1
|
Volpe DA. Application of transporter assays for drug discovery and development: an update of the literature. Expert Opin Drug Discov 2024; 19:1247-1257. [PMID: 39105537 DOI: 10.1080/17460441.2024.2387790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Determining whether a new drug is a substrate, inhibitor or inducer of efflux or uptake membrane transporters has become a routine process during drug discovery and development. In vitro assays are utilized to establish whether a new drug has the potential to be an object (substrate) or precipitant (inhibitor, inducer) in transporter-mediated clinical drug-drug interactions. The findings from these in vitro experiments are then used to determine whether further in vivo drug interaction studies are necessary for a new drug. AREAS COVERED This article provides an update on in vitro transporter assays, focusing on new uses of transfected cells, time-dependent inhibition, transporter induction, and complex model systems. EXPERT OPINION The newer in vitro assays add to the toolbox in defining new drugs as transporter substrates, inhibitors, or inducers. Complex models such as spheroids, organoids, and microphysiological systems require standardization and further research with model transporter substrates and inhibitors. In drug discovery, the more traditional transporter assays may be employed as substrate and inhibitor screening assays. In drug development, more complex cell models can be employed in later drug development to better understand how transporter(s) are involved in the absorption, distribution, and excretion of new drugs.
Collapse
Affiliation(s)
- Donna A Volpe
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
2
|
Volpe DA. Knockout Transporter Cell Lines to Assess Substrate Potential Towards Efflux Transporters. AAPS J 2024; 26:79. [PMID: 38981917 DOI: 10.1208/s12248-024-00950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance transporter 2 (MRP2) are efflux transporters involved in the absorption, excretion, and distribution of drugs. Bidirectional cell assays are recognized models for evaluating the potential of new drugs as substrates or inhibitors of efflux transporters. However, the assays are complicated by a lack of selective substrates and/or inhibitors, as well simultaneous expression of several efflux transporters in cell lines used in efflux models. This project aims to evaluate an in vitro efflux cell assay employing model substrates and inhibitors of P-gp, BCRP and MRP2 with knockout (KO) cell lines. The efflux ratios (ER) of P-gp (digoxin, paclitaxel), BCRP (prazosin, rosuvastatin), MRP2 (etoposide, olmesartan) and mixed (methotrexate, mitoxantrone) substrates were determined in wild-type C2BBe1 and KO cells. For digoxin and paclitaxel, the ER decreased to less than 2 in the cell lines lacking P-gp expression. The ER decreased to less than 3 for prazosin and less than 2 for rosuvastatin in the cell lines lacking BCRP expression. For etoposide and olmesartan, the ER decreased to less than 2 in the cell lines lacking MRP2 expression. The ER of methotrexate and mitoxantrone decreased in single- and double-KO cells without BCRP and MRP2 expression. These results show that KO cell lines have the potential to better interpret complex drug-transporter interactions without depending upon multi-targeted inhibitors or overlapping substrates. For drugs that are substrates of multiple transporters, the single- and double-KO cells may be used to assess their affinities for the different transporters.
Collapse
Affiliation(s)
- Donna A Volpe
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, Maryland, 20993-0002, USA.
| |
Collapse
|
3
|
Shi Y, Reker D, Byrne JD, Kirtane AR, Hess K, Wang Z, Navamajiti N, Young CC, Fralish Z, Zhang Z, Lopes A, Soares V, Wainer J, von Erlach T, Miao L, Langer R, Traverso G. Screening oral drugs for their interactions with the intestinal transportome via porcine tissue explants and machine learning. Nat Biomed Eng 2024; 8:278-290. [PMID: 38378821 DOI: 10.1038/s41551-023-01128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 10/01/2023] [Indexed: 02/22/2024]
Abstract
In vitro systems that accurately model in vivo conditions in the gastrointestinal tract may aid the development of oral drugs with greater bioavailability. Here we show that the interaction profiles between drugs and intestinal drug transporters can be obtained by modulating transporter expression in intact porcine tissue explants via the ultrasound-mediated delivery of small interfering RNAs and that the interaction profiles can be classified via a random forest model trained on the drug-transporter relationships. For 24 drugs with well-characterized drug-transporter interactions, the model achieved 100% concordance. For 28 clinical drugs and 22 investigational drugs, the model identified 58 unknown drug-transporter interactions, 7 of which (out of 8 tested) corresponded to drug-pharmacokinetic measurements in mice. We also validated the model's predictions for interactions between doxycycline and four drugs (warfarin, tacrolimus, digoxin and levetiracetam) through an ex vivo perfusion assay and the analysis of pharmacologic data from patients. Screening drugs for their interactions with the intestinal transportome via tissue explants and machine learning may help to expedite drug development and the evaluation of drug safety.
Collapse
Affiliation(s)
- Yunhua Shi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Reker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - James D Byrne
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Ameya R Kirtane
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kaitlyn Hess
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhuyi Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Natsuda Navamajiti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Cameron C Young
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary Fralish
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Zilu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aaron Lopes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vance Soares
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob Wainer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas von Erlach
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lei Miao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Parvez MM, Sadighi A, Ahn Y, Keller SF, Enoru JO. Uptake Transporters at the Blood-Brain Barrier and Their Role in Brain Drug Disposition. Pharmaceutics 2023; 15:2473. [PMID: 37896233 PMCID: PMC10610385 DOI: 10.3390/pharmaceutics15102473] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Uptake drug transporters play a significant role in the pharmacokinetic of drugs within the brain, facilitating their entry into the central nervous system (CNS). Understanding brain drug disposition is always challenging, especially with respect to preclinical to clinical translation. These transporters are members of the solute carrier (SLC) superfamily, which includes organic anion transporter polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), and amino acid transporters. In this systematic review, we provide an overview of the current knowledge of uptake drug transporters in the brain and their contribution to drug disposition. Here, we also assemble currently available proteomics-based expression levels of uptake transporters in the human brain and their application in translational drug development. Proteomics data suggest that in association with efflux transporters, uptake drug transporters present at the BBB play a significant role in brain drug disposition. It is noteworthy that a significant level of species differences in uptake drug transporters activity exists, and this may contribute toward a disconnect in inter-species scaling. Taken together, uptake drug transporters at the BBB could play a significant role in pharmacokinetics (PK) and pharmacodynamics (PD). Continuous research is crucial for advancing our understanding of active uptake across the BBB.
