1
|
Schaller ML, Sykes MM, Mecano J, Solanki S, Huang W, Rebernick RJ, Beydoun S, Wang E, Bugarin-Lapuz A, Shah YM, Leiser SF. Fmo5 plays a sex-specific role in goblet cell maturation and mucus barrier formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588360. [PMID: 38645243 PMCID: PMC11030302 DOI: 10.1101/2024.04.05.588360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background and Aims The intestine plays a key role in metabolism, nutrient and water absorption, and provides both physical and immunological defense against dietary and luminal antigens. The protective mucosal lining in the intestine is a critical component of intestinal barrier that when compromised, can lead to increased permeability, a defining characteristic of inflammatory bowel disease (IBD), among other intestinal diseases. Here, we define a new role for the flavin-containing monooxygenase (FMO) family of enzymes in maintaining a healthy intestinal epithelium. Methods Using Caenorhabditis elegans we measure intestinal barrier function, actin expression, and intestinal damage response. In mice, we utilize an intestine-specific, tamoxifen- inducible knockout model of the mammalian homolog of Cefmo-2 , Fmo5, and assess histology, mucus barrier thickness, and goblet cell physiology. We also treat mice with the ER chaperone Tauroursodeoxycholic acid (TUDCA). Results In nematodes, we find Cefmo-2 is necessary and sufficient for intestinal barrier function, intestinal actin expression, and is induced by intestinal damage. In mice, we find striking changes to the intestine within two weeks following Fmo5 disruption. Alterations include sex-dependent changes in colon epithelial histology, goblet cell localization, and mucus barrier formation. These changes are significantly more severe in female mice, mirroring differences observed in IBD patients. Furthermore, we find increased protein folding stress in Fmo5 knockout animals and successfully rescue the severe female phenotype with addition of a chemical ER chaperone. Conclusions Together, our results identify a highly conserved and novel role for Fmo5 in the mammalian intestine and support a key role for Fmo5 in maintenance of ER/protein homeostasis and proper mucus barrier formation.
Collapse
|
2
|
Li Z, Cao W, Zhang Y, Lai S, Ye Y, Bao J, Fu A. Puerarin ameliorates non-alcoholic fatty liver disease by inhibiting lipid metabolism through FMO5. Front Pharmacol 2024; 15:1423634. [PMID: 39055493 PMCID: PMC11269101 DOI: 10.3389/fphar.2024.1423634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Pueraria lobata is traditionally used in China for treatment of non-alcoholic fatty liver disease (NAFLD). Puerarin, a functional drug extracted from Pueraria lobata, features a pharmacological activity. The present study aims to investigate the effect of puerarin intervention on NAFLD. Methods: We established an NAFLD mouse model using a high-fat diet with 60% fat and evaluated the impact of puerarin intervention. Results and discussion: Our results demonstrate that puerarin intervention significantly ameliorates lipid accumulation and protects the liver from high-fat-induced damage while reducing oxidative stress levels in the liver. Furthermore, puerarin intervention significantly downregulates the transcription levels of acetyl-CoA carboxylase (ACC1) in the liver. It also upregulates the transcription levels of carnitine palmitoyltransferase 1 (CPT1), peroxisome proliferator-activated receptor alpha (PPARα), and peroxisome proliferators-activated receptor γ coactivator alpha (PGC1α), which are related to oxidation. Furthermore, we demonstrated that flavin-containing monooxygenase (FMO5) was involved in the protective effect of puerarin against NFALD. In conclusion, the present study demonstrated the beneficial effect of puerarin on NAFLD and showed that puerarin could prevent liver injury and lipid accumulation caused by NAFLD via activating FMO5. These findings provide a new theoretical basis for applying puerarin as a therapeutic agent for NAFLD.
Collapse
Affiliation(s)
- Zhaoyi Li
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenjing Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuxuan Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shanglei Lai
- Department of Medical Research Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Yingyan Ye
- Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, China
| | - Jianfeng Bao
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ai Fu
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Han X, Li C, Qin G, Wang X, Zhang B, Lin Q. Growth increase and gonadal dysfunction of the lined seahorse triggered by zinc exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106947. [PMID: 38776607 DOI: 10.1016/j.aquatox.2024.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Seahorses are characterized by unique characteristics such as a male pregnancy reproductive strategy and grasping preferences, which make these species vulnerable to various environmental risks. Zinc (Zn) is one of the most frequently occurring toxic elements in coastal waters; however, little is known about the effect of Zn exposure on seahorses. In the present study, line seahorses (Hippocampus erectus) were exposed to waterborne Zn (0.2 and 1.0 mg/L) and the impact on growth and gonadal development was investigated. Zn exposure induced growth improvement, but also led to gonadal dysfunction in the lined seahorse. Female seahorses exhibited high testosterone levels, immature follicles, and weight increase after Zn exposure, which is the typical characteristics of a polycystic ovary syndrome (PCOS)-like phenotype. Transcriptomic data suggested that the Zn-induced growth promotion resulted from the dysregulated expression of fat accumulation genes. Further investigation of gene expression profiles in the brain, ovaries, and testes indicated that Zn affected the expression of genes involved in growth, immunity, tissue remodeling, and gonadal development by regulating serum steroid hormone levels and androgen receptor expression. This study not only clarifies the complex impact of Zn on seahorses using physiological, histological, and molecular evidence but can also provide new insights into the mechanism underlying PCOS in reproductive-aged women. Moreover, this work demonstrates the risk of the common practice of Zn supplementation in the aquaculture industry as the consequent growth yield may not represent a healthy condition.
