1
|
Shang S, Li W, Zhou F, Zhao Y, Yu M, Tong L, Xin H, Yu A. Cyclosporine-A induced cytotoxicity within HepG2 cells by inhibiting PXR mediated CYP3A4/CYP3A5/MRP2 pathway. Drug Chem Toxicol 2024; 47:739-747. [PMID: 38166548 DOI: 10.1080/01480545.2023.2276084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/16/2023] [Accepted: 10/13/2023] [Indexed: 01/04/2024]
Abstract
Cyclosporine-A (CsA) is currently used to treat immune rejection after organ transplantation as a commonly used immunosuppressant. Liver injury is one of the most common adverse effects of CsA, whose precise mechanism has not been fully elucidated. Pregnane X receptor (PXR) plays a critical role in mediating drug-induced liver injury as a key regulator of drug and xenobiotic clearance. As a nuclear receptor, PXR transcriptionally upregulates the expression of drug-metabolizing enzymes and drug transporters, including cytochrome P4503A (CPY3A) and multidrug resistance-associated protein 2 (MRP2). Our study established CsA-induced cytotoxic hepatocytes in an in vitro model, demonstrating that CsA dose-dependently increased the aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) level secreted in the HepG2 cell supernatant, as well as viability and oxidative stress of HepG2 cells. CsA also dose-dependently decreased the PXR, CYP3A4, CPY3A5, and MRP2 levels of HepG2 cells. Mechanistically, altering the expression of PXR, CYP3A4, CYP3A5, and MRP2 affected the impact of CsA on AST and LDH levels. Moreover, altering the expression of PXR also changed the level of CYP3A4, CPY3A5, and MRP2 of HepG2 cells treated by CsA. Our presented findings provide experimental evidence that CsA-induced liver injury is PXR tightly related. We suggest that PXR represents an attractive target for therapy of liver injury due to its central role in the regulation of the metabolizing enzymes CYP3A and MRP2-mediated bile acid transport and detoxification.
Collapse
Affiliation(s)
- Shenglan Shang
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Weiliang Li
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Fan Zhou
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Yan Zhao
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Mengchen Yu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Ling Tong
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Huawen Xin
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Airong Yu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| |
Collapse
|
2
|
Somabattini RA, Sherin S, Siva B, Chowdhury N, Nanjappan SK. Unravelling the complexities of non-alcoholic steatohepatitis: The role of metabolism, transporters, and herb-drug interactions. Life Sci 2024; 351:122806. [PMID: 38852799 DOI: 10.1016/j.lfs.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.
Collapse
Affiliation(s)
- Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Sahla Sherin
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Bhukya Siva
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
3
|
Godinez-Macias KP, Winzeler EA. CACTI: an in silico chemical analysis tool through the integration of chemogenomic data and clustering analysis. J Cheminform 2024; 16:84. [PMID: 39049122 PMCID: PMC11270953 DOI: 10.1186/s13321-024-00885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024] Open
Abstract
It is well-accepted that knowledge of a small molecule's target can accelerate optimization. Although chemogenomic databases are helpful resources for predicting or finding compound interaction partners, they tend to be limited and poorly annotated. Furthermore, unlike genes, compound identifiers are often not standardized, and many synonyms may exist, especially in the biological literature, making batch analysis of compounds difficult. Here, we constructed an open-source annotation and target hypothesis prediction tool that explores some of the largest chemical and biological databases, mining these for both common name, synonyms, and structurally similar molecules. We used this Chemical Analysis and Clustering for Target Identification (CACTI) tool to analyze the Pathogen Box collection, an open-source set of 400 drug-like compounds active against a variety of microbial pathogens. Our analysis resulted in 4,315 new synonyms, 35,963 pieces of new information and target prediction hints for 58 members.Scientific contributionsWith the employment of this tool, a comprehensive report with known evidence, close analogs and drug-target prediction can be obtained for large-scale chemical libraries that will facilitate their evaluation and future target validation and optimization efforts.
Collapse
Affiliation(s)
- Karla P Godinez-Macias
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Xiang Q, Li N, Zhang Y, Wang T, Wang Y, Bian J. GPR116 alleviates acetaminophen-induced liver injury in mice by inhibiting endoplasmic reticulum stress. Cell Mol Life Sci 2024; 81:299. [PMID: 39001944 PMCID: PMC11335223 DOI: 10.1007/s00018-024-05313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Acetaminophen (APAP) overdose is a significant contributor to drug-induced liver injury worldwide. G-protein-coupled receptor 116 (GPR116) is an important homeostatic maintenance molecule in the body, but little is known about its role in APAP-induced liver injury (AILI). METHODS GPR116 expression was determined in both human and mouse AILI models. Hepatic function and damage response were analyzed in hepatocyte-specific GPR116 deletion (GPR116△HC) mice undergoing APAP challenge. RNA-sequencing, immunofluorescence confocal, and co-immunoprecipitation (CO-IP) were employed to elucidate the impact and underlying mechanisms of GPR116 in AILI. RESULTS Intrahepatic GPR116 was upregulated in human and mice with AILI. GPR116△HC mice were vulnerable to AILI compared to wild-type mice. Overexpression of GPR116 effectively mitigated AILI in wild-type mice and counteracted the heightened susceptibility of GPR116△HC mice to APAP. Mechanistically, GPR116 inhibits the binding immunoglobulin protein (BiP), a critical regulator of ER function, through its interaction with β-arrestin1, thereby mitigating ER stress during the early stage of AILI. Additionally, the activation of GPR116 by ligand FNDC4 has been shown to confer a protective effect against early hepatotoxicity caused by APAP in murine model. CONCLUSIONS Upregulation of GPR116 on hepatocytes inhibits ER stress by binding to β-arrestin1, protecting mice from APAP-induced hepatotoxicity. GPR116 may serve as a promising therapeutic target for AILI.
Collapse
Affiliation(s)
- Qian Xiang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Na Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yan Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Ting Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Ying Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
5
|
Adachi M, Kumagai T, Hosho K, Nagata K, Fujiyoshi M, Shimada M. Exploring Acute Liver Damage: Slimming Health Foods and CYP3A4 Induction. Yonago Acta Med 2024; 67:124-134. [PMID: 38803590 PMCID: PMC11128086 DOI: 10.33160/yam.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/05/2024] [Indexed: 05/29/2024]
Abstract
Background Patients taking multiple drugs and various health foods often develop acute hepatitis. We hypothesized that the interaction between health foods and drug metabolism was the cause of severe liver injury in these patients. Therefore, we studied changes in the activity of the drug-metabolizing enzyme, cytochrome P450 (CYP), using slimming health food extracts and elucidated the molecular mechanism of liver injury onset through hepatotoxicity evaluation. Methods For cytotoxicity testing, health food extract samples were added to HepG2 cells derived from hepatic parenchymal cells and culture medium, and cell viability was calculated 48 h after culture. To evaluate CYP3A4 induction, 3-1-10 cells constructed with a reporter linked to CYP3A4 gene were used, and reporter activity was measured 48 h after culture. Results In the chronological order of the slimming health food intake history of the patient, niacinamide and Gymnema sylvestre extracts strongly inhibited HepG2 cell viability. In contrast, dietary supplements A and Coleus forskohlii extract strongly induced CYP3A4 reporter activity. To confirm CYP3A4 induction in humans, humanized CYP3A/pregnane X receptor (PXR) mice were treated with forskolin. CYP3A4 mRNA expression levels were elevated 3.9 times compared to that of the control group (P < 0.05). Conclusion Coleus forskohlii extract showed the strongest transcriptional activation of CYP3A4 gene. In a mouse model of human-type drug metabolism, forskolin induced CYP3A4 transcription. Thus, we concluded that CYP3A4 induction by Coleus forskohlii is one of the causes of crucial hepatocellular injury, which is a type of liver injury caused by the active metabolite of acetaminophen produced by CYP3A4.
Collapse
Affiliation(s)
- Makiko Adachi
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | - Takeshi Kumagai
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Keiko Hosho
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Kiyoshi Nagata
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | | | - Miki Shimada
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| |
Collapse
|
6
|
Cui Q, Jiang T, Xie X, Wang H, Qian L, Cheng Y, Li Q, Lu T, Yao Q, Liu J, Lai B, Chen C, Xiao L, Wang N. S-nitrosylation attenuates pregnane X receptor hyperactivity and acetaminophen-induced liver injury. JCI Insight 2024; 9:e172632. [PMID: 38032737 PMCID: PMC10906221 DOI: 10.1172/jci.insight.172632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Drug-induced liver injury (DILI), especially acetaminophen overdose, is the leading cause of acute liver failure. Pregnane X receptor (PXR) is a nuclear receptor and the master regulator of drug metabolism. Aberrant activation of PXR plays a pathogenic role in the acetaminophen hepatotoxicity. Here, we aimed to examine the S-nitrosylation of PXR (SNO-PXR) in response to acetaminophen. We found that PXR was S-nitrosylated in hepatocytes and the mouse livers after exposure to acetaminophen or S-nitrosoglutathione (GSNO). Mass spectrometry and site-directed mutagenesis identified the cysteine 307 as the primary residue for S-nitrosylation (SNO) modification. In hepatocytes, SNO suppressed both agonist-induced (rifampicin and SR12813) and constitutively active PXR (VP-PXR, a human PXR fused to the minimal transactivator domain of the herpes virus transcription factor VP16) activations. Furthermore, in acetaminophen-overdosed mouse livers, PXR protein was decreased at the centrilobular regions overlapping with increased SNO. In PXR-/- mice, replenishing the livers with the SNO-deficient PXR significantly aggravated hepatic necrosis, increased HMGB1 release, and exacerbated liver injury and inflammation. Particularly, we demonstrated that S-nitrosoglutathione reductase (GSNOR) inhibitor N6022 promoted hepatoprotection by increasing the levels of SNO-PXR. In conclusion, PXR is posttranslationally modified by SNO in hepatocytes in response to acetaminophen. This modification mitigated the acetaminophen-induced PXR hyperactivity. It may serve as a target for therapeutical intervention.
