1
|
Du T, Sun R, Etim I, Zheng Z, Liang D, Hu M, Gao S. Age-and Region-Dependent Disposition of Raloxifene in Rats. Pharm Res 2021; 38:1357-1367. [PMID: 34322833 PMCID: PMC8452384 DOI: 10.1007/s11095-021-03084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Raloxifene undergoes extensive glucuronidation in the gastrointestinal (GI) tract and the liver. However, the impact of age on raloxifene disposition has never been studied. The purpose of this paper is to determine glucuronidation and Pharmacokinetics (PK) profiles of raloxifene in rats at different ages. METHODS Raloxifene glucuronidation was characterized using S9 fractions prepared from different intestinal segments and the liver of F344 rats at 4-, 11-, and 28-week. PK studies were conducted to determine raloxifene oral bioavailability at different ages. Raloxifene and its glucuronides were quantified using LC-MS/MS. RESULTS Raloxifene-6-glucuronide and raloxifene-4'-glucuronide were detected as the major metabolites and the ratio of these two glucuronides were different ranging from 2.1 to 4.9 folds in the ileum, jejunum, liver, and duodenum, and from 14.5 to 50 folds in the colon. The clearances in the duodenum at 4-week for both two glucuronides were significantly lower than those at the other two ages. PK studies showed that the oral bioavailability of raloxifene is age dependent. The absolute oral bioavailability of raloxifene was 3.5-folds higher at 4-week compared to that at 11-weeks. When raloxifene was administered through IV bolus, its half-life was 5.9 ± 1.16 h and 3.7 ± 0.68 h at 11-and 4-week, respectively. CONCLUSION These findings suggested that raloxifene metabolism in the duodenum was significantly slower at young age in rats, which increased the oral bioavailability of raloxifene. At 11-week, enterohepatic recycling efficiency was higher than that of 4-week. Raloxifene's dose at different ages should be carefully considered.
Collapse
Affiliation(s)
- Ting Du
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, Texas, 77004, USA
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, Texas, 77204, USA
| | - Imoh Etim
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, Texas, 77004, USA
| | - Zicong Zheng
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, Texas, 77204, USA
| | - Dong Liang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, Texas, 77004, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, Texas, 77204, USA.
| | - Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, Texas, 77004, USA.
| |
Collapse
|
2
|
Aleksandar R, Milica PK, Gorana M, Boris M, Anastazija SM, Mladena LP, Snežana S, Nebojša S, Slobodan G. Interaction between apigenin and sodium deoxycholate with raloxifene: A potential risk for clinical practice. Eur J Pharm Sci 2021; 161:105809. [PMID: 33741473 DOI: 10.1016/j.ejps.2021.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Apigenin (API) and sodium deoxycholate (NaDC) have different pharmacodynamic properties and can affect pharmacokinetics of drugs without causing significant toxicity. The aim of our study was to investigate the effect of API and NaDC on raloxifene pharmacokinetics in rats as well as on hemostasis parameters after applying the raloxifene therapeutic dose. Rats were treated daily with oral single dose of saline solution (1 ml/kg), API (10 mg/kg) and/or NaDC (4 mg/kg) for 7 days. Raloxifene was given orally or intravenously in a single dose (6 mg/kg) and during period of 24 h blood samples, feces and urine samples were collected. Blood samples were collected at the 15th, 30th, 45th, 60th, 90th minute and 2, 3, 4, 6, 8, 10, 12 and 24 h after raloxifene administration. Urine and feces samples were collected in the 3th, 6h, 12th and 24th hour of the experiment. Rats were divided into 10 groups each of which contained 6 animals. Differences were considered statistically significant if p<0.05. Pretreatment with NaDC and API affected raloxifene pharmacokinetic profile after intravenous application. NaDC lead to statistically significant decrease in raloxifene serum concentration and increased volume of distribution and clearance as well as halftime of elimination, while API has also decreased also raloxifene serum concentrations and increased volume of distribution but not as profoundly as NaDC alone. Difference was also noticed in clearance where it was significantly increased in group pretreated with NaDC and slightly decreased in group pretreated with API. NaDC and API increased raloxifene amount in feces, both after peroral (p<0.05) and intravenous application. However, peroral application of raloxifene did not produce measurable raloxifene serum concentration in neither of investigated groups. NaDC shortened activated partial thromboplastin time (aPTT) and prothrombin time (PT). API reduced aPTT, PT and d-dimer level. Fibrinogen level was significantly increased in all experimental groups. Both NaDC and apigenin had significant influence on raloxifene pharmacokinetics and can potentiate the raloxifene effects on hemostasis parameters, by increasing its bioavailability. These substances may be the subject of further investigation into the formulation of raloxifene and other medicines as depot preparations, which could prolong the dosing interval and thus improve patient compliance and quality of life.