Collapse
Affiliation(s)
- Xue Han
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyan Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100101, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100101, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
4
|
Bhat A, Carranza FR, Tuckowski AM, Leiser SF. Flavin-containing monooxygenase (FMO): Beyond xenobiotics. Bioessays 2024; 46:e2400029. [PMID: 38713170 PMCID: PMC11447872 DOI: 10.1002/bies.202400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
Flavin-containing monooxygenases (FMOs), traditionally known for detoxifying xenobiotics, are now recognized for their involvement in endogenous metabolism. We recently discovered that an isoform of FMO, fmo-2 in Caenorhabditis elegans, alters endogenous metabolism to impact longevity and stress tolerance. Increased expression of fmo-2 in C. elegans modifies the flux through the key pathway known as One Carbon Metabolism (OCM). This modified flux results in a decrease in the ratio of S-adenosyl-methionine (SAM) to S-adenosyl-homocysteine (SAH), consequently diminishing methylation capacity. Here we discuss how FMO-2-mediated formate production during tryptophan metabolism may serve as a trigger for changing the flux in OCM. We suggest formate bridges tryptophan and OCM, altering metabolic flux away from methylation during fmo-2 overexpression. Additionally, we highlight how these metabolic results intersect with the mTOR and AMPK pathways, in addition to mitochondrial metabolism. In conclusion, the goal of this essay is to bring attention to the central role of FMO enzymes but lack of understanding of their mechanisms. We justify a call for a deeper understanding of FMO enzyme's role in metabolic rewiring through tryptophan/formate or other yet unidentified substrates. Additionally, we emphasize the identification of novel drugs and microbes to induce FMO activity and extend lifespan.
Collapse
Affiliation(s)
- Ajay Bhat
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, Michigan, USA
| | - Faith R Carranza
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Angela M Tuckowski
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott F Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Phillips IR, Veeravalli S, Khadayate S, Shephard EA. Metabolomic and transcriptomic analyses of Fmo5-/- mice reveal roles for flavin-containing monooxygenase 5 (FMO5) in NRF2-mediated oxidative stress response, unfolded protein response, lipid homeostasis, and carbohydrate and one-carbon metabolism. PLoS One 2023; 18:e0286692. [PMID: 37267233 PMCID: PMC10237457 DOI: 10.1371/journal.pone.0286692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
Flavin-containing monooxygenase 5 (FMO5) is a member of the FMO family of proteins, best known for their roles in the detoxification of foreign chemicals and, more recently, in endogenous metabolism. We have previously shown that Fmo5-/- mice display an age-related lean phenotype, with much reduced weight gain from 20 weeks of age. The phenotype is characterized by decreased fat deposition, lower plasma concentrations of glucose, insulin and cholesterol, higher glucose tolerance and insulin sensitivity, and resistance to diet-induced obesity. In the present study we report the use of metabolomic and transcriptomic analyses of livers of Fmo5-/- and wild-type mice to identify factors underlying the lean phenotype of Fmo5-/- mice and gain insights into the function of FMO5. Metabolomics was performed by the Metabolon platform, utilising ultrahigh performance liquid chromatography-tandem mass spectroscopy. Transcriptomics was performed by RNA-Seq and results analysed by DESeq2. Disruption of the Fmo5 gene has wide-ranging effects on the abundance of metabolites and expression of genes in the liver. Metabolites whose concentration differed between Fmo5-/- and wild-type mice include several saturated and monounsaturated fatty acids, complex lipids, amino acids, one-carbon intermediates and ADP-ribose. Among the genes most significantly and/or highly differentially expressed are Apoa4, Cd36, Fitm1, Hspa5, Hyou1, Ide, Me1 and Mme. The results reveal that FMO5 is involved in upregulating the NRF2-mediated oxidative stress response, the unfolded protein response and response to hypoxia and cellular stress, indicating a role for the enzyme in adaptation to oxidative and metabolic stress. FMO5 also plays a role in stimulating a wide range of metabolic pathways and processes, particularly ones involved in lipid homeostasis, the uptake and metabolism of glucose, the generation of cytosolic NADPH, and in one-carbon metabolism. The results predict that FMO5 acts by stimulating the NRF2, XBP1, PPARA and PPARG regulatory pathways, while inhibiting STAT1 and IRF7 pathways.
Collapse
Affiliation(s)
- Ian R. Phillips
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Sunil Veeravalli
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Sanjay Khadayate
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom
| | - Elizabeth A. Shephard
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
6
|
Choi HS, Bhat A, Howington MB, Schaller ML, Cox RL, Huang S, Beydoun S, Miller HA, Tuckowski AM, Mecano J, Dean ES, Jensen L, Beard DA, Evans CR, Leiser SF. FMO rewires metabolism to promote longevity through tryptophan and one carbon metabolism in C. elegans. Nat Commun 2023; 14:562. [PMID: 36732543 PMCID: PMC9894935 DOI: 10.1038/s41467-023-36181-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Flavin containing monooxygenases (FMOs) are promiscuous enzymes known for metabolizing a wide range of exogenous compounds. In C. elegans, fmo-2 expression increases lifespan and healthspan downstream of multiple longevity-promoting pathways through an unknown mechanism. Here, we report that, beyond its classification as a xenobiotic enzyme, fmo-2 expression leads to rewiring of endogenous metabolism principally through changes in one carbon metabolism (OCM). These changes are likely relevant, as we find that genetically modifying OCM enzyme expression leads to alterations in longevity that interact with fmo-2 expression. Using computer modeling, we identify decreased methylation as the major OCM flux modified by FMO-2 that is sufficient to recapitulate its longevity benefits. We further find that tryptophan is decreased in multiple mammalian FMO overexpression models and is a validated substrate for FMO-2. Our resulting model connects a single enzyme to two previously unconnected key metabolic pathways and provides a framework for the metabolic interconnectivity of longevity-promoting pathways such as dietary restriction. FMOs are well-conserved enzymes that are also induced by lifespan-extending interventions in mice, supporting a conserved and important role in promoting health and longevity through metabolic remodeling.
