1
|
Vasilevich NI, Jiang H, Xiao H, Feng K, Jian C, Chen C, Li M, Chen Z, Pang L, Li X, Chestkov AV, Sun AH, Xu W, Fuselier JA, Coy DH, Sun L. Biological evaluation of 9-thioansamitocin P3. Biochem Biophys Res Commun 2024; 696:149483. [PMID: 38219484 DOI: 10.1016/j.bbrc.2024.149483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Highly cytotoxic maytansine derivatives are widely used in targeted tumor delivery. Structure-activity studies published earlier suggested the C9 carbinol to be a key element necessary to retain the potency. However, in 1984 a patent was published by Takeda in which the synthesis of 9-thioansamitocyn (AP3SH) was described and its activity in xenograft models was shown. In this article we summarize the results of an extended study of the anti-tumor properties of AP3SH. Like other maytansinoids, it induces apoptosis and arrests the cell cycle in the G2/M phase. It is metabolized in liver microsomes predominately by C3A4 isoform and doesn't inhibit any CYP isoforms except CYP3A4 (midazolam, IC50 7.84 μM). No hERG inhibition, CYP induction or mutagenicity in Ames tests were observed. AP3SH demonstrates high antiproliferative activity against 25 tumor cell lines and tumor growth inhibition in U937 xenograft model. Application of AP3SH as a cytotoxic payload in drug delivery system was demonstrated by us earlier.
Collapse
Affiliation(s)
- Natalya I Vasilevich
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Shenzhen, Guangdong, 518118, China.
| | - Huangyu Jiang
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Shenzhen, Guangdong, 518118, China
| | - Haihua Xiao
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Shenzhen, Guangdong, 518118, China
| | - Kunxian Feng
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Shenzhen, Guangdong, 518118, China
| | - Chengfang Jian
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Shenzhen, Guangdong, 518118, China
| | - Changfeng Chen
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Shenzhen, Guangdong, 518118, China
| | - Min Li
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Shenzhen, Guangdong, 518118, China
| | - Zhenhua Chen
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Shenzhen, Guangdong, 518118, China
| | - Li Pang
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Shenzhen, Guangdong, 518118, China
| | - Xiang Li
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Shenzhen, Guangdong, 518118, China
| | - Alexander V Chestkov
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Shenzhen, Guangdong, 518118, China
| | - Andre H Sun
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center, New Orleans, LA70112, USA
| | - Wang Xu
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center, New Orleans, LA70112, USA
| | - Joseph A Fuselier
- Peptide Research Labs, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - David H Coy
- Peptide Research Labs, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Lichun Sun
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Shenzhen, Guangdong, 518118, China; Peptide Research Labs, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA.
| |
Collapse
|
2
|
Pouzin C, Teutonico D, Fagniez N, Ziti-Ljajic S, Perreard-Dumaine A, Pardon M, Klieber S, Nguyen L. Prediction of CYP Down Regulation after Tusamitamab Ravtansine Administration (a DM4-Conjugate), Based on an In Vitro-In Vivo Extrapolation Approach. Clin Pharmacol Ther 2024; 115:278-287. [PMID: 37964462 DOI: 10.1002/cpt.3102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Tusamitamab ravtansine is an antibody-drug conjugate (ADC) composed of a humanized monoclonal antibody (IgG1) and DM4 payload. Even if DM4 and its main metabolite methyl-DM4 (Me-DM4) circulate at low concentrations after ADC administration, their potential as perpetrators of cytochrome P450 mediated drug-drug interaction was assessed. In vitro studies in human hepatocytes indicated that Me-DM4 elicited a clear concentration-dependent down regulation of cytochrome P450 enzymes (CYP3A4, 1A2, and 2B6). Because DM4 was unstable under the incubation conditions studied, the in vitro constants could not be determined for this entity. Thus, to predict the clinical relevance of this observed downregulation, an in vitro-in vivo extrapolation (IVIVE) pharmacokinetic (PK) based approach was developed. To mitigate model prediction errors and because of their similar inhibitory effect on tubulin polymerization, the same downregulation constants were used for DM4 and Me-DM4. This approach describes the time course of decreasing CYP3A4, 1A2, and 2B6 enzyme amounts as a function of circulating concentrations of DM4 and Me-DM4 predicted from a population PK model. The developed IVIVE-PK model showed that the highest CYP abundance decrease was observed for CYP3A4, with a transient reduction of < 10% from baseline. The impact on midazolam exposure, as probe substrate of CYP3A, was then simulated based on a physiologically-based PK static method. The maximal CYP3A4 abundance reduction was associated with a predicted midazolam area under the curve (AUC) ratio of 1.14. To conclude, the observed in vitro downregulation of CYPs by Me-DM4 is not expected to have relevant clinical impact.