Collapse
Affiliation(s)
- Qi Cui
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Tingting Jiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xinya Xie
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Haodong Wang
- East China Normal University Health Science Center, Shanghai, China
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yanyan Cheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiang Li
- School of Public Health, Xi’an Jiaotong University, Xi’an, China
| | - Tingxu Lu
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Qinyu Yao
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jia Liu
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Baochang Lai
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lei Xiao
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Nanping Wang
- East China Normal University Health Science Center, Shanghai, China
| |
Collapse
|
7
|
Kastrinou Lampou V, Poller B, Huth F, Fischer A, Kullak-Ublick GA, Arand M, Schadt HS, Camenisch G. Novel insights into bile acid detoxification via CYP, UGT and SULT enzymes. Toxicol In Vitro 2023; 87:105533. [PMID: 36473578 DOI: 10.1016/j.tiv.2022.105533] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Bile acid (BA) homeostasis is a complex and precisely regulated process to prevent impaired BA flow and the development of cholestasis. Several reactions, namely hydroxylation, glucuronidation and sulfation are involved in BA detoxification. In the present study, we employed a comprehensive approach to identify the key enzymes involved in BA metabolism using human recombinant enzymes, human liver microsomes (HLM) and human liver cytosol (HLC). We showed that CYP3A4 was a crucial step for the metabolism of several BAs and their taurine and glycine conjugated forms and quantitatively described their metabolites. Glucuronidation and sulfation were also identified as important drivers of the BA detoxification process in humans. Moreover, lithocholic acid (LCA), the most hydrophobic BA with the highest toxicity potential, was a substrate for all investigated processes, demonstrating the importance of hepatic metabolism for its clearance. Collectively, this study identified CYP3A4, UGT1A3, UGT2B7 and SULT2A1 as the major contributing (metabolic) processes in the BA detoxification network. Inhibition of these enzymes by drug candidates is therefore considered as a critical mechanism in the manifestation of drug-induced cholestasis in humans and should be addressed during the pre-clinical development.
Collapse
Affiliation(s)
- Vlasia Kastrinou Lampou
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland; Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Birk Poller
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Felix Huth
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Audrey Fischer
- Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Heiko S Schadt
- Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gian Camenisch
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
8
|
Jiang Y, Zhou Y, Song S, Fan S, Gao Y, Li Y, Huang M, Bi H. St. John's Wort exacerbates acetaminophen-induced liver injury by activation of PXR and CYP-mediated bioactivation. Toxicol Sci 2022; 190:54-63. [PMID: 36073954 DOI: 10.1093/toxsci/kfac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
St. John's wort (SJW) is a medicinal herb remedy for mild depression. However, long-term use of SJW has raised safety concerns in clinical practice because of drug-drug interactions. Excessive use of acetaminophen (APAP) causes severe hepatotoxicity, but whether SJW modulates APAP-induced liver injury remains unclear. In this study, the effect of long-term SJW administration on APAP-induced acute hepatotoxicity and the involved mechanisms were investigated. Morphological and biochemical assessments clearly demonstrated that SJW exacerbates APAP-induced toxicity in vivo and in vitro. Moreover, SJW markedly promoted glutathione depletion and increased the levels of the APAP-cysteine and APAP-N-acetylcysteinyl adducts in mice, which enhanced APAP metabolic activation and aggravated APAP-induced liver injury. To further elucidate APAP metabolic activation in liver injury induced by SJW, the activities and expression levels of CYP2E1 and CYP3A were measured. The results showed that the activities and expression levels of CYP2E1 and CYP3A were increased after SJW treatment. Furthermore, the PXR-CYP signaling pathway was activated by SJW, and its downstream target genes were upregulated. Collectively, this study demonstrated that the long-term administration of SJW extract led to the metabolic activation of APAP and significantly exacerbated APAP-induced liver injury, which may suggest caution for the clinical use of SJW and APAP.
Collapse
Affiliation(s)
- Yiming Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shaofei Song
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Hepatic SIRT6 Modulates Transcriptional Activities of FXR to Alleviate Acetaminophen-induced Hepatotoxicity. Cell Mol Gastroenterol Hepatol 2022; 14:271-293. [PMID: 35526796 PMCID: PMC9218579 DOI: 10.1016/j.jcmgh.2022.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Excessive acetaminophen (APAP) intake causes oxidative stress and inflammation, leading to fatal hepatotoxicity; however, the mechanism remains unclear. This study aims to explore the protective effects and detailed mechanisms of sirtuin 6 (SIRT6) in the defense against APAP-induced hepatotoxicity. METHODS Hepatocyte-specific SIRT6 knockout mice, farnesoid X receptor (FXR) knockout mice, and mice with genetic or pharmacological activation of SIRT6 were subjected to APAP to evaluate the critical role of SIRT6 in the pathogenesis of acute liver injury. RNA sequences were used to investigate molecular mechanisms underlying this process. RESULTS Hepatic SIRT6 expression was substantially reduced in the patients and mice with acute liver injury. The deletion of SIRT6 in mice and mice primary hepatocytes led to high N-acetyl-p-benzo-quinoneimine and low glutathione levels in the liver, thereby enhancing APAP overdose-induced liver injury, manifested as increased hepatic centrilobular necrosis, oxidative stress, and inflammation. Conversely, overexpression or pharmacological activation of SIRT6 enhanced glutathione and decreased N-acetyl-p-benzo-quinoneimine, thus alleviating APAP-induced hepatotoxicity via normalization of liver damage, inflammatory infiltration, and oxidative stress. Our molecular analysis revealed that FXR is regulated by SIRT6, which is associated with the pathological progression of ALI. Mechanistically, SIRT6 deacetylates FXR and elevates FXR transcriptional activity. FXR ablation in mice and mice primary hepatocytes prominently blunted SIRT6 overexpression and activation-mediated ameliorative effects. Conversely, pharmacological activation of FXR mitigated APAP-induced hepatotoxicity in SIRT6 knockout mice. CONCLUSIONS Our current study suggests that SIRT6 plays a crucial role in APAP-induced hepatotoxicity, and pharmacological activation of SIRT6 may represent a novel therapeutic strategy for APAP overdose-induced liver injury.
Collapse
|
10
|
Xu P, Xi Y, Wang P, Luka Z, Xu M, Tung HC, Wang J, Ren S, Feng D, Gao B, Singhi AD, Monga SP, York JD, Ma X, Huang Z, Xie W. Inhibition of p53 Sulfoconjugation Prevents Oxidative Hepatotoxicity and Acute Liver Failure. Gastroenterology 2022; 162:1226-1241. [PMID: 34954226 PMCID: PMC8934304 DOI: 10.1053/j.gastro.2021.12.260] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Sulfoconjugation of small molecules or protein peptides is a key mechanism to ensure biochemical and functional homeostasis in mammals. The PAPS synthase 2 (PAPSS2) is the primary enzyme to synthesize the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF), in which oxidative stress is a key pathogenic event, whereas sulfation of APAP contributes to its detoxification. The goal of this study was to determine whether and how PAPSS2 plays a role in APAP-induced ALF. METHODS Gene expression was analyzed in APAP-induced ALF in patients and mice. Liver-specific Papss2-knockout mice using Alb-Cre (Papss2ΔHC) or AAV8-TBG-Cre (Papss2iΔHC) were created and subjected to APAP-induced ALF. Primary human and mouse hepatocytes were used for in vitro mechanistic analysis. RESULTS The hepatic expression of PAPSS2 was decreased in APAP-induced ALF in patients and mice. Surprisingly, Papss2ΔHC mice were protected from APAP-induced hepatotoxicity despite having a decreased APAP sulfation, which was accompanied by increased hepatic antioxidative capacity through the activation of the p53-p2-Nrf2 axis. Treatment with a sulfation inhibitor also ameliorated APAP-induced hepatotoxicity. Gene knockdown experiments showed that the hepatoprotective effect of Papss2ΔHC was Nrf2, p53, and p21 dependent. Mechanistically, we identified p53 as a novel substrate of sulfation. Papss2 ablation led to p53 protein accumulation by preventing p53 sulfation, which disrupts p53-MDM2 interaction and p53 ubiquitination and increases p53 protein stability. CONCLUSIONS We have uncovered a previously unrecognized and p53-mediated role of PAPSS2 in controlling oxidative response. Inhibition of p53 sulfation may be explored for the clinical management of APAP overdose.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pengcheng Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hung-Chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Aatur D. Singhi
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John D. York
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
11
|
Haron MH, Avula B, Ali Z, Chittiboyina AG, Khan IA, Li J, Wang V, Wu C, Khan SI. Assessment of Herb-Drug Interaction Potential of Five Common Species of Licorice and Their Phytochemical Constituents. J Diet Suppl 2022:1-20. [PMID: 35302913 DOI: 10.1080/19390211.2022.2050875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dried roots and rhizomes of Glycyrrhiza species (G. glabra, G. uralensis and G. inflata), commonly known as licorice, have long been used in traditional medicine. In addition, two other species, G. echinata and G. lepidota are also considered "licorice" in select markets. Currently, licorice is an integral part of several botanical drugs and dietary supplements. To probe the botanicals' safety, herb-drug interaction potential of the hydroethanolic extracts of five Glycyrrhiza species and their key constituents was investigated by determining their effects on pregnane X receptor, aryl hydrocarbon receptor, two major cytochrome P450 isoforms (CYP3A4 and CYP1A2), and the metabolic clearance of antiviral drugs. All extracts enhanced transcriptional activity of PXR and AhR (>2-fold) and increased the enzyme activity of CYP3A4 and CYP1A2. The highest increase in CYP3A4 was seen with G. echinata (4-fold), and the highest increase in CYP1A2 was seen with G. uralensis (18-fold) and G. inflata (16-fold). Among the constituents, glabridin, licoisoflavone A, glyasperin C, and glycycoumarin activated PXR and AhR, glabridin being the most effective (6- and 27-fold increase, respectively). Licoisoflavone A, glyasperin C, and glycycoumarin increased CYP3A4 activity while glabridin, glyasperin C, glycycoumarin, and formononetin increased CYP1A2 activity (>2-fold). The metabolism of antiretroviral drugs (rilpivirine and dolutegravir) was increased by G. uralensis (2.0 and 2.5-fold) and its marker compound glycycoumarin (2.3 and 1.6-fold). The metabolism of dolutegravir was also increased by G. glabra (2.8-fold) but not by its marker compound, glabridin. These results suggest that licorice and its phytochemicals could affect the metabolism and clearance of certain drugs that are substrates of CYP3A4 and CYP1A2.Supplemental data for this article is available online at https://doi.org/10.1080/19390211.2022.2050875 .
Collapse
Affiliation(s)
- Mona H Haron
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Bharathi Avula
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Jing Li
- Botanical Review Team, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vivian Wang
- Botanical Review Team, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Charles Wu
- Botanical Review Team, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shabana I Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| |
Collapse
|
12
|
Gu R, Liang A, Liao G, To I, Shehu A, Ma X. Roles of co-factors in drug-induced liver injury: drug metabolism and beyond. Drug Metab Dispos 2022; 50:646-654. [PMID: 35221288 PMCID: PMC9132098 DOI: 10.1124/dmd.121.000457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Drug-induced liver injury (DILI) remains one of the major concerns for healthcare providers and patients. Unfortunately, it is difficult to predict and prevent DILI in the clinic because detailed mechanisms of DILI are largely unknown. Many risk factors have been identified for both "intrinsic" and "idiosyncratic" DILI, suggesting that cofactors are an important aspect in understanding DILI. This review outlines the cofactors that potentiate DILI and categorizes them into two types: (1) the specific cofactors that target metabolic enzymes, transporters, antioxidation defense, immune response, and liver regeneration; and (2) the general cofactors that include inflammation, age, gender, comorbidity, gut microbiota, and lifestyle. The underlying mechanisms by which cofactors potentiate DILI are also discussed. SIGNIFICANCE STATEMENT: This review summarizes the risk factors for DILI, which can be used to predict and prevent DILI in the clinic. This work also highlights the gaps in the DILI field and provides future perspectives on the roles of cofactors in DILI.