Collapse
Affiliation(s)
- Hyo Sub Choi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay Bhat
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marshall B Howington
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Megan L Schaller
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rebecca L Cox
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shijiao Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Safa Beydoun
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hillary A Miller
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Angela M Tuckowski
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joy Mecano
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elizabeth S Dean
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lindy Jensen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Charles R Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott F Leiser
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Veeravalli S, Varshavi D, Scott FH, Varshavi D, Pullen FS, Veselkov K, Phillips IR, Everett JR, Shephard EA. Treatment of wild-type mice with 2,3-butanediol, a urinary biomarker of Fmo5 -/- mice, decreases plasma cholesterol and epididymal fat deposition. Front Physiol 2022; 13:859681. [PMID: 36003643 PMCID: PMC9393927 DOI: 10.3389/fphys.2022.859681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
We previously showed that Fmo5 -/- mice exhibit a lean phenotype and slower metabolic ageing. Their characteristics include lower plasma glucose and cholesterol, greater glucose tolerance and insulin sensitivity, and a reduction in age-related weight gain and whole-body fat deposition. In this paper, nuclear magnetic resonance (NMR) spectroscopy-based metabolite analyses of the urine of Fmo5 -/- and wild-type mice identified two isomers of 2,3-butanediol as discriminating urinary biomarkers of Fmo5 -/- mice. Antibiotic-treatment of Fmo5 -/- mice increased plasma cholesterol concentration and substantially reduced urinary excretion of 2,3-butanediol isomers, indicating that the gut microbiome contributed to the lower plasma cholesterol of Fmo5 -/- mice, and that 2,3-butanediol is microbially derived. Short- and long-term treatment of wild-type mice with a 2,3-butanediol isomer mix decreased plasma cholesterol and epididymal fat deposition but had no effect on plasma concentrations of glucose or insulin, or on body weight. In the case of long-term treatment, the effects were maintained after withdrawal of 2,3-butanediol. Short-, but not long-term treatment, also decreased plasma concentrations of triglycerides and non-esterified fatty acids. Fecal transplant from Fmo5 -/- to wild-type mice had no effect on plasma cholesterol, and 2,3-butanediol was not detected in the urine of recipient mice, suggesting that the microbiota of the large intestine was not the source of 2,3-butanediol. However, 2,3-butanediol was detected in the stomach of Fmo5 -/- mice, which was enriched for Lactobacillus genera, known to produce 2,3-butanediol. Our results indicate a microbial contribution to the phenotypic characteristic of Fmo5 -/- mice of decreased plasma cholesterol and identify 2,3-butanediol as a potential agent for lowering plasma cholesterol.
Collapse
Affiliation(s)
- Sunil Veeravalli
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Dorsa Varshavi
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, United Kingdom
| | - Flora H. Scott
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Dorna Varshavi
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, United Kingdom
| | - Frank S. Pullen
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, United Kingdom
| | - Kirill Veselkov
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Ian R. Phillips
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Jeremy R. Everett
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, United Kingdom
| | - Elizabeth A. Shephard
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Uno Y, Shimizu M, Ogawa Y, Makiguchi M, Kawaguchi H, Yamato O, Ishizuka M, Yamazaki H. Molecular and functional characterization of flavin-containing monooxygenases in pigs, dogs, and cats. Biochem Pharmacol 2022; 202:115125. [PMID: 35690111 DOI: 10.1016/j.bcp.2022.115125] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Flavin-containing monooxygenases (FMOs) are drug-oxygenating enzymes that are present in the human genome as FMO1-5 and FMO6P. Among pig, dog, and cat FMOs, pig and dog FMO1 and FMO3 have been partly characterized, but other FMOs have not been systematically identified. In this study, orthologous FMO cDNAs were isolated from pig, dog, and cat livers and evaluated by sequence and phylogenetic analyses, tissue expression, and catalytic function. The amino acid sequences of pig, dog, and cat FMO1-5 shared high sequence identities (83-89%) with human FMO1-5 and were closely clustered in a phylogenetic tree. The gene structure and genomic organization of FMO1-5 were conserved across these species. Dog and pig FMO6P contained insertions of 1 and 83 bases, respectively, and are possibly pseudogenes similar to human FMO6P. Among the tissue types analyzed, pig FMO1 mRNA was abundant in liver, kidney, and lung; dog FMO3, FMO2, and FMO5 mRNAs were abundant in liver, lung, and kidney, respectively; cat FMO1 and FMO3 mRNAs were abundant in kidney and liver, respectively. Recombinant pig and dog FMO1-5 and cat FMO1-6 all mediated benzydamine and trimethylamine N-oxygenations and methyl p-tolyl sulfoxide S-oxygenation. The selective human FMO3 substrate trimethylamine was predominantly metabolized by pig FMO1, dog FMO3, and cat FMO3. Cat FMO6 was also active toward trimethylamine. These results suggest some similarities in the drug-metabolizing capabilities of FMO3 in dogs, cats, and humans and that dog and cat FMO3 generally have molecular and functional characteristics similar to human FMO3, being the major FMO in human liver.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yurie Ogawa
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Miaki Makiguchi
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroaki Kawaguchi
- School of Veterinary Medicine, Kitasato University, Towadashi, Aomori 034-8628, Japan
| | - Osamu Yamato
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Mayumi Ishizuka
- Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
9
|
Veshkini A, M Hammon H, Vogel L, Delosière M, Viala D, Dèjean S, Tröscher A, Ceciliani F, Sauerwein H, Bonnet M. Liver proteome profiling in dairy cows during the transition from gestation to lactation: Effects of supplementation with essential fatty acids and conjugated linoleic acids as explored by PLS-DA. J Proteomics 2022; 252:104436. [PMID: 34839038 DOI: 10.1016/j.jprot.2021.104436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023]
