1
|
Buchl SC, Kim HN, Hur B, Simon WL, Langley MR, Sung J, Scarisbrick IA. Delayed atorvastatin delivery promotes recovery after experimental spinal cord injury. Neurotherapeutics 2025:e00517. [PMID: 39755500 DOI: 10.1016/j.neurot.2024.e00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025] Open
Abstract
Spinal cord injury (SCI) significantly alters gene expression, potentially impeding functional recovery. This study investigated the effects of atorvastatin, a widely prescribed cholesterol-lowering drug, on gene expression and functional recovery in a chronic murine SCI model. Female C57BL/6J mice underwent moderate 0.25 mm lateral compression SCI and received daily atorvastatin (10 mg/kg) or vehicle-only injections from two weeks post-injury for four weeks. Sensorimotor functions were assessed using the Basso Mouse Scale (BMS), its subscore, and the inclined plane test. RNA sequencing of spinal cord tissues identified robust transcriptomic changes from SCI and a smaller subset from atorvastatin treatment. Atorvastatin enhanced sensorimotor recovery within two weeks of treatment initiation, with effects persisting to the experimental endpoint. Pathway analysis showed atorvastatin enriched neural regeneration processes including Fatty Acid Transport, Axon Guidance, and the Endocannabinoid Developing Neuron Pathway; improved mitochondrial function via increased TCA Cycle II and reduced Mitochondrial Dysfunction; and decreased Inhibition of Matrix Metalloproteases. Key gene drivers included Fabp7, Unc5c, Rest, and Klf4. Together, these results indicate atorvastatin's potential in chronic SCI recovery, especially where already indicated for cardiovascular protection.
Collapse
Affiliation(s)
- Samuel C Buchl
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Benjamin Hur
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Whitney L Simon
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Monica R Langley
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jaeyun Sung
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Isobel A Scarisbrick
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Lee J, Beers JL, Geffert RM, Jackson KD. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024; 14:99. [PMID: 38254699 PMCID: PMC10813492 DOI: 10.3390/biom14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Drug metabolism is a major determinant of drug concentrations in the body. Drug-drug interactions (DDIs) caused by the co-administration of multiple drugs can lead to alteration in the exposure of the victim drug, raising safety or effectiveness concerns. Assessment of the DDI potential starts with in vitro experiments to determine kinetic parameters and identify risks associated with the use of comedication that can inform future clinical studies. The diverse range of experimental models and techniques has significantly contributed to the examination of potential DDIs. Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of many drugs on the market, making them frequently implicated in drug metabolism and DDIs. Consequently, there has been a growing focus on the assessment of DDI risk for CYPs. This review article provides mechanistic insights underlying CYP inhibition/induction and an overview of the in vitro assessment of CYP-mediated DDIs.
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| | | | | | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| |
Collapse
|
3
|
Damoiseaux D, Schinkel AH, Beijnen JH, Huitema ADR, Dorlo TPC. Predictability of human exposure by human-CYP3A4-transgenic mouse models: A meta-analysis. Clin Transl Sci 2024; 17:e13668. [PMID: 38037826 PMCID: PMC10766057 DOI: 10.1111/cts.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
First-in-human dose predictions are primarily based on no-observed-adverse-effect levels in animal studies. Predictions from these animal models are only as effective as their ability to predict human results. To narrow the gap between human and animals, researchers have, among other things, focused on the replacement of animal cytochrome P450 (CYP) enzymes with their human counterparts (called humanization), especially in mice. Whereas research in humanized mice is extensive, the emphasis has been particularly on qualitative rather than quantitative predictions. Because the CYP3A4 enzyme is most involved in the metabolism of clinically used drugs, most benefit was expected from CYP3A4 models. There are several applications of these mouse models regarding in vivo CYP3A4 functionality, one of which might be their capacity to help improve first-in-human (FIH) dose predictions for CYP3A4-metabolized drugs. To evaluate whether human-CYP3A4-transgenic mouse models are better predictors of human exposure compared to the wild-type mouse model, we performed a meta-analysis comparing both mouse models in their ability to accurately predict human exposure of small-molecule drugs metabolized by CYP3A4. Results showed that, in general, the human-CYP3A4-transgenic mouse model had similar accuracy in the prediction of human exposure compared to the wild-type mouse model, suggesting that there is limited added value in humanization of the mouse Cyp3a enzymes if the primary aim is to acquire more accurate FIH dose predictions. Despite the results of this meta-analysis, corrections for interspecies differences through extension of human-CYP3A4-transgenic mouse models with pharmacokinetic modeling approaches seems a promising contribution to more accurate quantitative predictions of human pharmacokinetics.