Collapse
Affiliation(s)
| | | | - Mitić Gorana
- University of Novi Sad, Faculty of Medicine Novi Sad, Serbia; Clinical Center of Vojvodina, Serbia
| | | | | | | | - Stević Snežana
- Faculty of Medicine, University of Priština - Kosovska Mitrovica, Serbia; Faculty of Pharmacy, Novi Sad, University Business Academy in Novi Sad, Serbia
| | | | - Gigov Slobodan
- Faculty of Pharmacy, Novi Sad, University Business Academy in Novi Sad, Serbia
| |
Collapse
|
3
|
Du T, Sun R, Li L, Ebuzoeme C, Bui D, Zheng Z, Yin T, Liang D, Hu M, Gao S. Development and validation of ultra-high-performance liquid chromatography-mass spectrometry method for the determination of raloxifene and its phase II metabolites in plasma: Application to pharmacokinetic studies in rats. J Sep Sci 2020; 43:4414-4423. [PMID: 33119204 DOI: 10.1002/jssc.202000835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study is to establish a reliable liquid chromatography-mass spectrometry method to simultaneously quantitate raloxifene, and its major metabolites, raloxifene-6-glucuronide, raloxifene-4'-glucuronide, and raloxifene-6-sulfate in rat plasma samples for pharmacokinetic studies. The separation of the analytes was achieved on a Waters BEH C18 column. Water (0.1% formic acid) and acetonitrile were used as the mobile phases for elution. A one-step protein precipitation using a mixture solvent was applied for plasma sample preparation. The method was validated following the FDA guidance. The results showed that the linear range were 1.95-1000 nM for raloxifene-6-glucuronide, and raloxifene-4'-glucuronide, 0.195-100 nM for raloxifene-6-sulfate, and 0.195-200 nM for raloxifene, respectively. The lower limit of quantification was 1.95, 1.95, 0.195, and 0.195 nM for raloxifene-6-glucuronide, raloxifene-4'-glucuronide, raloxifene-6-sulfate, and raloxifene, respectively. Only 20 µl of plasma sample was required since the method is sensitive. The intra- and interday variance is <15% and the accuracy is within 85-115%. The variance of matrix effect and recovery were <15%. The method was successfully applied in a pharmacokinetic study in rats with oral administration of raloxifene.
Collapse
Affiliation(s)
- Ting Du
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health sciences, Texas Southern University, Houston, Texas, USA
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Christabel Ebuzoeme
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health sciences, Texas Southern University, Houston, Texas, USA
| | - Dinh Bui
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Zicong Zheng
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Dong Liang
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health sciences, Texas Southern University, Houston, Texas, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Song Gao
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
4
|
Davies M, Peramuhendige P, King L, Golding M, Kotian A, Penney M, Shah S, Manevski N. Evaluation of In Vitro Models for Assessment of Human Intestinal Metabolism in Drug Discovery. Drug Metab Dispos 2020; 48:1169-1182. [DOI: 10.1124/dmd.120.000111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
|
5
|
The Segregated Intestinal Flow Model (SFM) for Drug Absorption and Drug Metabolism: Implications on Intestinal and Liver Metabolism and Drug-Drug Interactions. Pharmaceutics 2020; 12:pharmaceutics12040312. [PMID: 32244748 PMCID: PMC7238003 DOI: 10.3390/pharmaceutics12040312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
The properties of the segregated flow model (SFM), which considers split intestinal flow patterns perfusing an active enterocyte region that houses enzymes and transporters (<20% of the total intestinal blood flow) and an inactive serosal region (>80%), were compared to those of the traditional model (TM), wherein 100% of the flow perfuses the non-segregated intestine tissue. The appropriateness of the SFM model is important in terms of drug absorption and intestinal and liver drug metabolism. Model behaviors were examined with respect to intestinally (M1) versus hepatically (M2) formed metabolites and the availabilities in the intestine (FI) and liver (FH) and the route of drug administration. The %contribution of the intestine to total first-pass metabolism bears a reciprocal relation to that for the liver, since the intestine, a gateway tissue, regulates the flow of substrate to the liver. The SFM predicts the highest and lowest M1 formed with oral (po) and intravenous (iv) dosing, respectively, whereas the extent of M1 formation is similar for the drug administered po or iv according to the TM, and these values sit intermediate those of the SFM. The SFM is significant, as this drug metabolism model explains route-dependent intestinal metabolism, describing a higher extent of intestinal metabolism with po versus the much reduced or absence of intestinal metabolism with iv dosing. A similar pattern exists for drug–drug interactions (DDIs). The inhibitor or inducer exerts its greatest effect on victim drugs when both inhibitor/inducer and drug are given po. With po dosing, more drug or inhibitor/inducer is brought into the intestine for DDIs. The bypass of flow and drug to the enterocyte region of the intestine after intravenous administration adds complications to in vitro–in vivo extrapolations (IVIVE).