Abstract
This study aimed at investigating the synergistic effects of essential fatty acids (EFA) and conjugated linoleic acids (CLA) on the liver proteome profile of dairy cows during the transition to lactation. 16 Holstein cows were infused from 9 wk. antepartum to 9 wk. postpartum into the abomasum with either coconut oil (CTRL) or a mixture of EFA (linseed + safflower oil) and CLA (EFA + CLA). Label-free quantitative proteomics was performed in liver tissue biopsied at days -21, +1, +28, and + 63 relative to calving. Differentially abundant proteins (DAP) between treatment groups were identified at the intersection between a multivariate and a univariate analysis. In total, 1680 proteins were identified at each time point, of which between groups DAP were assigned to the metabolism of xenobiotics by cytochrome P450, drug metabolism - cytochrome P450, steroid hormone biosynthesis, glycolysis/gluconeogenesis, and glutathione metabolism. Cytochrome P450, as a central hub, enriched with specific CYP enzymes comprising: CYP51A1 (d - 21), CYP1A1 & CYP4F2 (d + 28), and CYP4V2 (d + 63). Collectively, supplementation of EFA + CLA in transition cows impacted hepatic lipid metabolism and enriched several common biological pathways at all time points that were mainly related to ω-oxidation of fatty acids through the Cytochrome p450 pathway. SIGNIFICANCE: In three aspects this manuscript is notable. First, this is among the first longitudinal proteomics studies in nutrition of dairy cows. The selected time points are critical periods around parturition with profound endocrine and metabolic adaptations. Second, our findings provided novel information on key drivers of biologically relevant pathways suggested according to previously reported performance, zootechnical, and metabolism data (already published elsewhere). Third, our results revealed the role of cytochrome P450 that is hardly investigated, and of ω-oxidation pathways in the metabolism of fatty acids with the involvement of specific enzymes.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany; Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | - Harald M Hammon
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| | - Laura Vogel
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Mylène Delosière
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Didier Viala
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Sèbastien Dèjean
- Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | | | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
10
|
Mitochondrial Antioxidant SkQ1 Has a Beneficial Effect in Experimental Diabetes as Based on the Analysis of Expression of microRNAs and mRNAs for the Oxidative Metabolism Regulators. Antioxidants (Basel) 2021; 10:antiox10111749. [PMID: 34829620 PMCID: PMC8615282 DOI: 10.3390/antiox10111749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus and related complications are among the most important problems of the world-leading healthcare systems. Despite their priority, molecular and genetic aspects of diabetes pathogenesis are poorly understood; however, the involvement of oxidative stress in this process is undoubted. Rats with experimental diabetes induced by the intraperitoneal injection of alloxan were subjected to the antioxidant pre-therapy with a series of mitochondria-targeted 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1) injections and analyzed for the expression of mRNAs and microRNAs by real-time quantitative polymerase chain reaction to identify potential predictors of diabetes. Animals that received SkQ1 before diabetes induction demonstrated lower blood glucose levels compared to the diabetic animals not subjected to the therapy. SkQ1 caused changes in the mRNA levels of genes involved in the cellular defense against free radicals, which indicates a beneficial effect of the pre-therapy. Moreover, similar changes were observed on the epigenetic level, as the microRNA expression patterns not only proved the SkQ1 efficacy but also correlated with the expression levels of their mRNA targets. Oxidative stress and macromolecule damage by free radicals are determining factors in diabetes, which suggests that strategies aimed at restoring the antioxidant status of the cell can be beneficial. Mitochondria-targeted antioxidant SkQ1 demonstrates positive effects on several levels, from the normalization of the blood glucose content to genetic and epigenetic changes. Our results can serve as a basis for the development of novel therapeutic and diagnostic strategies.
Collapse
|
11
|
Non-cytochrome P450 enzymes involved in the oxidative metabolism of xenobiotics: Focus on the regulation of gene expression and enzyme activity. Pharmacol Ther 2021; 233:108020. [PMID: 34637840 DOI: 10.1016/j.pharmthera.2021.108020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative metabolism is one of the major biotransformation reactions that regulates the exposure of xenobiotics and their metabolites in the circulatory system and local tissues and organs, and influences their efficacy and toxicity. Although cytochrome (CY)P450s play critical roles in the oxidative reaction, extensive CYP450-independent oxidative metabolism also occurs in some xenobiotics, such as aldehyde oxidase, xanthine oxidoreductase, flavin-containing monooxygenase, monoamine oxidase, alcohol dehydrogenase, or aldehyde dehydrogenase-dependent oxidative metabolism. Drugs form a large portion of xenobiotics and are the primary target of this review. The common reaction mechanisms and roles of non-CYP450 enzymes in metabolism, factors affecting the expression and activity of non-CYP450 enzymes in terms of inhibition, induction, regulation, and species differences in pharmaceutical research and development have been summarized. These non-CYP450 enzymes are detoxifying enzymes, although sometimes they mediate severe toxicity. Synthetic or natural chemicals serve as inhibitors for these non-CYP450 enzymes. However, pharmacokinetic-based drug interactions through these inhibitors have rarely been reported in vivo. Although multiple mechanisms participate in the basal expression and regulation of non-CYP450 enzymes, only a limited number of inducers upregulate their expression. Therefore, these enzymes are considered non-inducible or less inducible. Overall, this review focuses on the potential xenobiotic factors that contribute to variations in gene expression levels and the activities of non-CYP450 enzymes.