Collapse
Affiliation(s)
- David Damoiseaux
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Alfred H. Schinkel
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Utrecht Institute of Pharmaceutical Sciences, Utrecht UniversityUtrechtThe Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacologyPrincess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Clinical PharmacyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Thomas P. C. Dorlo
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacyUppsala UniversityUppsalaSweden
| |
Collapse
|
4
|
Hannon SL, Ding X. Assessing cytochrome P450 function using genetically engineered mouse models. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:253-284. [PMID: 35953157 PMCID: PMC10544722 DOI: 10.1016/bs.apha.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability to knock out and/or humanize different genes in experimental animals, globally or in cell- and tissue-specific patterns, has revolutionized scientific research in many areas. Genetically engineered mouse models, including knockout models, transgenic models, and humanized models, have played important roles in revealing the in vivo functions of various cytochrome P450 (CYP) enzymes. These functions are very diverse, ranging from the biotransformation of drugs and other xenobiotics, events that often dictate their pharmacokinetic or toxicokinetic properties and the associated therapeutic or adverse actions, to the metabolism of endogenous compounds, such as steroid hormones and other bioactive substances, that may determine susceptibility to many diseases, such as cancer and metabolic diseases. In this review, we provide a comprehensive list of Cyp-knockout, human CYP-transgenic, and CYP-humanized mouse models that target genes in the CYP1-4 gene families, and highlight their utility in assessing the in vivo metabolism, bioactivation, and toxicity of various xenobiotic compounds, including therapeutic agents and chemical carcinogens. We aim to showcase the advantages of utilizing these mouse models for in vivo drug metabolism and toxicology studies, and to encourage and facilitate greater utility of engineered mouse models to further improve our knowledge of the in vivo functions of various P450 enzymes, which is integral to our ability to develop safer and more effective therapeutics and to identify individuals predisposed to adverse drug reactions or environmental diseases.
Collapse
Affiliation(s)
- Sarrah L Hannon
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
5
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
6
|
An improved TK-NOG mouse as a novel platform for humanized liver that overcomes limitations in both male and female animals. Drug Metab Pharmacokinet 2021; 42:100410. [PMID: 34839181 DOI: 10.1016/j.dmpk.2021.100410] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/10/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022]
Abstract
We developed a novel immunodeficient NOG mouse expressing HSVtk mutant clone 30 cDNA under the control of mouse transthyretin gene enhancer/promoter (NOG-TKm30) to acquire fertility in males and high inducibility of liver injury in females. Maximum human albumin levels (approx. 15 mg/mL plasma) in both male and female NOG-TKm30 mice engrafted with human hepatocytes (humanized liver mice) were observed 8-12 weeks after transplantation. Immunohistochemical analyses revealed abundant expression of major human cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2D6, CYP2E1, and CYP3A4) in reconstituted liver with original zonal distribution. In vivo drug-drug interactions were observed in humanized liver mice as decreased area under the curve of midazolam (CYP3A4/5 substrate) and omeprazole (CYP3A4/5 and CYP2C19 substrate) after oral administration of rifampicin. Furthermore, we developed a pregnant model for evaluating prenatal exposure to drugs. The detection of thalidomide metabolites in the fetuses of pregnant humanized liver mice indicates that the novel TK model can be used for developmental toxicity studies requiring the assessment of human drug metabolism. These results suggest that the limitations of traditional TK-NOG mice can be addressed using NOG-TKm30 mice, which constitute a novel platform for humanized liver for both in vivo and in vitro studies.
