1
|
Zhang P, Wang K, Hu T, Xu M, You X, Chen M, Tang X, Hu H, Jiang Y, Zhao W, Tan S. A novel fully human anti-NT-ANGPTL3 antibody from phage display library exhibits potent ApoB, TG, and LDL-C lowering activities in hyperlipidemia mice. FASEB J 2024; 38:e23399. [PMID: 38174870 DOI: 10.1096/fj.202301564rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Dyslipidemia is characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and TG-rich lipoprotein (TGRLs) in circulation, and is closely associated with the incidence and development of cardiovascular disease. Angiopoietin-like protein 3 (ANGPTL3) deficiency has been identified as a cause of familial combined hypolipidemia in humans, which allows it to be an important therapeutic target for reducing plasma lipids. Here, we report the discovery and characterization of a novel fully human antibody F1519-D95aA against N-terminal ANGPTL3 (NT-ANGPTL3), which potently inhibits NT-ANGPTL3 with a KD as low as 9.21 nM. In hyperlipidemic mice, F1519-D95aA shows higher apolipoprotein B (ApoB) and TG-lowering, and similar LDL-C reducing activity as compared to positive control Evinacumab (56.50% vs 26.01% decrease in serum ApoB levels, 30.84% vs 25.28% decrease in serum TG levels, 23.32% vs 22.52% decrease in serum LDLC levels, relative to vehicle group). Molecular docking and binding energy calculations reveal that the F1519-D95aA-ANGPTL3 complex (10 hydrogen bonds, -65.51 kcal/mol) is more stable than the Evinacumab-ANGPTL3 complex (4 hydrogen bonds, -63.76 kcal/mol). Importantly, F1519-D95aA binds to ANGPTL3 with different residues in ANGPTL3 from Evinacumab, suggesting that F1519-D95aA may be useful for the treatment of patients resistant to Evinacumab. In conclusion, F1519-D95aA is a novel fully human anti-NT-ANGPTL3 antibody with potent plasma ApoB, TG, and LDL-C lowering activities, which can potentially serve as a therapeutic agent for hyperlipidemia and relevant cardiovascular diseases.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Ke Wang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Tuo Hu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Menglong Xu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Xiangyan You
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Manman Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Xuan Tang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Huajing Hu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Yiwei Jiang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
2
|
Eke AC, Gebreyohannes RD, Fernandes MFS, Pillai VC. Physiologic Changes During Pregnancy and Impact on Small-Molecule Drugs, Biologic (Monoclonal Antibody) Disposition, and Response. J Clin Pharmacol 2023; 63 Suppl 1:S34-S50. [PMID: 37317492 PMCID: PMC10365893 DOI: 10.1002/jcph.2227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/17/2023] [Indexed: 06/16/2023]
Abstract
Pregnancy is a unique physiological state that results in many changes in bodily function, including cellular, metabolic, and hormonal changes. These changes can have a significant impact on the way small-molecule drugs and monoclonal antibodies (biologics) function and are metabolized, including efficacy, safety, potency, and adverse effects. In this article, we review the various physiologic changes that occur during pregnancy and their effects on drug and biologic metabolism, including changes in the coagulation, gastrointestinal, renal, endocrine, hepatic, respiratory, and cardiovascular systems. Additionally, we discuss how these changes can affect the processes of drug and biologic absorption, distribution, metabolism, and elimination (pharmacokinetics), and how drugs and biologics interact with biological systems, including mechanisms of drug action and effect (pharmacodynamics) during pregnancy, as well as the potential for drug-induced toxicity and adverse effects in the mother and developing fetus. The article also examines the implications of these changes for the use of drugs and biologics during pregnancy, including consequences of suboptimal plasma drug concentrations, effect of pregnancy on the pharmacokinetics and pharmacodynamics of biologics, and the need for careful monitoring and individualized drug dosing. Overall, this article aims to provide a comprehensive understanding of the physiologic changes during pregnancy and their effects on drug and biologic metabolism to improve the safe and effective use of drugs.
Collapse
Affiliation(s)
- Ahizechukwu C Eke
- Division of Maternal Fetal Medicine, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rahel D Gebreyohannes
- Department of Obstetrics and Gynecology, Addis Ababa University College of Medicine, Addis Ababa, Ethiopia
| | | | | |
Collapse
|
3
|
Maciuba S, Bowden GD, Stratton HJ, Wisniewski K, Schteingart CD, Almagro JC, Valadon P, Lowitz J, Glaser SM, Lee G, Dolatyari M, Navratilova E, Porreca F, Rivière PJ. Discovery and characterization of prolactin neutralizing monoclonal antibodies for the treatment of female-prevalent pain disorders. MAbs 2023; 15:2254676. [PMID: 37698877 PMCID: PMC10498814 DOI: 10.1080/19420862.2023.2254676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Prolactin (PRL) has recently been demonstrated to elicit female-selective nociceptor sensitization and increase pain-like behaviors in female animals. Here we report the discovery and characterization of first-in-class, humanized PRL neutralizing monoclonal antibodies (PRL mAbs). We obtained two potent and selective PRL mAbs, PL 200,031 and PL 200,039. PL 200,031 was engineered as human IgG1 whereas PL 200,039 was reformatted as human IgG4. Both mAbs have sub-nanomolar affinity for human PRL (hPRL) and produce concentration-dependent and complete inhibition of hPRL signaling at the hPRL receptor (hPRLR). These two PRL mAbs are selective for hPRL as they do not inhibit other hPRLR agonists such as human growth hormone or placental lactogen. They also cross-react with non-human primate PRL but not with rodent PRL. Further, both mAbs show long clearance half-lives after intravenous administration in FcRn-humanized mice. Consistent with their isotypes, these mAbs only differ in binding affinities to Fcγ receptors, as expected by design. Finally, PL 200,019, the murine parental mAb of PL 200,031 and PL 200,039, fully blocked stress-induced and PRL-dependent pain behaviors in female PRL-humanized mice, thereby providing in vivo preclinical proof-of-efficacy for PRL mAbs in mechanisms relevant to pain in females.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Grace Lee
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Mahdi Dolatyari
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
4
|
Pharmacokinetic Developability and Disposition Profiles of Bispecific Antibodies: A Case Study with Two Molecules. Antibodies (Basel) 2021; 11:antib11010002. [PMID: 35076469 PMCID: PMC8788489 DOI: 10.3390/antib11010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Bispecific antibodies (BsAb) that engage multiple pathways are a promising therapeutic strategy to improve and prolong the efficacy of biologics in complex diseases. In the early stages of discovery, BsAbs often exhibit a broad range of pharmacokinetic (PK) behavior. Optimization of the neonatal Fc receptor (FcRn) interactions and removal of undesirable physiochemical properties have been used to improve the 'pharmacokinetic developability' for various monoclonal antibody (mAb) therapeutics, yet there is a sparsity of such information for BsAbs. The present work evaluated the influence of FcRn interactions and inherent physiochemical properties on the PK of two related single chain variable fragment (scFv)-based BsAbs. Despite their close relation, the two BsAbs exhibit disparate PK in cynomolgus monkeys with BsAb-1 having an aberrant clearance of ~2 mL/h/kg and BsAb-2 displaying a an ~10-fold slower clearance (~0.2 mL/h/kg). Evaluation of the physiochemical characteristics of the molecules, including charge, non-specific binding, thermal stability, and hydrophobic properties, as well as FcRn interactions showed some differences. In-depth drug disposition results revealed that a substantial disparity in the complete release from FcRn at a neutral pH is a primary factor contributing to the rapid clearance of the BsAb-1 while other biophysical characteristics were largely comparable between molecules.