Collapse
|
6
|
Kong Y, Cai H, Xing H, Ren C, Kong D, Ning C, Li N, Zhao D, Chen X, Lu Y. Pulmonary delivery alters the disposition of raloxifene in rats. ACTA ACUST UNITED AC 2019; 72:185-196. [PMID: 31730290 DOI: 10.1111/jphp.13201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/26/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Pulmonary delivery is an effective way to improve the bioavailability of drugs with extensive metabolism. This research was designed to study the different pharmacokinetic behaviours of small molecule drug after pulmonary delivery and intragastric (i.g) administration. METHODS Raloxifene, a selective estrogen receptor modulator with low oral bioavailability (~2%), was chosen as the model drug. Studies were conducted systematically in rats, including plasma pharmacokinetics, excretion, tissue distribution and metabolism. KEY FINDINGS Results showed that raloxifene solution dosed by intratracheal (i.t) administration exhibited relatively quick plasma elimination (t1/2 = 1.78 ± 0.14 h) and undetected absorption process, which was similar with intravenous injection. Compared with i.g administration, the bioavailability increased by 58 times, but the major route of excretion remained faecal excretion. Drug concentration on the bone and the target efficiency were improved by 49.6 times and five times, respectively. Benefited from quick elimination in the lung, chronic toxicity might be ignored. CONCLUSIONS Pulmonary administration improved the bioavailability of raloxifene and further increased the distribution on the target organ (bone), with no obvious impact on its excretory pattern.
Collapse
Affiliation(s)
- Ying Kong
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China.,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, China
| | - Hui Cai
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Han Xing
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Chang Ren
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Dexuan Kong
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Chen Ning
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Ning Li
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Fontana MC, Laureano JV, Forgearini B, Chaves PDS, Araujo BVD, Beck RCR. LC-UV method to assay raloxifene hydrochloride in rat plasma and its application to a pharmacokinetic study. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000118052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Villegas LR, Rivard CJ, Hunter B, You Z, Roncal C, Joy MS, Le MT. Effects of fructose-containing sweeteners on fructose intestinal, hepatic, and oral bioavailability in dual-catheterized rats. PLoS One 2018; 13:e0207024. [PMID: 30408104 PMCID: PMC6224110 DOI: 10.1371/journal.pone.0207024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/22/2018] [Indexed: 01/28/2023] Open
Abstract
Objective Fructose is commonplace in Western diets and is consumed primarily through added sugars as sucrose or high fructose corn syrup. High consumption of fructose has been linked to the development of metabolic disorders, such as cardiovascular diseases. The majority of the harmful effects of fructose can be traced to its uncontrolled and rapid metabolism, primarily within the liver. It has been speculated that the formulation of fructose-containing sweeteners can have varying impacts on its adverse effects. Unfortunately, there is limited data supporting this hypothesis. The objective of this study was to examine the impact of different fructose-containing sweeteners on the intestinal, hepatic, and oral bioavailability of fructose. Methods Portal and femoral vein catheters were surgically implanted in male Wistar rats. Animals were gavaged with a 1 g/kg carbohydrate solution consisting of fructose, 45% glucose/55% fructose, sucrose, glucose, or water. Blood samples were then collected from the portal and systemic circulation. Fructose levels were measured and pharmacokinetic parameters were calculated. Results Compared to animals that were gavaged with 45% glucose/55% fructose or sucrose, fructose-gavaged animals had a 40% greater fructose area under the curve and a 15% greater change in maximum fructose concentration in the portal circulation. In the systemic circulation of fructose-gavaged animals, the fructose area under the curve was 17% and 24% higher and the change in the maximum fructose concentration was 15% and 30% higher than the animals that received 45% glucose/55% fructose or sucrose, respectively. After the oral administration of fructose, 45% glucose/55% fructose, and sucrose, the bioavailability of fructose was as follows: intestinal availability was 0.62, 0.53 and 0.57; hepatic availability was 0.33, 0.45 and 0.45; and oral bioavailability was 0.19, 0.23 and 0.24, respectively. Conclusions Our studies show that the co-ingestion of glucose did not enhance fructose absorption, rather, it decreased fructose metabolism in the liver. The intestinal, hepatic, and oral bioavailability of fructose was similar between 45% glucose/55% fructose and sucrose.