Collapse
Affiliation(s)
- Ruizhi Gu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alina Liang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Grace Liao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Isabelle To
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amina Shehu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Anju T, Preetha R, Shunmugam R, Mane SR, Arockiaraj J, Ganapathy S. Non-Clinical Investigation of Tuberculosis Drugs: Conjugated Norbornene-
Based Nanocarriers Toxic Impacts on Zebrafish. CURRENT NANOMEDICINE 2021; 11:224-236. [DOI: 10.2174/2468187312666211221130125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 10/16/2023]
Abstract
INTRODUCTION:
Rifampicin conjugated (R-CP), and rifampicin -isoniazid dual conjugated (RI-CP) norbornene-derived nanocarriers are newly designed for pH stimuli-responsive delivery of tuberculosis (TB) drugs. Its biosafety level is yet to be well established.
OBJECTIVES:
To assess the impacts of the nanocarriers on liver cells using zebrafish animal model and human liver cell line model (HepG2).
METHODS:
Initially, lethal dose concentration for the norbornene-derived nanocarrier systems in zebrafish was determined. The toxic effects were analysed at the sub-lethal drug concentration by histopathological study, total GSH level, gene expression and DNA damage in zebrafish liver cells. Fish erythrocyte nuclear abnormalities were also evaluated. Cell viability and oxidative stress level (ROS generation) after exposure to the nanoconjugates was determined using HepG2 cell in the in vitro study.
RESULTS:
In vivo studies of both R-CP and RI-CP showed 100% mortality at 96 hours for exposure concentration >100mg/l and showed toxic changes in zebrafish liver histology, GSH, and DNA damage levels. A noticeable upregulated PXR, CYP3A and cyp2p6 genes was observed in RI-CP exposure than in RIF or R-CP molecules. The in vitro study revealed a dose-dependent effect on cell viability and ROS generation for RIF, R-CP and RI-CP exposures in HepG2 cells.
CONCLUSION:
The current study reports that the rifampicin conjugated (R-CP) and rifampicin-isoniazid conjugated (RI-CP) norbornene derived nanocarriers exhibit enhanced toxic responses in both adult zebrafish and HepG2 cells. The pH-sensitive norbornene derived nanocarriers on conjugation with different drugs exhibited varied impacts on hepatic cells. Hence the present investigation recommends a complete metabolomics analysis and norbornene carrier-drug interaction study to be performed for each drug conjugated norbornene nanocarrier to ensure its biosafety.
Collapse
Affiliation(s)
- Thangammal Anju
- Department of Biotechnology and Department of Food Process Engineering, School of Bioengineering, SRM Institute
of Science Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Radhakrishnan Preetha
- Department of Biotechnology and Department of Food Process Engineering, School of Bioengineering, SRM Institute
of Science Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Raja Shunmugam
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata (IISER K), India
| | - Shivshankar R. Mane
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata (IISER K), India
| | - Jesu Arockiaraj
- Division of Fisheries
Biotechnology and Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM
Institute of Science Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Shivasekar Ganapathy
- Department of Pathology,
SRM Medical college and research center, SRM Institute of Science Technology, Kattankulathur, 603 203, Chennai,
Tamil Nadu, India
| |
Collapse
|
14
|
Niu Y, Fan S, Luo Q, Chen L, Huang D, Chang W, Qin W, Shi G. Interaction of Hepatitis B Virus X Protein with the Pregnane X Receptor Enhances the Synergistic Effects of Aflatoxin B1 and Hepatitis B Virus on Promoting Hepatocarcinogenesis. J Clin Transl Hepatol 2021; 9:466-476. [PMID: 34447675 PMCID: PMC8369009 DOI: 10.14218/jcth.2021.00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) infection has been found to increase hepatocellular sensitivity to carcinogenic xenobiotics, by unknown mechanisms, in the generation of hepatocellular carcinoma. The pregnane X receptor (PXR) is a key regulator of the body's defense against xenobiotics, including xenobiotic carcinogens and clinical drugs. In this study, we aimed to investigate the molecular mechanisms of HBV X protein (HBx)-PXR signaling in the synergistic effects of chemical carcinogens in HBV-associated hepatocarcinogenesis. METHODS The expression profile of PXR-cytochrome p450 3A4 (CYP3A4) signaling was determined by PCR, western blotting, and tissue microarray. Cell viability and aflatoxin B1 (AFB1) cytotoxicity were measured using the cell counting kit-8 assay. Target gene expression was evaluated using transient transfection and real time-PCR. The genotoxicity of AFB1 was assessed in newborn mice with a single dose of AFB1. RESULTS HBx enhanced the hepatotoxicity of AFB1 by activating CYP3A4 and reducing glutathione S-transferase Mu 1 (GSTM1) in cell lines. Activation of PXR by pregnenolone 16α-carbonitrile increased AFB1-induced liver tumor incidence by up-regulating oncogenic KRAS to enhance interleukin (IL)-11:IL-11 receptor subunit alpha-1 (IL11RA-1)-mediated inflammation in an HBx transgenic model. CONCLUSIONS Our finding regarding AFB1 toxicity enhancement by an HBx-PXR-CYP3A4/ GSTM1-KRAS-IL11:IL11RA signaling axis provides a rational explanation for the synergistic effects of chemical carcinogens in HBV infection-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
- Correspondence to: Yongdong Niu, Shantou University Medical College, Shantou, Guangdong 515041, China. ORCID: https://orcid.org/0000-0002-5392-3736. Tel: +86-754-88900432, Fax: +86-754-88557562, E-mail: ; Wenxin Qin, Shanghai Cancer Institute, Shanghai 200032, China. ORCID: https://orcid.org/0000-0002-1989-3027. Tel: +86-21-68371105, Fax: +86-21-64432142, E-mail: ; Ganggang Shi, Shantou University Medical College, Shantou, Guangdong 515041, China. ORCID: https://orcid.org/0000-0002-6856-1192. Tel: +86-754-88900301, Fax: +86-754-88557562, E-mail:
| | - Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qin Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liming Chen
- Department of Oncology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Wenjun Chang
- Department of Environmental Hygiene, Second Military Medical University, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence to: Yongdong Niu, Shantou University Medical College, Shantou, Guangdong 515041, China. ORCID: https://orcid.org/0000-0002-5392-3736. Tel: +86-754-88900432, Fax: +86-754-88557562, E-mail: ; Wenxin Qin, Shanghai Cancer Institute, Shanghai 200032, China. ORCID: https://orcid.org/0000-0002-1989-3027. Tel: +86-21-68371105, Fax: +86-21-64432142, E-mail: ; Ganggang Shi, Shantou University Medical College, Shantou, Guangdong 515041, China. ORCID: https://orcid.org/0000-0002-6856-1192. Tel: +86-754-88900301, Fax: +86-754-88557562, E-mail:
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
- Correspondence to: Yongdong Niu, Shantou University Medical College, Shantou, Guangdong 515041, China. ORCID: https://orcid.org/0000-0002-5392-3736. Tel: +86-754-88900432, Fax: +86-754-88557562, E-mail: ; Wenxin Qin, Shanghai Cancer Institute, Shanghai 200032, China. ORCID: https://orcid.org/0000-0002-1989-3027. Tel: +86-21-68371105, Fax: +86-21-64432142, E-mail: ; Ganggang Shi, Shantou University Medical College, Shantou, Guangdong 515041, China. ORCID: https://orcid.org/0000-0002-6856-1192. Tel: +86-754-88900301, Fax: +86-754-88557562, E-mail:
| |
Collapse
|
15
|
Zhou Z, Qi J, Zhao J, Seo JH, Shin DG, Cha JD, Lim CW, Kim JW, Kim B. Orostachys japonicus ameliorates acetaminophen-induced acute liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113392. [PMID: 32946962 DOI: 10.1016/j.jep.2020.113392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Orostachys japonicus A. Berger (O. japonicus), referred to as Wa-song in Korea is a traditional and herbal medicine. Even though it has been traditionally used to treat inflammation- and toxicity-related diseases, the effects of ethanol extract of O. japonicus (OJE) on acetaminophen (N-acetyl-p-aminophenol, APAP) overdose-induced hepatotoxicity have not been determined yet. AIM OF THE STUDY The present study was aimed to investigate the effects of OJE against APAP-induced acute liver injury (ALI) and explore the underlying mechanisms. MATERIALS AND METHODS Mice were treated orally with OJE (50, 100, or 200 mg/kg) for seven days before APAP (300 mg/kg) injection. After 12 h of APAP treatment, serum and liver tissues were collected. An in vitro system using primary hepatocytes was also applied in this study. RESULTS Pretreatment with OJE, especially at a dose of 200 mg/kg, reduced APAP overdose-induced ALI in mice, as evidenced by decreased serum alanine/aspartate aminotransferase levels, histopathological damage, and inflammation. Consistently, OJE pretreatment reduced the gene transcription of cytochrome P450 (CYP) 3A11 and CYP1A2 in livers of mice injected with or without APAP, at least in part, via inactivation of nuclear receptor pregnane X receptor (PXR). Furthermore, the role of PXR in mediating the OJE regulation of CYPs was confirmed in primary hepatocytes, which showed that OJE pretreatment inhibited PXR activity and APAP hepatotoxicity enhanced by pregnenolone 16α-carbonitrile, a mouse agonist of PXR. Besides, the antioxidative activity provided by OJE, involving increases in hepatic glutathione (GSH) content and decreases in malondialdehyde levels, has been shown to exert hepatoprotective effects in normal and injured livers. Moreover, APAP-activated c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) in mice liver were indirectly inhibited by pretreatment with OJE. CONCLUSIONS Taken together, our findings showed that OJE attenuated APAP-induced ALI by decreasing APAP-metabolizing enzymes via inactivation of PXR and the restoration of hepatic GSH content. Therefore, OJE could be a promising hepatoprotective agent.