Collapse
|
5
|
Handlogten MW, Peng L, Christian EA, Xu W, Lin S, Venkat R, Dall'Acqua W, Ahuja S. Prevention of Fab-arm exchange and antibody reduction via stabilization of the IgG4 hinge region. MAbs 2021; 12:1779974. [PMID: 32633193 PMCID: PMC7531514 DOI: 10.1080/19420862.2020.1779974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IgG4s are dynamic molecules that undergo a process called Fab-arm exchange. Disulfide bonds between heavy chains are transiently reduced, resulting in half antibodies that reform intact antibodies with other IgG4 half antibodies. In vivo, therapeutic IgG4s can recombine with endogenous IgG4s, resulting in a heterogeneous mixture of bispecific antibodies. A related issue that can occur for any therapeutic protein during manufacturing is interchain disulfide bond reduction. For IgG4s, this primarily results in high levels of half-mAb that persist through purification processes. The S228P mutation has been used to prevent half-mAb formation. However, we demonstrated that IgG4s with the S228P mutation are subject to half-mAb formation and Fab-arm exchange in reducing environments. We identified two novel mutations that stabilize the heavy-heavy chain interaction via incorporation of additional disulfide bonds in the hinge region. Individually, these mutations increase stability toward reduction and lessen Fab-arm exchange. Combination of all three mutations, Y219C, G220C, and S228P, has an additive benefit resulting in an IgG4 with ˃7-fold increase in stability toward reduction while preventing Fab-arm exchange. Importantly, the mutations do not affect antigen binding or Fc effector function. These mutations hold great promise for solving mAb reduction during manufacturing and preventing Fab-arm exchange in vivo.
Collapse
Affiliation(s)
- Michael W Handlogten
- Cell Culture & Fermentation Sciences, Biopharmaceutical Development, AstraZeneca , Gaithersburg, MD, USA
| | - Li Peng
- Antibody Discovery and Protein Engineering, Biopharmaceutical Development, AstraZeneca , Gaithersburg, MD, USA
| | - Elizabeth A Christian
- Analytical Sciences, Bioassay, Biopharmaceutical Development, AstraZeneca , Gaithersburg, MD, USA
| | - Weichen Xu
- Analytical Sciences, Biopharmaceutical Development, AstraZeneca , Gaithersburg, MD, USA
| | - Shihua Lin
- Analytical Sciences, Bioassay, Biopharmaceutical Development, AstraZeneca , Gaithersburg, MD, USA
| | - Raghavan Venkat
- Cell Culture & Fermentation Sciences, Biopharmaceutical Development, AstraZeneca , Gaithersburg, MD, USA
| | - William Dall'Acqua
- Antibody Discovery and Protein Engineering, Biopharmaceutical Development, AstraZeneca , Gaithersburg, MD, USA
| | - Sanjeev Ahuja
- Cell Culture & Fermentation Sciences, Biopharmaceutical Development, AstraZeneca , Gaithersburg, MD, USA
| |
Collapse
|
6
|
Wang B, Gallolu Kankanamalage S, Dong J, Liu Y. Optimization of therapeutic antibodies. Antib Ther 2021; 4:45-54. [PMID: 33928235 PMCID: PMC7944496 DOI: 10.1093/abt/tbab003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we have summarized the current landscape of therapeutic antibody optimization for successful development. By engineering antibodies with display technology, computer-aided design and site mutagenesis, various properties of the therapeutic antibody candidates can be improved with the purpose of enhancing their safety, efficacy and developability. These properties include antigen binding affinity and specificity, biological efficacy, pharmacokinetics and pharmacodynamics, immunogenicity and physicochemical developability features. A best-in-class strategy may require the optimization of all these properties to generate a good therapeutic antibody.
Collapse
Affiliation(s)
- Bo Wang
- Ab Studio, Inc. Hayward, CA 94545, USA
| | | | | | - Yue Liu
- Ab Studio, Inc. Hayward, CA 94545, USA
| |
Collapse
|
7
|
Tilegenova C, Izadi S, Yin J, Huang CS, Wu J, Ellerman D, Hymowitz SG, Walters B, Salisbury C, Carter PJ. Dissecting the molecular basis of high viscosity of monospecific and bispecific IgG antibodies. MAbs 2021; 12:1692764. [PMID: 31779513 PMCID: PMC6927759 DOI: 10.1080/19420862.2019.1692764] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Some antibodies exhibit elevated viscosity at high concentrations, making them poorly suited for therapeutic applications requiring administration by injection such as subcutaneous or ocular delivery. Here we studied an anti-IL-13/IL-17 bispecific IgG4 antibody, which has anomalously high viscosity compared to its parent monospecific antibodies. The viscosity of the bispecific IgG4 in solution was decreased by only ~30% in the presence of NaCl, suggesting electrostatic interactions are insufficient to fully explain the drivers of viscosity. Intriguingly, addition of arginine-HCl reduced the viscosity of the bispecific IgG4 by ~50% to its parent IgG level. These data suggest that beyond electrostatics, additional types of interactions such as cation-π and/or π-π may contribute to high viscosity more significantly than previously understood. Molecular dynamics simulations of antibody fragments in the mixed solution of free arginine and explicit water were conducted to identify hotspots involved in self-interactions. Exposed surface aromatic amino acids displayed an increased number of contacts with arginine. Mutagenesis of the majority of aromatic residues pinpointed by molecular dynamics simulations effectively decreased the solution's viscosity when tested experimentally. This mutational method to reduce the viscosity of a bispecific antibody was extended to a monospecific anti-GCGR IgG1 antibody with elevated viscosity. In all cases, point mutants were readily identified that both reduced viscosity and retained antigen-binding affinity. These studies demonstrate a new approach to mitigate high viscosity of some antibodies by mutagenesis of surface-exposed aromatic residues on complementarity-determining regions that may facilitate some clinical applications.
