). Bone histopathological figures showed severely damaged trabecular bone and bone marrow cavity in the dexamethasone group, but it was significantly alleviated in the combination group. The concentrations of BALP and Ca in the combination group were significantly higher than those in the dexamethasone group after treatment, while the concentrations of TRACP and P were lower than those in the dexamethasone group (α), platelet-derived growth factor (PDGF), pigment epithelium-derived factor (PEDF), and endostatin in serum. The concentrations of calcium (Ca) and phosphorus (P) were detected with the automatic biochemical analyzer. Conclusions The combination therapy of Wuweizi and dexamethasone effectively treated IPF rats by regulating angiogenesis, meanwhile distinctly alleviating dexamethasone-induced GIOP.
Collapse
|
11
|
Chen L, Xiong X, Hou X, Wei H, Zhai J, Xia T, Gong X, Gao S, Feng G, Tao X, Zhang F, Chen W. Wuzhi capsule regulates chloroacetaldehyde pharmacokinetics behaviour and alleviates high-dose cyclophosphamide-induced nephrotoxicity and neurotoxicity in rats. Basic Clin Pharmacol Toxicol 2019; 125:142-151. [PMID: 30793490 DOI: 10.1111/bcpt.13211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
High-dose cyclophosphamide (HD-CTX) treatment often leads to severe nephrotoxicity and neurotoxicity, which are mainly caused by one of its metabolites, chloroacetaldehyde (CAA). However, there are no effective antidotes to prevent these side effects. The objective of this study was to evaluate the effect of Wuzhi Capsule (WZC) on the pharmacokinetics of CTX and its metabolites in rats, and the attenuation of CAA induced kidney and brain injuries, which was produced at equimolar with 2-dechloroethylcyclophosphamide. Rats were treated with single- or multiple-dose of WZC when giving HD-CTX, and the plasma concentration of CTX and its metabolites were quantitated by UHPLC-MS/MS Single-dose, not multiple-dose of WZC co-administration (300 mg/kg) significantly reduced Cmax and AUC0→24 h of DC-CTX by 33.10% and 35.51%, respectively. Biochemical assay suggested oxidative stress was involved in kidney and brain injuries by HD-CTX, which were attenuated by single-dose WZC (300 mg/kg) pre-treatment, with increased glutathione, glutathione peroxidase and superoxide dismutase contents/or activities in both tissues and plasma (P < 0.05). Meanwhile, WZC pre-treatment could also significantly decrease the plasma levels of creatinine, blood urea nitrogen and malondialdehyde (P < 0.05). Additionally, WZC treatment improved the morphology and pathology condition of the kidneys and brains in rats. In conclusion, single-dose WZC co-administration decreased CAA production and exerted protective effect on CTX-induced oxidative stress in kidney and brain, whereas repetitive WZC co-administration with CTX was probably not recommended.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Key Laboratory of Jiangxi Province for Research on Active Ingredients in Natural Medicines, Bioengineering Research Institute, Yichun University, Yichun, China
| | - Xiaojuan Xiong
- Key Laboratory of Jiangxi Province for Research on Active Ingredients in Natural Medicines, Bioengineering Research Institute, Yichun University, Yichun, China
| | - Xingyun Hou
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hua Wei
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianxiu Zhai
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China.,School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianyi Xia
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaobin Gong
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ge Feng
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Key Laboratory of Jiangxi Province for Research on Active Ingredients in Natural Medicines, Bioengineering Research Institute, Yichun University, Yichun, China
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Gong Y, Yang M, Sun Y, Li J, Lu Y, Li X. Population pharmacokinetic analysis of tacrolimus in Chinese cardiac transplant recipients. Eur J Hosp Pharm 2019; 27:e12-e18. [PMID: 32296499 DOI: 10.1136/ejhpharm-2018-001764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/02/2018] [Accepted: 12/18/2018] [Indexed: 01/08/2023] Open
Abstract
Objective Usage of tacrolimus is complicated by its narrow therapeutic index and wide between- and within-subject pharmacokinetic variability. We aimed to obtain more information regarding the influence of various covariates on the disposition of tacrolimus in the early phase after cardiac transplantation using a population pharmacokinetic method, and provide information for the individualisation of drug dosing in the clinical setting. Methods Routine therapeutic drug monitoring concentrations (897 observations) were retrospectively collected from 146 hospitalised patients. One compartment model with first-order absorption (absorption rate constant Ka was fixed as 4.48/hour) was employed to establish the population pharmacokinetic model using a non-linear mixed-effects modelling approach. Various demographic parameters, postoperative day and concomitant medications influencing drug clearance and distribution volume were investigated in this study. Bootstrap and prediction-corrected visual predictive check were employed to validate the final model. With the goal of tacrolimus trough concentrations within the therapeutic window, simulation was performed. Results Pharmacokinetic parameter population typical estimates for clearance (CL/F) and apparent distribution volume (V/F) were 14.23 L/hour and 760.80 L, respectively. Postoperative day and co-administration of Wuzhi capsules were identified as important factors affecting CL/F. Total body weight was significantly associated with the V/F. Results of model evaluation indicated a good stable and precise performance of the final model. Based on the simulation results, a simple-touse dosage regimen table to guide clinicians with drug dosing was created. Conclusion The final population model could provide information for the individualised dosing of tacrolimus for cardiac transplant recipients.
Collapse
Affiliation(s)
- Yan Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yang
- Department of Anesthesiology, Tianjin Eye Hospital, Tianjin, China
| | - Yongfeng Sun
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Yongning Lu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingang Li
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Precision Medicine Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Zhai J, Zhang F, Gao S, Chen L, Feng G, Yin J, Chen W. Schisandra chinensis extract decreases chloroacetaldehyde production in rats and attenuates cyclophosphamide toxicity in liver, kidney and brain. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:223-231. [PMID: 28821392 DOI: 10.1016/j.jep.2017.08.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/24/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (Turcz.) Baill (S. chinensis) has been used for thousands years in China, and is usually applied in treatment of urinary tract disorders and liver injury. S. chinensis extract (SCE) has board protective effects on liver, kidney and nervous system. Schisandra lignans are generally considered as the bioactive components of SCE. AIM OF THE STUDY To investigate the pharmacokinetic herb-drug interactions (HDIs) between SCE and cyclophosphamide (CTX). To evaluate the protective effects of SCE against CTX induced damage in rat liver, kidney and brain. MATERIALS AND METHODS The pharmacokinetic HDIs between SCE and CTX were investigated by determining plasma concentrations of CTX and three metabolites, namely 4-ketocyclophosphamide (4-Keto), 2-dechloroethylcyclophosphamide (DCCTX) and carboxyphosphamide (CPM) using a previously developed UPLC-MS/MS method. To evaluate the protective effects of SCE pretreatment, toxicity and oxidation stress assessments along with histology investigations were carried out in rat liver, kidney and brain. RESULTS The equimolar produced metabolite DCCTX was chosen to reflect chloroacetaldehyde (CAA, a toxic metabolite of CTX) production in rats. Single-dose pretreatment of SCE significantly reduced CAA production and decreased the Cmax and AUC0-24h of DCCTX by 69% and 49% respectively (P < 0.05). After pretreated with SCE for 7 consecutive days, the Cmax and AUC0-24h of DCCTX were still decreased (-25% and -37%, P < 0.05) when compared with CTX alone group. Parallel toxicity and oxidation stress investigations showed that single-dose SCE pretreatment significantly decreased plasma BUN and Cr levels (-12% and -46%, respectively) and reduced liver AST activity (-32%). Moreover, SCE pretreatment potently increased the brain GSH content by 7.8-fold, and reduced MDA levels in rat liver, kidney and brain by 39%, 28% and 31%, respectively (compared with CTX alone group). The protective effects of SCE were also supported by histological observations. CONCLUSION Our experiment results suggest that S. chinensis may find use as a complementary medicine in CTX treatment.
