1
|
Qiu C, Sun N, Zeng S, Chen L, Gong F, Tian J, Xiong Y, Peng L, He H, Ming Y. Unveiling the therapeutic promise of EphA2 in glioblastoma: a comprehensive review. Discov Oncol 2024; 15:501. [PMID: 39331302 PMCID: PMC11436538 DOI: 10.1007/s12672-024-01380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM), a primary brain tumor, exhibits remarkable invasiveness and is characterized by its intricate location, infiltrative behavior, the presence of both the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB), phenotypic diversity, an immunosuppressive microenvironment with limited development yet rich vascularity, as well as the resistant nature of glioblastoma stem cells (GSCs) towards traditional chemotherapy and radiotherapy. These formidable factors present substantial obstacles in the quest for effective GBM treatments. Following extensive research spanning three decades, the hepatocellular receptor A2 (EphA2) receptor tyrosine kinase has emerged as a promising molecular target with translational potential in the realm of cancer therapy. Numerous compounds aimed at targeting EphA2 have undergone rigorous evaluation and clinical investigation. This article provides a comprehensive account of the distinctive roles played by canonical and non-canonical EphA2 signaling in various contexts, while also exploring the involvement of the EphA2-ephrin A1 signaling axis in GBM pathogenesis. Additionally, the review offers an overview of completed clinical trials targeting EphA2 for GBM treatment, shedding light on both the prospects and challenges associated with EphA2-directed interventions in the domain of cancer therapeutics.
Collapse
Affiliation(s)
- Caohang Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ning Sun
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shan Zeng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Feilong Gong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Junjie Tian
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yu Xiong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Lilei Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Haiping He
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China.
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
2
|
Fatani AS, Schätzlein AG, Uchegbu IF. Targeting Intracranial Tumours with a Combination of RNA and Chemotherapy. Pharmaceutics 2024; 16:829. [PMID: 38931949 PMCID: PMC11207522 DOI: 10.3390/pharmaceutics16060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a fast-growing and aggressive brain tumour, which remains largely resistant to treatment; the prognosis for patients is poor, with a median survival time of about 12-18 months, post diagnosis. In an effort to bring more efficacious treatments to patients, we targeted the down regulation of ITCH, an E3 ligase that is overexpressed in a variety of cancers, and which inhibits P73, a tumour suppressor gene. 6-O-glycolchitosan (GC) was used to deliver siRNA ITCH (GC60-siRNA-ITCH) and gemcitabine via the nose to brain route in CD-1 nude mice which had previously been implanted intracranially with U87-MG-luc2 cells. Prior to this in vivo study, an in vitro study established the synergistic effect of siRNA-ITCH in combination with a chemotherapy drug-gemcitabine. A downregulation of ITCH, an upregulation of p73 and enhanced apoptosis were observed in vitro in U87-MG cells, using qPCR, Western blot analysis, confocal laser scanning microscopy, flow cytometry and cytotoxicity assays. When GC60-siRNA-ITCH was combined with gemcitabine, there was a resultant decrease in cell proliferation in vitro. In CD1 mice, the administration of siRNA-ITCH (7 doses of 0.081 mg/kg) alone did not significantly affect animal survival (increasing mean survival from 29 to 33 days when compared to untreated animals), whereas intranasal gemcitabine had a significant effect on survival (increasing survival from 29 to 45 days when compared to untreated animals, p < 0.01). The most significant effect was seen with combination therapy (GC60-siRNA-ITCH plus gemcitabine), where survival increased by 89%, increasing from 29 to 54 days (p < 0.01). Our data demonstrate that siRNA chemosensitises brain tumours to gemcitabine and that the nose-to-brain delivery route may be a viable route for the treatment of intracranial tumours.
Collapse
Affiliation(s)
- Abdulhamid S. Fatani
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (A.S.F.); (A.G.S.)
| | - Andreas G. Schätzlein
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (A.S.F.); (A.G.S.)
- Nanomerics Ltd., Block Y, Northwick Park and St Mark’s Hospital, Watford Road, Harrow HA1 3UJ, UK
| | - Ijeoma F. Uchegbu
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (A.S.F.); (A.G.S.)
- Nanomerics Ltd., Block Y, Northwick Park and St Mark’s Hospital, Watford Road, Harrow HA1 3UJ, UK
| |
Collapse
|
3
|
Peddinti V, Rout B, Agnihotri TG, Gomte SS, Jain A. Functionalized liposomes: an enticing nanocarrier for management of glioma. J Liposome Res 2024; 34:349-367. [PMID: 37855432 DOI: 10.1080/08982104.2023.2270060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
Glioma is one of the most severe central nervous systems (CNS)-specific tumors, with rapidly growing malignant glial cells accounting for roughly half of all brain tumors and having a poor survival rate ranging from 12 to 15 months. Despite being the most often used technique for glioma therapy, conventional chemotherapy suffers from low permeability of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) to anticancer drugs. When it comes to nanocarriers, liposomes are thought of as one of the most promising nanocarrier systems for glioma treatment. However, owing to BBB tight junctions, non-targeted liposomes, which passively accumulate in most cancer cells primarily via the increased permeability and retention effect (EPR), would not be suitable for glioma treatment. The surface modification of liposomes with various active targeting ligands has shown encouraging outcomes in the recent times by allowing various chemotherapy drugs to pass across the BBB and BBTB and enter glioma cells. This review article introduces by briefly outlining the landscape of glioma, its classification, and some of the pathogenic causes. Further, it discusses major barriers for delivering drugs to glioma such as the BBB, BBTB, and tumor microenvironment. It further discusses modified liposomes such as long-acting circulating liposomes, actively targeted liposomes, stimuli responsive liposomes. Finally, it highlighted the limitations of liposomes in the treatment of glioma and the various actively targeted liposomes undergoing clinical trials for the treatment of glioma.
Collapse
Affiliation(s)
- Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Younis M, Shaikh S, Shahzad KA, Tan F, Wang Z, Lashari MH. Amrubicin encapsulated PLGA NPs inhibits the PI3K/AKT signaling pathway by activating PTEN and inducing apoptosis in TMZ-resistant Glioma. Biomed Mater 2024; 19:025003. [PMID: 38181444 DOI: 10.1088/1748-605x/ad1bb2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Glioblastoma (GBM) remains a challenging malignancy due to its aggressive nature and the lack of efficacious therapeutic interventions. Nanotechnology-based approaches exhibit promise in GBM treatment; however, the successful translation of these strategies from preclinical models to clinical settings is hindered by inefficient nanoparticle clearance from vital organs. Addressing this concern, we investigated the therapeutic potential of amrubicin (AMR) encapsulated within poly (lactic-co-glycolic acid) nanoparticles (AMR-PLGA-NPs) in combating temozolomide (TMZ) resistant GBM. The study demonstrated that AMR-PLGA-NPs exerted a pronounced inhibitory effect on the cellular viability and migratory capacity of TMZ-resistant GBM cells. Furthermore, these nanoparticles exhibited considerable efficacy in downregulating the PI3K/AKT signaling pathway, thereby inducing apoptosis specifically in TMZ-resistant glioma cells and glioma stem-like cells through the activation of PTEN. Notably,in vivoexperimentation revealed the ability of AMR-PLGA-NPs to traverse biological barriers within murine models. Collectively, these findings underscore the potential therapeutic utility of AMR-PLGA-NPs as a versatile nanoplatform for addressing the formidable challenges posed by GBM, particularly in mitigating drug resistance mechanisms. The study substantiates the stability and safety profile of AMR-PLGA-NPs, positioning them as a promising avenue for combating drug resistance in GBM therapeutics.
Collapse
Affiliation(s)
- Muhammad Younis
- Center for Inflammation, Immunity & Infection, Georgia State University, Institute for Biomedical Sciences, Atlanta, GA, United States of America
| | - Sana Shaikh
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Khawar Ali Shahzad
- Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai 200120, People's Republic of China
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Fei Tan
- Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai 200120, People's Republic of China
- The Royal College of Surgeons in Ireland, Dublin D01F5P2, Ireland
- The Royal College of Surgeons of England, London NW1 0RY, United Kingdom
| | - Zhao Wang
- Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai 200120, People's Republic of China
| | | |
Collapse
|
5
|
Pérez Jorge G, Gontijo MTP, Brocchi M. Salmonella enterica and outer membrane vesicles are current and future options for cancer treatment. Front Cell Infect Microbiol 2023; 13:1293351. [PMID: 38116133 PMCID: PMC10728604 DOI: 10.3389/fcimb.2023.1293351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Conventional cancer therapies have many limitations. In the last decade, it has been suggested that bacteria-mediated immunotherapy may circumvent the restrictions of traditional treatments. For example, Salmonella enterica is the most promising bacteria for treating cancer due to its intrinsic abilities, such as killing tumor cells, targeting, penetrating, and proliferating into the tumor. S. enterica has been genetically modified to ensure safety and increase its intrinsic antitumor efficacy. This bacterium has been used as a vector for delivering anticancer agents and as a combination therapy with chemotherapy, radiotherapy, or photothermic. Recent studies have reported the antitumor efficacy of outer membrane vesicles (OMVs) derived from S. enterica. OMVs are considered safer than attenuated bacteria and can stimulate the immune system as they comprise most of the immunogens found on the surface of their parent bacteria. Furthermore, OMVs can also be used as nanocarriers for antitumor agents. This review describes the advances in S. enterica as immunotherapy against cancer and the mechanisms by which Salmonella fights cancer. We also highlight the use of OMVs as immunotherapy and nanocarriers of anticancer agents. OMVs derived from S. enterica are innovative and promising strategies requiring further investigation.