Collapse
Affiliation(s)
- Clemence Pouzin
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| | - Donato Teutonico
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| | - Nathalie Fagniez
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| | - Samira Ziti-Ljajic
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| | | | | | - Sylvie Klieber
- Sanofi R&D, In vitro ADME, Drug Metabolism and Pharmacokinetics, Paris, France
| | - Laurent Nguyen
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| |
Collapse
|
3
|
Najjar MK, Manore SG, Regua AT, Lo HW. Antibody-Drug Conjugates for the Treatment of HER2-Positive Breast Cancer. Genes (Basel) 2022; 13:2065. [PMID: 36360302 PMCID: PMC9691220 DOI: 10.3390/genes13112065] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) receptor tyrosine kinase is overexpressed in 20-30% of breast cancers and is associated with poor prognosis and worse overall patient survival. Most women with HER2-positive breast cancer receive neoadjuvant chemotherapy plus HER2-targeted therapies. The development of HER2-directed therapeutics is an important advancement in targeting invasive breast cancer. Despite the efficacy of anti-HER2 monoclonal antibodies, they are still being combined with adjuvant chemotherapy to improve overall patient outcomes. Recently, significant progress has been made towards the development of a class of therapeutics known as antibody-drug conjugates (ADCs), which leverage the high specificity of HER2-targeted monoclonal antibodies with the potent cytotoxic effects of various small molecules, such as tubulin inhibitors and topoisomerase inhibitors. To date, two HER2-targeting ADCs have been approved by the FDA for the treatment of HER2-positive breast cancer: Ado-trastuzumab emtansine (T-DM1; Kadcyla®) and fam-trastuzumab deruxtecan-nxki (T-Dxd; Enhertu®). Kadcyla and Enhertu are approved for use as a second-line treatment after trastuzumab-taxane-based therapy in patients with HER2-positive breast cancer. The success of ADCs in the treatment of HER2-positive breast cancer provides novel therapeutic advancements in the management of the disease. In this review, we discuss the basic biology of HER2, its downstream signaling pathways, currently available anti-HER2 therapeutic modalities and their mechanisms of action, and the latest clinical and safety characteristics of ADCs used for the treatment of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Mariana K. Najjar
- Wake Forest Graduate School of Biomedical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Sara G. Manore
- Wake Forest Graduate School of Biomedical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Angelina T. Regua
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, MSE R162, 6431 Fannin Street, Houston, TX 77030, USA
| | - Hui-Wen Lo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, MSE R162, 6431 Fannin Street, Houston, TX 77030, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
4
|
Walles M, Pähler A, Isin EM, Weidolf L. Meeting report of the second European Biotransformation Workshop. Xenobiotica 2022; 52:426-431. [PMID: 35410573 DOI: 10.1080/00498254.2022.2064253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Challenges and opportunities in the field of biotransformation were presented and discussed at the 2nd European Biotransformation workshop which was conducted virtually in collaboration with the DMDG on November 24/25, 2021. Here we summarise the presentations and discussions from this workshop.The following topics were covered:Regulatory requirements and biotransformation studies for antibody drug conjugates (ADCs) and antisense oligonucleotides (ASOs)Solutions for mass spectral data processing of peptides and oligonucleotidesFuture outsourcing needs in biotransformation for new modalitiesEstablished quantitative and qualitative workflows for metabolite identificationNew in vitro systems to study new chemical entities (NCEs) with low metabolic turnoverNew strategies on the timing of the human ADME (absorption, distribution, metabolism, excretion) study and to investigate the impact of human microbiome on drug development.
Collapse
Affiliation(s)
- M Walles
- Department, a Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - A Pähler
- Pharma Research and Early Development, F. Hoffmann-La Roche
| | - E M Isin
- DMPK, Translational Medicine, Servier, Orléans, France
| | - L Weidolf
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
5
|
Pouzin C, Tod M, Chadjaa M, Fagniez N, Nguyen L. Covariate analysis of tusamitamab ravtansine, a DM4 anti‐CEACAM5 antibody‐drug conjugate, based on first‐in‐human study. CPT Pharmacometrics Syst Pharmacol 2022; 11:384-394. [PMID: 35191618 PMCID: PMC8923727 DOI: 10.1002/psp4.12769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Tusamitamab ravtansine is an anti‐CEACAM5 antibody‐drug conjugate indicated in patients with solid tumors. Based on a previous developed semimechanistic model describing simultaneously pharmacokinetic (PK) of SAR408701, two of its active metabolites: DM4 and methyl‐DM4 and naked antibody, with integration of drug‐to‐antibody data, the main objective of the present analysis was to evaluate covariate’s impact in patients from phase I/II study (n = 254). Demographic and pathophysiologic baseline covariates were explored to explain interindividual variability on each entity PK parameter. Model parameters were estimated with good precision. Five covariates were included in the final PK model: body surface area (BSA), tumor burden, albumin, circulating target, and gender. Comparison of BSA‐adjusted dosing and flat dosing supported the current BSA‐based dosing regimen, to limit under and over exposure in patients with extreme BSA. Overall, this model characterized accurately the PKs of all entities and highlighted sources of PK variability. By integrating mechanistic considerations, this model aimed to improve understanding of the SAR408701 complex disposition while supporting key steps of clinical development.