Collapse
Affiliation(s)
| | - Saeed Izadi
- Early Stage Pharmaceutical Development, Genentech Inc., South San Francisco, CA, USA
| | - Jianping Yin
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | | | - Jiansheng Wu
- Protein Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Diego Ellerman
- Protein Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Sarah G Hymowitz
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Benjamin Walters
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Cleo Salisbury
- Early Stage Pharmaceutical Development, Genentech Inc., South San Francisco, CA, USA
| | - Paul J Carter
- Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
8
|
Xie T, Wang S, Xing P. [Analysis of the Correlation between Molecular Structural Differences of PD-1/PD-L1 Inhibitors and Adverse Events]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:603-608. [PMID: 32702794 PMCID: PMC7406435 DOI: 10.3779/j.issn.1009-3419.2020.102.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
针对程序性死亡受体1(programmed cell death protein 1, PD-1)及程序性死亡配体1(programmed cell death ligand 1, PD-L1)的免疫治疗作为一种新兴的方法在恶性肿瘤的治疗中起到越来越大的作用,相较于传统的化学治疗体现出更好的疗效。然而在应用针对PD-1/PD-L1的免疫检查点抑制剂的过程中也出现了许多不良反应,并且这些不良反应在不同药物中的发生率也不完全相同。由于区分不同药物的一个重要指标是它们的分子结构,故本文将从不同PD-1/PD-L1免疫检查点抑制剂的结构出发,通过综述不良反应的meta分析以及回顾性研究的结果解析分子结构与不良反应发生情况之间的相关性。
Collapse
Affiliation(s)
- Tongji Xie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shouzheng Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Puyuan Xing
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
9
|
Datta-Mannan A. Mechanisms Influencing the Pharmacokinetics and Disposition of Monoclonal Antibodies and Peptides. Drug Metab Dispos 2019; 47:1100-1110. [PMID: 31043438 DOI: 10.1124/dmd.119.086488] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
Monoclonal antibodies (mAbs) and peptides are an important class of therapeutic modalities that have brought improved health outcomes in areas with limited therapeutic optionality. Presently, there more than 90 mAb and peptide therapeutics on the United States market, with over 600 more in various clinical stages of development in a broad array of therapeutic areas, including diabetes, autoimmune disorders, oncology, neuroscience, and cardiovascular and infectious diseases. Notwithstanding this potential, there is high clinical rate of attrition, with approximately 10% reaching patients. A major contributor to the failure of the molecules is often times an incomplete or poor understanding of the pharmacokinetics (PK) and disposition profiles leading to limited or diminished efficacy. Increased and thorough characterization efforts directed at disseminating mechanisms influencing the PK and disposition of mAbs and peptides can aid in improving the design for their intended pharmacological activity, and thereby their clinical success. The PK and disposition factors for mAbs and peptides are broadly influenced by target-mediated drug disposition and nontarget-related clearance mechanisms related to the interplay between the relationship of the structure and physiochemical properties of mAbs and peptides with physiologic processes. This review focuses on nontarget-related factors influencing the disposition and PK of mAbs and peptides. Contemporary considerations around the increasing in silico approaches to identify nontarget-related molecule limitations and enhancing the druggability of mAbs and peptides, including parenteral and nonparenteral delivery strategies that are geared toward improving patient experience and compliance, are also discussed.
Collapse
Affiliation(s)
- Amita Datta-Mannan
- Department of Experimental Medicine and Pharmacology, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana
| |
Collapse
|
10
|
Abstract
Monoclonal antibodies (mAbs) are immunoglobulins designed to target a specific epitope on an antigen. Immunoglobulins of identical amino-acid sequence were originally produced by hybridomas grown in culture and, subsequently, by recombinant DNA technology using mammalian cell expression systems. The antigen-binding region of the mAb is formed by the variable domains of the heavy and light chains and contains the complementarity-determining region that imparts the high specificity for the target antigen. The pharmacokinetics of mAbs involves target-mediated and non-target-related factors that influence their disposition.Preclinical safety evaluation of mAbs differs substantially from that of small molecular (chemical) entities. Immunogenicity of mAbs has implications for their pharmacokinetics and safety. Early studies of mAbs in humans require careful consideration of the most suitable study population, route/s of administration, starting dose, study design and the potential difference in pharmacokinetics in healthy subjects compared to patients expressing the target antigen.Of the ever-increasing diversity of therapeutic indications for mAbs, we have concentrated on two that have proved dramatically successful. The contribution that mAbs have made to the treatment of inflammatory conditions, in particular arthritides and inflammatory bowel disease, has been nothing short of revolutionary. Their benefit has also been striking in the treatment of solid tumours and, most recently, as immunotherapy for a wide variety of cancers. Finally, we speculate on the future with various new approaches to the development of therapeutic antibodies.
Collapse
|
11
|
Leipold D, Prabhu S. Pharmacokinetic and Pharmacodynamic Considerations in the Design of Therapeutic Antibodies. Clin Transl Sci 2018; 12:130-139. [PMID: 30414357 PMCID: PMC6440574 DOI: 10.1111/cts.12597] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
The design and development of therapeutic monoclonal antibodies (mAbs) through optimizing their pharmacokinetic (PK) and pharmacodynamic (PD) properties is crucial to improve efficacy while minimizing adverse events. Many of these properties are interdependent, which highlights the inherent challenges in therapeutic antibody design, where improving one antibody property can sometimes lead to changes in others. Here, we discuss optimization approaches for PK/PD properties of therapeutic mAbs.
Collapse
Affiliation(s)
- Douglas Leipold
- Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, South San Francisco, California, USA
| | - Saileta Prabhu
- Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, South San Francisco, California, USA
| |
Collapse
|
12
|
Hernandez-Alba O, Wagner-Rousset E, Beck A, Cianférani S. Native Mass Spectrometry, Ion Mobility, and Collision-Induced Unfolding for Conformational Characterization of IgG4 Monoclonal Antibodies. Anal Chem 2018; 90:8865-8872. [DOI: 10.1021/acs.analchem.8b00912] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Elsa Wagner-Rousset
- IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Alain Beck
- IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|
13
|
Abstract
IgG4 autoimmune diseases are characterized by the presence of antigen-specific autoantibodies of the IgG4 subclass and contain well-characterized diseases such as muscle-specific kinase myasthenia gravis, pemphigus, and thrombotic thrombocytopenic purpura. In recent years, several new diseases were identified, and by now 14 antigens targeted by IgG4 autoantibodies have been described. The IgG4 subclass is considered immunologically inert and functionally monovalent due to structural differences compared to other IgG subclasses. IgG4 usually arises after chronic exposure to antigen and competes with other antibody species, thus "blocking" their pathogenic effector mechanisms. Accordingly, in the context of IgG4 autoimmunity, the pathogenicity of IgG4 is associated with blocking of enzymatic activity or protein-protein interactions of the target antigen. Pathogenicity of IgG4 autoantibodies has not yet been systematically analyzed in IgG4 autoimmune diseases. Here, we establish a modified classification system based on Witebsky's postulates to determine IgG4 pathogenicity in IgG4 autoimmune diseases, review characteristics and pathogenic mechanisms of IgG4 in these disorders, and also investigate the contribution of other antibody entities to pathophysiology by additional mechanisms. As a result, three classes of IgG4 autoimmune diseases emerge: class I where IgG4 pathogenicity is validated by the use of subclass-specific autoantibodies in animal models and/or in vitro models of pathogenicity; class II where IgG4 pathogenicity is highly suspected but lack validation by the use of subclass specific antibodies in in vitro models of pathogenicity or animal models; and class III with insufficient data or a pathogenic mechanism associated with multivalent antigen binding. Five out of the 14 IgG4 antigens were validated as class I, five as class II, and four as class III. Antibodies of other IgG subclasses or immunoglobulin classes were present in several diseases and could contribute additional pathogenic mechanisms.