Collapse
Affiliation(s)
- Genesy Pérez Jorge
- Universidade Estadual de Campinas (UNICAMP), Departamento de Genética, Evolução, Microbiologia e Imunologia, Laboratório de Doenças Tropicais, Instituto de Biologia, Campinas, Brazil
| | - Marco Túlio Pardini Gontijo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Marcelo Brocchi
- Universidade Estadual de Campinas (UNICAMP), Departamento de Genética, Evolução, Microbiologia e Imunologia, Laboratório de Doenças Tropicais, Instituto de Biologia, Campinas, Brazil
| |
Collapse
|
6
|
Li D, Ren T, Wang X, Xiao Z, Sun G, Zhang N, Zhao L, Zhong R. Development and in vitro evaluation of carmustine delivery platform: A hypoxia-sensitive anti-drug resistant nanomicelle with BBB penetrating ability. Biomed Pharmacother 2023; 167:115631. [PMID: 37804814 DOI: 10.1016/j.biopha.2023.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Glioma is extremely difficult to be completely excised by surgery due to its invasive nature. Thus, chemotherapy still is the mainstay in the treatment of glioma after surgery. However, the natural blood-brain barrier (BBB) greatly restricts the penetration of chemotherapeutic agents into the central nervous system. As a front-line anti-glioma agent in clinical, carmustine (BCNU) exerts antitumor effect by inducing DNA damage at the O6 position of guanine. However, the therapeutic effect of BCNU was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and insufficient local drug concentrations. To overcome these obstacles, we synthesized a BCNU-loaded hypoxia-responsive nano-micelle with BBB penetrating capacity and AGT inhibitory activity, named as T80-HA-AZO-BG/BCNU NPs. In this nano-system, Tween 80 (T80) serves as a functional coating on the surface of the micelle, promoting transportation across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hydrophobic O6-benzylguanine (BG) analog via a hypoxia-sensitive azo bond. Under hypoxic tumor microenvironment, the azo bond selectively breaks to release O6-BG as AGT inhibitor and BCNU as DNA alkylating agent. The synthesized T80-HA-AZO-BG/BCNU NPs showed good stability, favorable biocompatibility and hypoxia-responsive drug-releasing ability. T80 modification improved the transportation of the micelle across an in vitro BBB model. Moreover, T80-HA-AZO-BG/BCNU NPs exhibited significantly enhanced cytotoxicity against glioma cell lines with high AGT expression compared with traditional combined medication of BCNU plus O6-BG. We expect that the tumor-targeting nano-micelle designed for chloroethylnitrosourea will provide new tools for the development of effective glioma therapy.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Zhixuan Xiao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Bartlett S, Nagaraja TN, Griffith B, Farmer KG, Van Harn M, Haider S, Hunt RJ, Cabral G, Knight RA, Valadie OG, Brown SL, Ewing JR, Lee IY. Persistent Peri-Ablation Blood-Brain Barrier Opening After Laser Interstitial Thermal Therapy for Brain Tumors. Cureus 2023; 15:e37397. [PMID: 37182017 PMCID: PMC10171839 DOI: 10.7759/cureus.37397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose Laser interstitial thermal therapy (LITT) is a minimally invasive, image-guided, cytoreductive procedure to treat recurrent glioblastoma. This study implemented dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) methods and employed a model selection paradigm to localize and quantify post-LITT blood-brain barrier (BBB) permeability in the ablation vicinity. Serum levels of neuron-specific enolase (NSE), a peripheral marker of increased BBB permeability, were measured. Methods Seventeen patients were enrolled in the study. Using an enzyme-linked immunosorbent assay, serum NSE was measured preoperatively, 24 hours postoperatively, and at two, eight, 12, and 16 weeks postoperatively, depending on postoperative adjuvant treatment. Of the 17 patients, four had longitudinal DCE-MRI data available, from which blood-to-brain forward volumetric transfer constant (Ktrans) data were assessed. Imaging was performed preoperatively, 24 hours postoperatively, and between two and eight weeks postoperatively. Results Serum NSE increased at 24 hours following ablation (p=0.04), peaked at two weeks, and returned to baseline by eight weeks postoperatively. Ktrans was found to be elevated in the peri-ablation periphery 24 hours after the procedure. This increase persisted for two weeks. Conclusion Following the LITT procedure, serum NSE levels and peri-ablation Ktrans estimated from DCE-MRI demonstrated increases during the first two weeks after ablation, suggesting transiently increased BBB permeability.
Collapse
Affiliation(s)
- Seamus Bartlett
- Neurosurgery, Wayne State University School of Medicine, Detroit, USA
| | | | | | | | | | - Sameah Haider
- Neurological Surgery, Henry Ford Health, Detroit, USA
| | | | | | | | | | | | | | - Ian Y Lee
- Neurosurgery, Henry Ford Health, Detroit, USA
| |
Collapse
|
8
|
Kamali M, Webster TJ, Amani A, Hadjighassem MR, Malekpour MR, Tirgar F, Khosravani M, Adabi M. Effect of folate-targeted Erlotinib loaded human serum albumin nanoparticles on tumor size and survival rate in a rat model of glioblastoma. Life Sci 2023; 313:121248. [PMID: 36526047 DOI: 10.1016/j.lfs.2022.121248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
The aim of this study was to prepare folate-targeted Erlotinib loaded human serum albumin nanoparticles (FA-ERL-HSA NPs) and investigate in vitro cytotoxic and apoptotic effects using cell lines (U87MG and C6 cells) and an in vivo rat bearing C6 glioma model. The mean size of the FA-ERL-HSA NPs prepared using a desolvation method was 135 nm. In vitro MTT assays demonstrated that FA-ERL-HSA NPs had an IC50 value of 52.18 μg/mL and 17.53 μg/mL compared to free ERL which had an IC50 value of 119.8 μg/mL and 103.2 μg/mL for U87MG and C6 cells for 72 h, respectively. Flow cytometry results showed the apoptosis rate with FA-ERL-HSA NPs (100 μg/mL, 72 h) was higher compared to free ERL for both U87MG and C6 cells. Experiments using a rat glioblastoma model via TUNEL assay indicated that the apoptosis index of FA-ERL-HSA NPs was 48 % compared to 21 % for free ERL and the tumor size effectively decreased after a daily injection of 220 μg (2.5 mg/kg) from 87.45 mm3 (19th day) to 1.28 mm3 (60th day). The median survival rate of the rats increased after treatment to >100 days which was greater than controls.
Collapse
Affiliation(s)
- Morteza Kamali
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University, Tijian, China; UFPI - Universidade Federal do Piauí, Brazil; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahmoud Reza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Malekpour
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tirgar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. J Control Release 2022; 352:338-370. [PMID: 36206948 DOI: 10.1016/j.jconrel.2022.09.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Glioma is often referred to as one of the most dreadful central nervous system (CNS)-specific tumors with rapidly-proliferating cancerous glial cells, accounting for nearly half of the brain tumors at an annual incidence rate of 30-80 per a million population. Although glioma treatment remains a significant challenge for researchers and clinicians, the rapid development of nanomedicine provides tremendous opportunities for long-term glioma therapy. However, several obstacles impede the development of novel therapeutics, such as the very tight blood-brain barrier (BBB), undesirable hypoxia, and complex tumor microenvironment (TME). Several efforts have been dedicated to exploring various nanoformulations for improving BBB permeation and precise tumor ablation to address these challenges. Initially, this article briefly introduces glioma classification and various pathogenic factors. Further, currently available therapeutic approaches are illustrated in detail, including traditional chemotherapy, radiotherapy, and surgical practices. Then, different innovative treatment strategies, such as tumor-treating fields, gene therapy, immunotherapy, and phototherapy, are emphasized. In conclusion, we summarize the article with interesting perspectives, providing suggestions for future glioma diagnosis and therapy improvement.
Collapse
|
10
|
Shuai SY, Liu SS, Liu XJ, Zhang GS, Zheng Q, Yue PF, Yang M, Hu PY. Essential oil of Ligusticum chuanxiong Hort. Regulated P-gp protein and tight junction protein to change pharmacokinetic parameters of temozolomide in blood, brain and tumor. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115646. [PMID: 36031103 DOI: 10.1016/j.jep.2022.115646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The existence of the blood-brain barrier/blood tumor barrier (BBB/BTB) severely restricts the effectiveness of anti-tumor drugs, thus glioma is still an incurable disease with a high fatality rate. Chuanxiong (Ligusticum chuanxiong Hort., Umbelliferae) was used as a messenger drug to increase the distribution of drugs in brain tissue, and its application in Chinese herbal formula for treating glioma was also the highest. AIM OF THE STUDY Our previous researches showed that essential oil (EO) of chuanxiong could promote temozolomide (TMZ) entry into glioma cells in vitro and enhance TMZ-induced anticancer efficiency in vivo, and therefore, the aim of this study was to investigate whether EO could increase the concentration accumulation of TMZ in brain or tumor of C6 glioma rats and the related mechanisms. MATERIALS AND METHODS The pharmacokinetics were conducted in C6 glioma rats by administering either TMZ alone or combined with EO through oral routes. TMZ concentration in blood, brain and tumor was detected using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and then pharmacokinetic parameters were calculated. The changed expressions of P-gp protein, tight junction occludin, claudin-5 and zonula occludens-1 (ZO-1) in brain of glioma rats were studied by Western blot to clarify the mechanism. Finally, the chemical composition of EO was analyzed by gas chromatography-massspectrometry (GC-MS). RESULTS The results showed that EO significantly affected the pharmacokinetic parameters such as Tmax, Cmax and CL (p < 0.01), but did not significantly change the AUC(0→∞) of TMZ in blood (p > 0.05). However, EO markedly improved the AUC(0→∞)of TMZ in brain and tumor (p < 0.01). The calculate drug targeting index was greater than 1, indicating that EO could promote the distribution of TMZ to the brain and tumor. Western blot analysis showed that EO significantly inhibited the expression of P-gp, tight junction protein claudin-5, occludin and ZO-1. And meanwhile, the expressions of P-gp, claudin-5 and occludin also markedly down-regulated in EO-TMZ co-administration treatment. GC-MS analysis of the TIC component of EO was (E)-Ligustilide (36.93%), Terpinolene (7.245%), gamma-terpinene (7.225%) etc. CONCLUSION: EO could promote the distribution of TMZ in the brain and tumor of C6 glioma rats, which may attribute to down-regulate the expression of P-gp, claudin-5 and occludin.
Collapse
Affiliation(s)
- Shu-Yuan Shuai
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Shan-Shan Liu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Xiao-Jin Liu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Guo-Song Zhang
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Qin Zheng
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Peng-Fei Yue
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Ming Yang
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Peng-Yi Hu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
11
|
Abstract
Genetic modification of T cells to express chimeric antigen receptors (CARs) has yielded remarkable clinical outcomes and initiated a novel era for cancer immunotherapy. The impressive clinical responses seen in hematologic malignancies have led to the investigation of CAR T cells in solid tumors but attaining similar results has been challenging to date. Glioblastoma (GBM) presents a particularly challenging malignancy for treatment and despite some progress in treatments over the past decade, prognosis remains poor for the vast majority of patients. However, recent data support the clinical efficacy and safety of CAR T cell therapy in GBM. In this review, common challenges associated with treating GBM will be discussed in addition to how CAR T cells can overcome such barriers. Additionally, emerging techniques of optimizing CAR T cell therapy for GBM will be emphasized, highlighting the prospective promise of cellular immunotherapy.
Collapse
|
12
|
Rodriguez SMB, Staicu GA, Sevastre AS, Baloi C, Ciubotaru V, Dricu A, Tataranu LG. Glioblastoma Stem Cells-Useful Tools in the Battle against Cancer. Int J Mol Sci 2022; 23:ijms23094602. [PMID: 35562993 PMCID: PMC9100635 DOI: 10.3390/ijms23094602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma stem cells (GSCs) are cells with a self-renewal ability and capacity to initiate tumors upon serial transplantation that have been linked to tumor cell heterogeneity. Most standard treatments fail to completely eradicate GSCs, causing the recurrence of the disease. GSCs could represent one reason for the low efficacy of cancer therapy and for the short relapse time. Nonetheless, experimental data suggest that the presence of therapy-resistant GSCs could explain tumor recurrence. Therefore, to effectively target GSCs, a comprehensive understanding of their biology and the survival and developing mechanisms during treatment is mandatory. This review provides an overview of the molecular features, microenvironment, detection, and targeting strategies of GSCs, an essential information required for an efficient therapy. Despite the outstanding results in oncology, researchers are still developing novel strategies, of which one could be targeting the GSCs present in the hypoxic regions and invasive edge of the glioblastoma.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Carina Baloi
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
| | - Vasile Ciubotaru
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
- Correspondence:
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
- Department 6—Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
13
|
D’Amico AG, Maugeri G, Vanella L, Pittalà V, Reglodi D, D’Agata V. Multimodal Role of PACAP in Glioblastoma. Brain Sci 2021; 11:994. [PMID: 34439613 PMCID: PMC8391398 DOI: 10.3390/brainsci11080994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of brain tumors. To date, the GBM therapeutical approach consists of surgery, radiation-therapy and chemotherapy combined with molecules improving cancer responsiveness to treatments. In this review, we will present a brief overview of the GBM classification and pathogenesis, as well as the therapeutic approach currently used. Then, we will focus on the modulatory role exerted by pituitary adenylate cyclase-activating peptide, known as PACAP, on GBM malignancy. Specifically, we will describe PACAP ability to interfere with GBM cell proliferation, as well as the tumoral microenvironment. Considering its anti-oncogenic role in GBM, synthesis of PACAP agonist molecules may open new perspectives for combined therapy to existing gold standard treatment.