Collapse
Affiliation(s)
- Jianxiu Zhai
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Li Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China; Key Laboratory of Jiangxi Province for Research on Active Ingredients in Natural Medicines, Bioengineering Research Institute, Yichun University, Yichun, China.
| | - Ge Feng
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China; Key Laboratory of Jiangxi Province for Research on Active Ingredients in Natural Medicines, Bioengineering Research Institute, Yichun University, Yichun, China.
| | - Jun Yin
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, China.
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
14
|
Zhang XX, Cao YF, Wang LX, Yuan XL, Fang ZZ. Inhibitory effects of tanshinones towards the catalytic activity of UDP-glucuronosyltransferases (UGTs). PHARMACEUTICAL BIOLOGY 2017; 55:1703-1709. [PMID: 28466663 PMCID: PMC6130658 DOI: 10.3109/13880209.2015.1045621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/27/2015] [Accepted: 03/07/2015] [Indexed: 06/07/2023]
Abstract
CONTENTS Danshen is a popular herb employed to treat cardiovascular and cerebrovascular diseases worldwide. Danshen-drug interaction has not been well studied. OBJECTIVE The inhibitory effects of four major tanshinones (tanshinone I, tanshinone IIA, cryptotanshinone, and dihydrotanshinone I) on UDP-glucuronosyltransferases (UGTs) isoforms were determined to better understand the mechanism of danshen-prescription drugs interaction. MATERIALS AND METHODS In vitro recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed. Tanshinones (100 μM) was used to perform the initial screening of inhibition capability. High-performance liquid chromatography (HPLC) was used to separate 4-MU and its glucuronide. In vitro-in vivo extrapolation (IV-IVE) was employed to predict in vivo inhibition situation. RESULTS Cryptotanshinone inhibited UGT1A7 and UGT1A9 with IC50 values of 1.91 ± 0.27 and 0.27 ± 0.03 μM, respectively. Dihydrotanshinone I inhibited UGT1A9-catalyzed 4-MU glucuronidation reaction with the IC50 value of 0.72 ± 0.04 μM. The inhibition of cryptotanshinone towards UGT1A7 and UGT1A9 was best fit to competitive inhibition type, and UGT1A9 was non-competitively inhibited by dihydrotanshinone I. Using in vitro inhibition kinetic parameters (Ki) and in vivo maximum plasma concentration (Cmax) of cryptotanshinone and dihydrotanshinone I, the change of area-under-the-concentration-time curve (AUC) was predicted to be 0.4-4.2%, 3.7-56.3%, and 0.6-6.4% induced by cryptotanshinone and dihydrotanshinone inhibition towards UGT1A7 and UGT1A9, respectively. DISCUSSION AND CONCLUSION The inhibitory effects of tanshinones towards important UGT isoforms were evaluated in the present study, which provide helpful information for exploring the mechanism of danshen-clinical drugs interaction.
Collapse
Affiliation(s)
- Xu-Xin Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The Affiliated Zhongshan Hospital of Dalian University, Zhongshan District, Dalian, China
| | - Yun-Feng Cao
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The Affiliated Zhongshan Hospital of Dalian University, Zhongshan District, Dalian, China
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian, China
| | - Li-Xuan Wang
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The Affiliated Zhongshan Hospital of Dalian University, Zhongshan District, Dalian, China
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian, China
| | - Xiao-Lin Yuan
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhong-Ze Fang
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The Affiliated Zhongshan Hospital of Dalian University, Zhongshan District, Dalian, China
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian, China
- Department of Toxicology, School of Public Health, Tianjin Medical University, Heping District, Tianjin, China
| |
Collapse
|
15
|
Zhang H, Bu F, Li L, Jiao Z, Ma G, Cai W, Zhuang X, Lin HS, Shin JG, Xiang X. Prediction of Drug-Drug Interaction between Tacrolimus and Principal Ingredients of Wuzhi Capsule in Chinese Healthy Volunteers Using Physiologically-Based Pharmacokinetic Modelling. Basic Clin Pharmacol Toxicol 2017; 122:331-340. [PMID: 28945011 DOI: 10.1111/bcpt.12914] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
Schisantherin A and schisandrin A, the most abundant active ingredients of Wuzhi capsule, are known to inhibit tacrolimus metabolism by inhibiting CYP3A4/5. We aimed to predict the contribution of schisantherin A and schisandrin A to drug-drug interaction (DDI) between Wuzhi capsule and tacrolimus using physiologically-based pharmacokinetic (PBPK) modelling. Firstly, the inhibition mechanism of schisantherin A and schisandrin A on CYP3A4/5 was investigated. Thereafter, PBPK models of schisantherin A, schisandrin A and tacrolimus were established. Finally, tacrolimus pharmacokinetics were evaluated after the combined use with schisantherin A or schisandrin A. The blood area under the curve (AUC) of tacrolimus increased 1.77- and 2.61-fold after a single dose and multiple doses of schisantherin A, respectively. Meanwhile, schisandrin A inhibited tacrolimus metabolism to a smaller extent. Also, it showed that mechanism-based inhibition (MBI) played a more important role in DDI than reversible inhibition after long-term administration, while reversible inhibition was comparable to MBI after single-dose administration. In conclusion, we utilized PBPK modelling to quantify the contribution of schisantherin A and schisandrin A to DDI between tacrolimus and Wuzhi capsule. This may provide more insights for the rational use of this drug combination.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Clinical Pharmacy and Drug Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Fengjiao Bu
- Department of Clinical Pharmacy and Drug Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Lei Li
- Department of Clinical Pharmacy and Drug Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Zheng Jiao
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Guo Ma
- Department of Clinical Pharmacy and Drug Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Weimin Cai
- Department of Clinical Pharmacy and Drug Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Jae-Gook Shin
- Department of Pharmacology and Clinical Pharmacology, Inje University College of Medicine, Busan, South Korea
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Drug Administration, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Zhai J, Zhang F, Gao S, Chen L, Feng G, Yin J, Chen W. Time- and NADPH-Dependent Inhibition on CYP3A by Gomisin A and the Pharmacokinetic Interactions between Gomisin A and Cyclophosphamide in Rats. Molecules 2017; 22:molecules22081298. [PMID: 28786954 PMCID: PMC6152024 DOI: 10.3390/molecules22081298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022] Open
Abstract
The traditional Chinese medicine Schisandra chinensis has remarkable protective effects against chemical-induced toxicity. Cyclophosphamide (CTX), in spite advances in chemotherapy and immunosuppressive regimes, is prone to cause severe toxicity due to its chloroacetaldehyde (CAA) metabolite produced by CYP3A. Our previous study identified that S. chinensis extract (SCE) co-administration potently decreased CAA production and attenuated liver, kidney and brain injuries in CTX-treated rats. Gomisin A (Gom A) is proved to be one of the most abundant bioactive lignans in S. chinensis with a significant CYP3A inhibitory effect. To find out whether and how Gom A participated in the chemoprevention of SCE against CTX toxicity, the Gom A-caused CYP3A inhibition in vitro as well as the pharmacokinetic interactions between Gom A and CTX in vivo were examined in this study. Using human liver microsomes, a reversible inhibition assay revealed that Gom A was a competitive inhibitor with a KI value of 1.10 µM, and the time- and NADPH-dependent CYP3A inhibition of Gom A was observed in a time-dependent inhibition assay (KI = 0.35 µM, kinact = 1.96 min−1). Hepatic CYP3A mRNA expression experienced a significant increase in our rat model with Gom A administration. This explained why CAA production decreased in the 0.5 h- and 6 h-pretreatment rat groups while it increased in the 24 h- and 72 h-pretreatment groups, indicating a bidirectional effect of Gom A on CYP3A-mediated CTX metabolism. The present study suggested that Gom A participates like SCE in the pharmacokinetic intervention of CTX by blocking CYP3A-mediated metabolism and reducing CAA production, and thus plays an important role in the chemopreventive activity of S. chinensis against CTX toxicity, in addition to the previously recognized protective effects. Also, the combined use of S. chinensis preparation or other drugs containing Gom A as the main component with CTX needed to be addressed for better clinical intervention.