Collapse
Affiliation(s)
- Zixiong Zhou
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Jing Qi
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Jing Zhao
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Jeong Hun Seo
- Research & Development Center of GENERAL BIO Co., Ltd, Namwon, Jeollabuk-Do, South Korea
| | - Dong Gue Shin
- Research & Development Center of GENERAL BIO Co., Ltd, Namwon, Jeollabuk-Do, South Korea
| | - Jeong-Dan Cha
- Research & Development Center of GENERAL BIO Co., Ltd, Namwon, Jeollabuk-Do, South Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
16
|
Hu L, Ren Q, Deng L, Zhou Z, Cai Z, Wang B, Li Z. Design, synthesis, and biological studies of novel 3-benzamidobenzoic acid derivatives as farnesoid X receptor partial agonist. Eur J Med Chem 2020; 211:113106. [PMID: 33360559 DOI: 10.1016/j.ejmech.2020.113106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Farnesoid X receptor (FXR), a bile acid-activated nuclear receptor, regulates the metabolism of bile acid and lipids as well as maintains the stability of internal environment. FXR was considered as a therapeutic target of liver disorders, such as drug-induced liver injury, fatty liver and cholestasis. The previous reported FXR partial agonist 6 was a suitable lead compound in terms of its high potent and low molecular size, while the docking study of compound 6 suggested a large unoccupied hydrophobic pocket, which might be provided more possibility of structure-activity relationship (SAR) study. In this study, we have performed comprehensive SAR and molecular modeling studies based on lead compound 6. All of these efforts resulted in the identification of a novel series of FXR partial agonists. In this series, compound 41 revealed the best activity and strong interaction with binding pocket of FXR. Moreover, compound 41 protected mice against acetaminophen-induced hepatotoxicity by the regulation of FXR-related gene expression and improving antioxidant capacity. In summary, these results suggest that compound 41 is a promising FXR partial agonist suitable for further investigation.
Collapse
Affiliation(s)
- Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
17
|
Shen Y, Shi Z, Fan JT, Yan B. Dechlorination and demethylation of ochratoxin A enhance blocking activity of PXR activation, suppress PXR expression and reduce cytotoxicity. Toxicol Lett 2020; 332:171-180. [PMID: 32659470 DOI: 10.1016/j.toxlet.2020.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/28/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
The pregnane X receptor (PXR) has been established to induce chemoresistance and metabolic diseases. Ochratoxin A (OTA), a mycotoxin, decreases the expression of PXR protein in human primary hepatocytes. OTA is chlorinated and has a methylated lactone ring. Both structures are associated with OTA toxicity. The study was to test the hypothesis that structural modifications differentially impact PXR blocking activity over cytotoxicity. To test this hypothesis, OTA-M and OTA-Cl/M were synthesized. OTA-M lacked the methyl group of the lactone-ring, whereas OTA-Cl/M had neither the methyl group nor the chlorine atom. The blocking activity of PXR activation was determined in a stable cell line, harboring both PXR (coding sequence) and its luciferase element reporter. OTA-Cl/M showed the highest blocking activity, followed by OTA-M and OTA. OTA-Cl/M was 60 times as potent as the common PXR blocker ketoconazole based on calculated IC50 values. OTA-Cl/M decreased by 90 % the expression of PXR protein and was the least cytotoxic among the tested compounds. Molecular docking identified that OTA and its derivatives interacted with different sets of residues in PXR, providing a molecular basis for selectivity. Excessive activation of PXR has been implicated in chemoresistance and metabolic diseases. Downregulation of PXR protein expression likely delivers an effective mechanism against structurally diverse PXR agonists.
Collapse
Affiliation(s)
- Yuanjun Shen
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Jun Ting Fan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45229, USA.
| |
Collapse
|
18
|
Liu M, Zhang G, Song M, Wang J, Shen C, Chen Z, Huang X, Gao Y, Zhu C, Lin C, Mi S, Liu C. Activation of Farnesoid X Receptor by Schaftoside Ameliorates Acetaminophen-Induced Hepatotoxicity by Modulating Oxidative Stress and Inflammation. Antioxid Redox Signal 2020; 33:87-116. [PMID: 32037847 DOI: 10.1089/ars.2019.7791] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aims: Acetaminophen (APAP) overdose leads to acute liver injury by inducing hepatic mitochondrial oxidative stress and inflammation. However, the molecular mechanisms involved are still unclear. Farnesoid X receptor (FXR) serves as a therapeutic target for the treatment of liver disorders, whose activation has been proved to protect APAP-induced hepatotoxicity. In this study, we examined whether FXR activation by schaftoside (SS), a naturally occurring flavonoid from Desmodium styracifolium, could protect mice against APAP-induced hepatotoxicity via regulation of oxidative stress and inflammation. Results: We first found that SS exhibited potent protective effects against APAP-induced hepatotoxicity in mice. The study reveals that SS is a potential agonist of FXR, which protects mice from hepatotoxicity mostly via regulation of oxidative stress and inflammation. Mechanistically, the hepatoprotective SS is associated with the induction of the genes of phase II detoxifying enzymes (e.g., UGT1A1, GSTα1), phase III drug efflux transporters (e.g., bile salt export pump, organic solvent transporter protein β), and glutathione metabolism-related enzymes (e.g., glutamate-cysteine ligase modifier subunit [Gclm], glutamate-cysteine ligase catalytic subunit [Gclc]). More importantly, SS-mediated FXR activation could fine-tune the pro- and anti-inflammatory eicosanoids generation via altering eicosanoids metabolic pathway, thereby resulting in decrease of hepatic inflammation. In contrast, FXR deficiency can abrogate the above effects. Innovation and Conclusion: Our results provided the direct evidence that FXR activation by SS could attenuate APAP-induced hepatotoxicity via inhibition of nuclear factor kappa-B signaling and fine-tuning the generation of proinflammatory mediators' eicosanoids. Our findings indicate that strategies to activate FXR signaling in hepatocytes may provide a promising therapeutic approach to alleviate liver injury induced by APAP overdose.
Collapse
Affiliation(s)
- Meijing Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Beijing Advanced Innovation Center for Big Data-based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guohui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Meng Song
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jueyu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuangpeng Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Chen
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingan Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suiqing Mi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Establishment of a primary human hepatocyte spheroid system for evaluating metabolic toxicity using dacarbazine under conditions of CYP1A2 induction. Drug Metab Pharmacokinet 2020; 35:201-206. [DOI: 10.1016/j.dmpk.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
|
20
|
Chen L, Wang P, Manautou JE, Zhong XB. Knockdown of Long Noncoding RNAs Hepatocyte Nuclear Factor 1 α Antisense RNA 1 and Hepatocyte Nuclear Factor 4 α Antisense RNA 1 Alters Susceptibility of Acetaminophen-Induced Cytotoxicity in HepaRG Cells. Mol Pharmacol 2020; 97:278-286. [PMID: 32029527 DOI: 10.1124/mol.119.118778] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Acetaminophen (APAP) is a commonly used over-the-counter drug for its analgesic and antipyretic effects. However, APAP overdose leads to severe APAP-induced liver injury (AILI) and even death as a result of the accumulation of N-acetyl-p-benzoquinone imine, the toxic metabolite of APAP generated by cytochrome P450s (P450s). Long noncoding RNAs HNF1α antisense RNA 1 (HNF1α-AS1) and HNF4α antisense RNA 1 (HNF4α-AS1) are regulatory RNAs involved in the regulation of P450 expression in both mRNA and protein levels. This study aims to determine the impact of HNF1α-AS1 and HNF4α-AS1 on AILI. Small hairpin RNAs were used to knock down HNF1α-AS1 and HNF4α-AS1 in HepaRG cells. Knockdown of these lncRNAs altered APAP-induced cytotoxicity, indicated by MTT and LDH assays. Specifically, HNF1α-AS1 knockdown decreased APAP toxicity with increased cell viability and decreased LDH release, whereas HNF4α-AS1 knockdown exacerbated APAP toxicity, with opposite effects in the MTT and LDH assays. Alterations on gene expression by knockdown of HNF1α-AS1 and HNF4α-AS1 were examined in several APAP metabolic pathways, including CYP1A2, CYP2E1, CYP3A4, UGT1A1, UGT1A9, SULT1A1, GSTP1, and GSTT1. Knockdown of HNF1α-AS1 decreased mRNA expression of CYP1A2, 2E1, and 3A4 by 0.71-fold, 0.35-fold, and 0.31-fold, respectively, whereas knockdown of HNF4α-AS1 induced mRNAs of CYP1A2, 2E1, and 3A4 by 1.3-fold, 1.95-fold, and 1.9-fold, respectively. These changes were also observed in protein levels. Knockdown of HNF1α-AS1 and HNF4α-AS1 had limited effects on the mRNA expression of UGT1A1, UGT1A9, SULT1A1, GSTP1, and GSTT1. Altogether, our study suggests that HNF1α-AS1 and HNF4α-AS1 affected AILI mainly through alterations of P450-mediated APAP biotransformation in HepaRG cells, indicating an important role of the lncRNAs in AILI. SIGNIFICANCE STATEMENT: The current research identified two lncRNAs, hepatocyte nuclear factor 1α antisense RNA 1 and hepatocyte nuclear factor 4α antisense RNA 1, which were able to affect susceptibility of acetaminophen (APAP)-induced liver injury in HepaRG cells, possibly through regulating the expression of APAP-metabolizing cytochrome P450 enzymes. This discovery added new factors, lncRNAs, which can be used to predict cytochrome P450-mediated drug metabolism and drug-induced toxicity.
Collapse
Affiliation(s)
- Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| | - Pei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| |
Collapse
|
21
|
Lu C, Di L. In vitro
and
in vivo
methods to assess pharmacokinetic drug– drug interactions in drug discovery and development. Biopharm Drug Dispos 2020; 41:3-31. [DOI: 10.1002/bdd.2212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Chuang Lu
- Department of DMPKSanofi Company Waltham MA 02451
| | - Li Di
- Pharmacokinetics, Dynamics and MetabolismPfizer Worldwide Research & Development Groton CT 06340
| |
Collapse
|
22
|
Collins SL, Patterson AD. The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharm Sin B 2020; 10:19-32. [PMID: 31998605 PMCID: PMC6984741 DOI: 10.1016/j.apsb.2019.12.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/21/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Microbes inhabiting the intestinal tract of humans represent a site for xenobiotic metabolism. The gut microbiome, the collection of microorganisms in the gastrointestinal tract, can alter the metabolic outcome of pharmaceuticals, environmental toxicants, and heavy metals, thereby changing their pharmacokinetics. Direct chemical modification of xenobiotics by the gut microbiome, either through the intestinal tract or re-entering the gut via enterohepatic circulation, can lead to increased metabolism or bioactivation, depending on the enzymatic activity within the microbial niche. Unique enzymes encoded within the microbiome include those that reverse the modifications imparted by host detoxification pathways. Additionally, the microbiome can limit xenobiotic absorption in the small intestine by increasing the expression of cell-cell adhesion proteins, supporting the protective mucosal layer, and/or directly sequestering chemicals. Lastly, host gene expression is regulated by the microbiome, including CYP450s, multi-drug resistance proteins, and the transcription factors that regulate them. While the microbiome affects the host and pharmacokinetics of the xenobiotic, xenobiotics can also influence the viability and metabolism of the microbiome. Our understanding of the complex interconnectedness between host, microbiome, and metabolism will advance with new modeling systems, technology development and refinement, and mechanistic studies focused on the contribution of human and microbial metabolism.