Collapse
Affiliation(s)
- Md Masud Parvez
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Armin Sadighi
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Steve F. Keller
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Julius O. Enoru
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| |
Collapse
|
5
|
Han H, Akiyoshi T, Morita T, Tsuchitani T, Nabeta M, Yajima K, Imaoka A, Ohtani H. The Effects of Jabara Juice on the Intestinal Permeation of Fexofenadine. Biol Pharm Bull 2023; 46:1745-1752. [PMID: 38044133 DOI: 10.1248/bpb.b23-00479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Jabara juice and its component narirutin inhibit the activity of organic anion-transporting polypeptides (OATPs) 1A2 and OATP2B1, which are considered to play significant roles in the intestinal absorption of fexofenadine. In this study, we investigated the effects of jabara juice on the intestinal absorption of fexofenadine in mice and the inhibitory effects of jabara juice and narirutin on the permeation of fexofenadine using Caco-2 cell monolayers and LLC-GA5-COL300 cell monolayers. In the in vivo study, the area under the plasma concentration-time curve (AUC) of fexofenadine in mice was increased 1.8-fold by jabara juice. In the permeation study, 5% jabara juice significantly decreased the efflux ratio (ER) of fexofenadine for Caco-2 monolayers. Furthermore, the ERs of fexofenadine and digoxin, which is a typical substrate of P-glycoprotein (P-gp), for LLC-GA5-COL300 cell monolayers were decreased in a concentration-dependent manner by jabara juice extract, suggesting that jabara juice may increase the intestinal absorption of fexofenadine by inhibiting P-gp, rather than by narirutin inhibiting OATPs. The present study showed that jabara juice increases the intestinal absorption of fexofenadine both in vivo and in vitro. The intestinal absorption of fexofenadine may be altered by the co-administration of jabara juice in the clinical setting.
Collapse
Affiliation(s)
- Hongye Han
- Graduate School of Pharmaceutical Sciences, Keio University
| | - Takeshi Akiyoshi
- Graduate School of Pharmaceutical Sciences, Keio University
- Department of Clinical Pharmacokinetics, School of Medicine, Keio University
| | - Tokio Morita
- Graduate School of Pharmaceutical Sciences, Keio University
| | | | - Momoko Nabeta
- Graduate School of Pharmaceutical Sciences, Keio University
| | - Kodai Yajima
- Graduate School of Pharmaceutical Sciences, Keio University
| | - Ayuko Imaoka
- Graduate School of Pharmaceutical Sciences, Keio University
| | - Hisakazu Ohtani
- Graduate School of Pharmaceutical Sciences, Keio University
- Department of Clinical Pharmacokinetics, School of Medicine, Keio University
- Department of Pharmacy, Keio University Hospital
| |
Collapse
|
6
|
Feng D, Zhong G, Zuo Q, Wan Y, Xu W, He C, Lin C, Huang D, Chen F, Huang L. Knockout of ABC transporters by CRISPR/Cas9 contributes to reliable and accurate transporter substrate identification for drug discovery. Front Pharmacol 2022; 13:1015940. [PMID: 36386127 PMCID: PMC9649518 DOI: 10.3389/fphar.2022.1015940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 04/21/2024] Open
Abstract
It is essential to explore the relationship between drugs and transporters in the process of drug development. Strong background signals in nonhuman MDCK or LLC-PK1 cells and overlapping interference of inhibitors or RNAi in human Caco-2 cells mean that an ideal alternative could be to knock out specific transporter genes in Caco-2 cells. However, the application of gene knockout (KO) to Caco-2 cells is challenging because it is still inefficient to obtain rapidly growing Caco-2 subclones with double-allele KO through long-term monoclonal cultivation. Herein, CRISPR/Cas9, a low cost but more efficient and precise gene editing technology, was utilized to singly or doubly knockout the P-gp, BCRP, and MRP2 genes in Caco-2 cells. By combining this with single cell expansion, rapidly growing transporter-deficient subclones were successfully screened and established. Bidirectional transport assays with probe substrates and three protease inhibitors indicated that more reliable and detailed data could be drawn easily with these KO Caco-2 models. The six robust KO Caco-2 subclones could contribute to efficient in vitro drug transport research.
Collapse
Affiliation(s)
- Dongyan Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Guorui Zhong
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Qingxia Zuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yanbin Wan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wanqing Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Changsheng He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Cailing Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dongchao Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Feng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Naseem A, Pal A, Gowan S, Asad Y, Donovan A, Temesszentandrási-Ambrus C, Kis E, Gaborik Z, Bhalay G, Raynaud F. Intracellular Metabolomics Identifies Efflux Transporter Inhibitors in a Routine Caco-2 Cell Permeability Assay-Biological Implications. Cells 2022; 11:3286. [PMID: 36291153 PMCID: PMC9601193 DOI: 10.3390/cells11203286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2023] Open
Abstract
Caco-2 screens are routinely used in laboratories to measure the permeability of compounds and can identify substrates of efflux transporters. In this study, we hypothesized that efflux transporter inhibition of a compound can be predicted by an intracellular metabolic signature in Caco-2 cells in the assay used to test intestinal permeability. Using selective inhibitors and transporter knock-out (KO) cells and a targeted Liquid Chromatography tandem Mass Spectrometry (LC-MS) method, we identified 11 metabolites increased in cells with depleted P-glycoprotein (Pgp) activity. Four metabolites were altered with Breast Cancer Resistance (BCRP) inhibition and nine metabolites were identified in the Multidrug Drug Resistance Protein 2 (MRP2) signature. A scoring system was created that could discriminate among the three transporters and validated with additional inhibitors. Pgp and MRP2 substrates did not score as inhibitors. In contrast, BCRP substrates and inhibitors showed a similar intracellular metabolomic signature. Network analysis of signature metabolites led us to investigate changes of enzymes in one-carbon metabolism (folate and methionine cycles). Our data shows that methylenetetrahydrofolate reductase (MTHFR) protein levels increased with Pgp inhibition and Thymidylate synthase (TS) protein levels were reduced with Pgp and MRP2 inhibition. In addition, the methionine cycle is also affected by both Pgp and MRP2 inhibition. In summary, we demonstrated that the routine Caco-2 assay has the potential to identify efflux transporter inhibitors in parallel with substrates in the assays currently used in many DMPK laboratories and that inhibition of efflux transporters has biological consequences.