Collapse
Affiliation(s)
- Jianxiu Zhai
- School of Traditional Chinese Materia, Shenyang Pharmaceutical University, Shenyang 110016, China.
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Li Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China.
- Key Laboratory of Jiangxi Province for Research on Active Ingredients in Natural Medicines, Bioengineering Research Institute, Yichun University, Yichun 336000, China.
| | - Ge Feng
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China.
- Key Laboratory of Jiangxi Province for Research on Active Ingredients in Natural Medicines, Bioengineering Research Institute, Yichun University, Yichun 336000, China.
| | - Jun Yin
- School of Traditional Chinese Materia, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
17
|
Singh A, Zhao K. Herb-Drug Interactions of Commonly Used Chinese Medicinal Herbs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:197-232. [PMID: 28807159 DOI: 10.1016/bs.irn.2017.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With more and more popular use of traditional herbal medicines, in particular Chinese herbal medicines, herb-drug interactions have become a more and more important safety issue in the clinical applications of the conventional drugs. Researches in this area are increasing very rapidly. Herb-drug interactions are complicated due to the fact that multiple chemical components are involved, and these compounds may possess diverse pharmacological activities. Interactions can be in both pharmacokinetics and pharmacodynamics. Abundant studies focused on pharmacokinetic interactions of herbs and drugs. Herbs may affect the behavior of the concomitantly used drugs by changing their absorption, distribution, metabolism, and excretion. Studies on pharmacodynamics interactions of herbs and drugs are still very limited. Herb-drug interactions are potentially causing changes in drug levels and drug activities and leading to either therapeutic failure or toxicities. Sometime it can be fatal. The exposures to drugs, lacking of knowledge in the potential adverse herb-drug interactions, will put big risk to patients' safety in medical services. On the contrary, some interactions may be therapeutically beneficial. It may be used to help develop new therapeutic strategies in the future. This chapter is trying to review the development in the area of herb-drug interactions based on the recently published research findings. Information on the potential interactions among the commonly used Chinese medicinal herbs and conventional drugs is summarized in this chapter.
Collapse
Affiliation(s)
- Amrinder Singh
- Traditional Chinese Herbal Medicine Programme, Middlesex University, The Borough, Hendon, London, United Kingdom
| | - Kaicun Zhao
- Traditional Chinese Herbal Medicine Programme, Middlesex University, The Borough, Hendon, London, United Kingdom.
| |
Collapse
|
18
|
Zeng H, Jiang Y, Chen P, Fan X, Li D, Liu A, Ma X, Xie W, Liu P, Gonzalez FJ, Huang M, Bi H. Schisandrol B protects against cholestatic liver injury through pregnane X receptors. Br J Pharmacol 2017; 174:672-688. [PMID: 28128437 DOI: 10.1111/bph.13729] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Currently, ursodeoxycholic acid and obeticholic acid are the only two FDA-approved drugs for cholestatic liver diseases. Thus, new therapeutic approaches need to be developed. Here we have evaluated the anti-cholestasis effects of Schisandrol B (SolB), a bioactive compound isolated from Schisandra sphenanthera. EXPERIMENTAL APPROACH Hepatoprotective effect of SolB against intrahepatic cholestasis, induced by lithocholic acid (LCA), was evaluated in mice. Metabolomic analysis and gene analysis were used to assess involvement of pregnane X receptor (PXR). Molecular docking, cell-based reporter gene analysis and knockout mice were used to demonstrate the critical role of the PXR pathway in the anti-cholestasis effects of SolB. KEY RESULTS SolB protected against LCA-induced intrahepatic cholestasis. Furthermore, therapeutic treatment with SolB decreased mortality in cholestatic mice. Metabolomics and gene analysis showed that SolB accelerated metabolism of bile acids, promoted bile acid efflux into the intestine, and induced hepatic expression of the PXR-target genes Cyp3a11, Ugt1a1, and Oatp2, which are involved in bile acid homeostasis. Mechanistic studies showed that SolB activated human PXR and up-regulated PXR target genes in human cell lines. Additionally, SolB did not protect Pxr-null mice from liver injury induced by intrahepatic cholestasis, thus providing genetic evidence that the effect of SolB was PXR-dependent. CONCLUSION AND IMPLICATIONS These findings provide direct evidence for the hepatoprotective effects of SolB against cholestasis by activating PXR. Therefore, SolB may provide a new and effective approach to the prevention and treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Hang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaomei Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongshun Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo, China
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Effects of diammonium glycyrrhizinate on hepatic and intestinal UDP-Glucuronosyltransferases in rats: Implication in herb-drug interactions. Chin J Nat Med 2017; 14:534-40. [PMID: 27507204 DOI: 10.1016/s1875-5364(16)30063-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 11/23/2022]
Abstract
Glycyrrhizin is a major bioactive component of liquorice, which exerts multiple biochemical and pharmacological activities and is frequently used in combination with other drugs in the clinic. Mycophenolate mofetil (MMF), an immunosuppressant widely used in transplant patients, is metabolized by UDP-glucuronyltransferases (UGTs). Although significant evidence supports that glycyrrhizin could interact with the cytochrome P450s (CYPs), few studies have addressed its effects on UGTs. The present study aimed at investigating the regulatory effects of diammonium glycyrrhizinate (GLN) on UGTs in vitro and in vivo. We found that long-term administration of GLN in rats induced overall metabolism of MMF, which might be due to the induction of UGT1A protein expression. Hepatic UGT1A activity and UGT1A mRNA and protein expression were significantly increased in GLN-treated rats. UGT1A expression levels were also increased in the intestine, contradicting with the observed decrease in intestinal UGT1A activities. This phenomenon may be attributed to different concentrations of glycyrrhetinic acid (GA) in liver and intestine and the inhibitory effects of GA on UGT1A activity. In conclusion, our study revealed that GLN had multiple effects on the expression and activities of UGT1A isoforms, providing a basis for a better understanding of interactions between GLN and other drugs.
Collapse
|
20
|
Wang J, Wang H, Peng Y, Wang GJ, Hao HP. Isochlorogenic acid A affects P450 and UGT enzymes in vitro and in vivo. Chin J Nat Med 2016; 14:865-870. [PMID: 27914530 DOI: 10.1016/s1875-5364(16)30103-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/29/2022]
Abstract
Isochlorogenic acid A (ICQA), which has anti-inflammatory, hepatoprotective, and antiviral properties, is commonly presented in fruits, vegetables, coffee, plant-based food products, and herbal medicines. These herbal medicines are usually used in combination with other medicines in the clinic. However, little is known about the regulatory effects of ICQA on drug-metabolizing enzymes and the herb-drug interactions. In the present study, we evaluated the inhibitory potentials of ICQA on CYP1A2, CYP2C9, CYP2C19, CYP3A4, CYP2D6, and CYP2E1 in vitro based on a cocktail approach. The P450 and UGT activities in mice treated with ICQA for a prolonged period were also determined. Our results demonstrated that ICQA exhibited a weak inhibitory effect on CYP2C9 in human liver microsomes with IC50 being 57.25 μmol·L-1 and Ki being 26.77 μmol·L-1. In addition, ICQA inhibited UGT1A6 activity by 25%, in the mice treated with ICQA (i.p.) at 30 mg·kg-1 for 14 d, compared with the control group. Moreover, ICQA showed no mechanism-based inhibition on CYP2C9 or UGT1A6. In conclusion, our results further confirm a safe use of ICQA in clinical practice.