Collapse
Affiliation(s)
- Inga Koneczny
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Datta-Mannan A, Croy JE, Schirtzinger L, Torgerson S, Breyer M, Wroblewski VJ. Aberrant bispecific antibody pharmacokinetics linked to liver sinusoidal endothelium clearance mechanism in cynomolgus monkeys. MAbs 2017; 8:969-82. [PMID: 27111637 DOI: 10.1080/19420862.2016.1178435] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies (BsAbs) can affect multiple disease pathways, thus these types of constructs potentially provide promising approaches to improve efficacy in complex disease indications. The specific and non-specific clearance mechanisms/biology that affect monoclonal antibody (mAb) pharmacokinetics are likely involved in the disposition of BsAbs. Despite these similarities, there are a paucity of studies on the in vivo biology that influences the biodistribution and pharmacokinetics of BsAbs. The present case study evaluated the in vivo disposition of 2 IgG-fusion BsAb formats deemed IgG-ECD (extracellular domain) and IgG-scFv (single-chain Fv) in cynomolgus monkeys. These BsAb molecules displayed inferior in vivo pharmacokinetic properties, including a rapid clearance (> 0.5 mL/hr/kg) and short half-life relative to their mAb counterparts. The current work evaluated factors in vivo that result in the aberrant clearance of these BsAb constructs. Results showed the rapid clearance of the BsAbs that was not attributable to target binding, reduced neonatal Fc receptor (FcRn) interactions or poor molecular/biochemical properties. Evaluation of the cellular distribution of the constructs suggested that the major clearance mechanism was linked to binding/association with liver sinusoidal endothelial cells (LSECs) versus liver macrophages. The role of LSECs in facilitating the clearance of the IgG-ECD and IgG-scFv BsAb constructs described in these studies was consistent with the minimal influence of clodronate-mediated macrophage depletion on the pharmacokinetics of the constructs in cynomolgus monkeys The findings in this report are an important demonstration that the elucidation of clearance mechanisms for some IgG-ECD and IgG-scFv BsAb molecules can be unique and complicated, and may require increased attention due to the proliferation of these more complex mAb-like structures.
Collapse
Affiliation(s)
- Amita Datta-Mannan
- a Department of Drug Disposition, Development/ Commercialization , Lilly Research Laboratories, Lilly Corporate Center , Indianapolis , Indiana , USA
| | - Johnny E Croy
- b Department of Biotechnology Discovery Research , Lilly Research Laboratories, Lilly Corporate Center , Indianapolis , Indiana , USA
| | - Linda Schirtzinger
- a Department of Drug Disposition, Development/ Commercialization , Lilly Research Laboratories, Lilly Corporate Center , Indianapolis , Indiana , USA
| | - Stacy Torgerson
- a Department of Drug Disposition, Development/ Commercialization , Lilly Research Laboratories, Lilly Corporate Center , Indianapolis , Indiana , USA
| | - Matthew Breyer
- b Department of Biotechnology Discovery Research , Lilly Research Laboratories, Lilly Corporate Center , Indianapolis , Indiana , USA
| | - Victor J Wroblewski
- a Department of Drug Disposition, Development/ Commercialization , Lilly Research Laboratories, Lilly Corporate Center , Indianapolis , Indiana , USA
| |
Collapse
|
15
|
Koneczny I, Stevens JAA, De Rosa A, Huda S, Huijbers MG, Saxena A, Maestri M, Lazaridis K, Zisimopoulou P, Tzartos S, Verschuuren J, van der Maarel SM, van Damme P, De Baets MH, Molenaar PC, Vincent A, Ricciardi R, Martinez-Martinez P, Losen M. IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. J Autoimmun 2016; 77:104-115. [PMID: 27965060 DOI: 10.1016/j.jaut.2016.11.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 01/13/2023]
Abstract
Autoimmunity mediated by IgG4 subclass autoantibodies is an expanding field of research. Due to their structural characteristics a key feature of IgG4 antibodies is the ability to exchange Fab-arms with other, unrelated, IgG4 molecules, making the IgG4 molecule potentially monovalent for the specific antigen. However, whether those disease-associated antigen-specific IgG4 are mono- or divalent for their antigens is unknown. Myasthenia gravis (MG) with antibodies to muscle specific kinase (MuSK-MG) is a well-recognized disease in which the predominant pathogenic IgG4 antibody binds to extracellular epitopes on MuSK at the neuromuscular junction; this inhibits a pathway that clusters the acetylcholine (neurotransmitter) receptors and leads to failure of neuromuscular transmission. In vitro Fab-arm exchange-inducing conditions were applied to MuSK antibodies in sera, purified IgG4 and IgG1-3 sub-fractions. Solid-phase cross-linking assays were established to determine the extent of pre-existing and inducible Fab-arm exchange. Functional effects of the resulting populations of IgG4 antibodies were determined by measuring inhibition of agrin-induced AChR clustering in C2C12 cells. To confirm the results, κ/κ, λ/λ and hybrid κ/λ IgG4s were isolated and tested for MuSK antibodies. At least fifty percent of patients had IgG4, but not IgG1-3, MuSK antibodies that could undergo Fab-arm exchange in vitro under reducing conditions. Also MuSK antibodies were found in vivo that were divalent (monospecific for MuSK). Fab-arm exchange with normal human IgG4 did not prevent the inhibitory effect of serum derived MuSK antibodies on AChR clustering in C2C12 mouse myotubes. The results suggest that a considerable proportion of MuSK IgG4 could already be Fab-arm exchanged in vivo. This was confirmed by isolating endogenous IgG4 MuSK antibodies containing both κ and λ light chains, i.e. hybrid IgG4 molecules. These new findings demonstrate that Fab-arm exchanged antibodies are pathogenic.
Collapse
Affiliation(s)
- Inga Koneczny
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jo A A Stevens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Anna De Rosa
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Saif Huda
- Neurology Department, Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Maartje G Huijbers
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Abhishek Saxena
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Michelangelo Maestri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Konstantinos Lazaridis
- Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue 115 21, Ampelokipi, Athens, Greece; Neurology Department, University Hospital, Herestraat 49, 3000 Leuven, Belgium
| | - Paraskevi Zisimopoulou
- Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue 115 21, Ampelokipi, Athens, Greece; Neurology Department, University Hospital, Herestraat 49, 3000 Leuven, Belgium
| | - Socrates Tzartos
- Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue 115 21, Ampelokipi, Athens, Greece; Neurology Department, University Hospital, Herestraat 49, 3000 Leuven, Belgium
| | - Jan Verschuuren
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Philip van Damme
- Neurology Department, University Hospital, Herestraat 49, 3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Neurosciences, VIB - Vesalius Research Center, Experimental Neurology - Laboratory of Neurobiology, Leuven, Belgium
| | - Marc H De Baets
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Peter C Molenaar
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Angela Vincent
- Neurology Department, Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Roberta Ricciardi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
16
|
|
17
|
Yang X, Wang F, Zhang Y, Wang L, Antonenko S, Zhang S, Zhang YW, Tabrizifard M, Ermakov G, Wiswell D, Beaumont M, Liu L, Richardson D, Shameem M, Ambrogelly A. Comprehensive Analysis of the Therapeutic IgG4 Antibody Pembrolizumab: Hinge Modification Blocks Half Molecule Exchange In Vitro and In Vivo. J Pharm Sci 2015; 104:4002-4014. [DOI: 10.1002/jps.24620] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/15/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022]
|
18
|
Matrix interference from Fc-Fc interactions in immunoassays for detecting human IgG4 therapeutics. Bioanalysis 2015; 7:2701-12. [PMID: 26505555 DOI: 10.4155/bio.15.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND An assay measuring an IgG4 biotherapeutic in human serum used a drug-specific monoclonal antibody (mAb) capture reagent and an antihuman IgG4 mAb as detection reagent. However, serum IgG4 binding to the capture mAb via Fc-interactions was detected by the anti-IgG4 mAb, causing high background. RESULTS Two approaches were developed to minimize background; incorporating a mild acid sample preparation step or using the Fab of the capture antibody. Either strategy improved signal:noise dramatically, increasing assay sensitivity >20-fold. Biophysical analyses of antibody domains indicated that noncovalent Fc oligomers could inhibit the background. CONCLUSION Matrix interference from human IgG4 binding to the capture mAb was reduced with a Fab fragment of the drug-specific capture antibody or by incorporating a mild acid sample treatment into the assay.