Collapse
Affiliation(s)
- Leah R. Villegas
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christopher J. Rivard
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Brandi Hunter
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Zhiying You
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Carlos Roncal
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Melanie S. Joy
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - MyPhuong T. Le
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ahmed OA, Badr-Eldin SM. In situ misemgel as a multifunctional dual-absorption platform for nasal delivery of raloxifene hydrochloride: formulation, characterization, and in vivo performance. Int J Nanomedicine 2018; 13:6325-6335. [PMID: 30349253 PMCID: PMC6188068 DOI: 10.2147/ijn.s181587] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Raloxifene hydrochloride (RLX) is approved by the US Food and Drug Administration for the treatment and prevention of osteoporosis, in addition to reducing the risk of breast cancer in postmenopausal women. RLX has the disadvantages of low aqueous solubility, extensive presystemic intestinal glucuronidation, and first-pass metabolism, resulting in a limited bio-availability of only 2%. The aim of this work was to enhance the bioavailability of RLX via the formulation of an in situ nasal matrix (misemgel) comprising micelles made of vitamin E and D-α-tocopheryl polyethylene glycol 1000 succinate and nanosized self-emulsifying systems (NSEMS). MATERIALS AND METHODS Optimization of the RLX-loaded NSEMS was performed using a mixture design. The formulations were characterized by particle size and then incorporated into an in situ nasal gel. Transmission electron microscopy, bovine nasal mucosa ex vivo permeation, and visualization using a fluorescence laser microscope were carried out on the RLX in situ misemgel comparing with raw RLX in situ gel. In addition, the in vivo performance was studied in rats. RESULTS The results revealed improved permeation parameters for RLX misemgel compared with control gel, with an enhancement factor of 2.4. In vivo studies revealed a 4.79- and 13.42-fold increased bioavailability for RLX in situ misemgel compared with control RLX in situ gel and commercially available tablets, respectively. The obtained results highlighted the efficacy of combining two different formulations to enhance drug delivery and the benefits of utilizing different possible paths for drug absorption. CONCLUSION The developed in situ misemgel matrix could be considered as a promising multifunctional platform for nasal delivery which works based on a dual-absorption mechanism.
Collapse
Affiliation(s)
- Osama Aa Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia,
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt,
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia,
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Raje AA, Deshpande RD, Pathade VV, Mahajan V, Joshi K, Tambe A, Jinugu R, Madgula VLM, Gaur A, Kandikere V, Patil CR, Mookhtiar KA. Evaluation of separate role of intestine and liver in first pass metabolism of budesonide in rat. Xenobiotica 2017; 48:1206-1214. [PMID: 29165024 DOI: 10.1080/00498254.2017.1404168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Budesonide, a potent topical corticosteroid, reported to have low oral bioavailability in mice, rat, dog and human due to rapid first pass metabolism. However, there is insufficient information available in literature regarding the role of intestine and or liver responsible for the first pass metabolism of budesonide. 2. Current study in rats investigates the role of intestine and liver in first pass metabolism of budesonide using two in vivo models. Additionally, budesonide was also evaluated in in vitro assays such as thermodynamic solubility, permeability in Caco-2 cells and stability in simulated gastric (SGF), intestinal fluids (SIF) to understand the underlaying cause for low oral bioavailability. 3. Budesonide showed low oral, intra-duodenal and high intra-portal bioavailability in rat. In a dual vein cannulated rat model, intestinal and hepatic extraction ratios calculated based upon intestinal availability (Fa·Fg) and hepatic availability (Fh), suggests hepatic extraction of budesonide is minimal compared to intestinal. 4. In vitro results suggest, solubility and permeability may not be a barrier for the observed low oral bioavailability in rats. 5. Correlating the in vitro and in vivo data together, it can be concluded that, intestine might be playing major role in first pass metabolism of budesonide.