Collapse
Affiliation(s)
- Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (L.V.); (V.P.)
| | - Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy;
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (L.V.); (V.P.)
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (L.V.); (V.P.)
| | - Dora Reglodi
- MTA-PTE PACAP Research Group, Department of Anatomy, University of Pécs Medical School, 7624 Pécs, Hungary;
| | - Velia D’Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy;
| |
Collapse
|
14
|
Tournier N, Goutal S, Mairinger S, Hernández-Lozano I, Filip T, Sauberer M, Caillé F, Breuil L, Stanek J, Freeman AF, Novarino G, Truillet C, Wanek T, Langer O. Complete inhibition of ABCB1 and ABCG2 at the blood-brain barrier by co-infusion of erlotinib and tariquidar to improve brain delivery of the model ABCB1/ABCG2 substrate [ 11C]erlotinib. J Cereb Blood Flow Metab 2021; 41:1634-1646. [PMID: 33081568 PMCID: PMC8221757 DOI: 10.1177/0271678x20965500] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) restrict at the blood-brain barrier (BBB) the brain distribution of the majority of currently known molecularly targeted anticancer drugs. To improve brain delivery of dual ABCB1/ABCG2 substrates, both ABCB1 and ABCG2 need to be inhibited simultaneously at the BBB. We examined the feasibility of simultaneous ABCB1/ABCG2 inhibition with i.v. co-infusion of erlotinib and tariquidar by studying brain distribution of the model ABCB1/ABCG2 substrate [11C]erlotinib in mice and rhesus macaques with PET. Tolerability of the erlotinib/tariquidar combination was assessed in human embryonic stem cell-derived cerebral organoids. In mice and macaques, baseline brain distribution of [11C]erlotinib was low (brain distribution volume, VT,brain < 0.3 mL/cm3). Co-infusion of erlotinib and tariquidar increased VT,brain in mice by 3.0-fold and in macaques by 3.4- to 5.0-fold, while infusion of erlotinib alone or tariquidar alone led to less pronounced VT,brain increases in both species. Treatment of cerebral organoids with erlotinib/tariquidar led to an induction of Caspase-3-dependent apoptosis. Co-infusion of erlotinib/tariquidar may potentially allow for complete ABCB1/ABCG2 inhibition at the BBB, while simultaneously achieving brain-targeted EGFR inhibition. Our protocol may be applicable to enhance brain delivery of molecularly targeted anticancer drugs for a more effective treatment of brain tumors.
Collapse
Affiliation(s)
- Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Sebastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France.,MIRCen, CEA/IBFJ/DRF-JACOB/LMN, UMR CEA CNRS 9199-Université Paris Saclay, Fontenay-aux-Roses, France
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | | | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Fabien Caillé
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Louise Breuil
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Anna F Freeman
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Charles Truillet
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Oliver Langer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Wang Y, Zhang F, Xiong N, Xu H, Chai S, Wang H, Wang J, Zhao H, Jiang X, Fu P, Xiang W. Remodelling and Treatment of the Blood-Brain Barrier in Glioma. Cancer Manag Res 2021; 13:4217-4232. [PMID: 34079374 PMCID: PMC8166259 DOI: 10.2147/cmar.s288720] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
The blood-brain barrier (BBB) is an essential structure of the central nervous system (CNS), and its existence makes the local internal environment of the CNS a relatively independent structure distinct from other internal environments of the human body to ensure normal physiological and high stability of activities of the CNS. Changes in BBB structure and function are fundamental to the pathophysiology of many diseases. The occurrence and development of glioma are often accompanied by a series of changes in the structure and function of the internal environment, the most significant of which is remodelling of the BBB. The remodelling of the BBB usually leads to changes in the permeability of local microvessels, which provide certain favourable conditions for the occurrence and development of glioma. Meanwhile, the newly generated abnormal blood vessels and the remaining intact regions of the BBB also hinder the effects of drug treatments. Changes in permeability and structural function often lead to the creation of abnormally functioning vascular regions, which pose further treatment challenges. At present, therapeutic methods for glioma have not achieved satisfactory effects in clinical practice, and emerging therapeutic methods have not yet been widely used in clinical practice. In this review, we summarize the knowledge of remodelling of the BBB in the glioma environment, the type of changes that occur, and current BBB treatment methods and prospects for the treatment of glioma.
Collapse
Affiliation(s)
- Yihao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Fangcheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Nanxiang Xiong
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Hao Xu
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan, 430022, People's Republic of China
| | - Songshan Chai
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Haofei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jiajing Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
16
|
Moin A, Rizvi SMD, Hussain T, Gowda DV, Subaiea GM, Elsayed MMA, Ansari M, Alanazi AS, Yadav H. Current Status of Brain Tumor in the Kingdom of Saudi Arabia and Application of Nanobiotechnology for Its Treatment: A Comprehensive Review. Life (Basel) 2021; 11:421. [PMID: 34063122 PMCID: PMC8148129 DOI: 10.3390/life11050421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Brain tumors are the most challenging of all tumors and accounts for about 3% of all cancer allied deaths. The aim of the present review is to examine the brain tumor prevalence and treatment modalities available in the Kingdom of Saudi Arabia. It also provides a comprehensive analysis of the application of various nanotechnology-based products for brain cancer treatments along with their prospective future advancements. METHODS A literature review was performed to identify and summarize the current status of brain cancer in Saudi Arabia and the scope of nanobiotechnology in its treatment. RESULTS Depending upon the study population data analysis, gliomas, astrocytoma, meningioma, and metastatic cancer have a higher incidence rate in Saudi Arabia than in other countries, and are mostly treated in accordance with conventional treatment modalities for brain cancer. Due to the poor prognosis of cancer, it has an average survival rate of 2 years. Conventional therapy includes surgery, radiotherapy, chemotherapy, and a combination thereof, but these do not control the disease's recurrence. Among the various nanomaterials discussed, liposomes and polymeric nanoformulations have demonstrated encouraging outcomes for facilitated brain cancer treatment. CONCLUSIONS Nanomaterials possess the capacity to overcome the shortcomings of conventional therapies. Polymer-based nanomaterials have shown encouraging outcomes against brain cancer when amalgamated with other nano-based therapies. Nonetheless, nanomaterials could be devised that possess minimal toxicity towards normal cells or that specifically target tumor cells. In addition, rigorous clinical investigations are warranted to prepare them as an efficient and safe modality for brain cancer therapy.
Collapse
Affiliation(s)
- Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (M.M.A.E.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (M.M.A.E.)
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - D. V. Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, Mysuru 570015, India;
| | - Gehad M. Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - Mustafa M. A. Elsayed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (M.M.A.E.)
| | - Mukhtar Ansari
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (M.A.); (A.S.A.)
| | - Abulrahman Sattam Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (M.A.); (A.S.A.)
| | - Hemant Yadav
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| |
Collapse
|
17
|
Khan M, Sherwani S, Khan S, Alouffi S, Alam M, Al-Motair K, Khan S. Insights into Multifunctional Nanoparticle-Based Drug Delivery Systems for Glioblastoma Treatment. Molecules 2021; 26:molecules26082262. [PMID: 33919694 PMCID: PMC8069805 DOI: 10.3390/molecules26082262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GB) is an aggressive cancer with high microvascular proliferation, resulting in accelerated invasion and diffused infiltration into the surrounding brain tissues with very low survival rates. Treatment options are often multimodal, such as surgical resection with concurrent radiotherapy and chemotherapy. The development of resistance of tumor cells to radiation in the areas of hypoxia decreases the efficiency of such treatments. Additionally, the difficulty of ensuring drugs effectively cross the natural blood-brain barrier (BBB) substantially reduces treatment efficiency. These conditions concomitantly limit the efficacy of standard chemotherapeutic agents available for GB. Indeed, there is an urgent need of a multifunctional drug vehicle system that has potential to transport anticancer drugs efficiently to the target and can successfully cross the BBB. In this review, we summarize some nanoparticle (NP)-based therapeutics attached to GB cells with antigens and membrane receptors for site-directed drug targeting. Such multicore drug delivery systems are potentially biodegradable, site-directed, nontoxic to normal cells and offer long-lasting therapeutic effects against brain cancer. These models could have better therapeutic potential for GB as well as efficient drug delivery reaching the tumor milieu. The goal of this article is to provide key considerations and a better understanding of the development of nanotherapeutics with good targetability and better tolerability in the fight against GB.
Collapse
Affiliation(s)
- Mohd Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
- Correspondence: or
| | - Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.S.); (M.A.)
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Sultan Alouffi
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Mohammad Alam
- Department of Biology, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.S.); (M.A.)
| | - Khalid Al-Motair
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
| | - Shahper Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, U.P., India;
| |
Collapse
|
18
|
Ji W, Qi X, Li H, Zhang Y, Sun Y, Wang J, Xu K, Liu Y. A Quantitative Analysis of Drug Loading Efficiency and Real-Time Drug Release in ZrO2 Nanoparticles with Energy Spectrum Computed Tomography. J Biomed Nanotechnol 2021; 17:703-709. [PMID: 35057895 DOI: 10.1166/jbn.2021.3051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Energy spectrum computed tomography (CT) can quantify the concentrations of substances in vitro and in vivo. In this study, we designed a single-shell system of doxorubicin (DOX) loaded in zirconium dioxide nanoparticles (DOX@ZrO2 NPs) as a novel chemotherapy
drug delivery system. The concentration of DOX@ZrO2 NPs in tissue was monitored with energy spectrum CT to calculate the release of DOX from the NPs. The standard curve of the gradient concentrations of ZrO2 NPs and base material content fit a logarithmic equation. HepG2
cells were incubated with 200 μmL DOX@ZrO2 for different times. The concentration in the cells detected with energy spectrum CT correlated strongly with the concentration of chemotherapeutics in the cells (r = 0.98, P < 0.05). The data indicate that energy
spectrum CT is a reliable means of real-time monitoring of the transport of NPs and release of the NP payload in local tissue. The finding could improve the accuracy of clinical imaging and promote the therapeutic use of NPs. Free of clinical trial registeration: There were no animal and human
materials involved in this experiment.
Collapse
Affiliation(s)
- Wanying Ji
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Xun Qi
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Hui Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yanyan Zhang
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yang Sun
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Jun Wang
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Ke Xu
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yi Liu
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
19
|
Kizilbash SH, Gupta SK, Parrish KE, Laramy JK, Kim M, Gampa G, Carlson BL, Bakken KK, Mladek AC, Schroeder MA, Decker PA, Elmquist WF, Sarkaria JN. In Vivo Efficacy of Tesevatinib in EGFR-Amplified Patient-Derived Xenograft Glioblastoma Models May Be Limited by Tissue Binding and Compensatory Signaling. Mol Cancer Ther 2021; 20:1009-1018. [PMID: 33785646 DOI: 10.1158/1535-7163.mct-20-0640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022]
Abstract
Tesevatinib is a potent oral brain penetrant EGFR inhibitor currently being evaluated for glioblastoma therapy. Tesevatinib distribution was assessed in wild-type (WT) and Mdr1a/b(-/-)Bcrp(-/-) triple knockout (TKO) FVB mice after dosing orally or via osmotic minipump; drug-tissue binding was assessed by rapid equilibrium dialysis. Two hours after tesevatinib dosing, brain concentrations in WT and TKO mice were 0.72 and 10.03 μg/g, respectively. Brain-to-plasma ratios (Kp) were 0.53 and 5.73, respectively. With intraperitoneal infusion, brain concentrations were 1.46 and 30.6 μg/g (Kp 1.16 and 25.10), respectively. The brain-to-plasma unbound drug concentration ratios were substantially lower (WT mice, 0.03-0.08; TKO mice, 0.40-1.75). Unbound drug concentrations in brains of WT mice were 0.78 to 1.59 ng/g. In vitro cytotoxicity and EGFR pathway signaling were evaluated using EGFR-amplified patient-derived glioblastoma xenograft models (GBM12, GBM6). In vivo pharmacodynamics and efficacy were assessed using athymic nude mice bearing either intracranial or flank tumors treated by oral gavage. Tesevatinib potently reduced cell viability [IC50 GBM12 = 11 nmol/L (5.5 ng/mL), GBM6 = 102 nmol/L] and suppressed EGFR signaling in vitro However, tesevatinib efficacy compared with vehicle in intracranial (GBM12, median survival: 23 vs. 18 days, P = 0.003) and flank models (GBM12, median time to outcome: 41 vs. 33 days, P = 0.007; GBM6, 44 vs. 33 days, P = 0.007) was modest and associated with partial inhibition of EGFR signaling. Overall, tesevatinib efficacy in EGFR-amplified PDX GBM models is robust in vitro but relatively modest in vivo, despite a high brain-to-plasma ratio. This discrepancy may be explained by drug-tissue binding and compensatory signaling.