Collapse
Affiliation(s)
- Clemence Pouzin
- Pharmacokinetics Dynamics and Metabolism Department Sanofi R&D Paris France
- PKPD Modelling Unit Oncology Department EMR3738 University of Claude Bernard Lyon 1 Lyon France
| | - Michel Tod
- PKPD Modelling Unit Oncology Department EMR3738 University of Claude Bernard Lyon 1 Lyon France
| | | | - Nathalie Fagniez
- Pharmacokinetics Dynamics and Metabolism Department Sanofi R&D Paris France
| | - Laurent Nguyen
- Pharmacokinetics Dynamics and Metabolism Department Sanofi R&D Paris France
| |
Collapse
|
6
|
Ceci C, Lacal PM, Graziani G. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol Ther 2022; 236:108106. [PMID: 34990642 DOI: 10.1016/j.pharmthera.2021.108106] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Antibody-drug conjugates (ADCs) constitute a relatively new group of anticancer agents, whose first appearance took place about two decades ago, but a renewed interest occurred in recent years, following the success of anti-cancer immunotherapy with monoclonal antibodies. Indeed, an ADC combines the selectivity of a monoclonal antibody with the cell killing properties of a chemotherapeutic agent (payload), joined together through an appropriate linker. The antibody moiety targets a specific cell surface antigen expressed by tumor cells and/or cells of the tumor microenvironment and acts as a carrier that delivers the cytotoxic payload within the tumor mass. Despite advantages in terms of selectivity and potency, the development of ADCs is not devoid of challenges, due to: i) low tumor selectivity when the target antigens are not exclusively expressed by cancer cells; ii) premature release of the cytotoxic drug into the bloodstream as a consequence of linker instability; iii) development of tumor resistance mechanisms to the payload. All these factors may result in lack of efficacy and/or in no safety improvement compared to unconjugated cytotoxic agents. Nevertheless, the development of antibodies engineered to remain inert until activated in the tumor (e.g., antibodies activated proteolytically after internalization or by the acidic conditions of the tumor microenvironment) together with the discovery of innovative targets and cytotoxic or immunomodulatory payloads, have allowed the design of next-generation ADCs that are expected to possess improved therapeutic properties. This review provides an overview of approved ADCs, with related advantages and limitations, and of novel targets exploited by ADCs that are presently under clinical investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
7
|
Li C, Menon R, Walles M, Singh R, Upreti VV, Brackman D, Lee AJ, Endres CJ, Kumar S, Zhang D, Barletta F, Suri A, Haninzl D, Liao KH, Lalovic B, Beaumont M, Zuo P, Mayer AP, Wei D. Risk-Based Pharmacokinetic and Drug-Drug Interaction Characterization of Antibody-Drug Conjugates in Oncology Clinical Development: An International Consortium for Innovation and Quality in Pharmaceutical Development Perspective. Clin Pharmacol Ther 2021; 112:754-769. [PMID: 34657311 DOI: 10.1002/cpt.2448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023]
Abstract
Antibody-drug conjugates (ADCs) represent a rapidly evolving area of drug development and hold significant promise. To date, nine ADCs have been approved by the US Food and Drug Administration (FDA). These conjugates combine the target specificity of monoclonal antibodies with the anticancer activity of small-molecule therapeutics (also referred to as payload). Due to the complex structure, three analytes, namely ADC conjugate, total antibody, and unconjugated payload, are typically quantified during drug development; however, the benefits of measuring all three analytes at later stages of clinical development are not clear. The cytotoxic payloads, upon release from the ADC, are considered to behave like small molecules. Given the relatively high potency and low systemic exposure of cytotoxic payloads, drug-drug interaction (DDI) considerations for ADCs might be different from traditional small molecule therapeutics. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ Consortium) convened an ADC working group to create an IQ ADC database that includes 26 ADCs with six unique payloads. The analysis of the ADC data in the IQ database, as well as nine approved ADCs, supports the strategy of pharmacokinetic characterization of all three analytes in early-phase development and progressively minimizing the number of analytes to be measured in the late-phase studies. The systemic concentrations of unconjugated payload are usually too low to serve as a DDI perpetrator; however, the potential for unconjugated payloads as a victim still exists. A data-driven and risk-based decision tree was developed to guide the assessment of a circulating payload as a victim of DDI.
Collapse
Affiliation(s)
- Chunze Li
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Rajeev Menon
- Department of Clinical Pharmacology and Pharmacometrics, AbbVie, Inc., North Chicago, Illinois, USA
| | - Markus Walles
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Renu Singh
- Global Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania, USA.,Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Vijay V Upreti
- Clinical Pharmacology, Modeling and Simulation, AMGEN, South San Francisco, California, USA
| | - Deanna Brackman
- Department of Clinical Pharmacology and Pharmacometrics, AbbVie, Inc., North Chicago, Illinois, USA
| | - Anthony J Lee
- Quantitative Pharmacology and Disposition, Seagen Inc., Bothell, Washington, USA
| | | | - Seema Kumar
- Emmanuel Merck, Darmstadt Serono Research and Development Institute (A business of Merck, Darmstadt, Germany), Billerica, Massachusetts, USA
| | - Donglu Zhang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Frank Barletta