Collapse
|
12
|
Luo R, Zhang H, Mukherjee N, Karmaus W, Patil V, Arshad H, Mzayek F. Association of grandmaternal smoking during pregnancy with DNA methylation of grandchildren: the Isle of Wight study. Epigenomics 2021; 13:1473-1483. [PMID: 34596434 DOI: 10.2217/epi-2020-0433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: To investigate the intergenerational effects of grandmaternal smoking during pregnancy (GMSDP) on the DNA methylation of grandchildren. Methods: Data from the Isle of Wight birth cohort with information regarding GMSDP and DNA methylation profiling at the birth of grandchildren (n = 161) were used. Differentially methylated CpG sites related to GMSDP were identified using testing-training screening, analysis of variance and multivariate analysis of covariance. The association between identified CpG sites and expression levels of neighboring genes was tested by linear regression. Results: Twenty-three CpG sites were differentially methylated in grandchildren because of GMSDP, and eight of these were associated with expression levels of 13 neighboring genes. Conclusion: GMSDP has an intergenerational effect on the DNA methylation profile of grandchildren independent of maternal smoking during pregnancy.
Collapse
Affiliation(s)
- Rui Luo
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Nandini Mukherjee
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Veeresh Patil
- David Hide Asthma and Allergy Research Centre, Newport, PO30 5TG, UK
| | - Hasan Arshad
- David Hide Asthma and Allergy Research Centre, Newport, PO30 5TG, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Fawaz Mzayek
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
13
|
Wani KA, Goswamy D, Taubert S, Ratnappan R, Ghazi A, Irazoqui JE. NHR-49/PPAR-α and HLH-30/TFEB cooperate for C. elegans host defense via a flavin-containing monooxygenase. eLife 2021; 10:62775. [PMID: 33978570 PMCID: PMC8139828 DOI: 10.7554/elife.62775] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
The model organism Caenorhabditis elegans mounts transcriptional defense responses against intestinal bacterial infections that elicit overlapping starvation and infection responses, the regulation of which is not well understood. Direct comparison of C. elegans that were starved or infected with Staphylococcus aureus revealed a large infection-specific transcriptional signature, which was almost completely abrogated by deletion of transcription factor hlh-30/TFEB, except for six genes including a flavin-containing monooxygenase (FMO) gene, fmo-2/FMO5. Deletion of fmo-2/FMO5 severely compromised infection survival, thus identifying the first FMO with innate immunity functions in animals. Moreover, fmo-2/FMO5 induction required the nuclear hormone receptor, NHR-49/PPAR-α, which controlled host defense cell non-autonomously. These findings reveal an infection-specific host response to S. aureus, identify HLH-30/TFEB as its main regulator, reveal FMOs as important innate immunity effectors in animals, and identify the mechanism of FMO regulation through NHR-49/PPAR-α during S. aureus infection, with implications for host defense and inflammation in higher organisms.
Collapse
Affiliation(s)
- Khursheed A Wani
- Department of Microbiology and Physiological Systems, UMass Medical School, Worcester, United States
| | - Debanjan Goswamy
- Department of Microbiology and Physiological Systems, UMass Medical School, Worcester, United States
| | - Stefan Taubert
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Ramesh Ratnappan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, United States.,Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,Department of Physiology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, United States.,Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,Department of Physiology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Javier E Irazoqui
- Department of Microbiology and Physiological Systems, UMass Medical School, Worcester, United States
| |
Collapse
|
14
|
Adav SS, Wang Y. Metabolomics Signatures of Aging: Recent Advances. Aging Dis 2021; 12:646-661. [PMID: 33815888 PMCID: PMC7990359 DOI: 10.14336/ad.2020.0909] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023] Open
Abstract
Metabolomics is the latest state-of-the-art omics technology that provides a comprehensive quantitative profile of metabolites. The metabolites are the cellular end products of metabolic reactions that explain the ultimate response to genomic, transcriptomic, proteomic, or environmental changes. Aging is a natural inevitable process characterized by a time-dependent decline of various physiological and metabolic functions and are dominated collectively by genetics, proteomics, metabolomics, environmental factors, diet, and lifestyle. The precise mechanism of the aging process is unclear, but the metabolomics has the potential to add significant insight by providing a detailed metabolite profile and altered metabolomic functions with age. Although the application of metabolomics to aging research is still relatively new, extensive attempts have been made to understand the biology of aging through a quantitative metabolite profile. This review summarises recent developments and up-to-date information on metabolomics studies in aging research with a major emphasis on aging biomarkers in less invasive biofluids. The importance of an integrative approach that combines multi-omics data to understand the complex aging process is discussed. Despite various innovations in metabolomics and metabolite associated with redox homeostasis, central energy pathways, lipid metabolism, and amino acid, a major challenge remains to provide conclusive aging biomarkers.
Collapse
Affiliation(s)
- Sunil S Adav
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
15
|
Huang S, Howington MB, Dobry CJ, Evans CR, Leiser SF. Flavin-Containing Monooxygenases Are Conserved Regulators of Stress Resistance and Metabolism. Front Cell Dev Biol 2021; 9:630188. [PMID: 33644069 PMCID: PMC7907451 DOI: 10.3389/fcell.2021.630188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/15/2021] [Indexed: 01/14/2023] Open
Abstract
Flavin-Containing Monooxygenases are conserved xenobiotic-detoxifying enzymes. Recent studies have revealed endogenous functions of FMOs in regulating longevity in Caenorhabditis elegans and in regulating aspects of metabolism in mice. To explore the cellular mechanisms of FMO's endogenous function, here we demonstrate that all five functional mammalian FMOs may play similar endogenous roles to improve resistance to a wide range of toxic stresses in both kidney and liver cells. We further find that stress-activated c-Jun N-terminal kinase activity is enhanced in FMO-overexpressing cells, which may lead to increased survival under stress. Furthermore, FMO expression modulates cellular metabolic activity as measured by mitochondrial respiration, glycolysis, and metabolomics analyses. FMO expression augments mitochondrial respiration and significantly changes central carbon metabolism, including amino acid and energy metabolism pathways. Together, our findings demonstrate an important endogenous role for the FMO family in regulation of cellular stress resistance and major cellular metabolic activities including central carbon metabolism.