Collapse
Affiliation(s)
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Karen E Parrish
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Janice K Laramy
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Minjee Kim
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Gautham Gampa
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Katrina K Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Mark A Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Paul A Decker
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
20
|
Vogelbaum MA, Krivosheya D, Borghei-Razavi H, Sanai N, Weller M, Wick W, Soffietti R, Reardon DA, Aghi MK, Galanis E, Wen PY, van den Bent M, Chang S. Phase 0 and window of opportunity clinical trial design in neuro-oncology: a RANO review. Neuro Oncol 2021; 22:1568-1579. [PMID: 32598442 DOI: 10.1093/neuonc/noaa149] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is a devastating disease with poor prognosis. Few effective chemotherapeutics are currently available, and much effort has been expended to identify new drugs capable of slowing tumor progression. The phase 0 trial design was developed to facilitate early identification of promising agents for cancer that should undergo accelerated approval. This design features an early in-human study that enrolls a small number of patients who receive subtherapeutic doses of medication with the goals of describing pharmacokinetics through drug blood level measurements and determining intratumoral concentrations of the investigational compound as well as pharmacodynamics by studying the biochemical and physiological effects of drugs. In neuro-oncology, however, the presence of the blood-brain barrier and difficulty in obtaining brain tumor tissue warrant a separate set of considerations. In this paper, we critically reviewed the protocols used in all brain tumor related in-human phase 0 and phase 0-like ("window of opportunity") studies between 1993 and 2018, as well as ongoing clinical trials, and identified major challenges in trial design as applied to central nervous system tumors that include surgical specimen collection and storage, brain tumor drug level analysis, and confirmation of drug action. We therefore propose that phase 0 trials in neuro-oncology should include (i) only patients in whom a resection of the tumor is planned, (ii) use of clinical doses of an investigational agent, (iii) tissue sampling from enhancing and non-enhancing portions of the tumor, and (iv) assessment of drug-specific target effects. Standardization of clinical protocols for phase 0/window of opportunity studies can help accelerate the development of effective treatments for glioblastoma.
Collapse
Affiliation(s)
| | - Daria Krivosheya
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wolfgang Wick
- Department of Neurology Heidelberg University Hospital and German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science, Turin, Italy
| | - David A Reardon
- Center For Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Manish K Aghi
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | | | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam
| | - Susan Chang
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
21
|
Nagaraja TN, Lee IY. Cerebral microcirculation in glioblastoma: A major determinant of diagnosis, resection, and drug delivery. Microcirculation 2021; 28:e12679. [PMID: 33474805 DOI: 10.1111/micc.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor with a dismal prognosis. Current standard of treatment is safe maximal tumor resection followed by chemotherapy and radiation. Altered cerebral microcirculation and elevated blood-tumor barrier (BTB) permeability in tumor periphery due to glioma-induced vascular dysregulation allow T1 contrast-enhanced visualization of resectable tumor boundaries. Newer tracers that label the tumor and its vasculature are being increasingly used for intraoperative delineation of glioma boundaries for even more precise resection. Fluorescent 5-aminolevulinic acid (5-ALA) and indocyanine green (ICG) are examples of such intraoperative tracers. Recently, magnetic resonance imaging (MRI)-based MR thermometry is being employed for laser interstitial thermal therapy (LITT) for glioma debulking. However, aggressive, fatal recurrence always occurs. Postsurgical chemotherapy is hampered by the inability of most drugs to cross the blood-brain barrier (BBB). Understanding postsurgical changes in brain microcirculation and permeability is crucial to improve chemotherapy delivery. It is important to understand whether any microcirculatory indices can differentiate between true recurrence and radiation necrosis. LITT leads to peri-ablation BBB opening that persists for several weeks. Whether it can be a conduit for chemotherapy delivery is yet to be explored. This review will address the role of cerebral microcirculation in such emerging ideas in GBM diagnosis and therapy.
Collapse
Affiliation(s)
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
22
|
de Trizio I, Errede M, d'Amati A, Girolamo F, Virgintino D. Expression of P-gp in Glioblastoma: What we can Learn from Brain Development. Curr Pharm Des 2020; 26:1428-1437. [PMID: 32186270 DOI: 10.2174/1381612826666200318130625] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
P-Glycoprotein (P-gp) is a 170-kDa transmembrane glycoprotein that works as an efflux pump and confers multidrug resistance (MDR) in normal tissues and tumors, including nervous tissues and brain tumors. In the developing telencephalon, the endothelial expression of P-gp, and the subcellular localization of the transporter at the luminal endothelial cell (EC) plasma membrane are early hallmarks of blood-brain barrier (BBB) differentiation and suggest a functional BBB activity that may complement the placental barrier function and the expression of P-gp at the blood-placental interface. In early fetal ages, P-gp has also been immunolocalized on radial glia cells (RGCs), located in the proliferative ventricular zone (VZ) of the dorsal telencephalon and now considered to be neural progenitor cells (NPCs). RG-like NPCs have been found in many regions of the developing brain and have been suggested to give rise to neural stem cells (NSCs) of adult subventricular (SVZ) neurogenic niches. The P-gp immunosignal, associated with RG-like NPCs during cortical histogenesis, progressively decreases in parallel with the last waves of neuroblast migrations, while 'outer' RGCs and the deriving astrocytes do not stain for the efflux transporter. These data suggest that in human glioblastoma (GBM), P-gp expressed by ECs may be a negligible component of tumor MDR. Instead, tumor perivascular astrocytes may dedifferentiate and resume a progenitor-like P-gp activity, becoming MDR cells and contribute, together with perivascular P-gpexpressing glioma stem-like cells (GSCs), to the MDR profile of GBM vessels. In conclusion, the analysis of Pgp immunolocalization during brain development may contribute to identify the multiple cellular sources in the GBM vessels that may be involved in P-gp-mediated chemoresistance and can be responsible for GBM therapy failure and tumor recurrence.
Collapse
Affiliation(s)
- Ignazio de Trizio
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, University of Bari, School of Medicine, Bari, Italy.,Department of Neurosurgery, Neurocenter of Southern Switzerland, Regional Hospital Lugano, Lugano, Switzerland
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, University of Bari, School of Medicine, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, University of Bari, School of Medicine, Bari, Italy
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, University of Bari, School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
23
|
Abstract
Although surgical resection of the solid tumor component of glioblastoma has been shown to provide a survival advantage, it will never be a curative procedure. Yet, systemically applied adjuvants (radiation therapy and chemotherapy) also are not curative and their options are limited by the inability of most agents to cross the blood-brain barrier. Direct delivery of adjuvant therapies during a surgical procedure potentially provides an approach to bypass the blood-brain barrier and effectively treat residual tumor cells. This article summarizes the approaches and therapeutics that have been evaluated to date, and challenges that remain to be overcome.
Collapse
|
24
|
Llaguno-Munive M, León-Zetina S, Vazquez-Lopez I, Ramos-Godinez MDP, Medina LA, Garcia-Lopez P. Mifepristone as a Potential Therapy to Reduce Angiogenesis and P-Glycoprotein Associated With Glioblastoma Resistance to Temozolomide. Front Oncol 2020; 10:581814. [PMID: 33123485 PMCID: PMC7571516 DOI: 10.3389/fonc.2020.581814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma, the most common primary central nervous system tumor, is characterized by extensive vascular neoformation and an area of necrosis generated by rapid proliferation. The standard treatment for this type of tumor is surgery followed by chemotherapy based on temozolomide and radiotherapy, resulting in poor patient survival. Glioblastoma is known for strong resistance to treatment, frequent recurrence and rapid progression. The aim of this study was to evaluate whether mifepristone, an antihormonal agent, can enhance the effect of temozolomide on C6 glioma cells orthotopically implanted in Wistar rats. The levels of the vascular endothelial growth factor (VEGF), and P-glycoprotein (P-gp) were examined, the former a promoter of angiogenesis that facilitates proliferation, and the latter an efflux pump transporter linked to drug resistance. After a 3-week treatment, the mifepristone/temozolomide regimen had decreased the level of VEGF and P-gp and significantly reduced tumor proliferation (detected by PET/CT images based on 18F-fluorothymidine uptake). Additionally, mifepristone proved to increase the intracerebral concentration of temozolomide. The lower level of O6-methylguanine-DNA-methyltransferase (MGMT) (related to DNA repair in tumors) previously reported for this combined treatment was herein confirmed. After the mifepristone/temozolomide treatment ended, however, the values of VEGF, P-gp, and MGMT increased and reached control levels by 14 weeks post-treatment. There was also tumor recurrence, as occurred when administering temozolomide alone. On the other hand, temozolomide led to 100% mortality within 26 days after beginning the drug treatment, while mifepristone/temozolomide enabled 70% survival 60–70 days and 30% survived over 100 days, suggesting that mifepristone could possibly act as a chemo-sensitizing agent for temozolomide.