- Pre-Clinical Pharmacokinetics & Pharmacokinetics/Pharmacodynamics, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA.,Biomedicine Design, Pfizer Inc, Pearl River, New York, USA
| | - Ajit Suri
- Quantitative Clinical Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Dominik Haninzl
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, Massachuetts, USA
| | - Kai H Liao
- Clinical Pharmacology, Arcus Biosciences, Hayward, California, USA.,Clinical Pharmacology, Early Clinical Development, Pfizer Inc., San Diego, California, USA
| | - Bojan Lalovic
- Modeling & Simulation Clinical Pharmacology Sciences, Eisai Inc., Woodcliff Lake, New Jersey, USA
| | - Maribel Beaumont
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Peiying Zuo
- Quantitative Pharmacology, Alexion Pharmaceuticals, Boston, Massachuetts, USA.,Pharmacometrics US, Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | - Andrew P Mayer
- Bioanalysis, Immunogenicity & Biomarkers, In Vitro In Vivo Translation, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania, USA
| | - Dong Wei
- Drug Metabolism and Pharmacokinetics, MPM NewCo., Cambridge, Massachusetts, USA.,Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Mertansine Inhibits mRNA Expression and Enzyme Activities of Cytochrome P450s and Uridine 5′-Diphospho-Glucuronosyltransferases in Human Hepatocytes and Liver Microsomes. Pharmaceutics 2020; 12:pharmaceutics12030220. [PMID: 32131538 PMCID: PMC7150891 DOI: 10.3390/pharmaceutics12030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 11/16/2022] Open
Abstract
Mertansine, a tubulin inhibitor, is used as the cytotoxic component of antibody–drug conjugates (ADCs) for cancer therapy. The effects of mertansine on uridine 5′-diphospho-glucuronosyltransferase (UGT) activities in human liver microsomes and its effects on the mRNA expression of cytochrome P450s (CYPs) and UGTs in human hepatocytes were evaluated to assess the potential for drug–drug interactions (DDIs). Mertansine potently inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-β-glucuronidation, and UGT1A4-catalyzed trifluoperazine N-β-d-glucuronidation, with Ki values of 13.5 µM, 4.3 µM, and 21.2 µM, respectively, but no inhibition of UGT1A6, UGT1A9, and UGT2B7 enzyme activities was observed in human liver microsomes. A 48 h treatment of mertansine (1.25–2500 nM) in human hepatocytes resulted in the dose-dependent suppression of mRNA levels of CYP1A2, CYP2B6, CYP3A4, CYP2C8, CYP2C9, CYP2C19, UGT1A1, and UGT1A9, with IC50 values of 93.7 ± 109.1, 36.8 ± 18.3, 160.6 ± 167.4, 32.1 ± 14.9, 578.4 ± 452.0, 539.5 ± 233.4, 856.7 ± 781.9, and 54.1 ± 29.1 nM, respectively, and decreased the activities of CYP1A2-mediated phenacetin O-deethylase, CYP2B6-mediated bupropion hydroxylase, and CYP3A4-mediated midazolam 1′-hydroxylase. These in vitro DDI potentials of mertansine with CYP1A2, CYP2B6, CYP2C8/9/19, CYP3A4, UGT1A1, and UGT1A9 substrates suggest that it is necessary to carefully characterize the DDI potentials of ADC candidates with mertansine as a payload in the clinic.
Collapse
|
9
|
Liu H, Bolleddula J, Nichols A, Tang L, Zhao Z, Prakash C. Metabolism of bioconjugate therapeutics: why, when, and how? Drug Metab Rev 2020; 52:66-124. [PMID: 32045530 DOI: 10.1080/03602532.2020.1716784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation of therapeutic agents has been used as a selective drug delivery platform for many therapeutic areas. Bioconjugates are prepared by the covalent linkage of active compounds (small or large molecule) to a carrier molecule (lipids, proteins, peptides, carbohydrates, and polymers) through a chemical linker. The linkage of the active component to a carrier molecule enhances the therapeutic window through a targeted delivery and by reducing toxicity. Bioconjugates also possess improved pharmacokinetic properties such as a long half-life, increased stability, and cleavage by intracellular enzymes/environment. However, premature cleavage of the bioconjugates and the resulting metabolites/catabolites may produce undesirable toxic effects and, hence, it is critical to understand cleavage mechanisms, metabolism of bioconjugates, and translatability to human in the discovery stages. This article provides a comprehensive overview of linker cleavage pathways and catabolism/metabolism of antibody-drug conjugates, glycoconjugates, polymer-drug conjugates, lipid-drug conjugates, folate-targeted small molecule-drug conjugates, and drug-drug conjugates.
Collapse
Affiliation(s)
- Hanlan Liu
- KSQ Therapeutics Inc., Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
10
|
Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–Drug Conjugates: A Comprehensive Review. Mol Cancer Res 2019; 18:3-19. [DOI: 10.1158/1541-7786.mcr-19-0582] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/22/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
|
11
|
Abstract
Antibody-drug conjugates are monoclonal antibodies attached to biologically active drugs through chemical linkers that deliver and release cytotoxic agents at the tumor site, reducing the likelihood of systemic exposure and therefore toxicity. Currently, there are about 110 ongoing studies implementing antibody-drug conjugates in the treatment of multiple human malignancies. Antibody-drug conjugates carry a feature of the specificity of a monoclonal antibody and the anti-neoplastic potential of a cytotoxin. The first antibody-drug conjugate was approved in 2001, and the field of antibody-drug conjugates has expanded since then with three more antibody-drug conjugates being added to the market. The complex structure of the antibody-drug conjugate poses a challenge in designing a clinically adequate molecule. Antibody-drug conjugates are usually well tolerated with some predictable adverse reactions, as well as new medical issues, that need careful approach. This review provides an outline of the current status of the efficacy and safety of antibody-drug conjugates in malignant diseases.