Collapse
Affiliation(s)
- Afia Naseem
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| | - Akos Pal
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| | - Sharon Gowan
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| | - Yasmin Asad
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| | - Adam Donovan
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| | | | - Emese Kis
- SOLVO Biotechnology, Charles River Company, Irinyi József u. 4-20, 1117 Budapest, Hungary
| | - Zsuzsanna Gaborik
- SOLVO Biotechnology, Charles River Company, Irinyi József u. 4-20, 1117 Budapest, Hungary
| | - Gurdip Bhalay
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| | - Florence Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| |
Collapse
|
8
|
Lai Y, Chu X, Di L, Gao W, Guo Y, Liu X, Lu C, Mao J, Shen H, Tang H, Xia CQ, Zhang L, Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B 2022; 12:2751-2777. [PMID: 35755285 PMCID: PMC9214059 DOI: 10.1016/j.apsb.2022.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA 94404, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Wei Gao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, IN 46221, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA
| | - Chuang Lu
- Drug Metabolism and Pharmacokinetics, Accent Therapeutics, Inc. Lexington, MA 02421, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, CA 94080, USA
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA
| | - Huaping Tang
- Bioanalysis and Biomarkers, Glaxo Smith Kline, King of the Prussia, PA 19406, USA
| | - Cindy Q. Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, CDER, FDA, Silver Spring, MD 20993, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
9
|
Teng H, Deng H, He Y, Lv Q, Chen L. The role of dietary flavonoids for modulation of ATP binding cassette transporter mediated multidrug resistance. EFOOD 2021. [DOI: 10.53365/efood.k/144604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Flavonoids are widely existing compounds with enormous pharmacological effects from food and medicine. However, the low bioavailability in intestinal absorption and metabolism limits their clinical application. Intestinal efflux ABC (ATP binding cassette) transporters, including P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), act as "pumping doors" to regulate the efflux of flavonoids from intestinal epithelial cells into the intestinal cavity or the systemic circulation. The present review describes the critical effect of ABC transporters involved in the efflux of flavonoids which depend on its efflux direction. And the role of flavonoids for modulation of intestinal ABC transporters was emphasized and several examples were given. We summarized that the resistance effect of flavonoid-mediated multidrug on ABC transporters may influence the bioavailability of drugs, bioactive ingredients and/or toxic compounds upon dietary uptake. Meanwhile, flavonoids functionalized as reversing agents of the ABC transporter may be an important mechanism for unexpected food-drug, food-toxin or food-food interactions. The overview also indicates that elucidation of the action and mechanism of the intestinal metabolic enzymes-efflux transporters coupling will lay a foundation for improving the bioavailability of flavonoids <i>in vivo</i> and increasing their clinical efficacy.
Collapse
|
10
|
Wegler C, Gazit M, Issa K, Subramaniam S, Artursson P, Karlgren M. Expanding the Efflux In Vitro Assay Toolbox: A CRISPR-Cas9 Edited MDCK Cell Line with Human BCRP and Completely Lacking Canine MDR1. J Pharm Sci 2020; 110:388-396. [PMID: 33007277 DOI: 10.1016/j.xphs.2020.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022]
Abstract
The Breast Cancer Resistance Protein (BCRP) is a key transporter in drug efflux and drug-drug interactions. However, endogenous expression of Multidrug Resistance Protein 1 (MDR1) confounds the interpretation of BCRP-mediated transport in in vitro models. Here we used a CRISPR-Cas9 edited Madin-Darby canine kidney (MDCK) II cell line (MDCKcMDR1-KO) for stable expression of human BCRP (hBCRP) with no endogenous canine MDR1 (cMDR1) expression (MDCK-hBCRPcMDR1-KO). Targeted quantitative proteomics verified expression of hBCRP, and global analysis of the entire proteome corroborated no or very low background expression of other drug transport proteins or metabolizing enzymes. This new cell line, had similar proteome like MDCKcMDR1-KO and a previously established, corresponding cell line overexpressing human MDR1 (hMDR1), MDCK-hMDR1cMDR1-KO. Functional studies with MDCK-hBCRPcMDR1-KO confirmed high hBCRP activity. The MDCK-hBCRPcMDR1-KO cell line together with the MDCK-hMDR1cMDR1-KO easily and accurately identified shared or specific substrates of the hBCRP and the hMDR1 transporters. These cell lines offer new, improved in vitro tools for the assessment of drug efflux and drug-drug interactions in drug development.