Collapse
Key Words
- 5-ASA, 5-aminosalicylic acid
- 5-FU, 5-fluorouracil
- AHR, aryl Hydrocarbon Receptor
- ALDH, aldehyde dehydrogenase
- Absorption
- BDE, bromodiphenyl ether
- BRV, brivudine
- BVU, bromovinyluracil
- Bioactivation
- CAR, constitutive androgen receptor
- CV, conventional
- CYP, cytochrome P450
- ER, estrogen receptor
- Enterohepatic circulation
- FXR, farnesoid X receptor
- GF, germ-free
- GUDCA, glycoursodeoxycholic acid
- Gastrointestinal tract
- Gut microbiome
- NSAID, non-steroidal anti-inflammatory drug
- PABA, p-aminobenzenesulphonamide
- PAH, polycyclic aromatic hydrocarbon
- PCB, polychlorinated biphenyl
- PD, Parkinson's disease
- PFOS, perfluorooctanesulfonic acid
- PXR, pregnane X receptor
- Pharmacokinetics
- SCFA, short chain fatty acid
- SN-38G, SN-38 glucuronide
- SULT, sulfotransferase
- TCDF, 2,3,7,8-tetrachlorodibenzofuran
- TUDCA, tauroursodeoxycholic acid
- UGT, uracil diphosphate-glucuronosyltransferase
- Xenobiotic metabolism
- cgr, cytochrome glycoside reductase
Collapse
Affiliation(s)
- Stephanie L. Collins
- Department of Biochemistry, Microbiology, and Molecular Biology, the Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Science, the Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
23
|
Abstract
Drug-induced liver injury (DILI), including herbal and dietary supplement hepatotoxicity, is often passed lightly; however, it can lead to the requirement of a liver transplant or may even cause death because of liver failure. Recently, the American College of Gastroenterology, Chinese Society of Hepatology and European Association for the Study of the Liver guidelines for the diagnosis and treatment of DILI have been established, and they will be helpful for guiding clinical treatment decisions. Roussel Uclaf Causality Assessment Method scoring is the most commonly used method to diagnose DILI; however, it has some limitations, such as poor validity and reproducibility. Recently, studies on new biomarkers have been actively carried out, which will help diagnose DILI and predict the prognosis of DILI. It is expected that the development of new therapies such as autophagy inducers and various other technologies of the fourth industrial revolution will be applicable to DILI research.
Collapse
Affiliation(s)
- Jeong Ill Suh
- Department of Internal Medicine, College of Medicine, Dongguk Unversity, Gyeongju, Korea
| |
Collapse
|
24
|
Kumari J, Teotia AK, Karande AA, Kumar A. A minimally-invasive cryogel based approach for the development of human ectopic liver in a mouse model. J Biomed Mater Res B Appl Biomater 2019; 108:1022-1032. [PMID: 31397074 DOI: 10.1002/jbm.b.34454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/10/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022]
Abstract
Human liver tissue is preferable over nonhuman liver tissue for preclinical drug screening, as the former can better predict side effects specific to humans. However, due to limited supply and ethical issues with human liver tissue, it is desirable to develop an animal model having functional human liver tissue. In this study, we have established an ectopic functional human liver tissue in a mouse model, using a minimally-invasive method. Firstly, a human liver tissue mass using HepG2 cells and poly(N-isopropylacrylamide) (PNIPAAm) incorporated poly(ethylene glycol)-alginate-gelatin (PAG) cryogel matrix was developed in vitro. It was later implanted in mouse peritoneal cavity using a 16 G needle. Viscoelastic nature along with low Young's modulus provided injectable properties to the cryogel. We confirmed minimal cell loss/death while injecting. Further, by in vivo study efficacy of both injectable and surgical implantation approaches were compared. No significant difference in terms of cell infiltration, human serum albumin (HSA) secretion and enzyme activity confirmed efficacy. This model developed using a minimally-invasive approach can overcome the limitations of surgical implantation due to its cost effective and user friendly nature.
Collapse
Affiliation(s)
- Jyoti Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, India
| | - Arun K Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Sciences, Bangalore, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, India
| |
Collapse
|
25
|
Xu S, Chen Y, Ma Y, Liu T, Zhao M, Wang Z, Zhao L. Lipidomic Profiling Reveals Disruption of Lipid Metabolism in Valproic Acid-Induced Hepatotoxicity. Front Pharmacol 2019; 10:819. [PMID: 31379584 PMCID: PMC6659130 DOI: 10.3389/fphar.2019.00819] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Abstract
Valproic acid (VPA) is one of the most widely prescribed antiepileptic drugs, as VPA-induced hepatotoxicity is one of the most severe adverse reaction that can lead to death. The objective of this study was to gain an understanding of dysregulated lipid metabolism in mechanism of hepatotoxicity. Nontargeted lipidomics analysis with liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-Q-TOF/MS) was performed to explore differential lipids from the patient serum and L02 cells. Lipidomics data interpretation was augmented by gene expression analyses for the key enzymes in lipid metabolism pathways. From patient serum lipidomics, pronouncedly changed lipid species between abnormal liver function (ALF) patients and normal liver function (NLF) patients were identified. Among these lipid species, LPCs, Cers, and SMs were markedly reduced in the ALF group and showed negative relationships with liver injury severity [alanine aminotransferase (ALT) levels], while significantly increased triacylglycerols (TAG) with higher summed carbon numbers demonstrated a positive relationship with ALT levels. Regarding lipidomics in hepatic L02 cells, TAG was markedly elevated after VPA exposure, especially in TAGs with more than 53 summed carbons. Besides, gene expression analysis revealed dysregulated lipid metabolism in VPA-treated L02 cells. Peroxime proliferators-activated receptor (PPARγ) pathway played an important role in VPA-induced lipid disruption through inducing long-chain fatty acid uptake and TAG synthesis, which was also regulated by Akt pathway. Our findings present that VPA-induced lipid metabolism disruption might lead to lipotoxicity in the liver. This approach is expected to be applicable for other drug-induced toxicity assessments.
Collapse
Affiliation(s)
- Shansen Xu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanan Chen
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yiyi Ma
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting Liu
- Shanghai AB Sciex Analytical Instrument Trading Co. Ltd., Shanghai, China
| | - Mingming Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhanyou Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Kotłowska A, Szefer P. Recent Advances and Challenges in Steroid Metabolomics for Biomarker Discovery. Curr Med Chem 2019; 26:29-45. [PMID: 29141530 DOI: 10.2174/0929867324666171113120810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 03/01/2017] [Accepted: 03/20/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Steroid hormones belong to a group of low-molecular weight compounds which are responsible for maintenance of various body functions, thus, their accurate assessment is crucial for evaluation of biosynthetic defects. The development of reliable methods allowing disease diagnosis is essential to improve early detection of various disorders connected with altered steroidogenesis. Currently, the field of metabolomics offers several improvements in terms of sensitivity and specificity of the diagnostic methods when opposed to classical diagnostic approaches. The combination of hyphenated techniques and pattern recognition methods allows to carry out a comprehensive assessment of the slightest alterations in steroid metabolic pathways and can be applied as a tool for biomarker discovery. METHODS We have performed an extensive literature search applying various bibliographic databases for peer-reviewed articles concentrating on the applications of hyphenated techniques and pattern recognition methods incorporated into the steroid metabolomic approach for biomarker discovery. RESULTS The review discusses strengths, challenges and recent developments in steroidbased metabolomics. We present methods of sample collection and preparation, methods of separation and detection of steroid hormones in biological material, data analysis, and interpretation as well as examples of applications of steroid metabolomics for biomarker discovery (cancer, mental and central nervous system disorders, endocrine diseases, monitoring of drug therapy and doping control). CONCLUSION Information presented in this review will be valuable to anyone interested in the application of metabolomics for biomarker discovery with a special emphasis on disorders of steroid hormone synthesis and metabolism.
Collapse
Affiliation(s)
- Alicja Kotłowska
- Department of Food Sciences, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Piotr Szefer
- Department of Food Sciences, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
27
|
An Y, Wang P, Xu P, Tung HC, Xie Y, Kirisci L, Xu M, Ren S, Tian X, Ma X, Xie W. An Unexpected Role of Cholesterol Sulfotransferase and its Regulation in Sensitizing Mice to Acetaminophen-Induced Liver Injury. Mol Pharmacol 2019; 95:597-605. [PMID: 30944208 DOI: 10.1124/mol.118.114819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/17/2019] [Indexed: 12/13/2022] Open
Abstract
Overdose of acetaminophen (APAP) is the leading cause of acute liver failure (ALF) in the United States. The sulfotransferase-mediated sulfation of APAP is widely believed to be a protective mechanism to attenuate the hepatotoxicity of APAP. The cholesterol sulfotransferase SULT2B1b is best known for its activity in catalyzing the sulfoconjugation of cholesterol to synthesize cholesterol sulfate. SULT2B1b can be transcriptionally and positively regulated by the hepatic nuclear factor 4α (HNF4α). In this study, we uncovered an unexpected role for SULT2B1b in APAP toxicity. Hepatic overexpression of SULT2B1b sensitized mice to APAP-induced liver injury, whereas ablation of the Sult2B1b gene in mice conferred resistance to the APAP hepatotoxicity. Consistent with the notion that Sult2B1b is a transcriptional target of HNF4α, overexpression of HNF4α sensitized mice or primary hepatocytes to APAP-induced hepatotoxicity in a Sult2B1b-dependent manner. We conclude that the HNF4α-SULT2B1b axis has a unique role in APAP-induced acute liver injury, and SULT2B1b induction might be a risk factor for APAP hepatotoxicity.