Collapse
Affiliation(s)
- Jing Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Peng
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guang-Ji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hai-Ping Hao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
21
|
Tian DD, Wang W, Wang HN, Sze SCW, Zhang ZJ. Pharmacokinetic Evaluation of Clozapine in Concomitant Use of Radix Rehmanniae, Fructus Schisandrae, Radix Bupleuri, or Fructus Gardeniae in Rats. Molecules 2016; 21:molecules21060696. [PMID: 27240333 PMCID: PMC6272930 DOI: 10.3390/molecules21060696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022] Open
Abstract
Radix Rehmanniae, Fructus Schisandrae, Radix Bupleuri, and Fructus Gardeniae are often used alongside with clozapine (CLZ) for schizophrenia patients in order to reduce side effects and enhance therapeutic efficacy. However, worse outcomes were observed raising concern about a critical issue, herb-drug interactions, which were rarely reported when antipsychotics were included. This study aims to determine whether the concomitant use of these herbal medicines affects the pharmacokinetic characteristics of CLZ in rat models. Rats were given a single or multiple intraperitoneal injections of 10 mg/kg CLZ, either alone or with individual herbal water extracts administered orally. CLZ and its two inactive metabolites, norclozapine and clozapine N-oxide, were determined by high-performance liquid chromatography/tandem mass spectrometry. In the acute treatment, the formation of both metabolites was reduced, while no significant change was observed in the CLZ pharmacokinetics for any of the herbal extracts. In the chronic treatment, none of the four herbal extracts significantly influenced the pharmacokinetic parameters of CLZ and its metabolites. Renal and liver functions stayed normal after the 11-day combined use of herbal medicines. Overall, the four herbs had limited interaction effect on CLZ pharmacokinetics in the acute and chronic treatment. Herb-drug interaction includes both pharmacokinetic and pharmacodynamic mechanisms. This result gives us a hint that pharmacodynamic herb-drug interaction, instead of pharmacokinetic types, may exist and need further confirmation.
Collapse
Affiliation(s)
- Dan-Dan Tian
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | - Wei Wang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | - Hua-Ning Wang
- Department of Psychiatry, the fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Stephen Cho Wing Sze
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Wang W, Tian DD, Zhang ZJ. In Vitro Effects of Concomitant Use of Herbal Preparations on Cytochrome P450s Involved in Clozapine Metabolism. Molecules 2016; 21:molecules21050597. [PMID: 27164071 PMCID: PMC6273925 DOI: 10.3390/molecules21050597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022] Open
Abstract
Herbal supplements are increasingly used in psychiatric practice. Our epidemiological study has identified several herbal preparations associated with adverse outcomes of antipsychotic therapy. In this study, we evaluated the in vitro effects of four herbal preparations—Radix Rehmanniae (RR), Fructus Schisandrae (FS), Radix Bupleuri (RB) and Fructus Gardeniae (FG)—on cytochrome P450s (CYPs) involved in the metabolism of clozapine in human liver microsomes (HLMs) and recombinant human cytochrome P450 enzymes (rCYPs). N-desmethylclozapine and clozapine N-oxide, two major metabolites of clozapine, were measured using high-performance liquid chromatography (HPLC). FG, RR and RB showed negligible inhibitory effects in both in vitro systems, with estimated half-maximal inhibitory concentrations (IC50) and apparent inhibitory constant values (Ki) greater than 1 mg/mL (raw material), suggesting that minimal metabolic interaction occurs when these preparations are used concomitantly with clozapine. The FS extract affected CYP activity with varying potency; its effect on CYP 3A4-catalyzed clozapine oxidation was relatively strong (Ki: 0.11 mg/mL). Overall, the weak-to-moderate inhibitory effect of FS on in vitro clozapine metabolism indicated its potential role in herb-drug interaction in practice.
Collapse
Affiliation(s)
- Wei Wang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Dan-Dan Tian
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
23
|
Ma BL, Ma YM. Pharmacokinetic herb–drug interactions with traditional Chinese medicine: progress, causes of conflicting results and suggestions for future research. Drug Metab Rev 2016; 48:1-26. [DOI: 10.3109/03602532.2015.1124888] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Lai Q, Wei J, Mahmoodurrahman M, Zhang C, Quan S, Li T, Yu Y. Pharmacokinetic and nephroprotective benefits of using Schisandra chinensis extracts in a cyclosporine A-based immune-suppressive regime. Drug Des Devel Ther 2015; 9:4997-5018. [PMID: 26355803 PMCID: PMC4560515 DOI: 10.2147/dddt.s89876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cyclosporine A (CsA) is a powerful immunosuppressive drug. However, nephrotoxicity resulting from its long-term usage has hampered its prolonged therapeutic usage. Schisandra chinensis extracts (SCE) have previously been used in traditional Chinese medicine and more recently coadministered with Western medicine for the treatment of CsA-induced side effects in the People’s Republic of China. This study aimed to investigate the possible effects of SCE on the pharmacokinetics of CsA in rats and elucidate the potential mechanisms by which it hinders the development of CsA-induced nephrotoxicity. A liquid chromatography/tandem mass spectrometry method was developed and validated for determining the effect of SCE on the pharmacokinetics of CsA. Male Sprague Dawley rats, which were administered with CsA (25 mg/kg/d) alone or in combination with SCE (54 mg/kg/d and 108 mg/kg/d) for 28 days, were used to evaluate the nephroprotective effects of SCE. Our study showed that SCE increased the mean blood concentration of CsA. Furthermore, we found that the concomitant administration of SCE alongside CsA prevented the disruption of catalase activity and reduction in creatinine, urea, renal malondialdehyde, and glutathione peroxidase levels that would have otherwise occurred in the absence of SCE administration. SCE treatment markedly suppressed the expression of 4-hydroxynonenal, Bcl-2-associated X protein, cleaved caspase 3, and autophagy-related protein LC3 A/B. On the other hand, the expression of heme oxygenase-1, nuclear factor erythroid 2-related factor 2 (Nrf2), and P-glycoprotein was enhanced by the very same addition of SCE. SCE was also able to increase the systemic exposure of CsA in rats. The renoprotective effects of SCE were thought to be mediated by its antiapoptotic and antioxidant abilities, which caused the attenuation of CsA-induced autophagic cell death. All in all, these findings suggest the prospective use of SCE as an effective adjunct in a CsA-based immunosuppressive regimen.