Collapse
|
19
|
Datta-Mannan A, Lu J, Witcher DR, Leung D, Tang Y, Wroblewski VJ. The interplay of non-specific binding, target-mediated clearance and FcRn interactions on the pharmacokinetics of humanized antibodies. MAbs 2015; 7:1084-93. [PMID: 26337808 DOI: 10.1080/19420862.2015.1075109] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The application of protein engineering technologies toward successfully improving antibody pharmacokinetics has been challenging due to the multiplicity of biochemical factors that influence monoclonal antibody (mAb) disposition in vivo. Physiological factors including interactions with the neonatal Fc receptor (FcRn) and specific antigen binding properties of mAbs, along with biophysical properties of the mAbs themselves play a critical role. It has become evident that applying an integrated approach to understand the relative contribution of these factors is critical to rationally guide and apply engineering strategies to optimize mAb pharmacokinetics. The study presented here evaluated the influence of unintended non-specific interactions on the disposition of mAbs whose clearance rates are governed predominantly by either non-specific (FcRn) or target-mediated processes. The pharmacokinetics of 8 mAbs representing a diverse range of these properties was evaluated in cynomolgus monkeys. Results revealed complementarity-determining region (CDR) charge patch engineering to decrease charge-related non-specific binding can have a significant impact on improving the clearance. In contrast, the influence of enhanced in vitro FcRn binding was mixed, and related to both the strength of charge interaction and the general mechanism predominant in governing the clearance of the particular mAb. Overall, improved pharmacokinetics through enhanced FcRn interactions were apparent for a CDR charge-patch normalized mAb which was affected by non-specific clearance. The findings in this report are an important demonstration that mAb pharmacokinetics requires optimization on a case-by-case basis to improve the design of molecules with increased therapeutic application.
Collapse
Affiliation(s)
- Amita Datta-Mannan
- a Departments of Drug Disposition and Development/Commercialization, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center , Indianapolis , IN , USA
| | - Jirong Lu
- b Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center , Indianapolis , IN , USA
| | - Derrick R Witcher
- b Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center , Indianapolis , IN , USA
| | - Donmienne Leung
- c Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company ; San Diego , CA , USA
| | - Ying Tang
- c Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company ; San Diego , CA , USA
| | - Victor J Wroblewski
- a Departments of Drug Disposition and Development/Commercialization, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center , Indianapolis , IN , USA
| |
Collapse
|
20
|
Yang X, Zhang Y, Wang F, Wang L(J, Richardson D, Shameem M, Ambrogelly A. Analysis and purification of IgG4 bispecific antibodies by a mixed-mode chromatography. Anal Biochem 2015; 484:173-9. [DOI: 10.1016/j.ab.2015.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/22/2015] [Accepted: 06/08/2015] [Indexed: 12/24/2022]
|
21
|
Yoshida T, Koda K, Nakao S, Ohyama Y. [Pharmacological profile and clinical efficacy of human anti-human PD-1 antibody nivolumab (OPDIVO®) as a new immune checkpoint inhibitor]. Nihon Yakurigaku Zasshi 2015; 146:106-114. [PMID: 26256749 DOI: 10.1254/fpj.146.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
22
|
Jarasch A, Koll H, Regula JT, Bader M, Papadimitriou A, Kettenberger H. Developability Assessment During the Selection of Novel Therapeutic Antibodies. J Pharm Sci 2015; 104:1885-1898. [DOI: 10.1002/jps.24430] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 01/02/2023]
|
23
|
Silva JP, Vetterlein O, Jose J, Peters S, Kirby H. The S228P mutation prevents in vivo and in vitro IgG4 Fab-arm exchange as demonstrated using a combination of novel quantitative immunoassays and physiological matrix preparation. J Biol Chem 2015; 290:5462-9. [PMID: 25568323 DOI: 10.1074/jbc.m114.600973] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunoglobulin G isotype 4 (IgG4) antibodies (Abs) are potential candidates for immunotherapy when reduced effector functions are desirable. IgG4 Abs are dynamic molecules able to undergo a process known as Fab arm exchange (FAE). This results in functionally monovalent, bispecific antibodies (bsAbs) with unknown specificity and hence, potentially, reduced therapeutic efficacy. IgG4 FAE is suggested to be an important biological mechanism that provides the basis for the anti-inflammatory activity attributed to IgG4 Abs. To date, the mechanism of FAE is not entirely understood and studies measuring FAE in ex vivo matrices have been hampered by the presence and abundance of endogenous IgG4 wild-type (WT) Abs. Using representative humanized WT IgG4 monoclonal Abs, namely, anti-IL-6 and anti-TNF, and a core-hinge stabilized serine 228 to proline (S228P) anti-IL-6 IgG4 mutant, it is demonstrated for the first time how anti-IgG4 affinity chromatography can be used to prepare physiologically relevant matrices for assessing and quantifying FAE. A novel method for quantifying FAE using a single MSD immunoassay is also reported and confirms previous findings that, dependent on the redox conditions, the S228P mutation can prevent IgG4 FAE to undetectable levels both in vitro and in vivo. Together, the findings and novel methodologies will allow researchers to monitor and quantify FAE of their own IgG4 molecules in physiologically relevant matrices.
Collapse
Affiliation(s)
- John-Paul Silva
- From the Department of Bioanalytical Sciences, Non-Clinical Development and
| | - Olivia Vetterlein
- From the Department of Bioanalytical Sciences, Non-Clinical Development and
| | - Joby Jose
- From the Department of Bioanalytical Sciences, Non-Clinical Development and
| | - Shirley Peters
- the Department of Antibody Technology and Biology, UCB Pharma, Slough, SL1 3WE United Kingdom
| | - Hishani Kirby
- From the Department of Bioanalytical Sciences, Non-Clinical Development and
| |
Collapse
|
24
|
Young E, Lock E, Ward DG, Cook A, Harding S, Wallis GLF. Estimation of polyclonal IgG4 hybrids in normal human serum. Immunology 2014; 142:406-13. [PMID: 24512211 DOI: 10.1111/imm.12265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/24/2022] Open
Abstract
The in vivo or in vitro formation of IgG4 hybrid molecules, wherein the immunoglobulins have exchanged half molecules, has previously been reported under experimental conditions. Here we estimate the incidence of polyclonal IgG4 hybrids in normal human serum and comment on the existence of IgG4 molecules with different immunoglobulin light chains. Polyclonal IgG4 was purified from pooled or individual donor human sera and sequentially fractionated using light-chain affinity and size exclusion chromatography. Fractions were analysed by SDS-PAGE, immunoblotting, ELISA, immunodiffusion and matrix-assisted laser-desorption mass spectrometry. Polyclonal IgG4 purified from normal serum contained IgG4κ, IgG4λ and IgG4κ/λ molecules. Size exclusion chromatography showed that IgG4 was principally present in monomeric form (150 000 MW). SDS-PAGE, immunoblotting and ELISA showed the purity of the three IgG4 samples. Immunodiffusion, light-chain sandwich ELISA and mass spectrometry demonstrated that both κ and λ light chains were present on only the IgG4κ/λ molecules. The amounts of IgG4κ/λ hybrid molecules ranged from 21 to 33% from the five sera analysed. Based on the molecular weight these molecules were formed of two IgG4 heavy chains plus one κ and one λ light chain. Polyclonal IgG (IgG4-depleted) was similarly fractionated according to light-chain specificity. No evidence of hybrid IgG κ/λ antibodies was observed. These results indicate that hybrid IgG4κ/λ antibodies compose a substantial portion of IgG4 from normal human serum.