Collapse
Affiliation(s)
- Amol A Raje
- a Clinical Candidate Optimization, Drug Discovery Unit, Advinus Therapeutics Ltd , Pune , India and
| | - Radni D Deshpande
- b Department of Pharmacology , R. C. Patel Institute of Pharmaceutical Education and Research , Shirpur , India
| | - Vishal V Pathade
- a Clinical Candidate Optimization, Drug Discovery Unit, Advinus Therapeutics Ltd , Pune , India and
| | - Vallabh Mahajan
- a Clinical Candidate Optimization, Drug Discovery Unit, Advinus Therapeutics Ltd , Pune , India and
| | - Kaushal Joshi
- a Clinical Candidate Optimization, Drug Discovery Unit, Advinus Therapeutics Ltd , Pune , India and
| | - Ashwini Tambe
- a Clinical Candidate Optimization, Drug Discovery Unit, Advinus Therapeutics Ltd , Pune , India and
| | - Ramana Jinugu
- a Clinical Candidate Optimization, Drug Discovery Unit, Advinus Therapeutics Ltd , Pune , India and
| | - Vamsi L M Madgula
- a Clinical Candidate Optimization, Drug Discovery Unit, Advinus Therapeutics Ltd , Pune , India and
| | - Ashwani Gaur
- a Clinical Candidate Optimization, Drug Discovery Unit, Advinus Therapeutics Ltd , Pune , India and
| | - Vishwottam Kandikere
- a Clinical Candidate Optimization, Drug Discovery Unit, Advinus Therapeutics Ltd , Pune , India and
| | - Chandragouda R Patil
- b Department of Pharmacology , R. C. Patel Institute of Pharmaceutical Education and Research , Shirpur , India
| | - Kasim A Mookhtiar
- a Clinical Candidate Optimization, Drug Discovery Unit, Advinus Therapeutics Ltd , Pune , India and
| |
Collapse
|
11
|
Yang G, Ge S, Singh R, Basu S, Shatzer K, Zen M, Liu J, Tu Y, Zhang C, Wei J, Shi J, Zhu L, Liu Z, Wang Y, Gao S, Hu M. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab Rev 2017; 49:105-138. [PMID: 28266877 DOI: 10.1080/03602532.2017.1293682] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucuronidation is a well-recognized phase II metabolic pathway for a variety of chemicals including drugs and endogenous substances. Although it is usually the secondary metabolic pathway for a compound preceded by phase I hydroxylation, glucuronidation alone could serve as the dominant metabolic pathway for many compounds, including some with high aqueous solubility. Glucuronidation involves the metabolism of parent compound by UDP-glucuronosyltransferases (UGTs) into hydrophilic and negatively charged glucuronides that cannot exit the cell without the aid of efflux transporters. Therefore, elimination of parent compound via glucuronidation in a metabolic active cell is controlled by two driving forces: the formation of glucuronides by UGT enzymes and the (polarized) excretion of these glucuronides by efflux transporters located on the cell surfaces in various drug disposition organs. Contrary to the common assumption that the glucuronides reaching the systemic circulation were destined for urinary excretion, recent evidences suggest that hepatocytes are capable of highly efficient biliary clearance of the gut-generated glucuronides. Furthermore, the biliary- and enteric-eliminated glucuronides participate into recycling schemes involving intestinal microbes, which often prolong their local and systemic exposure, albeit at low systemic concentrations. Taken together, these recent research advances indicate that although UGT determines the rate and extent of glucuronide generation, the efflux and uptake transporters determine the distribution of these glucuronides into blood and then to various organs for elimination. Recycling schemes impact the apparent plasma half-life of parent compounds and their glucuronides that reach intestinal lumen, in addition to prolonging their gut and colon exposure.