Collapse
Affiliation(s)
- Christine Wegler
- Department of Pharmacy, Drug Delivery Research Group, Uppsala University, Uppsala, Sweden; Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala, Sweden
| | - Meryem Gazit
- Department of Pharmacy, Drug Delivery Research Group, Uppsala University, Uppsala, Sweden
| | - Karolina Issa
- Department of Pharmacy, Drug Delivery Research Group, Uppsala University, Uppsala, Sweden
| | - Sujay Subramaniam
- Department of Pharmacy, Drug Delivery Research Group, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Drug Delivery Research Group, Uppsala University, Uppsala, Sweden; Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Drug Delivery Research Group, Uppsala University, Uppsala, Sweden; Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala, Sweden.
| |
Collapse
|
11
|
Characterization and Validation of Canine P-Glycoprotein-Deficient MDCK II Cell Lines for Efflux Substrate Screening. Pharm Res 2020; 37:194. [PMID: 32918191 DOI: 10.1007/s11095-020-02895-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE We characterized three canine P-gp (cP-gp) deficient MDCKII cell lines. Their relevance for identifying efflux transporter substrates and predicting limitation of brain penetration were evaluated. In addition, we discuss how compound selection can be done in drug discovery by using these cell systems. METHOD hMDR1, hBCRP-transfected, and non-transfected MDCKII ZFN cells (all with knock-down of endogenous cP-gp) were used for measuring permeability and efflux ratios for substrates. The compounds were also tested in MDR1_Caco-2 and BCRP_Caco-2, each with a double knock-out of BCRP/MRP2 or MDR1/MRP2 transporters respectively. Efflux results were compared between the MDCK and Caco-2 models. Furthermore, in vitro MDR1_ZFN efflux data were correlated with in vivo unbound drug brain-to-plasma partition coefficient (Kp,uu). RESULTS MDR1 and BCRP substrates are correctly classified and robust transporter affinities with control substrates are shown. Cell passage mildly influenced mRNA levels of transfected transporters, but the transporter activity was proven stable for several years. The MDCK and Caco-2 models were in high consensus classifying same efflux substrates. Approx. 80% of enlisted substances were correctly predicted with the MDR1_ZFN model for brain penetration. CONCLUSION cP-gp deficient MDCKII ZFN models are reliable tools to identify MDR1 and BCRP substrates and useful for predicting efflux liability for brain penetration.
Collapse
|
12
|
Negoro R, Kawai K, Ichikawa M, Deguchi S, Takayama K, Mizuguchi H. Establishment of MDR1-knockout human induced pluripotent stem cell line. Drug Metab Pharmacokinet 2020; 35:288-296. [PMID: 32303458 DOI: 10.1016/j.dmpk.2020.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Multiple drug resistance 1 (MDR1) is highly expressed in various organs, including the liver, small intestine, and blood-brain barrier (BBB). Because MDR1 plays important roles in the excretion of many drugs, it is necessary to evaluate whether drug candidates are potential substrates of MDR1. Recently, many researchers have shown that human induced pluripotent stem (iPS) cell-derived differentiated cells such as hepatocytes and enterocytes can be applied for pharmacokinetic testing. Here, we attempted to generate MDR1-knockout (KO) iPS cell lines using genome editing technology. The correctly targeted human iPS cell lines were successfully obtained. The expression levels of pluripotent markers in human iPS cells were not changed by MDR1 knockout. The gene expression levels of hepatic markers in MDR1-KO iPS-derived hepatocyte-like cells were higher than those in undifferentiated MDR1-KO iPS cells, suggesting that MDR1-KO iPS cells have hepatic differentiation capacity. In addition, MDR1 expression levels were hardly detected in MDR1-KO iPS cell-derived hepatocyte-like cells. We thus succeeded in establishing MDR1-KO iPS cell lines that could be utilized for pharmacokinetic testing.
Collapse
Affiliation(s)
- Ryosuke Negoro
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kanae Kawai
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Moe Ichikawa
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Sayaka Deguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan; PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Xun T, Lin Z, Zhan X, Song S, Mo L, Feng H, Yang Q, Guo D, Yang X. Advanced oxidation protein products upregulate efflux transporter expression and activity through activation of the Nrf-2-mediated signaling pathway in vitro and in vivo. Eur J Pharm Sci 2020; 149:105342. [PMID: 32315774 DOI: 10.1016/j.ejps.2020.105342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022]
Abstract
Clinical and benchtop studies suggest that chronic kidney disease (CKD) alters both renal and nonrenal clearance of drugs. Although studies have documented that the accumulating uremic toxins in the body under CKD conditions are humoral factors that alter the expression and/or activity of drug transporters, the specific process is poorly understood. In this study, we found that advanced oxidation protein products (AOPPs), which are a modified protein uremic toxin, could upregulate efflux transporters, including P-glycoprotein (ABCB1), multi-drug resistance-associated protein 2 (ABCC2) and breast cancer resistance protein (ABCG2) expression in CKD rat models and in HepG2 cells. Our research shows that renal function decline was associated with the accumulation of AOPPs in serum and the upregulation of efflux transporters in the liver in two rat models of CKD. In HepG2 cells, AOPPs significantly increased the expression of efflux transporters in a dose- and time-dependent manner and upregulated the mRNA expression, protein expression and activity of efflux transporters, but bovine serum albumin (BSA), a synthetic precursor of AOPPs, had no effect. This effect correlated with AOPPs activation of the nuclear factor E2-related factor 2 (Nrf-2)-mediated signaling pathway. Further investigation of the regulation of Nrf-2 by AOPPs revealed that ML385 and siNrf-2 abolished the upregulatory effects of AOPPs. These findings suggest that AOPPs upregulate ABCB1, ABCG2 and ABCC2 through Nrf-2 signaling pathways. Protein uremic toxins, such as AOPPs, may modify the nonrenal clearance of drugs in patients with CKD through effects on drug transporters.