Collapse
|
25
|
Enlarging the repertoire of therapeutic monoclonal antibodies platforms: domesticating half molecule exchange to produce stable IgG4 and IgG1 bispecific antibodies. Curr Opin Biotechnol 2014; 30:225-9. [PMID: 25254943 DOI: 10.1016/j.copbio.2014.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
Half molecule exchange is the process whereby two IgG4 molecules exchange a heavy chain-light chain unit to form a new IgG4 entity with specificity towards two different antigens. While this unique property of IgG4 molecules confers anti-inflammatory properties in nature, it is not a desirable feature for a therapeutic mAb. Engineering of the IgG4 hinge region making it resemble that of an IgG1 is sufficient to dramatically reduce half molecule exchange in vitro and in vivo. The S228P modification of the hinge confers pharmaceutical properties to IgG4 equivalent to those of standard IgG1, while retaining the inability to trigger ADCC and CDC. Application of the molecular precepts underlying half molecule exchange between IgG4 molecules to IgG1 scaffolds offers the possibility to produce bispecific antibodies in vitro.
Collapse
|
26
|
An exploratory universal LC–MS/MS assay for bioanalysis of hinge region-stabilized human IgG4 mAbs in clinical studies. Bioanalysis 2014; 6:1747-58. [DOI: 10.4155/bio.14.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Due to the increasing number of monoclonal antibody (mAb) drug candidates entering clinical development, bioanalytical laboratories can benefit from generic liquid chromatography–tandem mass spectrometry (LC–MS/MS) assays capable of quantifying a variety of human mAb-based therapeutic drug candidates in plasma/serum samples from clinical studies. Results: We have developed and evaluated an exploratory LC–MS/MS assay capable of quantifying hinge region-stabilized IgG4 therapeutic mAb drugs and drug candidates in clinical samples. The exploratory assay is based upon a single ‘universal IgG4’ surrogate peptide. Conclusion: The novel exploratory LC–MS/MS assay reported herein, upon further refinement and full validation, is predicted to enable bioanalytical scientists to quantify all hinge region-stabilized human IgG4 therapeutic mAbs in human studies without having to develop a new assay for every new stabilized IgG4 mAb entering clinical development.
Collapse
|
27
|
Sauerborn M, van Dongen W. Practical Considerations for the Pharmacokinetic and Immunogenic Assessment of Antibody–Drug Conjugates. BioDrugs 2014; 28:383-91. [DOI: 10.1007/s40259-014-0096-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Rispens T, Davies AM, Ooijevaar-de Heer P, Absalah S, Bende O, Sutton BJ, Vidarsson G, Aalberse RC. Dynamics of inter-heavy chain interactions in human immunoglobulin G (IgG) subclasses studied by kinetic Fab arm exchange. J Biol Chem 2014; 289:6098-109. [PMID: 24425871 PMCID: PMC3937676 DOI: 10.1074/jbc.m113.541813] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interdomain interactions between the CH3 domains of antibody heavy chains are the first step in antibody assembly and are of prime importance for maintaining the native structure of IgG. For human IgG4 it was shown that CH3-CH3 interactions are weak, resulting in the potential for half-molecule exchange (“Fab arm exchange”). Here we systematically investigated non-covalent interchain interactions for CH3 domains in the other human subclasses, including polymorphisms (allotypes), using real-time monitoring of Fab arm exchange with a FRET-based kinetic assay. We identified structural variation between human IgG subclasses and allotypes at three amino acid positions (Lys/Asn-392, Val/Met-397, Lys/Arg-409) to alter the strength of inter-domain interactions by >6 orders of magnitude. Each substitution affected the interactions independent from the other substitutions in terms of affinity, but the enthalpic and entropic contributions were non-additive, suggesting a complex interplay. Allotypic variation in IgG3 resulted in widely different CH3 interaction strengths that were even weaker for IgG3 than for IgG4 in the case of allotype G3m(c3c5*/6,24*), whereas G3m(s*/15*) was equally stable to IgG1. These interactions are sufficiently strong to maintain the structural integrity of IgG1 during its normal life span; for IgG2 and IgG3 the inter-heavy chain disulfide bonds are essential to prevent half-molecule dissociation, whereas the labile hinge disulfide bonds favor half-molecule exchange in vivo for IgG4.
Collapse
Affiliation(s)
- Theo Rispens
- From Sanquin Research, 1066 CX Amsterdam, The Netherlands, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1105 AZ, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Spiess C, Bevers J, Jackman J, Chiang N, Nakamura G, Dillon M, Liu H, Molina P, Elliott JM, Shatz W, Scheer JM, Giese G, Persson J, Zhang Y, Dennis MS, Giulianotti J, Gupta P, Reilly D, Palma E, Wang J, Stefanich E, Scheerens H, Fuh G, Wu LC. Development of a human IgG4 bispecific antibody for dual targeting of interleukin-4 (IL-4) and interleukin-13 (IL-13) cytokines. J Biol Chem 2013; 288:26583-93. [PMID: 23880771 DOI: 10.1074/jbc.m113.480483] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human bispecific antibodies have great potential for the treatment of human diseases. Although human IgG1 bispecific antibodies have been generated, few attempts have been reported in the scientific literature that extend bispecific antibodies to other human antibody isotypes. In this paper, we report our work expanding the knobs-into-holes bispecific antibody technology to the human IgG4 isotype. We apply this approach to generate a bispecific antibody that targets IL-4 and IL-13, two cytokines that play roles in type 2 inflammation. We show that IgG4 bispecific antibodies can be generated in large quantities with equivalent efficiency and quality and have comparable pharmacokinetic properties and lung partitioning, compared with the IgG1 isotype. This work broadens the range of published therapeutic bispecific antibodies with natural surface architecture and provides additional options for the generation of bispecific antibodies with differing effector functions through the use of different antibody isotypes.