Collapse
Affiliation(s)
- Guangyi Yang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China.,b Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine , Shiyan , Hubei , China
| | - Shufan Ge
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Rashim Singh
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Sumit Basu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Katherine Shatzer
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Ming Zen
- d Department of Thoracic and Cardiomacrovascular Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jiong Liu
- e Department of Digestive Diseases Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Yifan Tu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Chenning Zhang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jinbao Wei
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jian Shi
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Lijun Zhu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Zhongqiu Liu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Yuan Wang
- g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Song Gao
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Ming Hu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| |
Collapse
|
12
|
Dong D, Quan E, Yuan X, Xie Q, Li Z, Wu B. Sodium Oleate-Based Nanoemulsion Enhances Oral Absorption of Chrysin through Inhibition of UGT-Mediated Metabolism. Mol Pharm 2016; 14:2864-2874. [DOI: 10.1021/acs.molpharmaceut.6b00851] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dong Dong
- International
Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Enxi Quan
- Division
of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xue Yuan
- Division
of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qian Xie
- Division
of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhijie Li
- International
Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Baojian Wu
- Division
of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
|
14
|
Phillips MB, Leonard JA, Grulke CM, Chang DT, Edwards SW, Brooks R, Goldsmith MR, El-Masri H, Tan YM. A Workflow to Investigate Exposure and Pharmacokinetic Influences on High-Throughput in Vitro Chemical Screening Based on Adverse Outcome Pathways. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:53-60. [PMID: 25978103 PMCID: PMC4710605 DOI: 10.1289/ehp.1409450] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/13/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties of chemicals. OBJECTIVES We developed a conceptual workflow to examine exposure and ADME properties in relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, acetylcholinesterase (AChE) inhibition. METHODS Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined with respect to their exposure, absorption potential, and ability to cross the blood-brain barrier (BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals to detect possible parent compounds that might have active metabolites. RESULTS Application of the workflow screened 10 "low-priority" chemicals of 30 active chemicals. Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of metabolic activation. CONCLUSIONS The incorporation of exposure and ADME properties into the conceptual workflow eliminated 10 "low-priority" chemicals that may otherwise have undergone additional, resource-consuming analyses. Our workflow also increased confidence in interpretation of in vitro results by identifying possible "false negatives." CITATION Phillips MB, Leonard JA, Grulke CM, Chang DT, Edwards SW, Brooks R, Goldsmith MR, El-Masri H, Tan YM. 2016. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways. Environ Health Perspect 124:53-60; http://dx.doi.org/10.1289/ehp.1409450.
Collapse
Affiliation(s)
- Martin B. Phillips
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Jeremy A. Leonard
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | | | | | - Stephen W. Edwards
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Raina Brooks
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Hisham El-Masri
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Yu-Mei Tan
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
15
|
Zhou X, Wang S, Sun H, Wu B. Sulfonation of raloxifene in HEK293 cells overexpressing SULT1A3: Involvement of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (MRP4/ABCC4) in excretion of sulfate metabolites. Drug Metab Pharmacokinet 2015; 30:425-33. [DOI: 10.1016/j.dmpk.2015.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/07/2015] [Accepted: 09/29/2015] [Indexed: 11/16/2022]
|
16
|
Gufford BT, Barr JT, González-Pérez V, Layton ME, White JR, Oberlies NH, Paine MF. Quantitative prediction and clinical evaluation of an unexplored herb-drug interaction mechanism in healthy volunteers. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015; 4:701-10. [PMID: 26904384 PMCID: PMC4759704 DOI: 10.1002/psp4.12047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Abstract
Quantitative prediction of herb–drug interaction risk remains challenging. A quantitative framework to assess a potential interaction was used to evaluate a mechanism not previously tested in humans. The semipurified milk thistle product, silibinin, was selected as an exemplar herbal product inhibitor of raloxifene intestinal glucuronidation. Physiologically based pharmacokinetic (PBPK) model simulations of the silibinin–raloxifene interaction predicted up to 30% increases in raloxifene area under the curve (AUC0‐inf) and maximal concentration (Cmax). Model‐informed clinical evaluation of the silibinin–raloxifene interaction indicated minimal clinical interaction liability, with observed geometric mean raloxifene AUC0‐inf and Cmax ratios lying within the predefined no effect range (0.75–1.33). Further refinement of PBPK modeling and simulation approaches will enhance confidence in predictions and facilitate generalizability to additional herb–drug combinations. This quantitative framework can be used to develop guidances to evaluate potential herb–drug interactions prospectively, providing evidenced‐based information about the risk or safety of these interactions.