Collapse
Affiliation(s)
- Qiao Lai
- Department of Formulas of Traditional Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jiabao Wei
- Department of Formulas of Traditional Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | | | - Chenxue Zhang
- Department of Formulas of Traditional Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Shijian Quan
- Department of Formulas of Traditional Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Tongming Li
- Department of Formulas of Traditional Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yang Yu
- Department of Formulas of Traditional Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
25
|
Korobkova EA. Effect of Natural Polyphenols on CYP Metabolism: Implications for Diseases. Chem Res Toxicol 2015; 28:1359-90. [PMID: 26042469 DOI: 10.1021/acs.chemrestox.5b00121] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cytochromes P450 (CYPs) are a large group of hemeproteins located on mitochondrial membranes or the endoplasmic reticulum. They play a crucial role in the metabolism of endogenous and exogenous molecules. The activity of CYP is associated with a number of factors including redox potential, protein conformation, the accessibility of the active site by substrates, and others. This activity may be potentially modulated by a variety of small molecules. Extensive experimental data collected over the past decade point at the active role of natural polyphenols in modulating the catalytic activity of CYP. Polyphenols are widespread micronutrients present in human diets of plant origin and in medicinal herbs. These compounds may alter the activity of CYP either via direct interactions with the enzymes or by affecting CYP gene expression. The polyphenol-CYP interactions may significantly alter the pharmacokinetics of drugs and thus influence the effectiveness of chemical therapies used in the treatment of different types of cancers, diabetes, obesity, and cardiovascular diseases (CVD). CYPs are involved in the oxidation and activation of external carcinogenic agents, in which case the inhibition of the CYP activity is beneficial for health. CYPs also support detoxification processes. In this case, it is the upregulation of CYP genes that would be favorable for the organism. A CYP enzyme aromatase catalyzes the formation of estrone and estradiol from their precursors. CYPs also catalyze multiple reactions leading to the oxidation of estrogen. Estrogen signaling and oxidative metabolism of estrogen are associated with the development of cancer. Thus, polyphenol-mediated modulation of the CYP's activity also plays a vital role in estrogen carcinogenesis. The aim of the present review is to summarize the data collected over the last five to six years on the following topics: (1) the mechanisms of the interactions of CYP with food constituents that occur via the direct binding of polyphenols to the enzymes and (2) the mechanisms of the regulation of CYP gene expression mediated by polyphenols. The structure-activity relationship relevant to the ability of polyphenols to affect the activity of CYP is analyzed. The application of polyphenol-CYP interactions to diseases is discussed.
Collapse
Affiliation(s)
- Ekaterina A Korobkova
- John Jay College of Criminal Justice, The Department of Sciences, City University of New York, 524 W 59th Street, New York, New York 10019, United States
| |
Collapse
|
26
|
Jiang Y, Fan X, Wang Y, Tan H, Chen P, Zeng H, Huang M, Bi H. Hepato-protective effects of six schisandra lignans on acetaminophen-induced liver injury are partially associated with the inhibition of CYP-mediated bioactivation. Chem Biol Interact 2015; 231:83-9. [PMID: 25753323 DOI: 10.1016/j.cbi.2015.02.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. Schisandra fructus is widely-used traditional Chinese medicine which possesses hepato-protective potential. Schisandrin A (SinA), Schisandrin B (SinB), Schisandrin C (SinC), Schisandrol A (SolA), Schisandrol B (SolB), and Schisantherin A (SthA) are the major bioactive lignans. Most recently, we found SolB exerts significant hepato-protection against APAP-induced liver injury. In this study, the protective effects of the other five schisandra lignans against APAP-induced acute hepatotoxicity in mice were investigated and compared with that of SolB. The results of morphological and biochemical assessment clearly demonstrated significant protective effects of SinA, SinB, SinC, SolA, SolB, and SthA against APAP-induced liver injury. Among these schisandra lignans, SinC and SolB exerted the strongest hepato-protective effects against APAP-induced hepatotoxicity. Six lignans pretreatment before APAP dosing could prevent the depletions of total liver glutathione (GSH) and mitochondrial GSH caused by APAP. Additionally, the lignans treatment inhibited the enzymatic activities of three CYP450 isoforms (CYP2E1, CYP1A2, and CYP3A11) related to APAP bioactivation, and further decreased the formation of APAP toxic intermediate N-acetyl-p-benzoquinone imine (NAPQI) in mouse microsomal incubation system. This study demonstrated that SinA, SinB, SinC, SolA, SolB and SthA exhibited significant protective actions toward APAP-induced liver injury, which was partially associated with the inhibition of CYP-mediated APAP bioactivation.
Collapse
Affiliation(s)
- Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaomei Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huasen Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pan Chen
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
27
|
Jiang Y, Fan X, Wang Y, Chen P, Zeng H, Tan H, Gonzalez FJ, Huang M, Bi H. Schisandrol B protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of liver regeneration. Toxicol Sci 2014; 143:107-15. [PMID: 25319358 DOI: 10.1093/toxsci/kfu216] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. Schisandra sphenanthera is a traditional hepato-protective Chinese medicine and Schisandrol B (SolB) is one of its major active constituents. In this study, the protective effect of SolB against APAP-induced acute hepatotoxicity in mice and the involved mechanisms were investigated. Morphological and biochemical assessments clearly demonstrated a protective effect of SolB against APAP-induced liver injury. SolB pretreatment significantly attenuated the increases in alanine aminotransferase and aspartate aminotransferase activity, and prevented elevated hepatic malondialdehyde formation and the depletion of mitochondrial glutathione (GSH) in a dose-dependent manner. SolB also dramatically altered APAP metabolic activation by inhibiting the activities of CYP2E1 and CYP3A11, which was evidenced by significant inhibition of the formation of the oxidized APAP metabolite NAPQI-GSH. A molecular docking model also predicted that SolB had potential to interact with the CYP2E1 and CYP3A4 active sites. In addition, SolB abrogated APAP-induced activation of p53 and p21, and increased expression of liver regeneration and antiapoptotic-related proteins such as cyclin D1 (CCND1), PCNA, and BCL-2. This study demonstrated that SolB exhibited a significant protective effect toward APAP-induced liver injury, potentially through inhibition of CYP-mediated APAP bioactivation and regulation of the p53, p21, CCND1, PCNA, and BCL-2 to promote liver regeneration.
Collapse
Affiliation(s)
- Yiming Jiang
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xiaomei Fan
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ying Wang
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Pan Chen
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hang Zeng
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Huasen Tan
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Frank J Gonzalez
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Min Huang
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Huichang Bi
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Fan X, Jiang Y, Wang Y, Tan H, Zeng H, Wang Y, Chen P, Qu A, Gonzalez FJ, Huang M, Bi H. Wuzhi tablet (Schisandra Sphenanthera extract) protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of NRF2-ARE and p53/p21 pathways. Drug Metab Dispos 2014; 42:1982-90. [PMID: 25217484 DOI: 10.1124/dmd.114.059535] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Schisandra sphenanthera is widely used as a tonic and restorative in many countries to enhance the function of liver and other organs. Wuzhi tablet (WZ) is a preparation of an ethanol extract of Schisandra sphenanthera. Our previous study demonstrated that WZ exerted a protective effect toward acetaminophen (APAP)-induced hepatotoxicity. However, the molecular mechanisms of this protection remain unclear. This study aimed to determine what molecular pathways contributed to the hepatoprotective effects of WZ against APAP toxicity. Administration of WZ 3 days before APAP treatment significantly attenuated APAP hepatotoxicity in a dose-dependent manner and reduced APAP-induced JNK activation. Treatment with WZ resulted in potent inhibition of CYP2E1, CYP3A11, and CYP1A2 activities and then caused significant inhibition of the formation of the oxidized APAP metabolite N-acetyl-p-benzoquinone imine-reduced glutathione. The expression of NRF2 was increased after APAP and/or WZ treatment, whereas KEAP1 levels were decreased. The protein expression of NRF2 target genes including Gclc, Gclm, Ho-1, and Nqo1 was significantly increased by WZ treatment. Furthermore, APAP increased the levels of p53 and its downstream gene p21 to trigger cell cycle arrest and apoptosis, whereas WZ pretreatment could inhibit p53/p21 signaling to induce cell proliferation-associated proteins including cyclin D1, CDK4, PCNA, and ALR to promote hepatocyte proliferation. This study demonstrated that WZ prevented APAP-induced liver injury by inhibition of cytochrome P450-mediated APAP bioactivation, activation of the NRF2-antioxidant response element pathway to induce detoxification and antioxidation, and regulation of the p53, p21, cyclin D1, CDK4, PCNA, and ALR to facilitate liver regeneration after APAP-induced liver injury.