Collapse
Affiliation(s)
- Yunqi An
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Pengcheng Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Hung-Chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Yang Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Levent Kirisci
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Xin Tian
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| |
Collapse
|
28
|
Marin TM, de Carvalho Indolfo N, Rocco SA, Basei FL, de Carvalho M, de Almeida Gonçalves K, Pagani E. Acetaminophen absorption and metabolism in an intestine/liver microphysiological system. Chem Biol Interact 2019; 299:59-76. [DOI: 10.1016/j.cbi.2018.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 11/10/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
|
29
|
Shehu AI, Ma X. Pregnane X receptor in drug-induced liver injury: Friend or foe? LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Lee HJ, Pyo MC, Shin HS, Ryu D, Lee KW. Renal toxicity through AhR, PXR, and Nrf2 signaling pathway activation of ochratoxin A-induced oxidative stress in kidney cells. Food Chem Toxicol 2018; 122:59-68. [DOI: 10.1016/j.fct.2018.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/22/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
|
31
|
Bisanz JE, Spanogiannopoulos P, Pieper LM, Bustion AE, Turnbaugh PJ. How to Determine the Role of the Microbiome in Drug Disposition. Drug Metab Dispos 2018; 46:1588-1595. [PMID: 30111623 DOI: 10.1124/dmd.118.083402] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
With a paradigm shift occurring in health care toward personalized and precision medicine, understanding the numerous environmental factors that impact drug disposition is of paramount importance. The highly diverse and variant nature of the human microbiome is now recognized as a factor driving interindividual variation in therapeutic outcomes. The purpose of this review is to provide a practical guide on methodology that can be applied to study the effects of microbes on the absorption, distribution, metabolism, and excretion of drugs. We also highlight recent examples of how these methods have been successfully applied to help build the basis for researching the intersection of the microbiome and pharmacology. Although in vitro and in vivo preclinical models are highlighted, these methods are also relevant in late-phase drug development or even as a part of routine after-market surveillance. These approaches will aid in filling major knowledge gaps for both current and upcoming therapeutics with the long-term goal of achieving a new type of knowledge-based medicine that integrates data on the host and the microbiome.
Collapse
Affiliation(s)
- Jordan E Bisanz
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| | - Peter Spanogiannopoulos
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| | - Lindsey M Pieper
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| | - Annamarie E Bustion
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| |
Collapse
|
32
|
Gardin A, Gray C, Neelakantham S, Huth F, Davidson AM, Dumitras S, Legangneux E, Shakeri-Nejad K. Siponimod pharmacokinetics, safety, and tolerability in combination with rifampin, a CYP2C9/3A4 inducer, in healthy subjects. Eur J Clin Pharmacol 2018; 74:1593-1604. [PMID: 30105453 DOI: 10.1007/s00228-018-2533-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE To assess the potential pharmacokinetic (PK) interactions between siponimod and rifampin, a strong CYP3A4/moderate CYP2C9 inducer, in healthy subjects. METHODS This was a confirmatory, open-label, multiple-dose two-period study in healthy subjects (aged 18-45 years). In Period 1 (Days 1-12), siponimod was up-titrated from 0.25 to 2 mg over 5 days (Days 1-6) followed by 2 mg once daily on days 7-12. In Period 2, siponimod 2 mg qd was co-administered with rifampin 600 mg qd (Days 13-24). Primary assessments included PK of siponimod (Days 12 and 24; maximum steady-state plasma concentration [Cmax,ss], median time to achieve Cmax,ss [Tmax, ss], and area under the curve at steady state [AUCtau,ss]). Key secondary assessments were PK of M3 and M5 metabolites, and safety/tolerability including absolute lymphocyte count (ALC). RESULTS Of the 16 subjects enrolled (age, mean ± standard deviation [SD] 31 ± 8.3 years; men, n = 15), 15 completed the study. In Period 1, siponimod geometric mean Cmax,ss (28.6 ng/mL) was achieved in 4 h (median Tmax,ss; range, 1.58-8.00) and the geometric mean AUCtau,ss was 546 h × ng/mL. In Period 2, the siponimod geometric mean Cmax,ss and AUCtau,ss decreased to 15.7 ng/mL and 235 h × ng/mL, respectively; median Tmax remained unchanged (4 h). Rifampin co-administration increased M3 Cmax,ss by 53% while M5 Cmax,ss remained unchanged. The AUCtau,ss of M3 and M5 decreased by 10% and 37%, respectively. The majority of adverse events reported were mild, with a higher frequency during Period 2 (86.7%) versus Period 1 (50%). The mean ALC increased slightly under rifampin co-administration but remained below 1.0 × 109/L. CONCLUSIONS The study findings suggest that in the presence of rifampin, a strong CYP3A4/moderate CYP2C9 inducer, siponimod showed significant decrease in Cmax,ss (45%) and AUCtau,ss (57%) in healthy subjects.
Collapse
Affiliation(s)
- Anne Gardin
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | - Cathy Gray
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Felix Huth
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Swati Dumitras
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Eric Legangneux
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
33
|
Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-Humanized and Human Liver Chimeric Mouse Models for Studying Xenobiotic Metabolism and Toxicity. Drug Metab Dispos 2018; 46:1734-1744. [PMID: 30093418 DOI: 10.1124/dmd.118.083303] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Preclinical evaluation of drug candidates in experimental animal models is an essential step in drug development. Humanized mouse models have emerged as a promising alternative to traditional animal models. The purpose of this mini-review is to provide a brief survey of currently available mouse models for studying human xenobiotic metabolism. Here, we describe both genetic humanization and human liver chimeric mouse models, focusing on the advantages and limitations while outlining their key features and applications. Although this field of biomedical science is relatively young, these humanized mouse models have the potential to transform preclinical drug testing and eventually lead to a more cost-effective and rapid development of new therapies.
Collapse
Affiliation(s)
- Karl-Dimiter Bissig
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Weiguo Han
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Mercedes Barzi
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Nataliia Kovalchuk
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Liang Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xiaoyu Fan
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Francis P Pankowicz
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Qing-Yu Zhang
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xinxin Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| |
Collapse
|
34
|
Exploring the Metabolism of Loxoprofen in Liver Microsomes: The Role of Cytochrome P450 and UDP-Glucuronosyltransferase in Its Biotransformation. Pharmaceutics 2018; 10:pharmaceutics10030112. [PMID: 30072626 PMCID: PMC6160907 DOI: 10.3390/pharmaceutics10030112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022] Open
Abstract
Loxoprofen, a propionic acid derivative, non-steroidal anti-inflammatory drug (NSAID) is a prodrug that is reduced to its active metabolite, trans-alcohol form (Trans-OH) by carbonyl reductase enzyme in the liver. Previous studies demonstrated the hydroxylation and glucuronidation of loxoprofen. However, the specific enzymes catalyzing its metabolism have yet to be identified. In the present study, we investigated metabolic enzymes, such as cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT), which are involved in the metabolism of loxoprofen. Eight microsomal metabolites of loxoprofen were identified, including two alcohol metabolites (M1 and M2), two mono-hydroxylated metabolites (M3 and M4), and four glucuronide conjugates (M5, M6, M7, and M8). Based on the results for the formation of metabolites when incubated in dexamethasone-induced microsomes, incubation with ketoconazole, and human recombinant cDNA-expressed cytochrome P450s, we identified CYP3A4 and CYP3A5 as the major CYP isoforms involved in the hydroxylation of loxoprofen (M3 and M4). Moreover, we identified that UGT2B7 is the major UGT isoform catalyzing the glucuronidation of loxoprofen and its alcoholic metabolites. Further experimental studies should be carried out to determine the potency and toxicity of these identified metabolites of loxoprofen, in order to fully understand of mechanism of loxoprofen toxicity.
Collapse
|
35
|
Wang C, Xu W, Zhang Y, Huang D, Huang K. Poly(ADP-ribosyl)ated PXR is a critical regulator of acetaminophen-induced hepatotoxicity. Cell Death Dis 2018; 9:819. [PMID: 30050067 PMCID: PMC6062506 DOI: 10.1038/s41419-018-0875-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure and remains a critical problem in medicine. PARP1-dependent poly(ADPribosyl)ation is a key mediator of cellular stress responses and functions in multiple physiological and pathological processes. However, whether it is involved in the process of APAP metabolism remains elusive. In this study, we find that PARP1 is activated in mouse livers after APAP overdose. Pharmacological or genetic manipulations of PARP1 are sufficient to suppress the APAP-induced hepatic toxicity and injury, as well as reduced APAP metabolism. Mechanistically, we identify pregnane X receptor (PXR) as a substrate of PARP1-mediated poly(ADP-ribosyl)ation. The poly(ADP-ribosyl)ation of PXR in ligand-binding domain activates PXR competitively and solidly, facilitates its recruitment to target gene CYP3A11 promoter, and promotes CYP3A11 gene transcription, thus resulting in increases of APAP pro-toxic metabolism. Additionally, PXR silence antagonizes the effects of PARP1 on APAP-induced hepatotoxicity. These results identifies poly(ADP-ribosyl)ation of PXR by PARP1 as a key step in APAP-induced liver injury. We propose that inhibition of PARP1-dependent poly(ADP-ribosyl)ation might represent a novel approach for the treatment of drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Zhang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
36
|
Le paracétamol à dose thérapeutique : quelles populations à risque d’hépatotoxicité ? TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2018. [DOI: 10.1016/j.toxac.2017.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Goda K, Saito K, Muta K, Kobayashi A, Saito Y, Sugai S. Ether-phosphatidylcholine characterized by consolidated plasma and liver lipidomics is a predictive biomarker for valproic acid-induced hepatic steatosis. J Toxicol Sci 2018; 43:395-405. [DOI: 10.2131/jts.43.395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Keisuke Goda
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO Inc
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences
| | - Kyotaka Muta
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO Inc
| | - Akio Kobayashi
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO Inc
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences
| | - Shoichiro Sugai
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO Inc
| |
Collapse
|
38
|
Chang HY, Chen CJ, Ma WC, Cheng WK, Lin YN, Lee YR, Chen JJ, Lim YP. Modulation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) activation by ursolic acid (UA) attenuates rifampin-isoniazid cytotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:37-49. [PMID: 29157826 DOI: 10.1016/j.phymed.2017.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/30/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Interactions between transcriptional inducers of cytochrome P450 (CYP450) enzymes and therapeutic drugs may be prevented by antagonizing the activation of a nuclear receptor (NR), pregnane X receptor (PXR, NR1I2), thus improving therapeutic efficacy. PURPOSE In the present study, we aim to identify that ursolic acid (UA), a widely distributed pentacyclic triterpene, may act as an effective antagonist of PXR and its sister NR receptor, constitutive androstane receptor (CAR, NR1I3). METHODS The hepatocellular carcinoma cell line, HepG2, was used to evaluate the promoter activity of PXR and CAR target genes, CYP3A4 and CYP2B6, respectively. Catalytic activities, mRNA, and protein expression of CYP3A4 and CYP2B6 were evaluated in a differentiated HepaRG cell line. Coregulation of PXR with coregulators on CYP3A4 promoter response elements was also been characterized. RESULTS Transient transfection assays showed that UA effectively attenuated CYP3A4 and CYP2B6 promoter activities mediated by rifampin (RIF, human PXR agonist) and CITCO (human CAR agonist). These inhibitory effects were well correlated with the expression and catalytic activities of CYP3A4 and CYP2B6. Furthermore, the interaction of co-regulators with PXR and the transcriptional complexes in the CYP3A4 promoter activity and CYP3A4 promoter xenobiotic response element (everted repeat 6, ER6), respectively, were disrupted in the presence of UA. UA showed an antagonistic effect against PXR, and reversed the cytotoxic effects of isoniazid (INH) induced by RIF. Taken together, these results show that UA inhibits the transactivation effects of PXR and CAR, and reduces the expression and function of CYP3A4 and CYP2B6. CONCLUSION The present study suggests that UA could be a powerful agent for reducing potentially dangerous interactions between transcriptional inducers of CYP enzymes and therapeutic drugs.