Collapse
Affiliation(s)
- Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhufen Lin
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Xia Zhan
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaolian Song
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
14
|
Chen C, Zhou H, Guan C, Zhang H, Li Y, Jiang X, Dong Z, Tao Y, Du J, Wang S, Zhang T, Du N, Guo J, Wu Y, Song Z, Luan H, Wang Y, Du H, Zhang S, Li C, Chang H, Wang T. Applicability of free drug hypothesis to drugs with good membrane permeability that are not efflux transporter substrates: A microdialysis study in rats. Pharmacol Res Perspect 2020; 8:e00575. [PMID: 32266794 PMCID: PMC7138916 DOI: 10.1002/prp2.575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
In clinical pharmacology, the free drug hypothesis has been widely applied in the interpretation of the relationship between pharmacokinetics and pharmacodynamics (PK/PD). The free drug hypothesis assumes that the unbound drug concentration in blood is the same as that in the site of action at steady state. The objective of this study is to demonstrate whether the free drug hypothesis is universally applicable for all drugs. The unbound concentrations of the 18 compounds in blood and in brain interstitial fluids (ISF) at steady state following constant intravenous infusion were simultaneously monitored up to 6 hours via in vivo microdialysis technique. Based on the permeability and efflux ratio (ER), the test compounds can be divided into two classes. Class I includes the compounds with good membrane permeability that are not substrates of efflux transporters (eg, P-gp, BCRP, and MRPs), whereas Class II includes the compounds that are substrates of efflux transporters. The steady-state unbound drug concentrations in blood, brain, and CSF are quantitatively very similar for Class I compounds, whereas the steady-state unbound concentrations in the brain and CSF are significantly lower than those in blood for Class II compounds. These results strongly suggest that the free drug hypothesis is not universal for all drugs but is only applicable for drugs with good permeability that are not substrates of efflux transporters.
Collapse
Affiliation(s)
- Chun Chen
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Hongyu Zhou
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Chi Guan
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Huanhuan Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Yingying Li
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Xue Jiang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Zheng Dong
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Yuanyuan Tao
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Juan Du
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Shuyao Wang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Teng Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Na Du
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Junyang Guo
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Yaqiong Wu
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Zehai Song
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Haofei Luan
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Yu Wang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Hongwen Du
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Shaofeng Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Chen Li
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Hang Chang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Tao Wang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| |
Collapse
|
15
|
Zhang L, Liang C, Xu P, Liu M, Xu F, Wang X. Characterization of in vitro Mrp2 transporter model based on intestinal organoids. Regul Toxicol Pharmacol 2019; 108:104449. [DOI: 10.1016/j.yrtph.2019.104449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/17/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
16
|
Willers C, Svitina H, Rossouw MJ, Swanepoel RA, Hamman JH, Gouws C. Models used to screen for the treatment of multidrug resistant cancer facilitated by transporter-based efflux. J Cancer Res Clin Oncol 2019; 145:1949-1976. [PMID: 31292714 DOI: 10.1007/s00432-019-02973-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Efflux transporters of the adenosine triphosphate-binding cassette (ABC)-superfamily play an important role in the development of multidrug resistance (multidrug resistant; MDR) in cancer. The overexpression of these transporters can directly contribute to the failure of chemotherapeutic drugs. Several in vitro and in vivo models exist to screen for the efficacy of chemotherapeutic drugs against MDR cancer, specifically facilitated by efflux transporters. RESULTS This article reviews a range of efflux transporter-based MDR models used to test the efficacy of compounds to overcome MDR in cancer. These models are classified as either in vitro or in vivo and are further categorised as the most basic, conventional models or more complex and advanced systems. Each model's origin, advantages and limitations, as well as specific efflux transporter-based MDR applications are discussed. Accordingly, future modifications to existing models or new research approaches are suggested to develop prototypes that closely resemble the true nature of multidrug resistant cancer in the human body. CONCLUSIONS It is evident from this review that a combination of both in vitro and in vivo preclinical models can provide a better understanding of cancer itself, than using a single model only. However, there is still a clear lack of progression of these models from basic research to high-throughput clinical practice.
Collapse
Affiliation(s)
- Clarissa Willers
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Hanna Svitina
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Michael J Rossouw
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Roan A Swanepoel
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Josias H Hamman
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Chrisna Gouws
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
17
|
Safar Z, Kis E, Erdo F, Zolnerciks JK, Krajcsi P. ABCG2/BCRP: variants, transporter interaction profile of substrates and inhibitors. Expert Opin Drug Metab Toxicol 2019; 15:313-328. [PMID: 30856014 DOI: 10.1080/17425255.2019.1591373] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION ABCG2 has a broad substrate specificity and is one of the most important efflux proteins modulating pharmacokinetics of drugs, nutrients and toxicokinetics of toxicants. ABCG2 is an important player in transporter-mediated drug-drug interactions (tDDI). Areas covered: The aims of the review are i) to cover transporter interaction profile of substrates and inhibitors that can be utilized to test interaction of drug candidates with ABCG2, ii) to highlight main characteristics of in vitro testing and iii) to describe the structural basis of the broad substrate specificity of the protein. Preclinical data utilizing Abcg2/Bcrp1 knockouts and clinical studies showing effect of ABCG2 c.421C>A polymorphism on pharmacokinetics of drugs have provided evidence for a broad array of drug substrates and support drug - ABCG2 interaction testing. A consensus on using rosuvastatin and sulfasalazine as intestinal substrates for clinical studies is in the formation. Other substrates relevant to the therapeutic area can be considered. Monolayer efflux assays and vesicular transport assays have been extensively utilized in vitro. Expert opinion: Clinical substrates display complex pharmacokinetics due to broad interaction profiles with multiple transporters and metabolic enzymes. Substrate-dependent inhibition has been observed for several inhibitors. Harmonization of in vitro and in vivo testing makes sense. However, rosuvastatin and sulfasalazine are not efficiently transported in either MDCKII or LLC-PK1-based monolayers. Caco-2 monolayer assays and vesicular transport assays are potential alternatives.
Collapse
Affiliation(s)
| | - Emese Kis
- a SOLVO Biotechnology , Szeged , Hungary
| | - Franciska Erdo
- b Faculty of Information Technology and Bionics , Pázmány Péter Catholic University , Budapest , Hungary
| | | | - Peter Krajcsi
- a SOLVO Biotechnology , Szeged , Hungary.,d Department of Morphology and Physiology. Faculty of Health Sciences , Semmelweis University , Budapest , Hungary
| |
Collapse
|
18
|
Current Research Method in Transporter Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:203-240. [PMID: 31571166 DOI: 10.1007/978-981-13-7647-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transporters play an important role in the absorption, distribution, metabolism, and excretion (ADME) of drugs. In recent years, various in vitro, in situ/ex vivo, and in vivo methods have been established for studying transporter function and drug-transporter interaction. In this chapter, the major types of in vitro models for drug transport studies comprise membrane-based assays, cell-based assays (such as primary cell cultures, immortalized cell lines), and transporter-transfected cell lines with single transporters or multiple transporters. In situ/ex vivo models comprise isolated and perfused organs or tissues. In vivo models comprise transporter gene knockout models, natural mutant animal models, and humanized animal models. This chapter would be focused on the methods for the study of drug transporters in vitro, in situ/ex vivo, and in vivo. The applications, advantages, or limitations of each model and emerging technologies are also mentioned in this chapter.