Collapse
|
30
|
Vexler V, Yu L, Pamulapati C, Garrido R, Grimm HP, Sriraman P, Bohini S, Schraeml M, Singh U, Brandt M, Ries S, Ma H, Klumpp K, Ji C. Target-mediated drug disposition and prolonged liver accumulation of a novel humanized anti-CD81 monoclonal antibody in cynomolgus monkeys. MAbs 2013; 5:776-86. [PMID: 23924796 DOI: 10.4161/mabs.25642] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CD81 is an essential receptor for hepatitis C virus (HCV). K21 is a novel high affinity anti-CD81 antibody with potent broad spectrum anti-HCV activity in vitro. The pharmacokinetics (PK), pharmacodynamics and liver distribution of K21 were characterized in cynomolgus monkeys after intravenous (i.v.) administration of K21. Characteristic target-mediated drug disposition (TMDD) was shown based on the PK profile of K21 and a semi-mechanistic TMDD model was used to analyze the data. From the TMDD model, the estimated size of the total target pool at baseline (V(c) • R(base)) is 16 nmol/kg and the estimated apparent Michaelis-Menten constant (KM) is 4.01 nM. A simulation using estimated TMDD parameters indicated that the number of free receptors remains below 1% for at least 3 h after an i.v. bolus of 7 mg/kg. Experimentally, the availability of free CD81 on peripheral lymphocytes was measured by immunostaining with anti-CD81 antibody JS81. After K21 administration, a dose- and time-dependent reduction in free CD81 on peripheral lymphocytes was observed. Fewer than 3% of B cells could bind JS81 3 h after a 7 mg/kg dose. High concentrations of K21 were found in liver homogenates, and the liver/serum ratio of K21 increased time-dependently and reached ~160 at 168 h post-administration. The presence of K21 bound to hepatocytes was confirmed by immunohistochemistry. The fast serum clearance of K21 and accumulation in the liver are consistent with TMDD. The TMDD-driven liver accumulation of the anti-CD81 antibody K21 supports the further investigation of K21 as a therapeutic inhibitor of HCV entry.
Collapse
|
31
|
Fenn S, Schiller CB, Griese JJ, Duerr H, Imhof-Jung S, Gassner C, Moelleken J, Regula JT, Schaefer W, Thomas M, Klein C, Hopfner KP, Kettenberger H. Crystal structure of an anti-Ang2 CrossFab demonstrates complete structural and functional integrity of the variable domain. PLoS One 2013; 8:e61953. [PMID: 23613981 PMCID: PMC3629102 DOI: 10.1371/journal.pone.0061953] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/15/2013] [Indexed: 11/18/2022] Open
Abstract
Bispecific antibodies are considered as a promising class of future biotherapeutic molecules. They comprise binding specificities for two different antigens, which may provide additive or synergistic modes of action. There is a wide variety of design alternatives for such bispecific antibodies, including the “CrossMab” format. CrossMabs contain a domain crossover in one of the antigen-binding (Fab) parts, together with the “knobs-and-holes” approach, to enforce the correct assembly of four different polypeptide chains into an IgG-like bispecific antibody. We determined the crystal structure of a hAng-2-binding Fab in its crossed and uncrossed form and show that CH1-CL-domain crossover does not induce significant perturbations of the structure and has no detectable influence on target binding.
Collapse
Affiliation(s)
- Sebastian Fenn
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Dignostics GmbH, Penzberg, Germany
| | - Christian B. Schiller
- Department of Biochemistry, Gene Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Julia J. Griese
- Department of Biochemistry, Gene Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Harald Duerr
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Dignostics GmbH, Penzberg, Germany
| | - Sabine Imhof-Jung
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Dignostics GmbH, Penzberg, Germany
| | - Christian Gassner
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Dignostics GmbH, Penzberg, Germany
| | - Joerg Moelleken
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Dignostics GmbH, Penzberg, Germany
| | - Joerg Thomas Regula
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Dignostics GmbH, Penzberg, Germany
| | - Wolfgang Schaefer
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Dignostics GmbH, Penzberg, Germany
| | - Markus Thomas
- Discovery Oncology, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - Christian Klein
- Discovery Oncology; Pharma Research and Early Development (pRED); Roche Glycart AG, Schlieren, Switzerland
| | - Karl-Peter Hopfner
- Department of Biochemistry, Gene Center, Ludwig Maximilians University Munich, Munich, Germany
- * E-mail: (KH); (HK)
| | - Hubert Kettenberger
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Dignostics GmbH, Penzberg, Germany
- * E-mail: (KH); (HK)
| |
Collapse
|
32
|
Klein C, Sustmann C, Thomas M, Stubenrauch K, Croasdale R, Schanzer J, Brinkmann U, Kettenberger H, Regula JT, Schaefer W. Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. MAbs 2012; 4:653-63. [PMID: 22925968 DOI: 10.4161/mabs.21379] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The development of bispecific antibodies has attracted substantial interest, and many different formats have been described. Those specifically containing an Fc part are mostly tetravalent, such as stabilized IgG-scFv fusions or dual-variable domain (DVD) IgGs. However, although they exhibit IgG-like properties and technical developability, these formats differ in size and geometry from classical IgG antibodies. Thus, considerable efforts focus on bispecific heterodimeric IgG antibodies that more closely mimic natural IgG molecules. The inherent chain association problem encountered when producing bispecific heterodimeric IgG antibodies can be overcome by several methods. While technologies like knobs-into-holes (KiH) combined with a common light chain or the CrossMab technology enforce the correct chain association, other approaches, e.g., the dual-acting Fab (DAF) IgGs, do not rely on a heterodimeric Fc part. This review discusses the state of the art in bispecific heterodimeric IgG antibodies, with an emphasis on recent progress.
Collapse
Affiliation(s)
- Christian Klein
- Discovery Oncology, Roche Pharma Research and Early Development pRED, Roche Glycart AG, Schlieren, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Datta-Mannan A, Chow CK, Dickinson C, Driver D, Lu J, Witcher DR, Wroblewski VJ. FcRn affinity-pharmacokinetic relationship of five human IgG4 antibodies engineered for improved in vitro FcRn binding properties in cynomolgus monkeys. Drug Metab Dispos 2012; 40:1545-55. [PMID: 22584253 DOI: 10.1124/dmd.112.045864] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The pH-dependent binding of IgGs to the neonatal Fc receptor (FcRn) plays a critical role in regulating IgG homeostasis in vivo. Enhancing interactions between Fc and FcRn via protein engineering has been successfully used as an approach for improving the pharmacokinetics of monoclonal antibodies (mAbs). Although the quantitative translatability of the in vitro FcRn affinity enhancement to an in vivo pharmacokinetic benefit has been supported by several studies, there are also published reports indicating a disconnect in this relation. The body of literature suggests there are likely additional biochemical and biophysical properties of the mAbs along with their FcRn affinity that influence the in vivo pharmacokinetics. Herein, we more broadly evaluate the in vitro Fc-FcRn interactions and biochemical properties of five humanized IgG4 antibodies each with two Fc variant sequences (T250Q/M428L and V308P) and their corresponding pharmacokinetics in cynomolgus monkeys. Our findings indicate that the FcRn affinity-pharmacokinetic relationship does not show a direct correlation either across different IgGs or between the two variant sequences within a platform. Other parameters that have been suggested to contribute to mAb pharmacokinetic properties, such as the pH-dependent dissociation of the FcRn-IgG complexes, mAb biophysical properties, and nonspecific/charge binding characteristics of the mAbs, also did not independently explain the differing pharmacokinetic behaviors. Our results suggest that there is likely not a single in vitro parameter that readily predicts in vivo pharmacokinetics, but that the relative contribution and interplay of several factors along with the FcRn binding affinity are important determinants of mAb pharmacokinetic properties.