Collapse
Affiliation(s)
- Hsiao-Yun Chang
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chao-Jung Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chih Ma
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Wai-Kok Cheng
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yen-Ning Lin
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Ying-Ray Lee
- Translational Medicine Research Center, Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming University, Taipei, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
39
|
Choi S, Neequaye P, French SW, Gonzalez FJ, Gyamfi MA. Pregnane X receptor promotes ethanol-induced hepatosteatosis in mice. J Biol Chem 2017; 293:1-17. [PMID: 29123032 DOI: 10.1074/jbc.m117.815217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a xenobiotic-sensing nuclear receptor that modulates the metabolic response to drugs and toxic agents. Both PXR activation and deficiency promote hepatic triglyceride accumulation, a hallmark feature of alcoholic liver disease. However, the molecular mechanism of PXR-mediated activation of ethanol (EtOH)-induced steatosis is unclear. Here, using male wildtype (WT) and Pxr-null mice, we examined PXR-mediated regulation of chronic EtOH-induced hepatic lipid accumulation and hepatotoxicity. EtOH ingestion for 8 weeks significantly (1.8-fold) up-regulated Pxr mRNA levels in WT mice. The EtOH exposure also increased mRNAs encoding hepatic constitutive androstane receptor (3-fold) and its target, Cyp2b10 (220-fold), in a PXR-dependent manner. Furthermore, WT mice had higher serum EtOH levels and developed hepatic steatosis characterized by micro- and macrovesicular lipid accumulation. Consistent with the development of steatosis, lipogenic gene induction was significantly increased in WT mice, including sterol regulatory element-binding protein 1c target gene fatty-acid synthase (3.0-fold), early growth response-1 (3.2-fold), and TNFα (3.0-fold), whereas the expression of peroxisome proliferator-activated receptor α target genes was suppressed. Of note, PXR deficiency suppressed these changes and steatosis. Protein levels, but not mRNAs levels, of EtOH-metabolizing enzymes, including alcohol dehydrogenase 1, aldehyde dehydrogenase 1A1, and catalase, as well as the microsomal triglyceride transfer protein, involved in regulating lipid output were higher in Pxr-null than in WT mice. These findings establish that PXR signaling contributes to ALD development and suggest that PXR antagonists may provide a new approach for ALD therapy.
Collapse
Affiliation(s)
- Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Prince Neequaye
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Samuel W French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, California 90509
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707.
| |
Collapse
|
40
|
Zhu H, Chen Z, Ma Z, Tan H, Xiao C, Tang X, Zhang B, Wang Y, Gao Y. Tanshinone IIA Protects Endothelial Cells from H₂O₂-Induced Injuries via PXR Activation. Biomol Ther (Seoul) 2017; 25:599-608. [PMID: 28173640 PMCID: PMC5685429 DOI: 10.4062/biomolther.2016.179] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/08/2016] [Accepted: 11/03/2016] [Indexed: 01/11/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is a pharmacologically active substance extracted from the rhizome of Salvia miltiorrhiza Bunge (also known as the Chinese herb Danshen), and is widely used to treat atherosclerosis. The pregnane X receptor (PXR) is a nuclear receptor that is a key regulator of xenobiotic and endobiotic detoxification. Tan IIA is an efficacious PXR agonist that has a potential protective effect on endothelial injuries induced by xenobiotics and endobiotics via PXR activation. Previously numerous studies have demonstrated the possible effects of Tan IIA on human umbilical vein endothelial cells, but the further mechanism for its exerts the protective effect is not well established. To study the protective effects of Tan IIA against hydrogen peroxide (H2O2) in human umbilical vein endothelial cells (HUVECs), we pretreated cells with or without different concentrations of Tan IIA for 24 h, then exposed the cells to 400 μM H2O2 for another 3 h. Therefore, our data strongly suggests that Tan IIA may lead to increased regeneration of glutathione (GSH) from the glutathione disulfide (GSSG) produced during the GSH peroxidase-catalyzed decomposition of H2O2 in HUVECs, and the PXR plays a significant role in this process. Tan IIA may also exert protective effects against H2O2-induced apoptosis through the mitochondrial apoptosis pathway associated with the participation of PXR. Tan IIA protected HUVECs from inflammatory mediators triggered by H2O2 via PXR activation. In conclusion, Tan IIA protected HUVECs against H2O2-induced cell injury through PXR-dependent mechanisms.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China.,Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhiwu Chen
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Zengchun Ma
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongling Tan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chengrong Xiao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xianglin Tang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Boli Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yuguang Wang
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China.,Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yue Gao
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China.,Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
41
|
Lin YN, Chen CJ, Chang HY, Cheng WK, Lee YR, Chen JJ, Lim YP. Oleanolic Acid-Mediated Inhibition of Pregnane X Receptor and Constitutive Androstane Receptor Attenuates Rifampin-Isoniazid Cytotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8606-8616. [PMID: 28945086 DOI: 10.1021/acs.jafc.7b02696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interactions between transcriptional inducers of cytochrome P450 (CYP450) and pharmacological agents might decrease drug efficacy and induce side effects. Such interactions could be prevented using an antagonist of the pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Here, we aimed to determine the antagonistic effect of oleanolic acid (OA) on PXR and CAR. OA attenuated the promoter activities, expressions, and enzyme catalytic activities of CYP3A4 and CYP2B6 mediated by rifampin (RIF) and CITCO. Moreover, OA displayed species specificity for rodent PXR. Interaction of coregulators with PXR and transcriptional complexes on the CYP3A4 promoter was disrupted by OA. Additionally, OA reversed the cytotoxic effects of isoniazid induced by RIF. These data demonstrate that OA inhibited the transactivation of PXR and CAR, reduced the expression and function of CYP3A4 and CYP2B6, and may therefore serve as an effective agent for reducing probability adverse interactions between transcriptional inducers of CYP450 and therapeutic drugs.
Collapse
Affiliation(s)
- Yen-Ning Lin
- Department of Pharmacy, College of Pharmacy, China Medical University , Taichung 40402, Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital , Taichung 40402, Taiwan
- School of Chinese Medicine, China Medical University , Taichung 40402, Taiwan
| | - Hsiao-Yun Chang
- Department of Biotechnology, Asia University , Taichung 41354, Taiwan
| | - Wai-Kok Cheng
- Department of Pharmacy, College of Pharmacy, China Medical University , Taichung 40402, Taiwan
| | - Ying-Ray Lee
- Translational Medicine Research Center, Chia-Yi Christian Hospital , Chiayi 60002, Taiwan
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming University , Taipei, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University , Taichung 40402, Taiwan
- Department of Internal Medicine, China Medical University Hospital , Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital , Taichung 40402, Taiwan
| |
Collapse
|
42
|
Ming YN, Zhang JY, Wang XL, Li CM, Ma SC, Wang ZY, Liu XL, Li XB, Mao YM. Liquid chromatography mass spectrometry-based profiling of phosphatidylcholine and phosphatidylethanolamine in the plasma and liver of acetaminophen-induced liver injured mice. Lipids Health Dis 2017; 16:153. [PMID: 28807032 PMCID: PMC5556666 DOI: 10.1186/s12944-017-0540-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Background Acetaminophen (APAP) overdose is one of the most common causes of acute liver failure in many countries. The aim of the study was to describe the profiling of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in the plasma and liver of Acetaminophen -induced liver injured mice. Methods A time course study was carried out using C57BL/6 mice after intraperitoneal administration of 300 mg/kg Acetaminophen 1 h, 3 h, 6 h, 12 h and 24 h. A high-throughput liquid chromatography mass spectrometry (LC-MS) lipidomic method was utilized to detect phosphatidylcholine and phosphatidylethanolamine species in the plasma and liver. The expressions of phosphatidylcholine and phosphatidylethanolamine metabolism related genes in liver were detected by quantitative Reverse transcription polymerase chain reaction (qRT-PCR) and Western-blot. Results Following Acetaminophen treatment, the content of many PC and PE species in plasma increased from 1 h time point, peaked at 3 h or 6 h, and tended to return to baseline at 24 h time point. The relative contents of almost all PC species in liver decreased from 1 h, appeared to be lowest at 6 h, and then return to normality at 24 h, which might be partly explained by the suppression of phospholipases mRNA expressions and the induction of choline kinase (Chka) expression. Inconsistent with PC profile, the relative contents of many PE species in liver increased upon Acetaminophen treatment, which might be caused by the down-regulation of phosphatidylethanolamine N-methyltransferase (Pemt). Conclusions Acetaminophen overdose induced dramatic change of many PC and PE species in plasma and liver, which might be caused by damaging hepatocytes and interfering the phospholipid metabolism in Acetaminophen -injured liver. Electronic supplementary material The online version of this article (doi:10.1186/s12944-017-0540-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Nan Ming
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jing-Yi Zhang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao-Lin Wang
- Department of Pharmacology, School of Medicine, Shanghai Jiao Tong University, Institute of Medical Sciences, Shanghai, China
| | - Chun-Min Li
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Si-Cong Ma
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng-Yang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiao-Lin Liu
- Division of Gastroenterology and Hepatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Bo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yi-Min Mao
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
43
|
Yan L, Wang Y, Liu J, Nie Y, Zhong XB, Kan Q, Zhang L. Alterations of Histone Modifications Contribute to Pregnane X Receptor-Mediated Induction of CYP3A4 by Rifampicin. Mol Pharmacol 2017; 92:113-123. [PMID: 28546420 DOI: 10.1124/mol.117.108225] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/22/2017] [Indexed: 01/28/2023] Open
Abstract
CYP3A4 is one of the major drug-metabolizing enzymes in human and is responsible for the metabolism of 60% of clinically used drugs. Many drugs are able to induce the expression of CYP3A4, which usually causes drug-drug interactions and adverse drug reactions. This study aims to explore the role of histone modifications in rifampicin-induced expression of CYP3A4 in LS174T cells. We found that the induction of CYP3A4 mRNA (4- to 15-fold) by rifampicin in LS174T cells was associated with increased levels of histone H3 lysine 4 trimethylation (H3K4me3, above 1.8-fold) and H3 acetylation (above 2-fold) and a decreased level of histone H3 lysine 27 trimethylation (H3K27me3, about 50%) in the CYP3A4 promoter. Rifampicin enhanced recruitment to the CYP3A4 promoter of nuclear receptor coactivator 6 (NCOA6, above 3-fold) and histone acetyltransferase p300 (p300, above 1.6-fold). Silencing NCOA6 or p300 by short-hairpin RNAs resulted in inhibition of the CYP3A4 induction as well as altered levels of H3K4me3, H3K27me3, or H3 acetylation in the CYP3A4 promoter. Knockdown of pregnane X receptor (PXR) expression not only suppressed the recruitment of NCOA6 and p300 but also abolished the changes caused by rifampicin in H3K4me3, H3K27me3, and H3 acetylation levels in the CYP3A4 promoter. Moreover, rifampicin treatment enhanced the nuclear accumulation and interactions between PXR and NCOA6/p300. In conclusion, we show that the alterations of histone modifications contribute to the PXR-mediated induction of CYP3A4 by rifampicin.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| | - Yiting Wang
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| | - Jingyang Liu
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| | - Yali Nie
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| | - Xiao-Bo Zhong
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| | - Quancheng Kan
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| | - Lirong Zhang
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| |
Collapse
|
44
|
Abstract
Drug-induced hepatotoxicity (DIH) is a significant cause of acute liver failure and liver transplantation. Diagnosis is challenging due to the idiosyncratic nature, its presentation in the form of other liver disease, and the lack of a definite diagnostic criteria. Generation of reactive metabolites, oxidative stress, and mitochondrial dysfunction are common mechanisms involved in DIH. Certain risk factors associated with a drug and within an individual further predispose patients to DIH.