Collapse
Affiliation(s)
- Xiaomei Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yo.W., H.T., H.Z., Yi. W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (A.Q., F.J.G)
| | - Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yo.W., H.T., H.Z., Yi. W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (A.Q., F.J.G)
| | - Ying Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yo.W., H.T., H.Z., Yi. W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (A.Q., F.J.G)
| | - Huasen Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yo.W., H.T., H.Z., Yi. W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (A.Q., F.J.G)
| | - Hang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yo.W., H.T., H.Z., Yi. W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (A.Q., F.J.G)
| | - Yongtao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yo.W., H.T., H.Z., Yi. W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (A.Q., F.J.G)
| | - Pan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yo.W., H.T., H.Z., Yi. W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (A.Q., F.J.G)
| | - Aijuan Qu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yo.W., H.T., H.Z., Yi. W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (A.Q., F.J.G)
| | - Frank J Gonzalez
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yo.W., H.T., H.Z., Yi. W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (A.Q., F.J.G)
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yo.W., H.T., H.Z., Yi. W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (A.Q., F.J.G)
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yo.W., H.T., H.Z., Yi. W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (A.Q., F.J.G)
| |
Collapse
|
29
|
Hu N, Hu M, Duan R, Liu C, Guo H, Zhang M, Yu Y, Wang X, Liu L, Liu X. Increased Levels of Fatty Acids Contributed to Induction of Hepatic CYP3A4 Activity Induced by Diabetes — In Vitro Evidence From HepG2 Cell and Fa2N-4 Cell Lines. J Pharmacol Sci 2014; 124:433-44. [DOI: 10.1254/jphs.13212fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
30
|
Morisaki T, Hou XL, Takahashi K, Takahashi K. Baicalin pharmacokinetic profile of absorption process using novel in-vitro model: cytochrome P450 3A4-induced Caco-2 cell monolayers combined with rat intestinal rinse fluids. J Pharm Pharmacol 2013; 65:1526-35. [DOI: 10.1111/jphp.12127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/04/2013] [Indexed: 12/23/2022]
Abstract
Abstract
Objectives
This study was designed to investigate baicalin (BG) pharmacokinetic profile in absorption process using a new model and evaluate the potentiality as a new model.
Methods
The effects of BG on intestinal cytochrome P450 3A4 (CYP3A) protein/mRNA expression, activity and permeability glycoprotein (P-gp) were evaluated in CYP3A4-induced Caco-2 cell monolayers or rats. Intestinal rinse fluids (IF) were obtained from rat were added to modified Caco-2 monolayers.
Key findings
Orally administered BG (7 days pretreatment) inhibited intestinal CYP3A activity and protein expression. Baicalein (B) converted from BG by IF was detected in the upper jejunum in a portion-dependent manner. Subsequently, most BG were converted to B in the caecum. In modified Caco-2 monolayers, BG exhibited no effect on CYP3A4 activity or mRNA, whereas B and BG treated with IF inhibited CYP3A4 transcription and activity.
Conclusions
Intestinal CYP3A was inhibited following oral administration of BG to rat. Correspondingly, BG-mediated CYP3A inhibition was shown in vitro using modified Caco-2 monolayers treated with IF. Hence, in-vivo intestinal absorption pharmacokinetic was reproduced in vitro. IF is a key determinant of intestinal absorption, and it facilitated inhibition of CYP3A by B, not BG.
Collapse
Affiliation(s)
- Tomoko Morisaki
- Department of Applied Pharmacognosy, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Xiao-Long Hou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo, Japan
| | - Kyoko Takahashi
- Basic Research Group for the Assembly and Preservation of Primary Materials, The Museum of Osaka University, Osaka, Japan
| | - Koichi Takahashi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo, Japan
| |
Collapse
|
31
|
Li WL, Xin HW, Yu AR, Wu XC. In vivo effect of Schisandrin B on cytochrome P450 enzyme activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:760-765. [PMID: 23523258 DOI: 10.1016/j.phymed.2013.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/19/2012] [Accepted: 02/20/2013] [Indexed: 06/02/2023]
Abstract
To investigate the possible drug interaction, this study is designed to evaluate the ability of Schisandrin B (Sch B) to modulate cytochrome P450 3A activity (CYP3A) in vivo and to alter the pharmacokinetic profiles of CYP3A substrate (midazolam) in treated rats. Rats were repeated administered with physiological saline (negative control group), ketoconazole (75 mg/kg, positive control group) or varied doses of Sch B (experimental groups) for three consecutive days. Subsequently, changes in hepatic microsomal CYP3A activity and the pharmacokinetic profiles of midazolam and 1'-hydroxy midazolam in plasma were studied to evaluate CYP3A activity. The results indicated that Sch B significantly dose-dependently inhibited rat hepatic microsomal CYP3A activity with Ki value of 16.64 mg/kg and showed the characteristic of a noncompetitive inhibitor. Oral administration of Sch B for 3 days in rats produced significant effect on the pharmacokinetics of oral midazolam. Sch B resulted in a significant, dose-dependent increase in midazolam AUC0-∞ except at the dose of 2 mg/kg, while AUC0-∞ increased by 26.1% (8 mg/kg) and 60.6% (16 mg/kg), respectively. In the pharmacokinetic profiles of 1'-hydroxy midazolam, the significant, dose-dependent decrease in AUC0-∞ was observed except at the dose of 2 mg/kg, while AUC0-∞ reduced by 44.5% (8 mg/kg) and 49.2% (16 mg/kg), respectively. These results suggested that 3-day treatment of Sch B could increase concentration and oral bioavailability of drug metabolized by CYP3A. When the drug, consisting of Sch B, is used in the clinic for more than 3 days, the possible drug-drug interactions should be taken into consideration.
Collapse
Affiliation(s)
- Wei-Liang Li
- Department of Clinical Pharmacology, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | | | | | | |
Collapse
|
32
|
Xu H, Gan J, Liu X, Wu R, Jin Y, Li M, Yuan B. Gender-dependent pharmacokinetics of lignans in rats after single and multiple oral administration of Schisandra chinensis extract. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:224-231. [PMID: 23501155 DOI: 10.1016/j.jep.2013.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/18/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (S. chinensis), a traditional Chinese medicine, has been widely used as sedatives and tonics in clinic. Schisandra lignans are believed to be the major bioactive components in S. chinensis. However, there is a lack of information about the effects of gender and repeated-dose on the pharmacokinetic properties of the schisandra lignans. AIM OF THE STUDY The study was performed to investigate the influence of gender on the pharmacokinetics of schisandra lignans after administration of S. chinensis extract and to compare their pharmacokinetic behaviors between single and multiple administration. MATERIALS AND METHODS Two groups of rats (half male and half female) were received a single dose or multiple doses of S. chinensis extract, respectively. A liquid chromatography-tandem mass spectrometry method was developed and validated to determine the plasma concentrations of schisandra lignans. RESULTS The pharmacokinetic parameters of schisandrin, schisandrol B, deoxyschisandrin, γ-schisandrin and schisantherin A were significantly different by gender difference. The t1/2 of all the tested schisandra lignans in female rats were 2-9 times longer than the corresponding values in male rats. The Cmax and AUC0-t of these schisandra lignans except schisantherin A in female rats were 5-50 times higher than those in male rats. The pharmacokinetic profiles of schisandrin, schisandrol B, deoxyschisandrin and schisantherin A in both gender rats after multiple doses were similar to the corresponding profile after single dose. CONCLUSION All the tested schisandra lignans showed slower elimination and higher bioavailability in female rats after single or multiple administration of S. chinensis extract compared with male rats. Their pharmacokinetic profiles were not affected by repeated-dose except γ-schisandrin, which was eliminated more slowly in female rats after multiple administration.