Collapse
Affiliation(s)
- Amita Datta-Mannan
- Departments of Drug Disposition Development/Commercialization, Lilly Research Laboratories, Eli Lilly & Company, Lilly Corporate Center, S. Delaware St., Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Rispens T, Meesters J, den Bleker TH, Ooijevaar-De Heer P, Schuurman J, Parren PWHI, Labrijn A, Aalberse RC. Fc-Fc interactions of human IgG4 require dissociation of heavy chains and are formed predominantly by the intra-chain hinge isomer. Mol Immunol 2012; 53:35-42. [PMID: 22784992 DOI: 10.1016/j.molimm.2012.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 01/13/2023]
Abstract
Human IgG4 antibodies are remarkable not only because they can dynamically exchange half-molecules (Fab-arm exchange) but also for their ability to interact with the Fc part of IgG4 and other IgG subclasses. This rheumatoid factor-like binding of IgG4 does not appear to take place spontaneously, because it is only observed to solid-phase or antigen-bound IgG. We hypothesized that Fc-Fc interactions might involve (partial) dissociation of heavy chains. We investigated the molecular basis of these Fc-Fc interactions, and found that the structural features important for the exchange reaction also control the Fc binding activity. In particular, if arginine-409 in the CH(3)-CH(3) interface in IgG4 is mutated to lysine (the equivalent in IgG1), Fc-Fc interactions are formed 3 orders of magnitude less efficiently compared to the wild-type. This mutation was previously found to increase the CH(3)-CH(3) interaction strength in IgG4. Furthermore, of the two hinge isomers of IgG4, the intra-chain (non-covalently linked) form was found to form Fc-Fc interactions, but not the inter-chain form. Together, these results demonstrate that Fc-Fc interactions of IgG4 involve (partial or complete) dissociation of heavy chains. The promiscuity to other IgG subclasses suggests that IgG4 might act as scavenger to IgG molecules with impaired structural integrity.
Collapse
|
35
|
Warncke M, Calzascia T, Coulot M, Balke N, Touil R, Kolbinger F, Heusser C. Different adaptations of IgG effector function in human and nonhuman primates and implications for therapeutic antibody treatment. THE JOURNAL OF IMMUNOLOGY 2012; 188:4405-11. [PMID: 22461693 DOI: 10.4049/jimmunol.1200090] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Safety of human therapeutic Abs is generally assessed in nonhuman primates. Whereas IgG1 shows identical FcγR interaction and effector function profile in both species, fundamental differences in the IgG2 and IgG4 Ab subclasses were found between the two species. Granulocytes, the main effector cells against IgG2- and IgG4-opsonized bacteria and parasites, do not express FcγRIIIb, but show higher levels of FcγRII in cynomolgus monkey. In humans, IgG2 and IgG4 adapted a silent Fc region with weak binding to FcγR and effector functions, whereas, in contrast, cynomolgus monkey IgG2 and IgG4 display strong effector function as well as differences in IgG4 Fab arm exchange. To balance this shift toward activation, the cynomolgus inhibitory FcγRIIb shows strongly increased affinity for IgG2. In view of these findings, in vitro and in vivo results for human IgG2 and IgG4 obtained in the cynomolgus monkey have to be cautiously interpreted, whereas effector function-related effects of human IgG1 Abs are expected to be predictable for humans.
Collapse
Affiliation(s)
- Max Warncke
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
36
|
Labrijn AF, Rispens T, Meesters J, Rose RJ, den Bleker TH, Loverix S, van den Bremer ETJ, Neijssen J, Vink T, Lasters I, Aalberse RC, Heck AJR, van de Winkel JGJ, Schuurman J, Parren PWHI. Species-Specific Determinants in the IgG CH3 Domain Enable Fab-Arm Exchange by Affecting the Noncovalent CH3–CH3 Interaction Strength. THE JOURNAL OF IMMUNOLOGY 2011; 187:3238-46. [DOI: 10.4049/jimmunol.1003336] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci U S A 2011; 108:11187-92. [PMID: 21690412 DOI: 10.1073/pnas.1019002108] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a generic approach to assemble correctly two heavy and two light chains, derived from two existing antibodies, to form human bivalent bispecific IgG antibodies without use of artificial linkers. Based on the knobs-into-holes technology that enables heterodimerization of the heavy chains, correct association of the light chains and their cognate heavy chains is achieved by exchange of heavy-chain and light-chain domains within the antigen binding fragment (Fab) of one half of the bispecific antibody. This "crossover" retains the antigen-binding affinity but makes the two arms so different that light-chain mispairing can no longer occur. Applying the three possible "CrossMab" formats, we generated bispecific antibodies against angiopoietin-2 (Ang-2) and vascular endothelial growth factor A (VEGF-A) and show that they can be produced by standard techniques, exhibit stabilities comparable to natural antibodies, and bind both targets simultaneously with unaltered affinity. Because of its superior side-product profile, the CrossMab(CH1-CL) was selected for in vivo profiling and showed potent antiangiogenic and antitumoral activity.
Collapse
|
38
|
Rispens T, Ooijevaar-de Heer P, Bende O, Aalberse RC. Mechanism of Immunoglobulin G4 Fab-arm Exchange. J Am Chem Soc 2011; 133:10302-11. [DOI: 10.1021/ja203638y] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Theo Rispens
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Onno Bende
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Rob C. Aalberse
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| |
Collapse
|
39
|
Rispens T, Leeuwen AV, Vennegoor A, Killestein J, Aalberse RC, Wolbink GJ, Aarden LA. Measurement of serum levels of natalizumab, an immunoglobulin G4 therapeutic monoclonal antibody. Anal Biochem 2011; 411:271-6. [DOI: 10.1016/j.ab.2011.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/06/2010] [Accepted: 01/01/2011] [Indexed: 12/26/2022]
|
40
|
Shapiro RI, Plavina T, Schlain BR, Pepinsky RB, Garber EA, Jarpe M, Hochman PS, Wehner NG, Bard F, Motter R, Yednock TA, Taylor FR. Development and validation of immunoassays to quantify the half-antibody exchange of an IgG4 antibody, natalizumab (Tysabri®) with endogenous IgG4. J Pharm Biomed Anal 2011; 55:168-75. [PMID: 21300512 DOI: 10.1016/j.jpba.2011.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/30/2010] [Accepted: 01/11/2011] [Indexed: 11/25/2022]
Abstract
Natalizumab is a humanized IgG4 monoclonal antibody which binds human α4 integrin and is approved for treatment of multiple sclerosis and Crohn's disease. Assessment of the in vivo disposition of natalizumab presents a unique assay development challenge due to the ability of human IgG4 antibodies to undergo half-antibody exchange in vivo. Such exchange generates IgG4 molecules of mixed specificity comprising a natalizumab heavy-light chain pair coupled to an IgG4 heavy-light chain pair of unknown specificity. Since exchanged and non-exchanged species cannot be quantified independently using a single enzyme linked immunosorbent assay (ELISA), a novel quantitation strategy was developed employing two ELISAs: one measuring total natalizumab including both intact and exchanged molecules, and the second measuring only intact natalizumab. The presence and amount of exchanged natalizumab in serum is calculated by the difference in values obtained in the two assays. To evaluate assay performance, a control reagent was created from natalizumab and an irrelevant humanized monoclonal IgG4 antibody. Subsequent validation demonstrated that both assays are specific, accurate, and precise within the working ranges of the assays (1.5-10μg/mL for total and 0.5-12μg/mL for intact natalizumab assays). The mean accuracy, intra- and inter-assay precision for both assays were 82-113%, ≤9% and ≤20%, respectively. Additionally, the limits of detection of intact and exchanged natalizumab were established using statistical methods. The utility of the two-assay strategy was confirmed by analyzing samples from a pharmacokinetic study in rats using different variants of natalizumab administered along with another human IgG4 antibody as an exchange partner.
Collapse
|