Collapse
Affiliation(s)
- Shijiao Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Marshall B. Howington
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
| | - Craig J. Dobry
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Charles R. Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Scott F. Leiser
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Kong L, Chen J, Ji X, Qin Q, Yang H, Liu D, Li D, Sun M. Alcoholic fatty liver disease inhibited the co-expression of Fmo5 and PPARα to activate the NF-κB signaling pathway, thereby reducing liver injury via inducing gut microbiota disturbance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:18. [PMID: 33413501 PMCID: PMC7788704 DOI: 10.1186/s13046-020-01782-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023]
Abstract
Background Alcohol-induced intestinal dysbiosis disrupts and inflammatory responses are essential in the development of alcoholic fatty liver disease (AFLD). Here, we investigated the effects of Fmo5 on changes in enteric microbiome composition in a model of AFLD and dissected the pathogenic role of Fmo5 in AFLD-induced liver pathology. Methods The expression profile data of GSE8006 and GSE40334 datasets were downloaded from the GEO database. The WGCNA approach allowed us to investigate the AFLD-correlated module. DEGs were used to perform KEGG pathway enrichment analyses. Four PPI networks were constructed using the STRING database and visualized using Cytoscape software. The Cytohubba plug-in was used to identify the hub genes. Western blot and immunohistochemistry assays were used to detect protein expression. ELISA assay was used to detect the levels of serum inflammatory cytokines. Lipid droplets in the cytoplasm were observed using Oil Red O staining. Apoptosis was detected using a TUNEL assay and flow cytometry analysis. ROS levels were detected using flow cytometry analysis. Nuclear translocation of NF-κB p65 was observed using immunofluorescence staining. Co-immunoprecipitation was used to detect the co-expression of PPARα and Fmo5 in L02 cells. 16S rDNA sequencing defined the bacterial communities in mice with AFLD. Results Fmo5 is a key DEG and is closely associated with the gut microbiota and PPAR signaling pathway. Gut microbiome function in AFLD was significantly related to the PPAR signaling pathway. AFLD induced shifts in various bacterial phyla in the cecum, including a reduction in Bacteroidetes and increased Firmicutes. Fmo5 and PPARα co-expression in cell and animal models with AFLD, which decreased significantly. Silencing of Fmo5 and PPARα aggravated the functions of AFLD inducing apoptosis and inflammatory response, promoting liver injury, and activating the NF-κB signaling pathway in vivo and in vitro. The NF-κB inhibitor abolished the functions of silencing of Fmo5 and PPARα promoting AFLD-induced apoptosis, inflammatory response, and liver injury. Conclusion Our data indicated that the co-expression of Fmo5 and PPARα was involved in AFLD-related gut microbiota composition and alleviated AFLD-induced liver injury, apoptosis, and inflammatory response by inhibiting the nuclear translocation of NF-κB p65 to inhibit the NF-κB signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01782-w.
Collapse
Affiliation(s)
- Lingjian Kong
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Henan Province, Zhengzhou, 450052, PR China.
| | - Jing Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Xiaoli Ji
- Department of Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Qian Qin
- Physical Examination Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Huiyu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Henan Province, Zhengzhou, 450052, PR China
| | - Dan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Henan Province, Zhengzhou, 450052, PR China
| | - Deliang Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Henan Province, Zhengzhou, 450052, PR China
| | - Meiling Sun
- Department of Gastroenterology, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510280, PR China
| |
Collapse
|
17
|
Steinke I, Ghanei N, Govindarajulu M, Yoo S, Zhong J, Amin RH. Drug Discovery and Development of Novel Therapeutics for Inhibiting TMAO in Models of Atherosclerosis and Diabetes. Front Physiol 2020; 11:567899. [PMID: 33192565 PMCID: PMC7658318 DOI: 10.3389/fphys.2020.567899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus exists as a comorbidity with congestive heart failure (CHF). However, the exact molecular signaling mechanism linking CHF as the major form of mortality from diabetes remains unknown. Type 2 diabetic patients display abnormally high levels of metabolic products associated with gut dysbiosis. One such metabolite, trimethylamine N-oxide (TMAO), has been observed to be directly related with increased incidence of cardiovascular diseases (CVD) in human patients. TMAO a gut-liver metabolite, comes from the metabolic degenerative product trimethylamine (TMA) that is produced from gut microbial metabolism. Elevated levels of TMAO in diabetics and obese patients are observed to have a direct correlation with increased risk for major adverse cardiovascular events. The pro-atherogenic effect of TMAO is attributed to enhancing inflammatory pathways with cholesterol and bile acid dysregulation, promoting foam cell formation. Recent studies have revealed several potential therapeutic strategies for reducing TMAO levels and will be the central focus for the current review. However, few have focused on developing rational drug therapeutics and may be due to the gaps in knowledge for understanding the mechanism by which microbial TMA producing enzymes and hepatic flavin-containing monoxygenase (FMO) can work together in preventing elevation of TMAO levels. Therefore, it is critical to understand the advantages of developing a novel rational drug design strategy that manipulates FMO production of TMAO and TMA production by microbial enzymes. This review will focus on the inspection of FMO manipulation, as well as gut microbiota dysbiosis and its influence on metabolic disorders including cardiovascular disease and describe novel potential pharmacological therapeutic development.