Collapse
Affiliation(s)
- Haiyan Xu
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Wei H, Tao X, Di P, Yang Y, Li J, Qian X, Feng J, Chen W. Effects of Traditional Chinese Medicine Wuzhi Capsule on Pharmacokinetics of Tacrolimus in Rats. Drug Metab Dispos 2013; 41:1398-403. [DOI: 10.1124/dmd.112.050302] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
34
|
Su T, Mao C, Yin F, Yu Z, Lin Y, Song Y, Lu T. Effects of unprocessed versus vinegar-processed Schisandra chinensis on the activity and mRNA expression of CYP1A2, CYP2E1 and CYP3A4 enzymes in rats. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:734-743. [PMID: 23376044 DOI: 10.1016/j.jep.2013.01.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (SC) is a well-known traditional Chinese herbal medicine that has been used in clinical practices for thousands of years. However, the differences between the effects of unprocessed and vinegar-processed Schisandra chinensis (VSC) on cytochrome P450 (CYP450) activities are poorly understood. AIM OF THE STUDY To evaluate the differences between processed and unprocessed SC on the metabolism of CYP1A2, CYP2E1 and CYP3A4 substrates in rats using a cocktail method based on a developed and validated HPLC method. We also investigate the influence of processing on the levels of CYP mRNA. MATERIALS AND METHODS Three probe substrates (theophylline, dapsone and chlorzoxazone) were delivered simultaneously into rats treated with single or multiple doses of processed or unprocessed SC extract. The plasma concentrations of the three probes were profiled by HPLC, and their corresponding pharmacokinetic parameters were calculated. Real-time RT-PCR was performed to determine the effects of processed and unprocessed SC on the mRNA expression of CYP1A2, CYP2E1 and CYP3A4 in the liver. RESULTS Treatment with single or multiple doses of either extract of SC induced CYP3A4 enzyme activity and inhibited CYP1A2 enzyme activity in rats. Furthermore, the inhibitory effect of SC was more potent after vinegar processing than without vinegar processing. CYP2E1 enzyme activity was induced after treatment with a single dose but was inhibited after multiple doses. The mRNA expression results were in accordance with the pharmacokinetic results. CONCLUSIONS These results provide useful scientific data for the safe clinical application of either extract of SC in combination with other drugs, which should lack the side effects induced by other herb-drug interactions.
Collapse
Affiliation(s)
- Tao Su
- The Key Laboratory of Chinese Herbal Medicine Processing of Jiangsu Province, Nanjing, 210046, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Cong M, Hu CM, Cao YF, Fang ZZ, Tang SH, Wang JR, Luo JS. Cryptotanshinone and dihydrotanshinone I exhibit strong inhibition towards human liver microsome (HLM)-catalyzed propofol glucuronidation. Fitoterapia 2013; 85:109-13. [PMID: 23333907 DOI: 10.1016/j.fitote.2013.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/31/2012] [Accepted: 01/06/2013] [Indexed: 10/27/2022]
Abstract
Danshen is one of the most famous herbs in the world, and more and more danshen-prescribed drugs interactions have been reported in recent years. Evaluation of inhibition potential of danshen's major ingredients towards UDP-glucuronosyltransferases (UGTs) will be helpful for understanding detailed mechanisms for danshen-drugs interaction. Therefore, the aim of the present study is to investigate the inhibitory situation of cryptotanshinone and dihydrotanshinone I towards UGT enzyme-catalyzed propofol glucuronidation. In vitro the human liver microsome (HLM) incubation system was used, and the results showed that cryptotanshinone and dihydrotanshinone I exhibited dose-dependent inhibition towards HLM-catalyzed propofol glucuronidation. Dixon plot and Lineweaver-Burk plot showed that the inhibition type was best fit to competitive inhibition type for both cryptotanshinone and dihydrotanshinone I. The second plot using the slopes from the Lineweaver-Burk plot versus the concentrations of cryptotanshinone or dihydrotanshinone I was employed to calculate the inhibition parameters (Ki) to be 0.4 and 1.7μM, respectively. Using the reported maximum plasma concentration (Cmax), the altered in vivo exposure of propofol increased by 10% and 8.2% for the co-administration of dihydrotanshinone I and cryptotanshinone, respectively. All these results indicated the possible danshen-propofol interaction due to the inhibition of dihydrotanshinone I and cryptotanshinone towards the glucuronidation reaction of propofol.
Collapse
Affiliation(s)
- Ming Cong
- First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Gouws C, Steyn D, Du Plessis L, Steenekamp J, Hamman JH. Combination therapy of Western drugs and herbal medicines: recent advances in understanding interactions involving metabolism and efflux. Expert Opin Drug Metab Toxicol 2012; 8:973-84. [DOI: 10.1517/17425255.2012.691966] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Xie Y, Wang G, Wang H, Yao X, Jiang S, Kang A, Zhou F, Xie T, Hao H. Cytochrome P450 dysregulations in thioacetamide-induced liver cirrhosis in rats and the counteracting effects of hepatoprotective agents. Drug Metab Dispos 2012; 40:796-802. [PMID: 22266841 DOI: 10.1124/dmd.111.043539] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dysregulations of cytochromes P450 (P450s) under liver injury have been extensively studied. However, little is known about the possible reversing effects of hepatoprotective agents, the understanding of which is of great importance in guiding clinical dosage adjustment for patients with liver injury. This study aims to investigate the dysregulation patterns of major P450s in thioacetamide (TAA)-induced liver cirrhosis in rats and the potential counteracting effects of hepatoprotective agents schisandra lignans extract (SLE) and dimethyl diphenyl bicarboxylate (DDB). TAA intoxications for 6 weeks induced apparent liver injury and dramatically reduced the hepatic protein expressions of CYP1A2, CYP2C6, CYP2E1, and CYP3A2 to 18, 71, 30, and 21% of that in the normal control, respectively. Both SLE and DDB treatments could significantly reverse the TAA-induced loss of P450 protein levels, which may be ascribed to their hepatoprotective effects and direct P450-inducing effects that have been confirmed in healthy rats. However, the recovery of enzyme activities of most P450s by SLE and DDB treatment was less evident than that for the protein expression levels. TAA exhibited NADPH-, time-, and concentration-dependent inactivating effects on all of the four major P450 isozymes; both DDB and GSH showed little effects on counteracting such an inactivation efficacy. These findings provided a good explanation on the disproportional effects of hepatoprotective agents in recovering the protein levels and enzyme activities of TAA-induced dysregulated P450s.
Collapse
Affiliation(s)
- Yuan Xie
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jin J, Bi H, Hu J, Zeng H, Zhong G, Zhao L, Huang Z, Huang M. Effect of Wuzhi tablet (Schisandra sphenanthera extract) on the pharmacokinetics of paclitaxel in rats. Phytother Res 2011; 25:1250-3. [PMID: 21796700 DOI: 10.1002/ptr.3407] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/11/2010] [Accepted: 12/20/2010] [Indexed: 11/11/2022]
Abstract
Wuzhi tablet (WZ, registration no. in China: Z20025766) is a preparation of an ethanol herb extract of Wuweizi (Schisandra sphenanthera) containing 7.5 mg Schisantherin A per tablet. It was reported recently that WZ could significantly increase the blood concentrations of tacrolimus, which might be due to the inhibitory effect of WZ and its ingredients on P-gp and/or CYP450 activity. Paclitaxel is a substrate of the efflux transporter P-gp, and is mainly metabolized by CYP450 enzymes in the liver. Therefore, the purpose of this study was to investigate whether and how WZ affects the pharmacokinetics of paclitaxel in rats. After pretreatment with WZ, there were significant increases in the AUC(0-24h) of oral paclitaxel (from 280.8 ± 97.3 to 543.5 ± 115.2 h ng/mL; p < 0.05) and C(max) (from 44.6 ± 16.4 to 86.8 ± 16.1 ng/mL; p < 0.05). The pharmacokinetic data for i.v. paclitaxel with WZ showed a relatively small (when compared against oral paclitaxel) but still significant increase in AUC(0-24h) (from 163.6 ± 22.1 to 212.7 ± 17.7 h ng/mL; p < 0.05) and a decrease in clearance (from 3.2 ± 0.6 to 2.2 ± 0.3 L/h/kg; p < 0.05). Thus, the presence of WZ improved the systemic exposure of paclitaxel in rats. The herb-drug interaction between WZ and paclitaxel should be taken into consideration in clinical use.