Collapse
Affiliation(s)
- Anna Wolska-Washer
- Department of Hematology, Medical University of Lodz and Copernicus Memorial Hospital, Ul. Ciolkowskiego 2, 93-510, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz and Copernicus Memorial Hospital, Ul. Ciolkowskiego 2, 93-510, Lodz, Poland.
| |
Collapse
|
12
|
Wang J, Zhang W, Salter R, Lim HK. Reductive Desulfuration as an Important Tool in Detection of Small Molecule Modifications to Payload of Antibody Drug Conjugates. Anal Chem 2019; 91:2368-2375. [DOI: 10.1021/acs.analchem.8b05134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jianyao Wang
- Department of Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Wei Zhang
- Department of Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Rhys Salter
- Department of Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Heng-Keang Lim
- Department of Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
13
|
Li C, Agarwal P, Gibiansky E, Jin JY, Dent S, Gonçalves A, Nijem I, Strasak A, Harle-Yge ML, Chernyukhin N, LoRusso P, Girish S. A Phase I Pharmacokinetic Study of Trastuzumab Emtansine (T-DM1) in Patients with Human Epidermal Growth Factor Receptor 2-Positive Metastatic Breast Cancer and Normal or Reduced Hepatic Function. Clin Pharmacokinet 2018; 56:1069-1080. [PMID: 27995530 DOI: 10.1007/s40262-016-0496-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the pharmacokinetics (PK) of trastuzumab emtansine (T-DM1) and relevant analytes in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer and hepatic impairment. METHODS Patients were enrolled in three independent parallel cohorts based on hepatic function per Child-Pugh criteria: normal hepatic function, mild hepatic impairment, and moderate hepatic impairment. Patients received T-DM1 3.6 mg/kg intravenously every 3 weeks. PK samples were collected during cycles 1 and 3, and the PK of T-DM1 and relevant analytes were characterized and compared across cohorts. RESULTS Compared with patients with normal hepatic function (n = 10), T-DM1 clearance at cycle 1 was 1.8- and 4.0-fold faster in the mild (n = 10) and moderate (n = 8) cohorts, respectively. The trend of faster clearance was less apparent in cycle 3, with similar T-DM1 clearance across cohorts (mean ± standard deviation 8.16 ± 3.27 [n = 9], 9.74 ± 3.62 [n = 7], and 8.99 and 10.2 [individual values, n = 2] mL/day/kg for the normal, mild, and moderate cohorts, respectively). T-DM1 clearance at cycle 1 correlated significantly with baseline albumin, aspartate aminotransferase, and HER2 extracellular domain concentrations (p < 0.05). Plasma concentrations of DM1 and DM1-containing catabolites were low and were comparable across cohorts. CONCLUSIONS No increase in systemic DM1 concentration was observed in patients with mild or moderate hepatic impairment versus those with normal hepatic function. The faster T-DM1 clearance observed at cycle 1 in patients with hepatic impairment appeared to be transient. After repeated dosing (three cycles), T-DM1 exposure in patients with mild and moderate hepatic impairment was within the range seen in those with normal hepatic function.
Collapse
Affiliation(s)
- Chunze Li
- Genentech, Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Priya Agarwal
- Genentech, Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Jin Yan Jin
- Genentech, Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Susan Dent
- The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, ON, Canada
| | | | - Ihsan Nijem
- Genentech, Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | | | | | - Pat LoRusso
- Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Sandhya Girish
- Genentech, Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
14
|
Vezina HE, Cotreau M, Han TH, Gupta M. Antibody-Drug Conjugates as Cancer Therapeutics: Past, Present, and Future. J Clin Pharmacol 2018; 57 Suppl 10:S11-S25. [PMID: 28921650 DOI: 10.1002/jcph.981] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022]
Abstract
Antibody-drug conjugates (ADCs) represent an innovative therapeutic approach that provides novel treatment options and hope for patients with cancer. By coupling monoclonal antibodies (mAbs) to cytotoxic small-molecule payloads with a plasma-stable linker, ADCs offer the potential for increased drug specificity and fewer off-target effects than systemic chemotherapy. As evidence for the potential of these therapies, many new ADCs are in various stages of clinical development. Because their structure poses unique challenges to pharmacokinetic and pharmacodynamic characterization, it is critical to recognize the differences between ADCs and conventional chemotherapy in the design of ADC clinical development strategies. Although some properties may be determined mainly by either the mAb or the small-molecule portion, the behavior of these agents is not always predictable. Furthermore, because the absorption, distribution, metabolism, and excretion (ADME) of ADCs are influenced by all 3 of its components (mAb, linker, and payload), it is important to characterize the intact molecule, any target-mediated catabolic clearance of the mAb, and the ADME properties of the small-molecule payload. Here we describe key issues in the clinical development of ADCs, including considerations for designing first-in-human studies for ADCs. We discuss some difficulties of ADC pharmacokinetic characterization and current approaches to overcoming these challenges. Finally, we consider all aspects of clinical pharmacology assessment required during drug development, using examples from the literature to illustrate the discussion.