Collapse
Affiliation(s)
- Monserrat Llaguno-Munive
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico.,Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sebastián León-Zetina
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Inés Vazquez-Lopez
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Luis A Medina
- Unidad de Investigación Biomédica en Cáncer INCan-UNAM, Instituto Nacional de Cancerología, Mexico City, Mexico.,Instituto de Física, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| | - Patricia Garcia-Lopez
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
25
|
Wang D, Wang C, Wang L, Chen Y. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Deliv 2020; 26:551-565. [PMID: 31928355 PMCID: PMC6534214 DOI: 10.1080/10717544.2019.1616235] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumor which is highly resistant to conventional radiotherapy and chemotherapy, and cannot be effectively controlled by surgical resection. Due to inevitable recurrence of GBM, it remains essentially incurable with a median overall survival of less than 18 months after diagnosis. A great challenge in current therapies lies in the abrogated delivery of most of the chemotherapeutic agents to the tumor location in the presence of blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). These protective barriers serve as a selectively permeable hurdle reducing the efficacy of anti-tumor drugs in GBM therapy. This work systematically gives a comprehensive review on: (i) the characteristics of the BBB and the BBTB, (ii) the influence of BBB/BBTB on drug delivery and the screening strategy of small-molecule chemotherapeutic agents with promising BBB/BBTB-permeable potential, (iii) the strategies to overcome the BBB/BBTB as well as the techniques which can lead to transient BBB/BBTB opening or disruption allowing for improving BBB/BBTB-penetration of drugs. It is hoped that this review provide practical guidance for the future development of small BBB/BBTB-permeable agents against GBM as well as approaches enhancing drug delivery across the BBB/BBTB to GBM.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Chao Wang
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Liang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
26
|
Mansour M, Ismail S, Abou-Aisha K. Bacterial delivery of the anti-tumor azurin-like protein Laz to glioblastoma cells. AMB Express 2020; 10:59. [PMID: 32221741 PMCID: PMC7099546 DOI: 10.1186/s13568-020-00995-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
Salmonella typhimurium VNP-20009 (VNP) is a non-pathogenic attenuated strain, which, as a facultative anaerobe, preferentially accumulates in hypoxic regions of solid tumors. Here, VNP was utilized as a delivery vehicle of the anti-tumor protein Lipidated azurin, Laz, which is produced by the meningitis-causing bacterium Neisseria meningitides. In brain cancer cells, Laz has been demonstrated to induce apoptosis through an interaction with the tumor suppressor protein p53. In this study, the laz gene, including its signal sequence, was cloned downstream of a hypoxia inducible promoter (HIP-1), before being electroporated into VNP. Successful ectopic expression and export of the Laz protein by VNP under hypoxic conditions were confirmed by Western blot analysis of the cell-free culture medium. Effective expression of Laz by VNP was investigated in two glioblastoma cell lines: LN-229 and U-373, with the latter line carrying a mutated version of p53; as well as in the breast cancer line MCF-7. Cytotoxicity of the VNP-Laz was assessed by determining the fluorescence of the apoptotic marker caspases 3/7. Compared to the purified Laz, VNP-Laz, significantly induced apoptosis in MCF-7, LN-229 and, to a much lower extent in U-373 cells, suggesting a p53-linked mechanism. Our results might represent a new approach of targeted gene delivery and suggest a potential application in brain tumor therapy.
Collapse
Affiliation(s)
- Manar Mansour
- Department of Microbiology and Immunology, The German University in Cairo (GUC), Main Entrance Fifth Settlement, Cairo, Egypt.
| | - Shehab Ismail
- The Cancer Research Institute CRUK Beatson Institute, Glasgow, UK
| | - Khaled Abou-Aisha
- Department of Microbiology and Immunology, The German University in Cairo (GUC), Main Entrance Fifth Settlement, Cairo, Egypt
| |
Collapse
|
27
|
Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics 2019; 12:pharmaceutics12010020. [PMID: 31878061 PMCID: PMC7022905 DOI: 10.3390/pharmaceutics12010020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Drug delivery into the brain is regulated by the blood-brain interfaces. The blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the blood-arachnoid barrier (BAB) regulate the exchange of substances between the blood and brain parenchyma. These selective barriers present a high impermeability to most substances, with the selective transport of nutrients and transporters preventing the entry and accumulation of possibly toxic molecules, comprising many therapeutic drugs. Transporters of the ATP-binding cassette (ABC) superfamily have an important role in drug delivery, because they extrude a broad molecular diversity of xenobiotics, including several anticancer drugs, preventing their entry into the brain. Gliomas are the most common primary tumors diagnosed in adults, which are often characterized by a poor prognosis, notably in the case of high-grade gliomas. Therapeutic treatments frequently fail due to the difficulty of delivering drugs through the brain barriers, adding to diverse mechanisms developed by the cancer, including the overexpression or expression de novo of ABC transporters in tumoral cells and/or in the endothelial cells forming the blood-brain tumor barrier (BBTB). Many models have been developed to study the phenotype, molecular characteristics, and function of the blood-brain interfaces as well as to evaluate drug permeability into the brain. These include in vitro, in vivo, and in silico models, which together can help us to better understand their implication in drug resistance and to develop new therapeutics or delivery strategies to improve the treatment of pathologies of the central nervous system (CNS). In this review, we present the principal characteristics of the blood-brain interfaces; then, we focus on the ABC transporters present on them and their implication in drug delivery; next, we present some of the most important models used for the study of drug transport; finally, we summarize the implication of ABC transporters in glioma and the BBTB in drug resistance and the strategies to improve the delivery of CNS anticancer drugs.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| | - Méryam Taghi
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Jean-Michel Scherrmann
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Xavier Decleves
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Biologie du médicament et toxicologie, Hôpital Cochin, AP HP, 75006 Paris, France
| | - Marie-Claude Menet
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Hormonologie adulte, Hôpital Cochin, AP HP, 75006 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| |
Collapse
|
28
|
Tovar MA, Parkhurst A, Matuczinski E, Balenger S, Giancarlo LC. Synthesis of a superparamagnetic iron oxide based nano-complex for targeted cell death of glioblastoma cells. NANOTECHNOLOGY 2019; 30:465101. [PMID: 31323657 DOI: 10.1088/1361-6528/ab33d4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the last ten years, there has been little advancement in the treatment of the aggressive brain cancer Glioblastoma Multiforme (GBM). This research describes the synthesis of a superparamagnetic iron oxide (SPION)-based nanotheraputic complex for use in targeting and killing aggressive mesenchymal GBM cells. The average sizes and magnetic properties of the synthesized SPIONs are tailored via a novel time-controlled approach to a previously described electrochemical reaction. Through this synthetic method, the optimal particle size where maximal thermal energy is released upon stimulation with an external magnetic field was determined to be 21 nm. The nano-complex was further modified to selectively target GBM cells by adding a heterobifunctional poly(ethylene) glycol polymer crosslinked to TWEAK (a GBM targeting peptide). Preliminary investigation with FITC Annexin V/propidium iodide fluorescent probes and transmission electron microscopy revealed biochemical and morphological evidence of both SPION internalization and cytotoxic effects over the course of three hours. Thus, these nano-complexes hold promise as a potential treatment agent for an otherwise untreatable disease.
Collapse
Affiliation(s)
- Matthew A Tovar
- Department of Chemistry, University of Mary Washington, Fredericksburg, VA, United States of America
| | | | | | | | | |
Collapse
|
29
|
Hosseinzadeh R, Mirani B, Pagan E, Mirzaaghaei S, Nasimian A, Kawalec P, Silva Rosa SC, Hamdi D, Fernandez NP, Toyota BD, Gordon JW, Ghavami S, Akbari M. A Drug‐Eluting 3D‐Printed Mesh (GlioMesh) for Management of Glioblastoma. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reihaneh Hosseinzadeh
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of Victoria Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC)University of Victoria Victoria BC V8P 5C2 Canada
| | - Bahram Mirani
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of Victoria Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC)University of Victoria Victoria BC V8P 5C2 Canada
| | - Erik Pagan
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of Victoria Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC)University of Victoria Victoria BC V8P 5C2 Canada
| | - Somayeh Mirzaaghaei
- Department of Human Anatomy and Cell Sciences, Faculty of Health Science, Max Rady College of MedicineUniversity of Manitoba Winnipeg MB R3E 0J9 Canada
| | - Ahmad Nasimian
- Department of Human Anatomy and Cell Sciences, Faculty of Health Science, Max Rady College of MedicineUniversity of Manitoba Winnipeg MB R3E 0J9 Canada
| | - Philip Kawalec
- Department of Human Anatomy and Cell Sciences, Faculty of Health Science, Max Rady College of MedicineUniversity of Manitoba Winnipeg MB R3E 0J9 Canada
| | - Simone C. Silva Rosa
- Department of Human Anatomy and Cell Sciences, Faculty of Health Science, Max Rady College of MedicineUniversity of Manitoba Winnipeg MB R3E 0J9 Canada
| | - David Hamdi
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of Victoria Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC)University of Victoria Victoria BC V8P 5C2 Canada
| | - Nahiane Pipaon Fernandez
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Brian D. Toyota
- Department of SurgerySchool of Medicine, Queen's University Kingston ON K7K1G8 Canada
| | - Joseph W Gordon
- College of Nursing, Rady Faculty of Health Sciences Helen Glass Centre for NursingUniversity of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Faculty of Health Science, Max Rady College of MedicineUniversity of Manitoba Winnipeg MB R3E 0J9 Canada
- Research Institute of Oncology and Hematology, CancerCare ManitobaUniversity of Manitoba Winnipeg MB R3E 3P5 Canada
- Autophagy Research Center, Health Policy Research Center, Institute of HealthShiraz University of Medical Sciences Shiraz 7146864685 Iran
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of Victoria Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC)University of Victoria Victoria BC V8P 5C2 Canada
| |
Collapse
|
30
|
Gu L, Ma M, Zhang Y, Zhang L, Zhang S, Huang M, Zhang M, Xin Y, Zheng G, Chen S. Comparative pharmacokinetics of tedizolid in rat plasma and cerebrospinal fluid. Regul Toxicol Pharmacol 2019; 107:104420. [DOI: 10.1016/j.yrtph.2019.104420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022]
|
31
|
Current and Future Trends on Diagnosis and Prognosis of Glioblastoma: From Molecular Biology to Proteomics. Cells 2019; 8:cells8080863. [PMID: 31405017 PMCID: PMC6721640 DOI: 10.3390/cells8080863] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and to develop new personalized treatments. On these bases, the aim of this review article is to summarize the current knowledge regarding the application of molecular biology and proteomics techniques for the identification of novel biomarkers through the analysis of different biological samples obtained from glioblastoma patients, including DNA, microRNAs, proteins, small molecules, circulating tumor cells, extracellular vesicles, etc. Both benefits and pitfalls of molecular biology and proteomics analyses are discussed, including the different mass spectrometry-based analytical techniques, highlighting how these investigation strategies are powerful tools to study the biology of glioblastoma, as well as to develop advanced methods for the management of this pathology.
Collapse
|
32
|
Manandhar B, Paudel P, Seong SH, Jung HA, Choi JS. Characterizing Eckol as a Therapeutic Aid: A Systematic Review. Mar Drugs 2019; 17:E361. [PMID: 31216636 PMCID: PMC6627842 DOI: 10.3390/md17060361] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 12/23/2022] Open
Abstract
The marine biosphere is a treasure trove of natural bioactive secondary metabolites and the richest source of structurally diverse and unique compounds, such as phlorotannins and halo-compounds, with high therapeutic potential. Eckol is a precursor compound representing the dibenzo-1,4-dioxin class of phlorotannins abundant in the Ecklonia species, which are marine brown algae having a ubiquitous distribution. In search of compounds having biological activity from macro algae during the past three decades, this particular compound has attracted massive attention for its multiple therapeutic properties and health benefits. Although several varieties of marine algae, seaweed, and phlorotannins have already been well scrutinized, eckol deserves a place of its own because of the therapeutic properties it possesses. The relevant information about this particular compound has not yet been collected in one place; therefore, this review focuses on its biological applications, including its potential health benefits and possible applications to restrain diseases leading to good health. The facts compiled in this review could contribute to novel insights into the functions of eckol and potentially enable its use in different uninvestigated fields.