Collapse
|
19
|
Karlgren M, Simoff I, Keiser M, Oswald S, Artursson P. CRISPR-Cas9: A New Addition to the Drug Metabolism and Disposition Tool Box. Drug Metab Dispos 2018; 46:1776-1786. [PMID: 30126863 DOI: 10.1124/dmd.118.082842] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9), i.e., CRISPR-Cas9, has been extensively used as a gene-editing technology during recent years. Unlike earlier technologies for gene editing or gene knockdown, such as zinc finger nucleases and RNA interference, CRISPR-Cas9 is comparably easy to use, affordable, and versatile. Recently, CRISPR-Cas9 has been applied in studies of drug absorption, distribution, metabolism, and excretion (ADME) and for ADME model generation. To date, about 50 papers have been published describing in vitro or in vivo CRISPR-Cas9 gene editing of ADME and ADME-related genes. Twenty of these papers describe gene editing of clinically relevant genes, such as ATP-binding cassette drug transporters and cytochrome P450 drug-metabolizing enzymes. With CRISPR-Cas9, the ADME tool box has been substantially expanded. This new technology allows us to develop better and more predictive in vitro and in vivo ADME models and map previously underexplored ADME genes and gene families. In this mini-review, we give an overview of the CRISPR-Cas9 technology and summarize recent applications of CRISPR-Cas9 within the ADME field. We also speculate about future applications of CRISPR-Cas9 in ADME research.
Collapse
Affiliation(s)
- M Karlgren
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - I Simoff
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - M Keiser
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - S Oswald
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - P Artursson
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| |
Collapse
|
20
|
Correlation Analysis of Potential Breast Cancer Resistance Protein Probes in Different Monolayer Systems. J Pharm Sci 2018; 107:2742-2747. [DOI: 10.1016/j.xphs.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 01/23/2023]
|
21
|
Wu JJ, Zhu YF, Guo ZZ, Lou YM, He SG, Guan Y, Zhu LJ, Liu ZQ, Lu LL, Liu L. Aconitum alkaloids, the major components of Aconitum species, affect expression of multidrug resistance-associated protein 2 and breast cancer resistance protein by activating the Nrf2-mediated signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 44:87-97. [PMID: 29277460 DOI: 10.1016/j.phymed.2017.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/02/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Aconitum alkaloids from Aconitum species are often used to treat arthritis and rheumatic diseases but have the drawback of high toxicity. Identifying their pharmacokinetic behaviour is important for the safe clinical application of Aconitum species. Efflux transporters (ETs), including P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP), have important functions in regulating the pharmacokinetic behaviours of drugs and in herb-herb or herb-drug interactions (HDIs). The Aconitum alkaloids regulate P-gp expression and function, but their effects on MRP2 and BCRP expression remain unknown. PURPOSE To determine the effects of three Aconitum alkaloids, aconitine (AC), benzoylaconine (BAC), and aconine, on MRP2 and BCRP. METHODS The levels of the protein and mRNA expression of MRP2 and BCRP in vivo and in vitro were measured via Western blotting and real-time PCR, respectively. Fluorescence signals of MRP2 and BCRP were detected via confocal fluorescence microscopy. A reporter assay using HepG2-C8 cells, which were generated by transfecting plasmids containing the antioxidant response element (ARE)-luciferin gene into HepG2 cells, was used to examine the ARE-luciferin activity. The transport activities of MRP2 and BCRP were tested via flow cytometry using substrate probes. RESULTS The Aconitum alkaloids significantly up-regulated MRP2 and BCRP expression, accompanied by a marked increase in nuclear factor E2-related factor-2 (Nrf2) expression in the jejunum, ileum, and colon of FVB mice, in the order AC < BAC < aconine. In the in vitro model, the Aconitum alkaloids increased MRP2 and BCRP expression in Caco-2 and LS174T cells, in the order AC < BAC < aconine. Additionally, these alkaloids promoted the translocation of Nrf2 from the cytoplasm to the nucleus and significantly increased ARE-luciferin activity in HepG2-C8 cells. Luteolin, a potent inhibitor of Nrf2, markedly prevented MRP2 and BCRP expression from being induced by the three Aconitum alkaloids. The efflux activity of MRP2 was also significantly increased in cells receiving the same treatment. CONCLUSIONS The tested Aconitum alkaloids significantly increased the expression of MRP2 and BCRP by activating the Nrf2-mediated signalling pathway and enhanced the efflux activity of MRP2. The potential for herb-herb interactions or HDIs exists when Aconitum species are co-administered with substrate drugs that are transported via MRP2 and BCRP. Therefore, the Aconitum alkaloids may be used as quality indicators for the herbs of Aconitum species.
