1
|
Pande LJ, Arnet RE, Piper BJ. An Examination of the Complex Pharmacological Properties of the Non-Selective Opioid Modulator Buprenorphine. Pharmaceuticals (Basel) 2023; 16:1397. [PMID: 37895868 PMCID: PMC10610465 DOI: 10.3390/ph16101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The goal of this review is to provide a recent examination of the pharmacodynamics as well as pharmacokinetics, misuse potential, toxicology, and prenatal consequences of buprenorphine. Buprenorphine is currently a Schedule III opioid in the US used for opioid-use disorder (OUD) and as an analgesic. Buprenorphine has high affinity for the mu-opioid receptor (MOR), delta (DOR), and kappa (KOR) and intermediate affinity for the nociceptin (NOR). Buprenorphine's active metabolite, norbuprenorphine, crosses the blood-brain barrier, is a potent metabolite that attenuates the analgesic effects of buprenorphine due to binding to NOR, and is responsible for the respiratory depressant effects. The area under the concentration curves are very similar for buprenorphine and norbuprenorphine, which indicates that it is important to consider this metabolite. Crowding sourcing has identified a buprenorphine street value (USD 3.95/mg), indicating some non-medical use. There have also been eleven-thousand reports involving buprenorphine and minors (age < 19) at US poison control centers. Prenatal exposure to clinically relevant dosages in rats produces reductions in myelin and increases in depression-like behavior. In conclusion, the pharmacology of this OUD pharmacotherapy including the consequences of prenatal buprenorphine exposure in humans and experimental animals should continue to be carefully evaluated.
Collapse
Affiliation(s)
- Leana J. Pande
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; (L.J.P.); (R.E.A.)
- Touro College of Osteopathic Medicine, Middletown, NY 10027, USA
| | - Rhudjerry E. Arnet
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; (L.J.P.); (R.E.A.)
| | - Brian J. Piper
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; (L.J.P.); (R.E.A.)
- Center for Pharmacy Innovation and Outcomes, Danville, PA 17821, USA
| |
Collapse
|
2
|
Fashe MM, Fallon JK, Miner TA, Tiley JB, Smith PC, Lee CR. Impact of pregnancy related hormones on drug metabolizing enzyme and transport protein concentrations in human hepatocytes. Front Pharmacol 2022; 13:1004010. [PMID: 36210832 PMCID: PMC9532936 DOI: 10.3389/fphar.2022.1004010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Pregnancy alters the disposition and exposure to multiple drugs indicated for pregnancy-related complications. Previous in vitro studies have shown that pregnancy-related hormones (PRHs) alter the expression and function of certain cytochrome P450s (CYPs) in human hepatocytes. However, the impact of PRHs on hepatic concentrations of non-CYP drug-metabolizing enzymes (DMEs) and transport proteins remain largely unknown. In this study, sandwich-cultured human hepatocytes (SCHH) from five female donors were exposed to vehicle or PRHs (estrone, estradiol, estriol, progesterone, cortisol, and placental growth hormone), administered individually or in combination, across a range of physiologically relevant PRH concentrations for 72 h. Absolute concentrations of 33 hepatic non-CYP DMEs and transport proteins were quantified in SCHH membrane fractions using a quantitative targeted absolute proteomics (QTAP) isotope dilution nanoLC-MS/MS method. The data revealed that PRHs altered the absolute protein concentration of various DMEs and transporters in a concentration-, isoform-, and hepatocyte donor-dependent manner. Overall, eight of 33 (24%) proteins exhibited a significant PRH-evoked net change in absolute protein concentration relative to vehicle control (ANOVA p < 0.05) across hepatocyte donors: 1/11 UGTs (9%; UGT1A4), 4/6 other DMEs (67%; CES1, CES2, FMO5, POR), and 3/16 transport proteins (19%; OAT2, OCT3, P-GP). An additional 8 (24%) proteins (UGT1A1, UGT2B4, UGT2B10, FMO3, OCT1, MRP2, MRP3, ENT1) exhibited significant PRH alterations in absolute protein concentration within at least two individual hepatocyte donors. In contrast, 17 (52%) proteins exhibited no discernable impact by PRHs either within or across hepatocyte donors. Collectively, these results provide the first comprehensive quantitative proteomic evaluation of PRH effects on non-CYP DMEs and transport proteins in SCHH and offer mechanistic insight into the altered disposition of drug substrates cleared by these pathways during pregnancy.