Collapse
Affiliation(s)
- Bandana Manandhar
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
33
|
Dréan A, Lemaire N, Bouchoux G, Goldwirt L, Canney M, Goli L, Bouzidi A, Schmitt C, Guehennec J, Verreault M, Sanson M, Delattre JY, Mokhtari K, Sottilini F, Carpentier A, Idbaih A. Temporary blood-brain barrier disruption by low intensity pulsed ultrasound increases carboplatin delivery and efficacy in preclinical models of glioblastoma. J Neurooncol 2019; 144:33-41. [PMID: 31197598 DOI: 10.1007/s11060-019-03204-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common and aggressive primary brain cancer in adults. Few cytotoxic chemotherapies have been shown to be effective against GBM, due in part to the presence of the blood-brain barrier (BBB), which reduces the penetration of chemotherapies from the blood to the brain. Ultrasound-induced BBB opening (US-BBB) has been shown to increase the penetration of multiple chemotherapeutic agents in the brain in animal models. In the current study, the anti-tumor activity of carboplatin chemotherapy with and without US-BBB was investigated in several GBM mouse models. METHODS First, the IC50 of two commercial (U87 and U251) and six patient-derived GBM cell lines (PDCL) to carboplatin was measured. Next, U87 was subcutaneously grafted to a nude mouse model to test the in vivo response of the tumor to carboplatin in the absence of the BBB. Lastly, nude mice bearing orthotopically xenografted GBM cell lines (U87 or a PDCL) were randomized to four experimental groups: (i) untreated, (ii) US-BBB alone, (iii) carboplatin alone and, (iv) carboplatin + US-BBB. Mice were treated once weekly for 4 weeks and monitored for toxicity, tumor growth, and survival. RESULTS Carboplatin plus US-BBB enhanced survival (p = 0.03) and delayed tumor growth (p < 0.05) of GBM-bearing mice compared to carboplatin alone, with a 4.2-fold increase of carboplatin penetration in the brain, without evidence of significant neurological or systemic toxicity. CONCLUSIONS Carboplatin efficacy was enhanced in GBM mouse models with US-BBB and appears to be a promising chemotherapy for this approach.
Collapse
Affiliation(s)
- Antonin Dréan
- Inserm U1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France.,CarThera, Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
| | - Nolwenn Lemaire
- Inserm U1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Guillaume Bouchoux
- CarThera, Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
| | - Lauriane Goldwirt
- AP-HP, Hôpital Universitaire Saint Louis, Service de Pharmacologie Biologique, 75010, Paris, France
| | - Michael Canney
- CarThera, Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
| | - Larissa Goli
- Inserm U1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Amira Bouzidi
- Inserm U1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Charlotte Schmitt
- Inserm U1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France.,CarThera, Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
| | - Jeremy Guehennec
- Inserm U1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Maïté Verreault
- Inserm U1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Jean-Yves Delattre
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Karima Mokhtari
- Inserm U1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France.,AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie, 75013, Paris, France
| | - Frédéric Sottilini
- CarThera, Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
| | - Alexandre Carpentier
- CarThera, Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Paris, France.,AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurochirurgie, 75013, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France.
| |
Collapse
|
34
|
Kim M, Laramy JK, Mohammad AS, Talele S, Fisher J, Sarkaria JN, Elmquist WF. Brain Distribution of a Panel of Epidermal Growth Factor Receptor Inhibitors Using Cassette Dosing in Wild-Type and Abcb1/Abcg2-Deficient Mice. Drug Metab Dispos 2019; 47:393-404. [PMID: 30705084 PMCID: PMC6408736 DOI: 10.1124/dmd.118.084210] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/28/2019] [Indexed: 01/03/2023] Open
Abstract
Tyrosine kinase inhibitors that target the epidermal growth factor receptor (EGFR) have had success in treating EGFR-positive tumors, including non-small-cell lung cancer (NSCLC). However, developing EGFR inhibitors that can be delivered to the brain remains a challenge. To identify optimal compounds for brain delivery, eight EGFR inhibitors [afatinib, 6-[4-[(4-ethylpiperazin-1-yl)methyl]phenyl]-N-(1-phenylethyl)-7H-pyrrolo[2,3-day]pyrimidin-4-amine (AEE788), [4-(3-chloro-2-fluoroanilino)-7-methoxyquinazolin-6-yl] (2R)-2,4-dimethylpiperazine-1-carboxylate (AZD3759), erlotinib, dacomitinib, gefitinib, osimertinib, and vandetanib] were evaluated for distributional kinetics using cassette dosing with the ultimate goal of understanding the brain penetrability of compounds that share the same molecular target in an important oncogenic signaling pathway for both primary brain tumors (glioblastoma) and brain metastases (e.g., NSCLC). Cassette dosing was validated by comparing the brain-to-plasma ratios obtained from cassette-dosing to discrete-dosing studies. The brain-to-blood partition coefficients (Kp,brain) were calculated following cassette dosing of the eight EGFR inhibitors. The comparison of Kp,brain in wild-type and transporter-deficient mice confirmed that two major efflux transporters at the blood-brain barrier (BBB), P-glycoprotein and breast cancer resistance protein, play a crucial role in the brain distribution of seven out of eight EGFR inhibitors. Results show that the prediction of brain distribution based on physicochemical properties of a drug can be misleading, especially for compounds subject to extensive efflux transport. Moreover, this study informs the choice of EGFR inhibitors, i.e., determining BBB permeability combined with a known target potency, that may be effective in future clinical trials for brain tumors.
Collapse
Affiliation(s)
- Minjee Kim
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Janice K Laramy
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Afroz S Mohammad
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - James Fisher
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| |
Collapse
|
35
|
Hainfeld JF, Ridwan SM, Stanishevskiy Y, Panchal R, Slatkin DN, Smilowitz HM. Iodine nanoparticles enhance radiotherapy of intracerebral human glioma in mice and increase efficacy of chemotherapy. Sci Rep 2019; 9:4505. [PMID: 30872755 PMCID: PMC6418169 DOI: 10.1038/s41598-019-41174-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/01/2019] [Indexed: 01/04/2023] Open
Abstract
Gliomas and other brain tumors have evaded durable therapies, ultimately causing about 20% of all cancer deaths. Tumors are widespread in the brain at time of diagnosis, limiting surgery and radiotherapy effectiveness. Drugs are also poorly effective. Radiotherapy (RT) is limited by dose to normal tissue. However, high-atomic-number elements absorb X-rays and deposit the absorbed dose locally, even doubling (or more) the local dose. Previously we showed that gold nanoparticles (AuNPs) with RT could eradicate some brain tumors in mice and many other preclinical studies confirmed AuNPs as outstanding radioenhancers. However, impediments to clinical translation of AuNPs have been poor clearance, skin discoloration, and cost. We therefore developed iodine nanoparticles (INPs) that are almost colorless, non-toxic, lower cost, and have reasonable clearance, thus overcoming major drawbacks of AuNPs. Here we report the use of iodine nanoparticle radiotherapy (INRT) in treating advanced human gliomas (U87) grown orthotopically in nude mice resulting in a more than a doubling of median life extension compared to RT alone. Significantly, INRT also enhanced the efficacy of chemotherapy when it was combined with the chemotherapeutic agent Doxil, resulting in some longer-term survivors. While ongoing optimization studies should further improve INRT, clinical translation appears promising.
Collapse
Affiliation(s)
- James F Hainfeld
- Nanoprobes, Inc, 95 Horseblock Rd., Unit 1, Yaphank, NY, 11980, USA.
| | - Sharif M Ridwan
- University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Ave., Farmington, CT, USA
| | | | - Rahul Panchal
- University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Ave., Farmington, CT, USA
| | - Daniel N Slatkin
- Nanoprobes, Inc, 95 Horseblock Rd., Unit 1, Yaphank, NY, 11980, USA
| | - Henry M Smilowitz
- University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Ave., Farmington, CT, USA
| |
Collapse
|
36
|
Gampa G, Kim M, Mohammad AS, Parrish KE, Mladek AC, Sarkaria JN, Elmquist WF. Brain Distribution and Active Efflux of Three panRAF Inhibitors: Considerations in the Treatment of Melanoma Brain Metastases. J Pharmacol Exp Ther 2019; 368:446-461. [PMID: 30622172 PMCID: PMC6374543 DOI: 10.1124/jpet.118.253708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Targeted inhibition of RAF and MEK by molecularly targeted agents has been employed as a strategy to block aberrant mitogen-activated protein kinase (MAPK) signaling in melanoma. While the use of BRAF and MEK inhibitors, either as a single agent or in combination, improved efficacy in BRAF-mutant melanoma, initial responses are often followed by relapse due to acquired resistance. Moreover, some BRAF inhibitors are associated with paradoxical activation of the MAPK pathway, causing the development of secondary malignancies. The use of panRAF inhibitors, i.e., those that target all isoforms of RAF, may overcome paradoxical activation and resistance. The purpose of this study was to perform a quantitative assessment and evaluation of the influence of efflux mechanisms at the blood-brain barrier (BBB), in particular, Abcb1/P-glycoprotein (P-gp) and Abcg2/breast cancer resistance protein (Bcrp), on the brain distribution of three panRAF inhibitors: CCT196969 [1-(3-(tert-butyl)-1-phenyl-1H-pyrazol-5-yl)-3-(2-fluoro-4-((3-oxo-3,4-dihydropyrido[2,3-b]pyrazin-8-yl)oxy)phenyl)urea], LY3009120 1-(3,3-Dimethylbutyl)-3-(2-fluoro-4-methyl-5-(7-methyl-2-(methylamino)pyrido(2,3-d)pyrimidin-6-yl)phenyl)urea, and MLN2480 [4-pyrimidinecarboxamide, 6-amino-5-chloro-N-[(1R)-1-[5-[[[5-chloro-4-(trifluoromethyl)-2-pyridinyl]amino]carbonyl]-2-thiazolyl]ethyl]-]. In vitro studies using transfected Madin-Darby canine kidney II cells indicate that only LY3009120 and MLN2480 are substrates of Bcrp, and none of the three inhibitors are substrates of P-gp. The three panRAF inhibitors show high nonspecific binding in brain and plasma. In vivo studies in mice show that the brain distribution of CCT196969, LY3009120, and MLN2480 is limited, and is enhanced in transgenic mice lacking P-gp and Bcrp. While MLN2480 has a higher brain distribution, LY3009120 exhibits superior in vitro efficacy in patient-derived melanoma cell lines. The delivery of a drug to the site of action residing behind a functionally intact BBB, along with drug potency against the target, collectively play a critical role in determining in vivo efficacy outcomes.
Collapse
Affiliation(s)
- Gautham Gampa
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Minjee Kim
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Afroz S Mohammad
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Karen E Parrish
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Ann C Mladek
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| |
Collapse
|
37
|
Traxl A, Mairinger S, Filip T, Sauberer M, Stanek J, Poschner S, Jäger W, Zoufal V, Novarino G, Tournier N, Bauer M, Wanek T, Langer O. Inhibition of ABCB1 and ABCG2 at the Mouse Blood-Brain Barrier with Marketed Drugs To Improve Brain Delivery of the Model ABCB1/ABCG2 Substrate [ 11C]erlotinib. Mol Pharm 2019; 16:1282-1293. [PMID: 30694684 DOI: 10.1021/acs.molpharmaceut.8b01217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
P-Glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) are two efflux transporters at the blood-brain barrier (BBB), which effectively restrict brain distribution of diverse drugs, such as tyrosine kinase inhibitors. There is a crucial need for pharmacological ABCB1 and ABCG2 inhibition protocols for a more effective treatment of brain diseases. In the present study, seven marketed drugs (osimertinib, erlotinib, nilotinib, imatinib, lapatinib, pazopanib, and cyclosporine A) and one nonmarketed drug (tariquidar), with known in vitro ABCB1/ABCG2 inhibitory properties, were screened for their inhibitory potency at the BBB in vivo. Positron emission tomography (PET) using the model ABCB1/ABCG2 substrate [11C]erlotinib was performed in mice. Tested inhibitors were administered as i.v. bolus injections at 30 min before the start of the PET scan, followed by a continuous i.v. infusion for the duration of the PET scan. Five of the tested drugs increased total distribution volume of [11C]erlotinib in the brain ( VT,brain) compared to vehicle-treated animals (tariquidar, + 69%; erlotinib, + 19% and +23% for the 21.5 mg/kg and the 43 mg/kg dose, respectively; imatinib, + 22%; lapatinib, + 25%; and cyclosporine A, + 49%). For all drugs, increases in [11C]erlotinib brain distribution were lower than in Abcb1a/b(-/-)Abcg2(-/-) mice (+149%), which suggested that only partial ABCB1/ABCG2 inhibition was reached at the mouse BBB. The plasma concentrations of the tested drugs at the time of the PET scan were higher than clinically achievable plasma concentrations. Some of the tested drugs led to significant increases in blood radioactivity concentrations measured at the end of the PET scan (erlotinib, + 103% and +113% for the 21.5 mg/kg and the 43 mg/kg dose, respectively; imatinib, + 125%; and cyclosporine A, + 101%), which was most likely caused by decreased hepatobiliary excretion of radioactivity. Taken together, our data suggest that some marketed tyrosine kinase inhibitors may be repurposed to inhibit ABCB1 and ABCG2 at the BBB. From a clinical perspective, moderate increases in brain delivery despite the administration of high i.v. doses as well as peripheral drug-drug interactions due to transporter inhibition in clearance organs question the translatability of this concept.