Collapse
Affiliation(s)
| | | | - Tae H Han
- AbbVie Stemcentrx LLC, South San Francisco, CA, USA
| | | |
Collapse
|
15
|
Taplin S, Vashisht K, Walles M, Calise D, Kluwe W, Bouchard P, Johnson R. Hepatotoxicity with antibody maytansinoid conjugates: A review of preclinical and clinical findings. J Appl Toxicol 2018; 38:600-615. [DOI: 10.1002/jat.3582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Sarah Taplin
- Novartis Pharmaceuticals Inc.; East Hanover NJ USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Catabolism of antibody drug conjugates and characterization methods. Bioorg Med Chem 2017; 25:2933-2945. [DOI: 10.1016/j.bmc.2017.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 11/21/2022]
|
17
|
Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol Rev 2016; 68:168-241. [PMID: 26721703 DOI: 10.1124/pr.115.011411] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During the last 10-15 years, cytochrome P450 (CYP) 2C8 has emerged as an important drug-metabolizing enzyme. CYP2C8 is highly expressed in human liver and is known to metabolize more than 100 drugs. CYP2C8 substrate drugs include amodiaquine, cerivastatin, dasabuvir, enzalutamide, imatinib, loperamide, montelukast, paclitaxel, pioglitazone, repaglinide, and rosiglitazone, and the number is increasing. Similarly, many drugs have been identified as CYP2C8 inhibitors or inducers. In vivo, already a small dose of gemfibrozil, i.e., 10% of its therapeutic dose, is a strong, irreversible inhibitor of CYP2C8. Interestingly, recent findings indicate that the acyl-β-glucuronides of gemfibrozil and clopidogrel cause metabolism-dependent inactivation of CYP2C8, leading to a strong potential for drug interactions. Also several other glucuronide metabolites interact with CYP2C8 as substrates or inhibitors, suggesting that an interplay between CYP2C8 and glucuronides is common. Lack of fully selective and safe probe substrates, inhibitors, and inducers challenges execution and interpretation of drug-drug interaction studies in humans. Apart from drug-drug interactions, some CYP2C8 genetic variants are associated with altered CYP2C8 activity and exhibit significant interethnic frequency differences. Herein, we review the current knowledge on substrates, inhibitors, inducers, and pharmacogenetics of CYP2C8, as well as its role in clinically relevant drug interactions. In addition, implications for selection of CYP2C8 marker and perpetrator drugs to investigate CYP2C8-mediated drug metabolism and interactions in preclinical and clinical studies are discussed.
Collapse
Affiliation(s)
- Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| |
Collapse
|
18
|
Ethnic sensitivity assessment of the antibody-drug conjugate trastuzumab emtansine (T-DM1) in patients with HER2-positive locally advanced or metastatic breast cancer. Cancer Chemother Pharmacol 2016; 78:547-58. [PMID: 27423671 DOI: 10.1007/s00280-016-3099-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Trastuzumab emtansine (T-DM1) is indicated for previously treated HER2-positive metastatic breast cancer. Ethnic sensitivity assessment of T-DM1 was conducted using data from eight clinical studies to ensure that the clinically recommended dose is appropriate across ethnicities. METHODS Four approaches were used: (1) non-compartmental analysis (NCA) comparing pharmacokinetic parameters of T-DM1 and relevant analytes across ethnic groups, (2) population pharmacokinetic (popPK) analysis assessing the impact of ethnicity on pharmacokinetics, (3) comparison of T-DM1 pharmacokinetics in Japanese patients versus the global population, and (4) exposure-response analyses assessing the impact of ethnicity on safety and efficacy. RESULTS NCA pharmacokinetic parameters (T-DM1, total trastuzumab, DM1) were comparable across ethnic groups; mean cycle 1 T-DM1 AUCinf was 475, 442, and 518 day µg/mL for white (n = 461), Asian (n = 68), and others (n = 57), respectively. PopPK analysis showed that ethnicity (white, Asian, and others) was not a significant covariate for T-DM1 pharmacokinetics (n = 671). Additionally, visual predictive check plots indicated that observed pharmacokinetic profiles in Japanese patients (n = 42) were within the prediction interval generated from the final PopPK model. Exposure-response analyses showed that ethnicity was not a significant covariate impacting efficacy or hepatotoxicity risk, but there was a trend of greater thrombocytopenia risk among Asians versus non-Asians, which could not be explained by similar exposure between the ethnic groups. Most Asians with thrombocytopenia were able to continue T-DM1 using dose-adjustment rules recommended for the global population. CONCLUSIONS These results suggest that T-DM1 pharmacokinetics are comparable across ethnic groups and that use of the current dosing regimen is appropriate across ethnicities.