Collapse
Affiliation(s)
- B T Gufford
- College of Pharmacy Washington State University Spokane, Washington USA
| | - J T Barr
- College of Pharmacy Washington State University Spokane, Washington USA
| | - V González-Pérez
- College of Pharmacy Washington State University Spokane, Washington USA
| | - M E Layton
- College of Medical Sciences Washington State University Spokane, Washington USA
| | - J R White
- College of Pharmacy Washington State University Spokane, Washington USA
| | - N H Oberlies
- Department of Chemistry and Biochemistry University of North Carolina at Greensboro Greensboro North Carolina USA
| | - M F Paine
- College of Pharmacy Washington State University Spokane, Washington USA
| |
Collapse
|
17
|
Kishi N, Takasuka A, Kokawa Y, Isobe T, Taguchi M, Shigeyama M, Murata M, Suno M, Hanioka N. Raloxifene glucuronidation in liver and intestinal microsomes of humans and monkeys: contribution of UGT1A1, UGT1A8 and UGT1A9. Xenobiotica 2015; 46:289-95. [PMID: 26247833 DOI: 10.3109/00498254.2015.1074301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Raloxifene is an antiestrogen that has been marketed for the treatment of osteoporosis, and is metabolized into 6- and 4'-glucuronides by UDP-glucuronosyltransferase (UGT) enzymes. In this study, the in vitro glucuronidation of raloxifene in humans and monkeys was examined using liver and intestinal microsomes and recombinant UGT enzymes (UGT1A1, UGT1A8 and UGT1A9). 2. Although the K(m) and CL(int) values for the 6-glucuronidation of liver and intestinal microsomes were similar between humans and monkeys, and species differences in Vmax values (liver microsomes, humans > monkeys; intestinal microsomes, humans < monkeys) were observed, no significant differences were noted in the K(m) or S50, Vmax and CL(int) or CLmax values for the 4'-glucuronidation of liver and intestinal microsomes between humans and monkeys. 3. The activities of 6-glucuronidation in recombinant UGT enzymes were UGT1A1 > UGT1A8 >UGT1A9 for humans, and UGT1A8 > UGT1A1 > UGT1A9 for monkeys. The activities of 4'-glucuronidation were UGT1A8 > UGT1A1 > UGT1A9 in humans and monkeys. 4. These results demonstrated that the profiles for the hepatic and intestinal glucuronidation of raloxifene by microsomes were moderately different between humans and monkeys.
Collapse
Affiliation(s)
- Naoki Kishi
- a Faculty of Pharmaceutical Sciences , Okayama University , Okayama , Japan
| | - Akane Takasuka
- a Faculty of Pharmaceutical Sciences , Okayama University , Okayama , Japan
| | - Yuki Kokawa
- a Faculty of Pharmaceutical Sciences , Okayama University , Okayama , Japan
| | | | - Maho Taguchi
- c Department of Clinical Pharmacy , Yokohama University of Pharmacy , Yokohama , Japan
| | - Masato Shigeyama
- c Department of Clinical Pharmacy , Yokohama University of Pharmacy , Yokohama , Japan
| | - Mikio Murata
- c Department of Clinical Pharmacy , Yokohama University of Pharmacy , Yokohama , Japan
| | - Manabu Suno
- a Faculty of Pharmaceutical Sciences , Okayama University , Okayama , Japan
| | | |
Collapse
|
18
|
Srinivas NR. Biochanin A: Understanding the Complexities in the Paradoxical Drug–Drug Interaction Potential. Eur J Drug Metab Pharmacokinet 2015; 40:119-25. [DOI: 10.1007/s13318-015-0279-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Kosaka K, Watanabe T, Susukida T, Aoki S, Sekine S, Kume T, Ito K. Key determinants of the circulatory exposure of organic anions: differences in hepatic uptake between multidrug resistance-associated protein 2 (Mrp2)-deficient rats and wild-type rats. Xenobiotica 2014; 45:556-62. [DOI: 10.3109/00498254.2014.997820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Quantitative Assessment of Intestinal First-pass Metabolism of Oral Drugs Using Portal-vein Cannulated Rats. Pharm Res 2014; 32:604-16. [DOI: 10.1007/s11095-014-1489-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/15/2014] [Indexed: 01/09/2023]
|
21
|