Collapse
Affiliation(s)
- Alexander Traxl
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Severin Mairinger
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Thomas Filip
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Michael Sauberer
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Johann Stanek
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Stefan Poschner
- Department of Clinical Pharmacy and Diagnostics , University of Vienna , 1090 Vienna , Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics , University of Vienna , 1090 Vienna , Austria
| | - Viktoria Zoufal
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria , 3400 Klosterneuburg , Austria
| | - Nicolas Tournier
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot , CEA, Inserm, Univ. Paris Sud, CNRS, Université Paris-Saclay , 91450 Orsay , France
| | - Martin Bauer
- Department of Clinical Pharmacology , Medical University of Vienna , 1090 Vienna , Austria
| | - Thomas Wanek
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Oliver Langer
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria.,Department of Clinical Pharmacology , Medical University of Vienna , 1090 Vienna , Austria.,Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine , Medical University of Vienna , 1090 Vienna , Austria
| |
Collapse
|
38
|
Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, Giannini C, Burns TC, Kizilbash SH, Laramy JK, Swanson KR, Kaufmann TJ, Brown PD, Agar NYR, Galanis E, Buckner JC, Elmquist WF. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol 2019; 20:184-191. [PMID: 29016900 DOI: 10.1093/neuonc/nox175] [Citation(s) in RCA: 419] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The blood-brain barrier (BBB) excludes the vast majority of cancer therapeutics from normal brain. However, the importance of the BBB in limiting drug delivery and efficacy is controversial in high-grade brain tumors, such as glioblastoma (GBM). The accumulation of normally brain impenetrant radiographic contrast material in essentially all GBM has popularized a belief that the BBB is uniformly disrupted in all GBM patients so that consideration of drug distribution across the BBB is not relevant in designing therapies for GBM. However, contrary to this view, overwhelming clinical evidence demonstrates that there is also a clinically significant tumor burden with an intact BBB in all GBM, and there is little doubt that drugs with poor BBB permeability do not provide therapeutically effective drug exposures to this fraction of tumor cells. This review provides an overview of the clinical literature to support a central hypothesis: that all GBM patients have tumor regions with an intact BBB, and cure for GBM will only be possible if these regions of tumor are adequately treated.
Collapse
Affiliation(s)
- Jann N Sarkaria
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Leland S Hu
- Mayo Clinic, Scottsdale, Arizona (L.S.H., K.R.S.)
| | - Ian F Parney
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Deanna H Pafundi
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Debra H Brinkmann
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Nadia N Laack
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Caterina Giannini
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Terence C Burns
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Sani H Kizilbash
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Janice K Laramy
- University of Minnesota, Minneapolis, Minnesota (J.K.L., W.F.E.)
| | | | - Timothy J Kaufmann
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Paul D Brown
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | | | - Evanthia Galanis
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Jan C Buckner
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - William F Elmquist
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| |
Collapse
|
39
|
Abstract
This paper explicates the impact of tumor capillary permeability for glioma World Health Organization (WHO) grades II to IV on brain-penetrant drug entry and distribution within the tumor and the brain adjacent to tumor (leading edge). In addition, we consider the distribution of non-brain penetrant drugs and how, in some cases, large-molecular-weight drugs might achieve good distribution into tumor and brain adjacent to tumor.
Collapse
Affiliation(s)
- Victor A Levin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Neurosurgery, UCSF Medical School, San Francisco, California
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
40
|
Sattiraju A, Mintz A. Pericytes in Glioblastomas: Multifaceted Role Within Tumor Microenvironments and Potential for Therapeutic Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:65-91. [PMID: 31147872 DOI: 10.1007/978-3-030-16908-4_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is an aggressive and lethal disease that often results in a poor prognosis. Unlike most solid tumors, GBM is characterized by diffuse infiltrating margins, extensive angiogenesis, hypoxia, necrosis, and clonal heterogeneity. Recurrent disease is an unavoidable consequence for many patients as standard treatment options such as surgery, radiotherapy, and chemotherapy have proven to be insufficient in causing long-term survival benefits. Systemic delivery of promising drugs is hindered due to the blood-brain barrier and non-uniform perfusion within GBM tissue. In recent years, many investigations have highlighted the role of GBM stem cells (GSCs) and their microenvironment in the initiation and maintenance of tumor tissue. Preclinical and early clinical studies to target GSCs and microenvironmental components are currently underway. Of these strategies, immunotherapy using checkpoint inhibitors and redirected cytotoxic T cells have shown promising results in early investigations. But, GBM microenvironment is heterogenous and recent investigations have shown cell populations within this microenvironment to be plastic. These studies underline the importance of identifying the role of and targeting multiple cell populations within the GBM microenvironment which could have a synergistic effect when combined with novel therapies. Pericytes are multipotent perivascular cells that play a vital role within the GBM microenvironment by assisting in tumor initiation, survival, and progression. Due to their role in regulating the blood-brain barrier permeability, promoting angiogenesis, tumor growth, clearing extracellular matrix for infiltrating GBM cells and in helping GBM cells evade immune surveillance, pericytes could be ideal therapeutic targets for stymieing or exploiting their role within the GBM microenvironment. This chapter will introduce hallmarks of GBM and elaborate on the contributions of pericytes to these hallmarks by examining recent findings. In addition, the chapter also highlights the therapeutic value of targeting pericytes, while discussing conventional and novel GBM therapies and obstacles to their efficacy.
Collapse
Affiliation(s)
- Anirudh Sattiraju
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
41
|
Khan AR, Yang X, Fu M, Zhai G. Recent progress of drug nanoformulations targeting to brain. J Control Release 2018; 291:37-64. [DOI: 10.1016/j.jconrel.2018.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
|
42
|
Randall EC, Emdal KB, Laramy JK, Kim M, Roos A, Calligaris D, Regan MS, Gupta SK, Mladek AC, Carlson BL, Johnson AJ, Lu FK, Xie XS, Joughin BA, Reddy RJ, Peng S, Abdelmoula WM, Jackson PR, Kolluri A, Kellersberger KA, Agar JN, Lauffenburger DA, Swanson KR, Tran NL, Elmquist WF, White FM, Sarkaria JN, Agar NYR. Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat Commun 2018; 9:4904. [PMID: 30464169 PMCID: PMC6249307 DOI: 10.1038/s41467-018-07334-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Therapeutic options for the treatment of glioblastoma remain inadequate despite concerted research efforts in drug development. Therapeutic failure can result from poor permeability of the blood-brain barrier, heterogeneous drug distribution, and development of resistance. Elucidation of relationships among such parameters could enable the development of predictive models of drug response in patients and inform drug development. Complementary analyses were applied to a glioblastoma patient-derived xenograft model in order to quantitatively map distribution and resulting cellular response to the EGFR inhibitor erlotinib. Mass spectrometry images of erlotinib were registered to histology and magnetic resonance images in order to correlate drug distribution with tumor characteristics. Phosphoproteomics and immunohistochemistry were used to assess protein signaling in response to drug, and integrated with transcriptional response using mRNA sequencing. This comprehensive dataset provides simultaneous insight into pharmacokinetics and pharmacodynamics and indicates that erlotinib delivery to intracranial tumors is insufficient to inhibit EGFR tyrosine kinase signaling.
Collapse
Affiliation(s)
- Elizabeth C Randall
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kristina B Emdal
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA, 02142, USA
| | - Janice K Laramy
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Minjee Kim
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alison Roos
- Department of Cancer Biology, Mayo Clinic, 13400 E. Shea Blvd.MCCRB 03-055, Scottsdale, AZ, 85259, USA
| | - David Calligaris
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Fa-Ke Lu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, 13902, USA
| | - X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Brian A Joughin
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA, 02142, USA
| | - Raven J Reddy
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA, 02142, USA
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Walid M Abdelmoula
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pamela R Jackson
- Mathematical NeuroOncology Lab, Department of Neurosurgery, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Aarti Kolluri
- Mathematical NeuroOncology Lab, Department of Neurosurgery, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | | | - Jeffrey N Agar
- Department of Chemistry and Chemical Biology, Northeastern University, 412 TF (140 The Fenway), Boston, MA, 02111, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA, 02142, USA
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Department of Neurosurgery, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic, 13400 E. Shea Blvd.MCCRB 03-055, Scottsdale, AZ, 85259, USA
| | - William F Elmquist
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Forest M White
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA, 02142, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Nathalie Y R Agar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Goutal S, Gerstenmayer M, Auvity S, Caillé F, Mériaux S, Buvat I, Larrat B, Tournier N. Physical blood-brain barrier disruption induced by focused ultrasound does not overcome the transporter-mediated efflux of erlotinib. J Control Release 2018; 292:210-220. [PMID: 30415015 DOI: 10.1016/j.jconrel.2018.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
Overcoming the efflux mediated by ATP-binding cassette (ABC) transporters at the blood-brain barrier (BBB) remains a challenge for the delivery of small molecule tyrosine kinase inhibitors (TKIs) such as erlotinib to the brain. Inhibition of ABCB1 and ABCG2 at the mouse BBB improved the BBB permeation of erlotinib but could not be achieved in humans. BBB disruption induced by focused ultrasound (FUS) was investigated as a strategy to overcome the efflux transport of erlotinib in vivo. In rats, FUS combined with microbubbles allowed for a large and spatially controlled disruption of the BBB in the left hemisphere. ABCB1/ABCG2 inhibition was performed using elacridar (10 mg/kg i.v). The brain kinetics of erlotinib was studied using 11C-erlotinib Positron Emission Tomography (PET) imaging in 5 groups (n = 4-5 rats per group) including a baseline group, immediately after sonication (FUS), 48 h after FUS (FUS + 48 h), elacridar (ELA) and their combination (FUS + ELA). BBB integrity was assessed using the Evan's Blue (EB) extravasation test. Brain exposure to 11C-erlotinib was measured as the area under the curve (AUC) of the brain kinetics (% injected dose (%ID) versus time (min)) in volumes corresponding to the disrupted (left) and the intact (right) hemispheres, respectively. EB extravasation highlighted BBB disruption in the left hemisphere of animals of the FUS and FUS + ELA groups but not in the control and ELA groups. EB extravasation was not observed 48 h after FUS suggesting recovery of BBB integrity. Compared with the control group (AUCBaseline = 1.4 ± 0.5%ID.min), physical BBB disruption did not impact the brain kinetics of 11C-erlotinib in the left hemisphere (p > .05) either immediately (AUCFUS = 1.2 ± 0.1%ID.min) or 48 h after FUS (AUCFUS+48h = 1.1 ± 0.3%ID.min). Elacridar similarly increased 11C-erlotinib brain exposure to the left hemisphere in the absence (AUCELA = 2.2 ± 0.5%ID.min, p < .001) and in the presence of BBB disruption (AUCFUS+ELA = 2.1 ± 0.5%ID.min, p < .001). AUCleft was never significantly different from AUCright (p > .05), in any of the tested conditions. BBB integrity is not the rate limiting step for erlotinib delivery to the brain which is mainly governed by ABC-mediated efflux. Efflux transport of erlotinib persisted despite BBB disruption.