Collapse
|
19
|
Walles M, Rudolph B, Wolf T, Bourgailh J, Suetterlin M, Moenius T, Peraus G, Heudi O, Elbast W, Lanshoeft C, Bilic S. New Insights in Tissue Distribution, Metabolism, and Excretion of [3H]-Labeled Antibody Maytansinoid Conjugates in Female Tumor-Bearing Nude Rats. Drug Metab Dispos 2016; 44:897-910. [DOI: 10.1124/dmd.115.069021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
|
20
|
Lanshoeft C, Stutz G, Elbast W, Wolf T, Walles M, Stoeckli M, Picard F, Kretz O. Analysis of small molecule antibody-drug conjugate catabolites in rat liver and tumor tissue by liquid extraction surface analysis micro-capillary liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:823-832. [PMID: 26969923 DOI: 10.1002/rcm.7511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/27/2015] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE Antibody-drug conjugates (ADCs) are some of the most promising antibody-related therapeutics. The fate of the cytotoxic moiety of ADCs in vivo after proteolytic degradation of the antibody needs to be well understood in order to mitigate toxicity risks and design proper first in patient studies. METHODS The feasibility of liquid extraction surface analysis micro-capillary liquid chromatography/tandem mass spectrometry (LESA-μLC/MS/MS) was tested for direct surface sampling of two possible ADC catabolites composed of synthetically modified maytansinoid (DM1) and 4-[N-maleimidomethyl]cyclohexane-1-carbonyl (MCC) from rat liver and tumor tissue. Moreover, the iMatrixSpray was incorporated to prepare calibration standards (Cs) and quality control (QC) samples by spraying analyte solution at different concentrations directly on blank tissue. RESULTS Lys-MCC-DM1 sprayed on blank liver tissue was homogeneously distributed (12.3% variability). The assay was selective (inference ≤20%) and linear from 50.0 to 1000 ng/mL without any carry-over. Inter-run accuracy and precision were ≤2.3% and ≤25.9% meeting acceptance. Lys-MCC-DM1 was the only catabolite detected in liver and tumor tissue and was most likely responsible for the total radioactivity signal in liver tissue 72 h post-dose measured by quantitative whole body autoradiography (QWBA). CONCLUSIONS Both analytical assays (LESA-μLC/MS/MS and QWBA) are complementary to each other and provide useful quantitative and qualitative information in spatial tissue distribution of ADCs and their related catabolites. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christian Lanshoeft
- Novartis Institutes for Biomedical Research, Drug Metabolism and Pharmacokinetics, Novartis Campus, Fabrikstrasse 14, 4056, Basel, Switzerland
| | - Gerhard Stutz
- Novartis Institutes for Biomedical Research, Drug Metabolism and Pharmacokinetics, Novartis Campus, Fabrikstrasse 14, 4056, Basel, Switzerland
| | - Walid Elbast
- Novartis Institutes for Biomedical Research, Drug Metabolism and Pharmacokinetics, Novartis Campus, Fabrikstrasse 14, 4056, Basel, Switzerland
| | - Thierry Wolf
- Novartis Institutes for Biomedical Research, Drug Metabolism and Pharmacokinetics, Novartis Campus, Fabrikstrasse 14, 4056, Basel, Switzerland
| | - Markus Walles
- Novartis Institutes for Biomedical Research, Drug Metabolism and Pharmacokinetics, Novartis Campus, Fabrikstrasse 14, 4056, Basel, Switzerland
| | - Markus Stoeckli
- Novartis Institutes for Biomedical Research, Analytical Sciences and Imaging, Novartis Campus, Fabrikstrasse 10, 4056, Basel, Switzerland
| | - Franck Picard
- Novartis Institutes for Biomedical Research, Drug Metabolism and Pharmacokinetics, Novartis Campus, Fabrikstrasse 14, 4056, Basel, Switzerland
| | - Olivier Kretz
- Novartis Institutes for Biomedical Research, Drug Metabolism and Pharmacokinetics, Novartis Campus, Fabrikstrasse 14, 4056, Basel, Switzerland
| |
Collapse
|
21
|
Foti RS, Tyndale RF, Garcia KLP, Sweet DH, Nagar S, Sharan S, Rock DA. "Target-Site" Drug Metabolism and Transport. Drug Metab Dispos 2015; 43:1156-68. [PMID: 25986849 PMCID: PMC11024933 DOI: 10.1124/dmd.115.064576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/18/2015] [Indexed: 04/20/2024] Open
Abstract
The recent symposium on "Target-Site" Drug Metabolism and Transport that was sponsored by the American Society for Pharmacology and Experimental Therapeutics at the 2014 Experimental Biology meeting in San Diego is summarized in this report. Emerging evidence has demonstrated that drug-metabolizing enzyme and transporter activity at the site of therapeutic action can affect the efficacy, safety, and metabolic properties of a given drug, with potential outcomes including altered dosing regimens, stricter exclusion criteria, or even the failure of a new chemical entity in clinical trials. Drug metabolism within the brain, for example, can contribute to metabolic activation of therapeutic drugs such as codeine as well as the elimination of potential neurotoxins in the brain. Similarly, the activity of oxidative and conjugative drug-metabolizing enzymes in the lung can have an effect on the efficacy of compounds such as resveratrol. In addition to metabolism, the active transport of compounds into or away from the site of action can also influence the outcome of a given therapeutic regimen or disease progression. For example, organic anion transporter 3 is involved in the initiation of pancreatic β-cell dysfunction and may have a role in how uremic toxins enter pancreatic β-cells and ultimately contribute to the pathogenesis of gestational diabetes. Finally, it is likely that a combination of target-specific metabolism and cellular internalization may have a significant role in determining the pharmacokinetics and efficacy of antibody-drug conjugates, a finding which has resulted in the development of a host of new analytical methods that are now used for characterizing the metabolism and disposition of antibody-drug conjugates. Taken together, the research summarized herein can provide for an increased understanding of potential barriers to drug efficacy and allow for a more rational approach for developing safe and effective therapeutics.