Collapse
|
7
|
Wang J, Bwayi M, Florke Gee RR, Chen T. PXR-mediated idiosyncratic drug-induced liver injury: mechanistic insights and targeting approaches. Expert Opin Drug Metab Toxicol 2020; 16:711-722. [PMID: 32500752 PMCID: PMC7429329 DOI: 10.1080/17425255.2020.1779701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The human liver is the center for drug metabolism and detoxification and is, therefore, constantly exposed to toxic chemicals. The loss of liver function as a result of this exposure is referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) is the primary regulator of the hepatic drug-clearance system, which plays a critical role in mediating idiosyncratic DILI. AREAS COVERED This review is focused on common mechanisms of PXR-mediated DILI and on in vitro and in vivo models developed to predict and assess DILI. It also provides an update on the development of PXR antagonists that may manage PXR-mediated DILI. EXPERT OPINION DILI can be caused by many factors, and PXR is clearly linked to DILI. Although emerging data illustrate how PXR mediates DILI and how PXR activity can be modulated, many questions concerning the development of effective PXR modulators remain. Future research should be focused on determining the mechanisms regulating PXR functions in different cellular contexts.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Monicah Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rebecca R. Florke Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
8
|
Li F, MacKenzie KR, Jain P, Santini C, Young DW, Matzuk MM. Metabolism of JQ1, an inhibitor of bromodomain and extra terminal bromodomain proteins, in human and mouse liver microsomes†. Biol Reprod 2020; 103:427-436. [PMID: 32285106 PMCID: PMC7401416 DOI: 10.1093/biolre/ioaa043] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
JQ1 is a small-molecule inhibitor of the bromodomain and extra terminal (BET) protein family that potently inhibits the bromodomain testis-specific protein (BRDT), which is essential for spermatogenesis. JQ1 treatment produces a reversible contraceptive effect by targeting the activity of BRDT in mouse male germ cells, validating BRDT as a male contraceptive target. Although JQ1 possesses favourable physical properties, it exhibits a short half-life. Because the details of xenobiotic metabolism play important roles in the optimization of drug candidates and in determining the role of metabolism in drug efficacy, we investigated the metabolism of JQ1 in human and mouse liver microsomes. We present the first comprehensive view of JQ1 metabolism in liver microsomes, distinguishing nine JQ1 metabolites, including three monohydroxylated, one de-tert-butylated, two dihydroxylated, one monohydroxylated/dehydrogenated, one monohydroxylated-de-tert-butylated and one dihydroxylated/dehydrogenated variant of JQ1. The dominant metabolite (M1) in both human and mouse liver microsomes is monohydroxylated on the fused three-ring core. Using recombinant cytochrome P450 (CYP) enzymes, chemical inhibitors and the liver S9 fraction of Cyp3a-null mice, we identify enzymes that contribute to the formation of these metabolites. Cytochrome P450 family 3 subfamily A member 4 (CYP3A4) is the main contributor to the production of JQ1 metabolites in vitro, and the CYP3A4/5 inhibitor ketoconazole strongly inhibits JQ1 metabolism in both human and mouse liver microsomes. Our findings suggest that JQ1 half-life and efficacy might be improved in vivo by co-administration of a selective CYP inhibitor, thereby impacting the use of JQ1 as a probe for BRDT activity in spermatogenesis and as a probe or therapeutic in other systems.