Collapse
Affiliation(s)
- Sébastien Goutal
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France; Molecular Imaging Research Center, MIRCen, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Fontenay-Aux-Roses, France
| | - Matthieu Gerstenmayer
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Sylvain Auvity
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Fabien Caillé
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Sébastien Mériaux
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Irène Buvat
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Benoit Larrat
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France.
| |
Collapse
|
44
|
Qian W, Qian M, Wang Y, Huang J, Chen J, Ni L, Huang Q, Liu Q, Gong P, Hou S, Zhu H, Jia Z, Shen D, Zhu C, Jiang R, Sun J, Yao J, Tang Z, Ji X, Shi J, Huang R, Shi W. Combination Glioma Therapy Mediated by a Dual-Targeted Delivery System Constructed Using OMCN-PEG-Pep22/DOX. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801905. [PMID: 30346089 DOI: 10.1002/smll.201801905] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Accumulating studies have investigated the efficacy of receptor-mediated delivery of hydrophobic drugs in glioma chemotherapy. Here, a delivery vehicle comprising polyethylene glycol (PEG) and oxidized nanocrystalline mesoporous carbon particles (OMCN) linked to the Pep22 polypeptide targeting the low-density lipoprotein receptor (LDLR) is designed to generate a novel drug-loaded system, designated as OMCN-PEG-Pep22/DOX (OPPD). This system effectively targets glioma cells and the blood-brain barrier and exerts therapeutic efficacy through both near-infrared (NIR) photothermal and chemotherapeutic effects of loaded doxycycline (DOX). Pathological tissue microarrays show an association of LDLR overexpression in human glioma tissue with patient survival.NIR irradiation treatment and magnetic resonance imaging results show that OPPD reaches the effective glioma-killing temperature in a glioma-bearing rat with a skull bone removal model and considerably reduces glioma sizes relative to the drug-loaded system without the Pep22 peptide modification and the control respectively. Thus, OPPD not only effectively targets LDLR-overexpressing glioma but also exerts a dual therapeutic effect by transporting DOX into the glioma and generating thermal effects with near-infrared irradiation to kill tumor cells. These collective findings support the utility of the novel OPPD drug-loaded system as a promising drug delivery vehicle for clinical application in glioma therapy.
Collapse
Affiliation(s)
- Wenbo Qian
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Min Qian
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yi Wang
- Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Jianfei Huang
- Department of Pathology, Clinical Bio-Bank, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jian Chen
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lanchun Ni
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qingfeng Huang
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qianqian Liu
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Peipei Gong
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shiqiang Hou
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hui Zhu
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhongzheng Jia
- Medical Image Centre, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dandan Shen
- Medical Image Centre, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Changlai Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Rui Jiang
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Junlong Sun
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Junzhong Yao
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhongyu Tang
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xiang Ji
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinlong Shi
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Wei Shi
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
45
|
Bauer M, Karch R, Wulkersdorfer B, Philippe C, Nics L, Klebermass EM, Weber M, Poschner S, Haslacher H, Jäger W, Tournier N, Wadsak W, Hacker M, Zeitlinger M, Langer O. A Proof-of-Concept Study to Inhibit ABCG2- and ABCB1-Mediated Efflux Transport at the Human Blood-Brain Barrier. J Nucl Med 2018; 60:486-491. [PMID: 30237210 DOI: 10.2967/jnumed.118.216432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023] Open
Abstract
The adenosine triphosphate-binding cassette transporters P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) are 2 efflux transporters at the blood-brain barrier (BBB) that effectively restrict brain distribution of dual ABCB1/ABCG2 substrate drugs, such as tyrosine kinase inhibitors. Pharmacologic inhibition of ABCB1/ABCG2 may improve the efficacy of dual-substrate drugs for treatment of brain tumors, but no marketed ABCB1/ABCG2 inhibitors are currently available. In the present study, we examined the potential of supratherapeutic-dose oral erlotinib to inhibit ABCB1/ABCG2 activity at the human BBB. Methods: Healthy men underwent 2 consecutive PET scans with 11C-erlotinib: a baseline scan and a second scan either with concurrent intravenous infusion of the ABCB1 inhibitor tariquidar (3.75 mg/min, n = 5) or after oral intake of single ascending doses of erlotinib (300 mg, n = 7; 650 mg, n = 8; or 1,000 mg, n = 2). Results: Although tariquidar administration had no effect on 11C-erlotinib brain distribution, oral erlotinib led, at the 650-mg dose, to significant increases in volume of distribution (23% ± 13%, P = 0.008), influx rate constant of radioactivity from plasma into brain (58% ± 26%, P = 0.008), and area under the brain time-activity curve (78% ± 17%, P = 0.008), presumably because of combined partial saturation of ABCG2 and ABCB1 activity. Inclusion of further subjects into the 1,000-mg dose group was precluded by adverse skin events (rash). Conclusion: Supratherapeutic-dose erlotinib may be used to enhance brain delivery of ABCB1/ABCG2 substrate anticancer drugs, but its clinical applicability for continuous ABCB1/ABCG2 inhibition at the BBB may be limited by safety concerns.
Collapse
Affiliation(s)
- Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Karch
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging und Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Division of Nuclear Medicine, Department of Biomedical Imaging und Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Eva-Maria Klebermass
- Division of Nuclear Medicine, Department of Biomedical Imaging und Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Maria Weber
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Poschner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Nicolas Tournier
- IMIV, CEA, INSERM, CNRS, Université Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging und Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria; and
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging und Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging und Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Center for Health and Bioresources, Austrian Institute of Technology GmbH, Seibersdorf, Austria
| |
Collapse
|
46
|
Personalized therapeutic delivery in the neurosurgical operating room. Proc Natl Acad Sci U S A 2018; 115:8846-8848. [PMID: 30127023 DOI: 10.1073/pnas.1812559115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Kang JH, Cho J, Ko YT. Investigation on the effect of nanoparticle size on the blood-brain tumour barrier permeability by in situ perfusion via internal carotid artery in mice. J Drug Target 2018; 27:103-110. [PMID: 29972326 DOI: 10.1080/1061186x.2018.1497037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a limiting factor in nanoparticle drug delivery to the brain, and various attempts have been made to overcome it for efficient drug delivery. Nowadays, it was considered as further issue for brain-drug delivery that the nanoparticle delivered to brain through the BBB reach cancer cells in tumour tissue. In this study, we investigated the effect of nanoparticle size on blood-brain tumour barrier (BBTB) permeation of fluorescence-labelled gold nanoparticles (AuNPs) in a mouse model of orthotopic glioblastoma multiforme (GBM), established by intracranial implantation of luciferase-expressing human glioblastoma U87MG cells. AuNPs sized 10, 50, and 100 nm were perfused into the GBM mice via internal carotid artery (ICA) for 5 min. Immediately after perfusion, the brains were fixed and prepared for LSCM observation. The AuNPs distribution in the normal and tumorous brain tissues was analysed qualitatively and quantitatively. Higher distribution of AuNPs was observed in the tumorous tissue than in the normal tissue. Furthermore, the smallest nanoparticle, 10 nm AuNPs, was widely distributed in the brain tumour tissue, whereas the 50 and 100 nm AuNPs were located near the blood vessels. Therefore, nanoparticle size affected the permeation of nanoparticles from the blood into brain tumour tissue.
Collapse
Affiliation(s)
- Ji Hee Kang
- a College of Pharmacy, Gachon Institute of Pharmaceutical Sciences , Gachon University , Incheon , South Korea
| | - Jinsung Cho
- a College of Pharmacy, Gachon Institute of Pharmaceutical Sciences , Gachon University , Incheon , South Korea
| | - Young Tag Ko
- a College of Pharmacy, Gachon Institute of Pharmaceutical Sciences , Gachon University , Incheon , South Korea
| |
Collapse
|
48
|
Li M, Shi K, Tang X, Wei J, Cun X, Chen X, Yu Q, Zhang Z, He Q. pH-sensitive folic acid and dNP2 peptide dual-modified liposome for enhanced targeted chemotherapy of glioma. Eur J Pharm Sci 2018; 124:240-248. [PMID: 30071282 DOI: 10.1016/j.ejps.2018.07.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/27/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
Abstract
Effective chemotherapy for clinical glioma treatment is still lacking due to the poor penetration of blood-brain barrier (BBB) and the poor internalization into tumor cells. To facilitate the transmigration across the BBB as well as the glioma targeting of chemotherapeutics, we constructed cell penetrating peptide dNP2 and tumor microenvironment-cleavable folic acid (FA) dual modified, paclitaxel (PTX) loaded liposome for the targeted delivery of glioma. The modification of dNP2 significantly enhanced the transmigration across the BBB in an in vitro BBB model. The acid-cleavable cFd-Lip/PTX exhibited sensitive cleavage of FA at pH 6.8, which led to enhanced cellular uptake mediated by both cell penetrating peptide dNP2 and the interaction between FA and folate receptor (FR) on the glioma cells. After intravenous injection, compared with non-cleavable Fd-Lip and single modified liposomes, cFd-Lip enhanced the accumulation in orthotropic glioma and improved the anti-tumor effect of glioma-bearing mice. The dual modified liposomes also facilitated deep penetration into tumor cells and consequently enhanced the cytotoxicity of PTX-loaded liposomes. The acid-cleavable dual modified strategy retained the BBB penetrating and tumor targeting ability, meanwhile, the cleavage of FA further maximized the cell permeability of dNP2, exhibiting enhanced tumor targeting effect. The multi-targeting strategy provides a promising approach towards targeted chemotherapy for glioma.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kairong Shi
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xian Tang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiaojie Wei
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingli Cun
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoxiao Chen
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qianwen Yu
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qin He
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
49
|
Barriers to Effective Drug Treatment for Brain Metastases: A Multifactorial Problem in the Delivery of Precision Medicine. Pharm Res 2018; 35:177. [PMID: 30003344 DOI: 10.1007/s11095-018-2455-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022]
Abstract
The treatment of metastatic lesions in the brain represents a serious unmet medical need in the field of neuro-oncology. Even though many effective compounds have demonstrated success in treating peripheral (non-CNS) tumors with targeted agents, one aspect of this lack of success in the brain may be related to poor delivery of otherwise effective compounds. Many factors can influence the brain delivery of these agents, but one key barrier is a heterogeneously "leaky" BBB that expresses efflux transporters that limit the BBB permeability for many targeted agents. Future success in therapeutics for brain metastases must take into account the adequate delivery of "active, free drug" to the target, and may include combinations of targeted drugs that are appropriate to address each individual patient's tumor type. This review discusses some issues that are pertinent to precision medicine for brain metastases, using specific examples of tumor types that have a high incidence of brain metastases.
Collapse
|
50
|
Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A. The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface 2018; 14:rsif.2017.0490. [PMID: 29118112 DOI: 10.1098/rsif.2017.0490] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion.
Collapse
Affiliation(s)
- J C L Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - K Talkenberger
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - M Seifert
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - B Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Consortium (DKTK), partner site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Hawkins-Daarud
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - K R Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - H Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - A Deutsch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| |
Collapse
|