Furukawa T, Naritomi Y, Tetsuka K, Nakamori F, Moriguchi H, Yamano K, Terashita S, Tabata K, Teramura T. Species differences in intestinal glucuronidation activities between humans, rats, dogs and monkeys. Xenobiotica 2013; 44:205-16. [DOI: 10.3109/00498254.2013.828362] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Xie H, Sun S, Cheng X, Yan T, Zheng X, Li F, Qi Q, Wang G, Hao H. Dysregulations of Intestinal and Colonic UDP-glucuronosyltransferases in Rats with Type 2 Diabetes. Drug Metab Pharmacokinet 2013; 28:427-34. [DOI: 10.2133/dmpk.dmpk-13-rg-020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Dong D, Wu B. In Silico Modeling of UDP-Glucuronosyltransferase 1A10 Substrates Using the Volsurf Approach. J Pharm Sci 2012; 101:3531-9. [DOI: 10.1002/jps.23100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 01/28/2012] [Accepted: 02/10/2012] [Indexed: 12/12/2022]
|
24
|
Matsuda Y, Konno Y, Satsukawa M, Kobayashi T, Takimoto Y, Morisaki K, Yamashita S. Assessment of Intestinal Availability of Various Drugs in the Oral Absorption Process Using Portal Vein-Cannulated Rats. Drug Metab Dispos 2012; 40:2231-8. [DOI: 10.1124/dmd.112.048223] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
25
|
Thörn HA, Yasin M, Dickinson PA, Lennernäs H. Extensive intestinal glucuronidation of raloxifenein vivoin pigs and impact for oral drug delivery. Xenobiotica 2012; 42:917-28. [DOI: 10.3109/00498254.2012.683497] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Furukawa T, Yamano K, Naritomi Y, Tanaka K, Terashita S, Teramura T. Method for predicting human intestinal first-pass metabolism of UGT substrate compounds. Xenobiotica 2012; 42:980-8. [DOI: 10.3109/00498254.2012.680620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Wu B. Use of physiologically based pharmacokinetic models to evaluate the impact of intestinal glucuronide hydrolysis on the pharmacokinetics of aglycone. J Pharm Sci 2011; 101:1281-301. [PMID: 22109716 DOI: 10.1002/jps.22827] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 10/10/2011] [Accepted: 11/02/2011] [Indexed: 01/16/2023]
Abstract
Drug elimination via glucuronidation pathway is a complex process involving glucuronide excretion. Glucuronide excreted into the gut lumen either directly from the enterocytes or from the hepatobiliary route can be recovered back to the precursor (aglycone) through bacteria-mediated hydrolysis. As a result, the pharmacokinetics [e.g., plasma terminal half-life (T(1/2))] of aglycone might be altered. Here, impact of intestinal glucuronide hydrolysis on the pharmacokinetics of aglycone is evaluated using physiologically based pharmacokinetic (PBPK) models with liver and/or intestine as eliminating organs. It is found that compared with its absence, the presence of intestinal glucuronide hydrolysis leads to increases in the oral systemic bioavailability (F(sys)) of aglycone. The magnitude of fold increase is positively correlated with the level of metabolism, as metabolic clearance mainly contributes to recycled amount of glucuronide. Although F(sys) is independent of the glucuronide efflux in a traditional model and a segregated-flow model of the intestine, dependence of F(sys) on the glucuronide efflux can be observed in a segmental segregated-flow model of the intestine and whole-body PBPK models. Interestingly, when the ratio of apical versus basolateral efflux intrinsic clearances (of glucuronide) is fixed, their effects on the intestinal bioavailability and F(sys) cease to exist. In addition, glucuronide hydrolysis can lead to a significantly delayed elimination of the aglycone as evidenced by a prolonged (e.g., a 2.1-fold increase) T(1/2). Surprisingly, when a pharmacokinetic profile for aglycone is simulated with a flat terminal portion (a reflection of the experimental observations), changes in the aglycone bioavailabilities are limited (i.e., ≤ 1.3-fold). In conclusion, this study explores the possible role of intestinal glucuronide hydrolysis in the disposition of aglycone via simulations utilizing various PBPK models. The mechanistic observations should be helpful to better understand the complex glucuronidation in vivo.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, USA.
| |
Collapse
|