Collapse
Affiliation(s)
- Muluneh M. Fashe
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Taryn A. Miner
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jacqueline B. Tiley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Mulrenin IR, Garcia JE, Fashe MM, Loop MS, Daubert MA, Urrutia RP, Lee CR. The impact of pregnancy on antihypertensive drug metabolism and pharmacokinetics: current status and future directions. Expert Opin Drug Metab Toxicol 2021; 17:1261-1279. [PMID: 34739303 DOI: 10.1080/17425255.2021.2002845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hypertensive disorders of pregnancy (HDP) are rising in prevalence, and increase risk of adverse maternal and fetal outcomes. Physiologic changes occur during pregnancy that alter drug pharmacokinetics. However, antihypertensive drugs lack pregnancy-specific dosing recommendations due to critical knowledge gaps surrounding the extent of gestational changes in antihypertensive drug pharmacokinetics and underlying mechanisms. AREAS COVERED This review (1) summarizes currently recommended medications and dosing strategies for non-emergent HDP treatment, (2) reviews and synthesizes existing literature identified via a comprehensive Pubmed search evaluating gestational changes in the maternal pharmacokinetics of commonly prescribed HDP drugs (notably labetalol and nifedipine), and (3) offers insight into the metabolism and clearance mechanisms underlying altered HDP drug pharmacokinetics during pregnancy. Remaining knowledge gaps and future research directions are summarized. EXPERT OPINION A series of small pharmacokinetic studies illustrate higher oral clearance of labetalol and nifedipine during pregnancy. Pharmacokinetic modeling and preclinical studies suggest these effects are likely due to pregnancy-associated increases in hepatic UGT1A1- and CYP3A4-mediated first-pass metabolism and lower bioavailability. Accordingly, higher and/or more frequent doses may be needed to lower blood pressure during pregnancy. Future research is needed to address various evidence gaps and inform the development of more precise antihypertensive drug dosing strategies.
Collapse
Affiliation(s)
- Ian R Mulrenin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Julian E Garcia
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Muluneh M Fashe
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew Shane Loop
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Melissa A Daubert
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Rachel Peragallo Urrutia
- Division of General Obstetrics and Gynecology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Craig R Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
4
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
5
|
Khatri R, Fallon JK, Sykes C, Kulick N, Rementer RJB, Miner TA, Schauer AP, Kashuba ADM, Boggess KA, Brouwer KLR, Smith PC, Lee CR. Pregnancy-Related Hormones Increase UGT1A1-Mediated Labetalol Metabolism in Human Hepatocytes. Front Pharmacol 2021; 12:655320. [PMID: 33995076 PMCID: PMC8115026 DOI: 10.3389/fphar.2021.655320] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022] Open
Abstract
Pregnancy-related hormones (PRH) are recognized as important regulators of hepatic cytochrome P450 enzyme expression and function. However, the impact of PRH on the hepatic expression and function of uridine diphosphate glucuronosyltransferases (UGTs) remains unclear. Using primary human hepatocytes, we evaluated the effect of PRH exposure on mRNA levels and protein concentrations of UGT1A1, UGT2B7, and other key UGT enzymes, and on the metabolism of labetalol (a UGT1A1 and UGT2B7 substrate commonly prescribed to treat hypertensive disorders of pregnancy). Sandwich-cultured human hepatocytes (SCHH) from female donors were exposed to the PRH estradiol, estriol, estetrol, progesterone, and cortisol individually or in combination. We quantified protein concentrations of UGT1A1, UGT2B7, and four additional UGT1A isoforms in SCHH membrane fractions and evaluated the metabolism of labetalol to its glucuronide metabolites in SCHH. PRH exposure increased mRNA levels and protein concentrations of UGT1A1 and UGT1A4 in SCHH. PRH exposure also significantly increased labetalol metabolism to its UGT1A1-derived glucuronide metabolite in a concentration-dependent manner, which positively correlated with PRH-induced changes in UGT1A1 protein concentrations. In contrast, PRH did not alter UGT2B7 mRNA levels or protein concentrations in SCHH, and formation of the UGT2B7-derived labetalol glucuronide metabolite was decreased following PRH exposure. Our findings demonstrate that PRH alter expression and function of UGT proteins in an isoform-specific manner and increase UGT1A1-mediated labetalol metabolism in human hepatocytes by inducing UGT1A1 protein concentrations. These results provide mechanistic insight into the increases in labetalol clearance observed in pregnant individuals.