Collapse
Affiliation(s)
- Jin-Jun Wu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuan-Feng Zhu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhen-Zhen Guo
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yan-Mei Lou
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shu-Gui He
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yang Guan
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Li-Jun Zhu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhong-Qiu Liu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Lin-Lin Lu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
22
|
Fujishiro H, Hamao S, Tanaka R, Kambe T, Himeno S. Concentration-dependent roles of DMT1 and ZIP14 in cadmium absorption in Caco-2 cells. J Toxicol Sci 2018; 42:559-567. [PMID: 28904291 DOI: 10.2131/jts.42.559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Intestinal absorption of cadmium (Cd) is considered to be mediated mainly by the ferrous iron transporter DMT1, or the calcium transporter CaT1. The roles of zinc transporters such as ZIP8 and ZIP14 remain unclear, and the roles of these four transporters in the intestinal uptake of Cd under physiological conditions have not been compared. Here, we used a trans-well cell culture system to investigate the effects of the down-regulation of these four transporters on the uptake of Cd from the apical side of enterocytes. We used a Caco-2-kh cell line that can form tight junctions within a few days. The transfection of DMT1 siRNA significantly decreased the Cd uptake from the apical side at 5 μM, but not at 0.1 or 1 μM. The transfection of ZIP14 siRNA markedly decreased the Cd uptake at 0.1 and 1 μM, but not at 5 μM. The transfection of siRNA of CaT1 or ZIP8 did not alter the Cd uptake at any concentrations of Cd examined. These results suggest that DMT1 and ZIP14 play different roles in intestinal Cd absorption depending on the concentration of Cd.
Collapse
Affiliation(s)
- Hitomi Fujishiro
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Satoko Hamao
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Rina Tanaka
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
23
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
24
|
Zhang Q, Zhang Y, Boer J, Shi JG, Hu P, Diamond S, Yeleswaram S. In Vitro Interactions of Epacadostat and its Major Metabolites with Human Efflux and Uptake Transporters: Implications for Pharmacokinetics and Drug Interactions. Drug Metab Dispos 2017; 45:612-623. [PMID: 28283500 DOI: 10.1124/dmd.116.074609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/03/2017] [Indexed: 02/13/2025] Open
Abstract
Epacadostat (EPAC) is a first-in-class, orally active inhibitor of the enzyme indoleamine 2,3-dioxygenase 1 and has demonstrated promising clinical activity. In humans, three major plasma metabolites have been identified: M9 (a glucuronide-conjugate), M11 (a gut microbiota metabolite), and M12 (a secondary metabolite formed from M11). It is proposed, based on the human pharmacokinetics of EPAC, that the biliary excretion of M9, the most abundant metabolite, leads to the enterohepatic circulation of EPAC. Using various in vitro systems, we evaluated in the present study the vitro interactions of EPAC and its major metabolites with major drug transporters involved in drug absorption and disposition. EPAC is a substrate for efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), but it is not a substrate for hepatic uptake transporters [organic anion transporting polypeptides OATP1B1 and OATP1B3]. The low permeability of M9 suggests an essential role for transporters in its disposition. M9 is likely excreted from hepatocytes into bile via multidrug resistance-associated protein 2 (MRP2) and BCRP, excreted into blood via MRP3, and transported from blood back into hepatocytes via OATP1B1 and OATP1B3. M11 and M12 are not substrates for P-gp, OATP1B1 or OATP1B3, and M11, but not M12, is a substrate for BCRP. With respect to inhibition of drug transporters, the potential of EPAC, M9, M11, and M12 to cause clinical drug-drug interactions via inhibition of P-gp, BCRP, OATP1B1, OATP1B3, OAT1, OAT3, or organic cation transporter 2 was estimated to be low. The current investigation underlines the importance of metabolite-transporter interactions in the disposition of clinically relevant metabolites, which may have implications for the pharmacokinetics and drug interactions of parent drugs.
Collapse
Affiliation(s)
| | - Yan Zhang
- Incyte Corporation, Wilmington, Delaware
| | - Jason Boer
- Incyte Corporation, Wilmington, Delaware
| | - Jack G Shi
- Incyte Corporation, Wilmington, Delaware
| | - Peidi Hu
- Incyte Corporation, Wilmington, Delaware
| | | | | |
Collapse
|
25
|
Wu J, Zhu Y, Li F, Zhang G, Shi J, Ou R, Tong Y, Liu Y, Liu L, Lu L, Liu Z. Spica prunellae and its marker compound rosmarinic acid induced the expression of efflux transporters through activation of Nrf2-mediated signaling pathway in HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:1-11. [PMID: 27422165 DOI: 10.1016/j.jep.2016.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spica prunellae (SP) is a well-known traditional Chinese medicinal herb with properties of antihypertensive, antihyperglycemic, antiviral, anti-inflammatory, and antitumor activities. This herb is also popularly consumed as a food additive in some drinks or other food forms for treating pyreticosis. Rosmarinic acid (RA) is the marker compound from SP, which possesses anti-oxidative and anti-inflammatory functions. AIM OF THE STUDY This study aims to investigate the regulatory effect of the water extract of SP (WESP) and RA on efflux transports (ETs), including P-glycoprotein (p-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) in HepG2 cell line. Results would provide beneficial information for the proper application of SP in clinics. MATERIALS AND METHODS HepG2 cells were treated with different doses of the tested drugs for 24 or 96h. MTT assay was used to examine cell viability. The protein and mRNA levels of the ETs were measured by using Western blot and real-time PCR, respectively. Reporter assay was used to study the antioxidant response element (ARE)-luciferin activity by using HepG2-C8 cells, which were generated by transfecting plasmid containing ARE-luciferin gene into HepG2 cells. The transport activities of ETs were tested by using substrate probes. RESULTS WESP significantly (p<0.05) increased the expression of ETs in a dose-dependent manner. The increase caused by WESP was stronger than RA alone. Both WESP and RA promoted the translocation of nuclear factor E2-related factor-2 (Nrf2) from cytoplasm to the nucleus as well as significantly (p<0.05) enhanced the ARE-luciferin activity. WESP and RA also enhanced the efflux activity of P-gp and MRP2, accompanied by marked increase (p<0.05) in the intracellular ATP levels. CONCLUSIONS WESP could significantly induce the expression of ETs through the activation of Nrf2-mediated signaling pathway in HepG2 cells. RA could be one of the active compounds responsible for the induction. WESP and RA also enhanced the efflux activity of P-gp and MRP2, and the increased intracellular ATP levels were likely involved in this induction. Results of this study provide a better understanding of the regulation of SP on ETs and the underlying molecular mechanism. Results indicated that potential drug-drug interactions may exist when SP is co-administered with other substrate drugs that are transported via the ETs, especially P-gp and MRP2, thereby providing beneficial information for appropriate use of SP for clinical therapy.