Collapse
Affiliation(s)
- Feng Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.,NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine Houston, TX, USA
| | - Kevin R MacKenzie
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.,NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine Houston, TX, USA
| | - Prashi Jain
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Conrad Santini
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Damian W Young
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Rodrigues AD, Rowland A. Profiling of Drug-Metabolizing Enzymes and Transporters in Human Tissue Biopsy Samples: A Review of the Literature. J Pharmacol Exp Ther 2019; 372:308-319. [DOI: 10.1124/jpet.119.262972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
|
10
|
Henderson CJ, Kapelyukh Y, Scheer N, Rode A, McLaren AW, MacLeod AK, Lin D, Wright J, Stanley LA, Wolf CR. An Extensively Humanized Mouse Model to Predict Pathways of Drug Disposition and Drug/Drug Interactions, and to Facilitate Design of Clinical Trials. Drug Metab Dispos 2019; 47:601-615. [PMID: 30910785 PMCID: PMC6505380 DOI: 10.1124/dmd.119.086397] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Species differences in drug metabolism and disposition can confound the extrapolation of in vivo PK data to man and also profoundly compromise drug efficacy studies owing to differences in pharmacokinetics, in metabolites produced (which are often pharmacologically active), and in differential activation of the transcription factors constitutive androstane receptor (CAR) and pregnane X receptor (PXR), which regulate the expression of such enzymes as P450s and drug transporters. These differences have gained additional importance as a consequence of the use of genetically modified mouse models for drug-efficacy testing and also patient-derived xenografts to predict individual patient responses to anticancer drugs. A number of humanized mouse models for cytochrome P450s, CAR, and PXR have been reported. However, the utility of these models has been compromised by the redundancy in P450 reactions across gene families, whereby the remaining murine P450s can metabolize the compounds being tested. To remove this confounding factor and create a mouse model that more closely reflects human pathways of drug disposition, we substituted 33 murine P450s from the major gene families involved in drug disposition, together with Car and Pxr, for human CAR, PXR, CYP1A1, CYP1A2, CYP2C9, CYP2D6, CYP3A4, and CYP3A7. We also created a mouse line in which 34 P450s were deleted from the mouse genome. Using model compounds and anticancer drugs, we demonstrated how these mouse lines can be applied to predict drug-drug interactions in patients and discuss here their potential application in the more informed design of clinical trials and the personalized treatment of cancer.
Collapse
Affiliation(s)
- C J Henderson
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - Y Kapelyukh
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - N Scheer
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - A Rode
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - A W McLaren
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - A K MacLeod
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - D Lin
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - J Wright
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - L A Stanley
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - C R Wolf
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| |
Collapse
|
11
|
Wang F, Wang H, Wu Y, Wang L, Zhang L, Ye X, Peng D, Chen W. Activation of Pregnane X Receptor-Cytochrome P450s Axis: A Possible Reason for the Enhanced Accelerated Blood Clearance Phenomenon of PEGylated Liposomes In Vivo. Drug Metab Dispos 2019; 47:785-793. [PMID: 31118196 DOI: 10.1124/dmd.119.086769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Recently, we reported that repeated injection of PEGylated liposomes (PEG-L) at certain intervals to the same rat lead to the disappearance of their long-circulation properties, referred to as the "accelerated blood clearance (ABC) phenomenon". Evidence from our recent studies suggested that cytochrome P450s (P450s) contribute to induction of the ABC phenomenon, a possibility that had been previously ignored. However, few details are known about the mechanism for induction of P450s. The present study was undertaken to investigate the roles in the ABC phenomenon of pregnane X receptor (PXR) and constitutive androstane receptor (CAR), the major upstream transcriptional regulators of the P450 genes, including CYP3A1, CYP2C6, and CYP1A2. The results demonstrated that expression of rat PXR and CAR was significantly increased in the ABC phenomenon and was accompanied by elevated CYP3A1, CYP2C6, and CYP1A2 levels. Further findings revealed that PXR but not CAR protein was substantially upregulated in the hepatocyte nucleus, together with marked nuclear colocalization of the PXR-retinoid X receptor alpha (RXRα) transcriptionally active heterodimer, indicating that nuclear translocation of PXR was induced in the ABC phenomenon, whereas nuclear translocation of CAR was not observed. Notably, pretreatment with the specific PXR inducer dexamethasone significantly induced accelerated systemic clearance of the subsequent injection of PEG-L, associating with increased nuclear colocalization of PXR-RXRα These results revealed that the induction of P450s in the ABC phenomenon may be attributable largely to the activation of PXR induced by sequential injections of PEG-L, thus confirming the crucial involvement of the PXR-P450s axis in promoting the ABC phenomenon. SIGNIFICANCE STATEMENT: The results of this study revealed that the induction of P450s in the ABC phenomenon may be largely attributable to the activation of PXR induced by sequential injections of PEG-L, thus confirming the crucial involvement of the PXR-P450s axis in promoting the ABC phenomenon. The data may help to extend our insights into 1) the role of P450s, which are regulated by the liver-enriched nuclear receptor PXR, in the ABC phenomenon, and 2) the therapeutic potential of targeting the PXR-P450 axis for reducing the magnitude of the ABC phenomenon in clinical practice.