Collapse
Affiliation(s)
- Robert S Foti
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F., D.A.R.); Departments of Pharmacology and Toxicology and Psychiatry, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada (R.F.T., K.L.P.G.); Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (D.H.S.); School of Pharmacy, Temple University, Philadelphia, Pennsylvania (S.N.); and College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (S.S.)
| | - Rachel F Tyndale
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F., D.A.R.); Departments of Pharmacology and Toxicology and Psychiatry, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada (R.F.T., K.L.P.G.); Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (D.H.S.); School of Pharmacy, Temple University, Philadelphia, Pennsylvania (S.N.); and College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (S.S.)
| | - Kristine L P Garcia
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F., D.A.R.); Departments of Pharmacology and Toxicology and Psychiatry, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada (R.F.T., K.L.P.G.); Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (D.H.S.); School of Pharmacy, Temple University, Philadelphia, Pennsylvania (S.N.); and College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (S.S.)
| | - Douglas H Sweet
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F., D.A.R.); Departments of Pharmacology and Toxicology and Psychiatry, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada (R.F.T., K.L.P.G.); Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (D.H.S.); School of Pharmacy, Temple University, Philadelphia, Pennsylvania (S.N.); and College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (S.S.)
| | - Swati Nagar
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F., D.A.R.); Departments of Pharmacology and Toxicology and Psychiatry, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada (R.F.T., K.L.P.G.); Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (D.H.S.); School of Pharmacy, Temple University, Philadelphia, Pennsylvania (S.N.); and College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (S.S.)
| | - Satish Sharan
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F., D.A.R.); Departments of Pharmacology and Toxicology and Psychiatry, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada (R.F.T., K.L.P.G.); Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (D.H.S.); School of Pharmacy, Temple University, Philadelphia, Pennsylvania (S.N.); and College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (S.S.)
| | - Dan A Rock
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F., D.A.R.); Departments of Pharmacology and Toxicology and Psychiatry, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada (R.F.T., K.L.P.G.); Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (D.H.S.); School of Pharmacy, Temple University, Philadelphia, Pennsylvania (S.N.); and College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (S.S.)
| |
Collapse
|
22
|
Abstract
The selective delivery of potent pharmacologically active compounds to target tissue or cells by antibody–drug conjugates makes this immuno-conjugate a promising modality for the treatment of cancers. A thorough understanding of the structural integrity of the linker, the payload and the conjugation site during biological exposure is critical throughout the process of novel linker-payload design and optimization of PK profile. This understanding is a key aspect of the effort to maximize efficacy while minimizing toxicity in preclinical testing and to ensure the translation to the clinical setting. The complexity of this bioconjugate modality is a source of significant challenge for analytical interrogation and analysis in vivo. Therefore, we report herein a survey of various types of biotransformation events that have been elucidated in recent years.
Collapse
|
23
|
Ford KA, Ryslik G, Sodhi J, Halladay J, Diaz D, Dambach D, Masuda M. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metab Rev 2015; 47:291-319. [DOI: 10.3109/03602532.2015.1047026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Widdison W, Wilhelm S, Veale K, Costoplus J, Jones G, Audette C, Leece B, Bartle L, Kovtun Y, Chari R. Metabolites of antibody-maytansinoid conjugates: characteristics and in vitro potencies. Mol Pharm 2015; 12:1762-73. [PMID: 25826705 DOI: 10.1021/mp5007757] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several antibody-maytansinoid conjugates (AMCs) are in clinical trials for the treatment of various cancers. Each of these conjugates can be metabolized by tumor cells to give cytotoxic maytansinoid metabolites that can kill targeted cells. In preclinical studies in mice, the cytotoxic metabolites initially formed in vivo are further processed in the mouse liver to give several oxidized metabolic species. In this work, the primary AMC metabolites were synthesized and incubated with human liver microsomes (HLMs) to determine if human liver would likely give the same metabolites as those formed in mouse liver. The results of these HLM metabolism studies as well as the subsequent syntheses of the resulting HLM oxidation products are presented. Syntheses of the minor impurities formed during the conjugation of AMCs were also conducted to determine their cytotoxicities and to establish how these impurities would be metabolized by HLM.
Collapse
Affiliation(s)
- Wayne Widdison
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Sharon Wilhelm
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Karen Veale
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Juliet Costoplus
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Gregory Jones
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Charlene Audette
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Barbara Leece
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Laura Bartle
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Yelena Kovtun
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Ravi Chari
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| |
Collapse
|
25
|
Han TH, Zhao B. Absorption, distribution, metabolism, and excretion considerations for the development of antibody-drug conjugates. Drug Metab Dispos 2014; 42:1914-20. [PMID: 25048520 DOI: 10.1124/dmd.114.058586] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a class of therapeutics that are designed to deliver potent small-molecule drugs selectively to cells that express a specific target antigen while limiting systemic exposure to the drug. This is accomplished by conjugating a potent drug onto an antibody-based therapeutic with a linker that is exquisitely stable in plasma. The development of an effective ADC requires optimizing a number of design elements and an extensive understanding of absorption, distribution, metabolism/catabolism, and elimination (ADME) processes for the ADC construct. Furthermore, as ADCs are a combination of an antibody and small-molecule drug, understanding key aspects of the ADME of each individual component is needed. This review aims to provide considerations for the development of ADCs from an ADME point of view.
Collapse
Affiliation(s)
- Tae H Han
- Stem CentRx, Inc. (T.H.H.), South San Francisco, California; Seattle Genetics, Inc. (B.Z.), Bothell, Washington
| | - Baiteng Zhao
- Stem CentRx, Inc. (T.H.H.), South San Francisco, California; Seattle Genetics, Inc. (B.Z.), Bothell, Washington
| |
Collapse
|