Collapse
Affiliation(s)
- Amina Ibrahim Shehu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 3rd Floor Salk Pavillion, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 3rd Floor Salk Pavillion, Pittsburgh, PA 15261, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 718 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
45
|
Saito K, Goda K, Kobayashi A, Yamada N, Maekawa K, Saito Y, Sugai S. Arachidonic acid-containing phosphatidylcholine characterized by consolidated plasma and liver lipidomics as an early onset marker for tamoxifen-induced hepatic phospholipidosis. J Appl Toxicol 2017; 37:943-953. [PMID: 28138993 DOI: 10.1002/jat.3442] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/16/2016] [Accepted: 12/26/2016] [Indexed: 01/27/2023]
Abstract
Lipid profiling has emerged as an effective approach to not only screen disease and drug toxicity biomarkers but also understand their underlying mechanisms of action. Tamoxifen, a widely used antiestrogenic agent for adjuvant therapy against estrogen-positive breast cancer, possesses side effects such as hepatic steatosis and phospholipidosis (PLD). In the present study, we administered tamoxifen to Sprague-Dawley rats and used lipidomics to reveal tamoxifen-induced alteration of the hepatic lipid profile and its association with the plasma lipid profile. Treatment with tamoxifen for 28 days caused hepatic PLD in rats. We compared the plasma and liver lipid profiles in treated vs. untreated rats using a multivariate analysis to determine differences between the two groups. In total, 25 plasma and 45 liver lipids were identified and altered in the tamoxifen-treated group. Of these lipids, arachidonic acid (AA)-containing phosphatidylcholines (PCs), such as PC (17:0/20:4) and PC (18:1/20:4), were commonly reduced in both plasma and liver. Conversely, tamoxifen increased other phosphoglycerolipids in the liver, such as phosphatidylethanolamine (18:1/18:1) and phosphatidylinositol (18:0/18:2). We also examined alteration of AA-containing PCs and some phosphoglycerolipids in the pre-PLD stage and found that these lipid alterations were initiated before pathological alteration in the liver. In addition, changes in plasma and liver levels of AA-containing PCs were linearly associated. Moreover, levels of free AA and mRNA levels of AA-synthesizing enzymes, such as fatty acid desaturase 1 and 2, were decreased by tamoxifen treatment. Therefore, our study demonstrated that AA-containing PCs might have potential utility as novel and predictive biomarkers for tamoxifen-induced PLD. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Setagaya, Tokyo, 158-8501, Japan
| | - Keisuke Goda
- Toxicology Research Lab, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Hadano, Kanagawa, 257-0024, Japan
| | - Akio Kobayashi
- Toxicology Research Lab, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Hadano, Kanagawa, 257-0024, Japan
| | - Naohito Yamada
- Toxicology Research Lab, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Hadano, Kanagawa, 257-0024, Japan
| | - Kyoko Maekawa
- Division of Medicinal Safety Science, National Institute of Health Sciences, Setagaya, Tokyo, 158-8501, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Setagaya, Tokyo, 158-8501, Japan
| | - Shoichiro Sugai
- Toxicology Research Lab, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Hadano, Kanagawa, 257-0024, Japan
| |
Collapse
|
46
|
Marine fatty acids aggravate hepatotoxicity of α-HBCD in juvenile female BALB/c mice. Food Chem Toxicol 2016; 97:411-423. [DOI: 10.1016/j.fct.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 12/20/2022]
|
47
|
Rudraiah S, Zhang X, Wang L. Nuclear Receptors as Therapeutic Targets in Liver Disease: Are We There Yet? Annu Rev Pharmacol Toxicol 2016; 56:605-626. [PMID: 26738480 DOI: 10.1146/annurev-pharmtox-010715-103209] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NR) are ligand-modulated transcription factors that play diverse roles in cell differentiation, development, proliferation, and metabolism and are associated with numerous liver pathologies such as cancer, steatosis, inflammation, fibrosis, cholestasis, and xenobiotic/drug-induced liver injury. The network of target proteins associated with NRs is extremely complex, comprising coregulators, small noncoding microRNAs, and long noncoding RNAs. The importance of NRs as targets of liver disease is exemplified by the number of NR ligands that are currently used in the clinics or in clinical trials with promising results. Understanding the regulation by NR during pathophysiological conditions, and identifying ligands for orphan NR, points to a potential therapeutic approach for patients with liver diseases. An overview of complex NR metabolic networks and their pharmacological implications in liver disease is presented here.
Collapse
Affiliation(s)
- Swetha Rudraiah
- Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| | - Xi Zhang
- Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| | - Li Wang
- Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516.,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
48
|
Gramec Skledar D, Tomašič T, Carino A, Distrutti E, Fiorucci S, Peterlin Mašič L. New brominated flame retardants and their metabolites as activators of the pregnane X receptor. Toxicol Lett 2016; 259:116-123. [DOI: 10.1016/j.toxlet.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 01/30/2023]
|
49
|
Bhattacharyya S, Pence L, Yan K, Gill P, Luo C, Letzig LG, Simpson PM, Kearns GL, Beger RD, James LP. Targeted metabolomic profiling indicates structure-based perturbations in serum phospholipids in children with acetaminophen overdose. Toxicol Rep 2016; 3:747-755. [PMID: 28959601 PMCID: PMC5616013 DOI: 10.1016/j.toxrep.2016.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022] Open
Abstract
Phospholipids are an important class of lipids that act as building blocks of biological cell membranes and participate in a variety of vital cellular functions including cell signaling. Previous studies have reported alterations in phosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) metabolism in acetaminophen (APAP)-treated animals or cell cultures. However, little is known about phospholipid perturbations in humans with APAP toxicity. In the current study, targeted metabolomic analysis of 180 different metabolites including 14 lysoPCs and 73 PCs was performed in serum samples from children and adolescents hospitalized for APAP overdose. Metabolite profiles in the overdose group were compared to those of healthy controls and hospitalized children receiving low dose APAP for treatment of pain or fever (therapeutic group). PCs and lysoPCs with very long chain fatty acids (VLCFAs) were significantly decreased in the overdose group, while those with comparatively shorter chain lengths were increased in the overdose group compared to the therapeutic and control groups. All ether linked PCs were decreased in the overdose group compared to the controls. LysoPC-C26:1 was highly reduced in the overdose group and could discriminate between the overdose and control groups with 100% sensitivity and specificity. The PCs and lysoPCs with VLCFAs showed significant associations with changes in clinical indicators of drug metabolism (APAP protein adducts) and liver injury (alanine aminotransferase, or ALT). Thus, a structure-dependent reduction in PCs and lysoPCs was observed in the APAP-overdose group, which may suggest a structure-activity relationship in inhibition of enzymes involved in phospholipid metabolism in APAP toxicity.
Collapse
Affiliation(s)
- Sudeepa Bhattacharyya
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.,Arkansas Children's Research Institute, Little Rock, AR 72202, USA
| | - Lisa Pence
- Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Ke Yan
- Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pritmohinder Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Chunqiao Luo
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Lynda G Letzig
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | | | - Gregory L Kearns
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Laura P James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
50
|
Pérez-Albaladejo E, Rizzi J, Fernandes D, Lille-Langøy R, Karlsen OA, Goksøyr A, Oros A, Spagnoli F, Porte C. Assessment of the environmental quality of coastal sediments by using a combination of in vitro bioassays. MARINE POLLUTION BULLETIN 2016; 108:53-61. [PMID: 27207027 DOI: 10.1016/j.marpolbul.2016.04.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
The environmental quality of marine sediments collected in the area of influence of the Po and Danube Rivers was assessed by using a battery of bioassays based on the use of PLHC-1 cells, zebrafish-Pxr-transfected COS-7 cells, and sea bass ovarian subcellular fractions. This allowed the determination of multiple endpoints, namely, cytotoxicity, oxidative stress, induction of CYP1A, activation of zebrafish Pxr and inhibition of ovarian aromatase. Organic extracts of sediments influenced by the Danube River and collected near harbors and urban discharges showed significant cytotoxicity, CYP1A induction and inhibition of aromatase activity. An analogous response of CYP1A induction and zfPxr activation was observed, which suggests the existence of common ligands of AhR and PXR in the sediment extracts. The study highlights the usefulness of the selected bioassays to identify those sediments that could pose a risk to aquatic organisms and that require further action in order to improve their environmental quality.
Collapse
Affiliation(s)
| | - Juliane Rizzi
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain; Department of Hydraulics and Sanitation, Federal University of Parana, Curitiba, Brazil
| | - Denise Fernandes
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | | | | | | | - Andra Oros
- National Institute for Marine Research and Development 'Grigore Antipa', Constanta, Romania
| | - Federico Spagnoli
- Institute of Marine Sciences, National Research council, ISMAR-CNR, Italy
| | - Cinta Porte
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain.
| |
Collapse
|