Collapse
Affiliation(s)
- Fengling Wang
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Huihui Wang
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Yifan Wu
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Lei Wang
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Ling Zhang
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Xi Ye
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Daiyin Peng
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Weidong Chen
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| |
Collapse
|
12
|
|
13
|
Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-Humanized and Human Liver Chimeric Mouse Models for Studying Xenobiotic Metabolism and Toxicity. Drug Metab Dispos 2018; 46:1734-1744. [PMID: 30093418 DOI: 10.1124/dmd.118.083303] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Preclinical evaluation of drug candidates in experimental animal models is an essential step in drug development. Humanized mouse models have emerged as a promising alternative to traditional animal models. The purpose of this mini-review is to provide a brief survey of currently available mouse models for studying human xenobiotic metabolism. Here, we describe both genetic humanization and human liver chimeric mouse models, focusing on the advantages and limitations while outlining their key features and applications. Although this field of biomedical science is relatively young, these humanized mouse models have the potential to transform preclinical drug testing and eventually lead to a more cost-effective and rapid development of new therapies.
Collapse
Affiliation(s)
- Karl-Dimiter Bissig
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Weiguo Han
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Mercedes Barzi
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Nataliia Kovalchuk
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Liang Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xiaoyu Fan
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Francis P Pankowicz
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Qing-Yu Zhang
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xinxin Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| |
Collapse
|
14
|
Yan C, Zhang Y, Zhang X, Aa J, Wang G, Xie Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed Pharmacother 2018; 105:274-281. [PMID: 29860219 DOI: 10.1016/j.biopha.2018.05.135] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Curcumin is a natural polyphenol with beneficial effects on NAFLD patients and NAFLD is accompanied by metabolism decompensation. METHODS This study was focused on the effect of curcumin on the relationship between endogenous bile acids metabolism pathway and exogenous xenobiotics metabolism pathway in C57BL/6 mice of non-alcoholic fatty liver disease induced by high-fat and high-fructose diet (HFHFr) and in cultured mice hepatocytes. RESULTS Our results showed curcumin treatment apparently attenuated the hepatic steatosis and reversed the abnormalities of serum biochemical parameters in HFHFr-fed mice. Curcumin effectively reversed the expression of CYP3A and CYP7A in fatty liver status to restore metabolism capability. In the meantime, lipid synthesis has been controlled by curcumin, evidenced by the expression of CD36, SREBP-1c and FAS. Further, FXR, SHP and Nrf2 expressions were remarkably dropped in HFHFr-fed mice and LXRα expression was significantly enhanced, while curcumin treatment was quite effective to restore this pathway. In addition, LXRα antagonist GGPP pretreatment weakened the curcumin effects on CYP3A, CYP7A and SREBP-1c. CONCLUSIONS These findings indicate that the Nrf2/FXR/LXRα pathway might synergistically regulate both endogenous and exogenous metabolism in NAFLD mice and LXRα may be a novel therapeutic target of curcumin for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Caixia Yan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yirui Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoxu Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 211198, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
15
|
Hakkola J, Bernasconi C, Coecke S, Richert L, Andersson TB, Pelkonen O. Cytochrome P450 Induction and Xeno-Sensing Receptors Pregnane X Receptor, Constitutive Androstane Receptor, Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor α at the Crossroads of Toxicokinetics and Toxicodynamics. Basic Clin Pharmacol Toxicol 2018. [DOI: 10.1111/bcpt.13004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology; Faculty of Medicine; University of Oulu; Oulu Finland
- Medical Research Center Oulu; University of Oulu; Oulu Finland
| | | | - Sandra Coecke
- European Commission Joint Research Centre; EURL ECVAM; Ispra Italy
| | | | - Tommy B. Andersson
- Drug Metabolism and Pharmacokinetics; Cardiovascular and Metabolic Diseases; IMED Biotech Unit; AstraZeneca; Gothenburg Sweden
- Department of Physiology and Pharmacology; Section of Pharmacogenetics; Karolinska Institutet; Stockholm Sweden