Collapse
Affiliation(s)
- Jinjun Wu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuanfeng Zhu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fangyuan Li
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Guiyu Zhang
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jian Shi
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Rilan Ou
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yunli Tong
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuting Liu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Linlin Lu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| | - Zhongqiu Liu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
26
|
Wu J, Hu Y, Xiang L, Li S, Yuan Y, Chen X, Zhang Y, Huang W, Meng X, Wang P. San-Huang-Xie-Xin-Tang Constituents Exert Drug-Drug Interaction of Mutual Reinforcement at Both Pharmacodynamics and Pharmacokinetic Level: A Review. Front Pharmacol 2016; 7:448. [PMID: 27965575 PMCID: PMC5124576 DOI: 10.3389/fphar.2016.00448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/09/2016] [Indexed: 12/29/2022] Open
Abstract
Inflammatory disorders underlie varieties of human diseases. San-Huang-Xie-xin-Tang (SHXXT), composed with Rhizoma Rhei (Rheum palmatum L.), Rhizoma Coptidis (Coptis chinensis Franch), and Radix Scutellaria (Scutellaria baicalensis Georgi), is a famous formula which has been widely used in the fight against inflammatory abnormalities. Mutual reinforcement is one of the basic theories of traditional Chinese medicine. Here this article reviewed and analyzed the recent research on (1) How the main constituents of SHXXT impact on inflammation-associated signaling pathway molecules. (2) The interaction between the main constituents and efflux pumps or intestinal transporters. The goal of this work was to, (1) Provide evidence to support the theory of mutual reinforcement. (2) Clarify the key targets of SHXXT and suggest which targets need further investigation. (3) Give advice for the clinical use of SHXXT to elevated the absorption of main constituents and eventually promote oral bioavailability. We search literatures in scientific databases with key words of “each main SHXXT constituent,” in combination with “each main inflammatory pathway target molecule” or each main intestinal transporter, respectively. We report the effect of five main constituents on target molecules which lies in three main inflammatory signaling pathways, we as well investigate the interaction between constituents and intestinal transporter. We conclude, (1) The synergistic effect of constituents at both levels confirm the mutual reinforcement theory of TCM as it is proven in this work. (2) The effect of main constituents on downstream targets in nuclear need more further investigation. (3) Drug elevating the absorption of rhein, berberine and baicalein can be employed to promote oral bioavailability of SHXXT.
Collapse
Affiliation(s)
- Jiasi Wu
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Yingfan Hu
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Li Xiang
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Sheng Li
- Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu, China
| | - Yi Yuan
- Chengdu University of Traditional Chinese MedicineChengdu, China; Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | | | - Yan Zhang
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Wenge Huang
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Xianli Meng
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Ping Wang
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| |
Collapse
|
27
|
Nielsen CU, Abdulhussein AA, Colak D, Holm R. Polysorbate 20 increases oral absorption of digoxin in wild-type Sprague Dawley rats, but not in mdr1a(-/-) Sprague Dawley rats. Int J Pharm 2016; 513:78-87. [DOI: 10.1016/j.ijpharm.2016.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022]
|
28
|
Volpe DA. Transporter assays as useful in vitro tools in drug discovery and development. Expert Opin Drug Discov 2015; 11:91-103. [DOI: 10.1517/17460441.2016.1101064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Donna A. Volpe
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
29
|
Torres FM, Sáfár Z, Vázquez-Sánchez MA, Kurunczi A, Kis E, Magnan R, Jani M, Nicolás O, Krajcsi P. Pre-Plated Cell Lines for ADMETox Applications in the Pharmaceutical Industry. ACTA ACUST UNITED AC 2015; 65:23.8.1-23.8.23. [PMID: 26250397 DOI: 10.1002/0471140856.tx2308s65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane transporters significantly modulate membrane permeability of endobiotics and xenobiotics, such as bile acids and drugs, respectively. Various in vitro methods have been established for both ATP-binding cassette (ABC) transporters to examine cellular efflux and uptake, and for solute carriers (SLC) to examine cellular uptake of substrates. Cell-based systems are the models of choice to test drug-transporter interactions as well as drug-drug interactions for research and regulatory purposes, albeit, for low passive permeability substrates of ABC transporters, vesicular uptake assays are also recommended. Commercially available pre-plated cells (e.g., immortalized or transfected) offer a useful alternative to in-house cell culture. Three main methods are known to manufacture pre-plated cultures: regular culture medium with vacuum seal, cryopreserved delivery, and the solid shipping media technology. The regular culture medium and the solid shipping media technologies provide ready-to-use models for end users. Models expressing a broad selection of transporters are available in pre-plated formats for absorption, distribution, metabolism, excretion, and toxicity (ADMETox) studies. Conversely, the application and utility of pre-plated cultures coupled with personal experiences have not been extensively covered in published research papers or reviews, despite availability and significant use of pre-plated products in the pharmaceutical industry. In this overview, we will briefly describe: 1) in vitro tools commonly used for ADMETox testing; 2) methods employed in manufacturing, shipment and preparation of pre-plated cell lines; 3) cell-membrane barrier models currently available in pre-plated format to reproduce passage restriction of physiological barriers to certain compounds; and 4) recommended pre-plated cell lines overexpressing uptake transporters for ADMETox applications.
Collapse
Affiliation(s)
| | - Zsolt Sáfár
- Solvo Biotechnology, Budaörs, Hungary.,shared first authorship
| | | | | | - Emese Kis
- Solvo Biotechnology, Budaörs, Hungary
| | | | | | - Oriol Nicolás
- ReadyCell S. L., Barcelona, Spain.,shared senior authorship
| | - Péter Krajcsi
- Solvo Biotechnology, Budaörs, Hungary.,shared senior authorship
| |
Collapse
|