Collapse
Affiliation(s)
- Jing Jin
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Xie Y, Hao H, Kang A, Liang Y, Xie T, Sun S, Dai C, Zheng X, Xie L, Li J, Wang G. Integral pharmacokinetics of multiple lignan components in normal, CCl4-induced hepatic injury and hepatoprotective agents pretreated rats and correlations with hepatic injury biomarkers. JOURNAL OF ETHNOPHARMACOLOGY 2010; 131:290-299. [PMID: 20600750 DOI: 10.1016/j.jep.2010.06.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/18/2010] [Accepted: 06/23/2010] [Indexed: 05/29/2023]
Abstract
Although pharmacokinetic alternations by hepatic injury have been extensively studied, little is known about the potential influence of hepatoprotective agent's treatment. This study was aimed to investigate the holistic pharmacokinetics of multiple lignans, CYP3A regulations, and their correlations with hepatic injury biomarkers, in hepatic injured rats pretreated with or without schisandra lignan extract (SLE) and dimethyl-diphenyl-bicarboxylate (DDB). Integral pharmacokinetics of multiple lignans based on an AUC-weighting approach was determined in normal, CCl4 induced hepatic injury rats pretreated with or without SLE and DDB. Protein expression and activities of CYP3A were determined. Pharmacokinetic parameters and CYP3A activities were correlated with serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. CCl4 induced acute hepatic injury resulted in a nearly 8-fold enhancement of integral plasma exposures of multiple lignans, which was caused by the significant down-regulation of CYP3A. SLE and DDB pretreatment exhibited potent hepatoprotective effects, accompanied with the restored expression and activity of CYP3A, and the recovery of the respective and integral pharmacokinetics of lignans components. The integral AUC(0-tn) and CYP3A activities correlated well with ALT and AST. This study suggested that the pharmacokinetic regulating effects of hepatoprotective agent's on themselves and co-prescribed drugs should be of concern, and hepatic injury biomarkers may serve as good predictors.
Collapse
Affiliation(s)
- Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Unit of SATCM for Pharmacokinetic Methodology of TCM Complex Prescription, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jin J, Bi H, Hu J, Zhong G, Zhao L, Huang Z, Huang M. Enhancement of oral bioavailability of paclitaxel after oral administration of Schisandrol B in rats. Biopharm Drug Dispos 2010; 31:264-8. [PMID: 20437465 DOI: 10.1002/bdd.705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Paclitaxel is a substrate of the efflux transporters such as P-glycoprotein, and is mainly metabolized by the liver. Schisandrol B (Sch B), one of the active components in Schisandra, has been reported to be able to inhibit the activity of P-gp and CYP3A. It might be possible that Sch B would alter the pharmacokinetic behavior of paclitaxel. Therefore, the purpose of this study was to investigate the effect of Sch B on the pharmacokinetics of paclitaxel administered orally and intravenously in rats. Paclitaxel were administered to rats orally (30 mg/kg) or intravenously (0.5 mg/kg) with or without the concomitant administration of Sch B (10 or 25 mg/kg). Oral pharmacokinetic parameters of paclitaxel were significantly altered when pretreated with Sch B. There were significant increases in AUC(0-24h) (from 297.7+/-110.3 to 838.9+/-302.1 h*ng/ml; p<0.05) and C(max) (from 51.7+/-20.1 to 136.4+/-35.5 ng/ml; p<0.05) in the presence of Sch B (25 mg/kg). The pharmacokinetic parameters for i.v. paclitaxel were not significantly affected by Sch B in contrast to that of oral administration. Since the presence of Sch B enhanced the systemic exposure of paclitaxel, their pharmacokinetic interaction should be taken into consideration. As the oral bioavailability of paclitaxel was increased about 3-fold in the presence of Sch B, the concomitant use of Sch B may provide a benefit in the oral delivery of paclitaxel.
Collapse
Affiliation(s)
- Jing Jin
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Hao H, Lai L, Zheng C, Wang Q, Yu G, Zhou X, Wu L, Gong P, Wang G. Microsomal cytochrome p450-mediated metabolism of protopanaxatriol ginsenosides: metabolite profile, reaction phenotyping, and structure-metabolism relationship. Drug Metab Dispos 2010; 38:1731-9. [PMID: 20639434 DOI: 10.1124/dmd.110.033845] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although the biotransformation of ginsenosides in the gastrointestinal tract has been extensively studied, much less is known about hepatic cytochrome P450 (P450)-catalyzed metabolism. The major aims of this study were to clarify the metabolic pathway and P450 isoforms involved and to explore the structure-metabolism relationship of protopanaxatriol (PPT)-type ginsenosides in hepatic microsomes. Efficient depletion of ginsenoside Rh1, Rg2, Rf, and PPT was found, whereas the elimination of Re and Rg1, characterized by a glucose substitution at the C20 hydroxy group, was negligible in microsomal incubation systems. Based on high-performance liquid chromatography hybrid ion trap and time-of-flight mass spectrometry analysis, the oxygenation metabolism on the C20 aliphatic branch chain was identified as the predominant metabolic pathway of PPT ginsenosides in both human and rat hepatic microsomes. By a comparison with authentic standards, the C24-25 double bond was identified as one of the oxygenation sites to produce the metabolites of C20-24 epoxide (ocotillol-type ginsenosides). Both chemical inhibition and human recombinant P450 isoform assays indicated that CYP3A4 was the predominant isozyme responsible for the oxygenation metabolism of PPT ginsenosides. Enzyme kinetic evaluations in rat and human hepatic microsomes and human recombinant CYP3A4 isozyme incubation systems showed generally consistent results in that the intrinsic clearance ranked as Rf ≤ Rg2 < Rh1 < PPT, closely correlating with logP values and the number of glycosyl substitutions. Results obtained from this study suggest that CYP3A4-catalyzed oxygenation metabolism plays an important role in the hepatic disposition of ginsenosides and that glycosyl substitution, especially at the C20 hydroxy group, determines their intrinsic clearances by CYP3A4.
Collapse
Affiliation(s)
- Haiping Hao
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liang Y, Hao H, Xie L, Kang A, Xie T, Zheng X, Dai C, Hao K, Sheng L, Wang G. Development of a Systematic Approach to Identify Metabolites for Herbal Homologs Based on Liquid Chromatography Hybrid Ion Trap Time-of-Flight Mass Spectrometry: Gender-Related Difference in Metabolism of Schisandra Lignans in Rats. Drug Metab Dispos 2010; 38:1747-59. [DOI: 10.1124/dmd.110.033373] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Kimura Y, Ito H, Hatano T. Effects of Mace and Nutmeg on Human Cytochrome P450 3A4 and 2C9 Activity. Biol Pharm Bull 2010; 33:1977-82. [DOI: 10.1248/bpb.33.1977] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuka Kimura
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Hideyuki Ito
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Tsutomu Hatano
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|