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology; Faculty of Medicine; University of Oulu; Oulu Finland
- Medical Research Center Oulu; University of Oulu; Oulu Finland
| |
Collapse
|
16
|
Bajic D, Craig MM, Mongerson CRL, Borsook D, Becerra L. Identifying Rodent Resting-State Brain Networks with Independent Component Analysis. Front Neurosci 2017; 11:685. [PMID: 29311770 PMCID: PMC5733053 DOI: 10.3389/fnins.2017.00685] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Rodent models have opened the door to a better understanding of the neurobiology of brain disorders and increased our ability to evaluate novel treatments. Resting-state functional magnetic resonance imaging (rs-fMRI) allows for in vivo exploration of large-scale brain networks with high spatial resolution. Its application in rodents affords researchers a powerful translational tool to directly assess/explore the effects of various pharmacological, lesion, and/or disease states on known neural circuits within highly controlled settings. Integration of animal and human research at the molecular-, systems-, and behavioral-levels using diverse neuroimaging techniques empowers more robust interrogations of abnormal/ pathological processes, critical for evolving our understanding of neuroscience. We present a comprehensive protocol to evaluate resting-state brain networks using Independent Component Analysis (ICA) in rodent model. Specifically, we begin with a brief review of the physiological basis for rs-fMRI technique and overview of rs-fMRI studies in rodents to date, following which we provide a robust step-by-step approach for rs-fMRI investigation including data collection, computational preprocessing, and brain network analysis. Pipelines are interwoven with underlying theory behind each step and summarized methodological considerations, such as alternative methods available and current consensus in the literature for optimal results. The presented protocol is designed in such a way that investigators without previous knowledge in the field can implement the analysis and obtain viable results that reliably detect significant differences in functional connectivity between experimental groups. Our goal is to empower researchers to implement rs-fMRI in their respective fields by incorporating technical considerations to date into a workable methodological framework.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Michael M Craig
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States
| | - Chandler R L Mongerson
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Lino Becerra
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
17
|
Chang JH, Chen J, Liu L, Messick K, Ly J. Rifampin-Mediated Induction of Tamoxifen Metabolism in a Humanized PXR-CAR-CYP3A4/3A7-CYP2D6 Mouse Model. ACTA ACUST UNITED AC 2016; 44:1736-1741. [PMID: 27538915 DOI: 10.1124/dmd.116.072132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/17/2016] [Indexed: 01/14/2023]
Abstract
Animals are not commonly used to assess drug-drug interactions due to poor clinical translatability arising from species differences that may exist in drug-metabolizing enzymes and transporters, and their regulation pathways. In this study, a transgenic mouse model expressing human pregnane X receptor (PXR), constitutive androstane receptor (CAR), CYP3A4/CYP3A7, and CYP2D6 (Tg-composite) was used to investigate the effect of induction mediated by rifampin on the pharmacokinetics of tamoxifen and its metabolites. In humans, tamoxifen is metabolized primarily by CYP3A4 and CYP2D6, and multiple-day treatment with rifampin decreased tamoxifen exposure by 6.2-fold. Interestingly, exposure of tamoxifen metabolites 4-hydroxytamoxifen (4OHT), N-desmethyltamoxifen (NDM), and endoxifen also decreased. In the Tg-composite model, pretreatment with rifampin decreased tamoxifen area under the time-concentration curve between 0 and 8 hours (AUC0-8) from 0.82 to 0.20 µM*h, whereas AUC0-8 of 4OHT, NDM, and endoxifen decreased by 3.4-, 4.7-, and 1.3-fold, respectively, mirroring the clinic observations. In the humanized PXR-CAR (hPXR-CAR) model, rifampin decreased AUC0-8 of tamoxifen and its metabolites by approximately 2-fold. In contrast, no significant modulation by rifampin was observed in the nonhumanized C57BL/6 (wild-type) animals. In vitro kinetics determined in microsomes prepared from livers of the Tg-composite animals showed that, although Km values were not different between vehicle- and rifampin-treated groups, rifampin increased the Vmax for the CYP3A4-mediated pathways. These data demonstrate that, although the hPXR-CAR model is responsive to rifampin, the extent of the clinical rifampin-tamoxifen interaction is better represented by the Tg-composite model. Consequently, the Tg-composite model may be a suitable tool to examine the extent of rifampin-mediated induction for other compounds whose metabolism is mediated by CYP3A4 and/or CYP2D6.