Collapse
Affiliation(s)
- Ian Steinke
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Nila Ghanei
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Manoj Govindarajulu
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Sieun Yoo
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Juming Zhong
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Rajesh H Amin
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| |
Collapse
|
18
|
Xhakaza L, Abrahams-October Z, Pearce B, Masilela CM, Adeniyi OV, Johnson R, Ongole JJ, Benjeddou M. Evaluation of the suitability of 19 pharmacogenomics biomarkers for individualized metformin therapy for type 2 diabetes patients. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0111/dmdi-2020-0111.xml. [PMID: 32609649 DOI: 10.1515/dmdi-2020-0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Objectives Type 2 Diabetes mellitus is a progressive metabolic disease characterized by relative insulin insufficiency and insulin resistance resulting in hyperglycemia. Despite the widespread use of metformin, there is considerable variation in treatment response; with approximately one-third of patients failing to achieve adequate glycemic control. Studies have reported the involvement of single nucleotide polymorphisms and their interactions in genetic pathways i.e., pharmacodynamics and pharmacokinetics. This study aims to investigate the association between 19 pharmacogenetics biomarkers and response to metformin treatment. Methods MassARRAY panels were designed and optimized by Inqaba Biotechnical Industries, to genotype 19 biomarkers for 140 type 2 diabetic outpatients. Results The CT genotype of the rs12752688 polymorphism was significantly associated with increased response to metformin therapy after correction (OR=0.33, 95% CI [0.16-0.68], p-value=0.006). An association was also found between the GA genotype of SLC47A2 rs12943590 and a decreased response to metformin therapy after correction (OR=2.29, 95% CI [1.01-5.21], p-value=0.01). Conclusions This is the first study investigating the association between genetic variants and responsiveness to medication for diabetic patients from the indigenous Nguni population in South Africa. It is suggested that rs12752688 and rs12943590 be included in pharmacogenomics profiling systems to individualize metformin therapy for diabetic patients from African populations.
Collapse
Affiliation(s)
- Lettilia Xhakaza
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Zainonesa Abrahams-October
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Brendon Pearce
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Charity Mandisa Masilela
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | | | - Rabia Johnson
- South African Medical Research Council, Parow, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Joven Jebio Ongole
- Department of Family Medicine, Center for Teaching and Learning, Piet Retief Hospital, Mkhondo, Mpumalanga, South Africa
| | - Mongi Benjeddou
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
19
|
Xhakaza L, Abrahams-October Z, Pearce B, Masilela CM, Adeniyi OV, Johnson R, Ongole JJ, Benjeddou M. Evaluation of the suitability of 19 pharmacogenomics biomarkers for individualized metformin therapy for type 2 diabetes patients. Drug Metab Pers Ther 2020; 35:/j/dmdi.2020.35.issue-2/dmpt-2020-0111/dmpt-2020-0111.xml. [PMID: 32681778 DOI: 10.1515/dmpt-2020-0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 11/15/2022]
Abstract
Objectives Type 2 Diabetes mellitus is a progressive metabolic disease characterized by relative insulin insufficiency and insulin resistance resulting in hyperglycemia. Despite the widespread use of metformin, there is considerable variation in treatment response; with approximately one-third of patients failing to achieve adequate glycemic control. Studies have reported the involvement of single nucleotide polymorphisms and their interactions in genetic pathways i.e., pharmacodynamics and pharmacokinetics. This study aims to investigate the association between 19 pharmacogenetics biomarkers and response to metformin treatment. Methods MassARRAY panels were designed and optimized by Inqaba Biotechnical Industries, to genotype 19 biomarkers for 140 type 2 diabetic outpatients. Results The CT genotype of the rs12752688 polymorphism was significantly associated with increased response to metformin therapy after correction (OR=0.33, 95% CI [0.16-0.68], p-value=0.006). An association was also found between the GA genotype of SLC47A2 rs12943590 and a decreased response to metformin therapy after correction (OR=2.29, 95% CI [1.01-5.21], p-value=0.01). Conclusions This is the first study investigating the association between genetic variants and responsiveness to medication for diabetic patients from the indigenous Nguni population in South Africa. It is suggested that rs12752688 and rs12943590 be included in pharmacogenomics profiling systems to individualize metformin therapy for diabetic patients from African populations.
Collapse
Affiliation(s)
- Lettilia Xhakaza
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Zainonesa Abrahams-October
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Brendon Pearce
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Charity Mandisa Masilela
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | | | - Rabia Johnson
- South African Medical Research Council, Parow, Cape Town, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Joven Jebio Ongole
- Department of Family Medicine, Center for Teaching and Learning, Piet Retief Hospital, Mkhondo, Mpumalanga, South Africa
| | - Mongi Benjeddou
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
20
|
Phillips IR, Shephard EA. Flavin-containing monooxygenases: new structures from old proteins. Nat Struct Mol Biol 2020; 27:3-4. [DOI: 10.1038/s41594-019-0356-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Ancestral-sequence reconstruction unveils the structural basis of function in mammalian FMOs. Nat Struct Mol Biol 2019; 27:14-24. [PMID: 31873300 DOI: 10.1038/s41594-019-0347-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/01/2019] [Indexed: 02/02/2023]
Abstract
Flavin-containing monooxygenases (FMOs) are ubiquitous in all domains of life and metabolize a myriad of xenobiotics, including toxins, pesticides and drugs. However, despite their pharmacological importance, structural information remains bereft. To further our understanding behind their biochemistry and diversity, we used ancestral-sequence reconstruction, kinetic and crystallographic techniques to scrutinize three ancient mammalian FMOs: AncFMO2, AncFMO3-6 and AncFMO5. Remarkably, all AncFMOs could be crystallized and were structurally resolved between 2.7- and 3.2-Å resolution. These crystal structures depict the unprecedented topology of mammalian FMOs. Each employs extensive membrane-binding features and intricate substrate-profiling tunnel networks through a conspicuous membrane-adhering insertion. Furthermore, a glutamate-histidine switch is speculated to induce the distinctive Baeyer-Villiger oxidation activity of FMO5. The AncFMOs exhibited catalysis akin to human FMOs and, with sequence identities between 82% and 92%, represent excellent models. Our study demonstrates the power of ancestral-sequence reconstruction as a strategy for the crystallization of proteins.