Collapse
Affiliation(s)
- Jae H Chang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California
| | - John Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California
| | - Liling Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California
| | - Kirsten Messick
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California
| | - Justin Ly
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California
| |
Collapse
|
18
|
Yamazaki H, Suemizu H, Mitsui M, Shimizu M, Guengerich FP. Combining Chimeric Mice with Humanized Liver, Mass Spectrometry, and Physiologically-Based Pharmacokinetic Modeling in Toxicology. Chem Res Toxicol 2016; 29:1903-1911. [PMID: 27337115 DOI: 10.1021/acs.chemrestox.6b00136] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Species differences exist in terms of drug oxidation activities, which are mediated mainly by cytochrome P450 (P450) enzymes. To overcome the problem of species extrapolation, transchromosomic mice containing a human P450 3A cluster or chimeric mice transplanted with human hepatocytes have been introduced into the human toxicology research area. In this review, drug metabolism and disposition mediated by humanized livers in chimeric mice are summarized in terms of biliary/urinary excretions of phthalate and bisphenol A and plasma clearances of the human cocktail probe drugs caffeine, warfarin, omeprazole, metoprolol, and midazolam. Simulation of human plasma concentrations of the teratogen thalidomide and its human metabolites is possible with a simplified physiologically based pharmacokinetic model based on data obtained in chimeric mice, in accordance with reported clinical thalidomide concentrations. In addition, in vivo nonspecific hepatic protein binding parameters of metabolically activated 14C-drug candidate and hepatotoxic medicines in humanized liver mice can be analyzed by accelerator mass spectrometry and are useful for predictions in humans.
Collapse
Affiliation(s)
- Hiroshi Yamazaki
- Showa Pharmaceutical University , Machida, Tokyo 194-8543, Japan
| | - Hiroshi Suemizu
- Central Institute for Experimental Animals , Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Marina Mitsui
- Showa Pharmaceutical University , Machida, Tokyo 194-8543, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University , Machida, Tokyo 194-8543, Japan
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
19
|
Abstract
Attrition due to nonclinical safety represents a major issue for the productivity of pharmaceutical research and development (R&D) organizations, especially during the compound optimization stages of drug discovery and the early stages of clinical development. Focusing on decreasing nonclinical safety-related attrition is not a new concept, and various approaches have been experimented with over the last two decades. Front-loading testing funnels in Discovery with in vitro toxicity assays designed to rapidly identify unfavorable molecules was the approach adopted by most pharmaceutical R&D organizations a few years ago. However, this approach has also a non-negligible opportunity cost. Hence, significant refinements to the "fail early, fail often" paradigm have been proposed recently to reflect the complexity of accurately categorizing compounds with early data points without taking into account other important contextual aspects, in particular efficacious systemic and tissue exposures. This review provides an overview of toxicology approaches and models that can be used in pharmaceutical Discovery at the series/lead identification and lead optimization stages to guide and inform chemistry efforts, as well as a personal view on how to best use them to meet nonclinical safety-related attrition objectives consistent with a sustainable pharmaceutical R&D model. The scope of this review is limited to small molecules, as large molecules are associated with challenges that are quite different. Finally, a perspective on how several emerging technologies may impact toxicity evaluation is also provided.
Collapse
Affiliation(s)
- Eric A G Blomme
- Global Preclinical Safety, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yvonne Will
- Drug Safety Research and Development, Pfizer , Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|