Collapse
|
22
|
Abstract
Flavin-containing monooxygenases (FMOs) catalyze the oxygenation of numerous foreign chemicals. This review considers the roles of FMOs in the metabolism of endogenous substrates and in physiological processes, and focuses on FMOs of human and mouse. Tyramine, phenethylamine, trimethylamine, cysteamine, methionine, lipoic acid and lipoamide have been identified as endogenous or dietary-derived substrates of FMOs in vitro. However, with the exception of trimethylamine, the role of FMOs in the metabolism of these compounds in vivo is unclear. The use, as experimental models, of knockout-mouse lines deficient in various Fmo genes has revealed previously unsuspected roles for FMOs in endogenous metabolic processes. FMO1 has been identified as a novel regulator of energy balance that acts to promote metabolic efficiency, and also as being involved in the biosynthesis of taurine, by catalyzing the S-oxygenation of hypotaurine. FMO5 has been identified as a regulator of metabolic ageing and glucose homeostasis that apparently acts by sensing or responding to gut bacteria. Thus, FMOs do not function only as xenobiotic-metabolizing enzymes and there is a risk that exposure to drugs and environmental chemicals that are substrates or inducers of FMOs would perturb the endogenous functions of these enzymes.
Collapse
|
23
|
Phillips IR, Shephard EA. Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease. Xenobiotica 2019; 50:19-33. [DOI: 10.1080/00498254.2019.1643515] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ian R. Phillips
- Research Department of Structural and Molecular Biology, University College London, London, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Elizabeth A. Shephard
- Research Department of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
24
|
Varshavi D, Scott FH, Varshavi D, Veeravalli S, Phillips IR, Veselkov K, Strittmatter N, Takats Z, Shephard EA, Everett JR. Metabolic Biomarkers of Ageing in C57BL/6J Wild-Type and Flavin-Containing Monooxygenase 5 (FMO5)-Knockout Mice. Front Mol Biosci 2018; 5:28. [PMID: 29686991 PMCID: PMC5900034 DOI: 10.3389/fmolb.2018.00028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/19/2018] [Indexed: 12/16/2022] Open
Abstract
It was recently demonstrated in mice that knockout of the flavin-containing monooxygenase 5 gene, Fmo5, slows metabolic ageing via pleiotropic effects. We have now used an NMR-based metabonomics approach to study the effects of ageing directly on the metabolic profiles of urine and plasma from male, wild-type C57BL/6J and Fmo5-/- (FMO5 KO) mice back-crossed onto the C57BL/6J background. The aim of this study was to identify metabolic signatures that are associated with ageing in both these mouse lines and to characterize the age-related differences in the metabolite profiles between the FMO5 KO mice and their wild-type counterparts at equivalent time points. We identified a range of age-related biomarkers in both urine and plasma. Some metabolites, including urinary 6-hydroxy-6-methylheptan-3-one (6H6MH3O), a mouse sex pheromone, showed similar patterns of changes with age, regardless of genetic background. Others, however, were altered only in the FMO5 KO, or only in the wild-type mice, indicating the impact of genetic modifications on mouse ageing. Elevated concentrations of urinary taurine represent a distinctive, ageing-related change observed only in wild-type mice.
Collapse
Affiliation(s)
- Dorsa Varshavi
- Medway Metabonomics Research Group, University of Greenwich, Chatham, United Kingdom
| | - Flora H Scott
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Dorna Varshavi
- Medway Metabonomics Research Group, University of Greenwich, Chatham, United Kingdom
| | - Sunil Veeravalli
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Ian R Phillips
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom.,School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Kirill Veselkov
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Nicole Strittmatter
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Zoltan Takats
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Elizabeth A Shephard
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Jeremy R Everett
- Medway Metabonomics Research Group, University of Greenwich, Chatham, United Kingdom
| |
Collapse
|
25
|
Pravenec M, Saba LM, Zídek V, Landa V, Mlejnek P, Šilhavý J, Šimáková M, Strnad H, Trnovská J, Škop V, Hüttl M, Marková I, Oliyarnyk O, Malínská H, Kazdová L, Smith H, Tabakoff B. Systems genetic analysis of brown adipose tissue function. Physiol Genomics 2017; 50:52-66. [PMID: 29127223 DOI: 10.1152/physiolgenomics.00091.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brown adipose tissue (BAT) has been suggested to play an important role in lipid and glucose metabolism in rodents and possibly also in humans. In the current study, we used genetic and correlation analyses in the BXH/HXB recombinant inbred (RI) strains, derived from Brown Norway (BN) and spontaneously hypertensive rats (SHR), to identify genetic determinants of BAT function. Linkage analyses revealed a quantitative trait locus (QTL) associated with interscapular BAT mass on chromosome 4 and two closely linked QTLs associated with glucose oxidation and glucose incorporation into BAT lipids on chromosome 2. Using weighted gene coexpression network analysis (WGCNA) we identified 1,147 gene coexpression modules in the BAT from BXH/HXB rats and mapped their module eigengene QTLs. Through an unsupervised analysis, we identified modules related to BAT relative mass and function. The Coral4.1 coexpression module is associated with BAT relative mass (includes Cd36 highly connected gene), and the Darkseagreen coexpression module is associated with glucose incorporation into BAT lipids (includes Hiat1, Fmo5, and Sort1 highly connected transcripts). Because multiple statistical criteria were used to identify candidate modules, significance thresholds for individual tests were not adjusted for multiple comparisons across modules. In summary, a systems genetic analysis using genomic and quantitative transcriptomic and physiological information has produced confirmation of several known genetic factors and significant insight into novel genetic components functioning in BAT and possibly contributing to traits characteristic of the metabolic syndrome.
Collapse
Affiliation(s)
- Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Václav Zídek
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Vladimír Landa
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Petr Mlejnek
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Jan Šilhavý
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Miroslava Šimáková
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics of the Czech Academy of Sciences , Prague , Czech Republic
| | - Jaroslava Trnovská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vojtěch Škop
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Olena Oliyarnyk
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ludmila Kazdová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Harry Smith
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|