Collapse
Affiliation(s)
- Raju Khatri
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig Sykes
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Natasha Kulick
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca J. B. Rementer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Taryn A. Miner
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amanda P. Schauer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Angela D. M. Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kim A. Boggess
- Department of Obstetrics and Gynecology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Hakomäki H, Kokki H, Lehtonen M, Ranta VP, Räsänen J, Voipio HM, Kokki M. Pharmacokinetics of buprenorphine in pregnant sheep after intravenous injection. Pharmacol Res Perspect 2021; 9:e00726. [PMID: 33619904 PMCID: PMC7899927 DOI: 10.1002/prp2.726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/27/2023] Open
Abstract
Buprenorphine is a semi‐synthetic opioid, widely used in the maintenance treatment for opioid‐dependent pregnant women. Limited data exist on the pharmacokinetics of buprenorphine in pregnancy. We conducted a pharmacokinetic study to determine the pharmacokinetics of intravenous buprenorphine in pregnant sheep. Fourteen pregnant sheep in late gestation received 10 µg/kg of buprenorphine as an intravenous bolus injection. Plasma samples were collected up to 48 h after administration. Buprenorphine and its metabolite, norbuprenorphine, were quantified from plasma using a LC/MS/MS method, with lower limits of quantification of 0.01 µg/L and 0.04 µg/L for buprenorphine and norbuprenorphine, respectively. The pharmacokinetic parameters were calculated using noncompartmental analysis. The pharmacokinetic parameters, median (minimum−maximum), were Cmax 4.31 µg/L (1.93–15.5), AUCinf 2.89 h*µg/L (1.72–40.2), CL 3.39 L/h/kg (0.25–6.02), terminal t½ 1.75 h (1.07–31.0), Vss 8.04 L/kg (1.05–49.3). Norbuprenorphine was undetected in all plasma samples. The median clearance in pregnant sheep was higher than previously reported for nonpregnant sheep and human (male) subjects. Our sensitive analytical method was able to detect long terminal half‐lives for six subjects, and a wide between‐subject variability in the study population. Significance statement: Buprenorphine is widely used for the treatment of opioid use disorder in pregnancy. However, limited data exist on the pharmacokinetics of buprenorphine during pregnancy. As this type of study cannot be done in humans due to ethical reasons, we conducted a study in pregnant sheep. This study provides pharmacokinetic data on buprenorphine in pregnant sheep and helps us to understand the pharmacokinetics of the drug in humans.
Collapse
Affiliation(s)
| | - Hannu Kokki
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Veli-Pekka Ranta
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Juha Räsänen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Hanna-Marja Voipio
- Department of Experimental Surgery, Oulu Laboratory Animal Centre, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Merja Kokki
- Department of Anesthesia and Intensive Care, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
7
|
Abstract
Accurate estimation of in vivo clearance in human is pivotal to determine the dose and dosing regimen for drug development. In vitro-in vivo extrapolation (IVIVE) has been performed to predict drug clearance using empirical and physiological scalars. Multiple in vitro systems and mathematical modeling techniques have been employed to estimate in vivo clearance. The models for predicting clearance have significantly improved and have evolved to become more complex by integrating multiple processes such as drug metabolism and transport as well as passive diffusion. This chapter covers the use of conventional as well as recently developed methods to predict metabolic and transporter-mediated clearance along with the advantages and disadvantages of using these methods and the associated experimental considerations. The general approaches to improve IVIVE by use of appropriate scalars, incorporation of extrahepatic metabolism and transport and application of physiologically based pharmacokinetic (PBPK) models with proteomics data are also discussed. The chapter also provides an overview of the advantages of using such dynamic mechanistic models over static models for clearance predictions to improve IVIVE.
Collapse
|
8
|
Paquette A, Baloni P, Holloman AB, Nigam S, Bammler T, Mao Q, Price ND. Temporal transcriptomic analysis of metabolic genes in maternal organs and placenta during murine pregnancy. Biol Reprod 2018; 99:1255-1265. [PMID: 29939228 PMCID: PMC6692859 DOI: 10.1093/biolre/ioy148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/22/2018] [Accepted: 06/22/2018] [Indexed: 01/11/2023] Open
Abstract
Maternal pregnancy adaptation is crucial for fetal development and long-term health. Complex interactions occur between maternal digestive and excretory systems as they interface with the developing fetus through the placenta, and transcriptomic regulation in these organs throughout pregnancy is poorly understood. Our objective is to characterize transcriptomic changes across gestation in maternal organs and placenta. Gene expression was quantified in the kidney, liver, and small intestine harvested from nonpregnant and pregnant FVB mice at four time points and placenta at three time points (N = 5/time point) using Affymetrix Mouse Gene 1.0 ST arrays. In maternal organs, we identified 476 genes in the liver, 207 genes in the kidney, and 27 genes in the small intestine that were differentially expressed across gestation (False Discovery Rate [FDR] adjusted q < 0.05). The placenta had a total of 1576 differentially expressed genes between the placenta at either/gd15 or gd19 compared to gd10. We identified a number of pathways enriched for genes differentially expressed across gestation, including 5 pathways in the placenta, 9 pathways in the kidney, and 28 pathways in the liver, including the citrate cycle, retinol metabolism, bile acid synthesis, and steroid bile synthesis, which play functional roles in fetal development and pregnancy maintenance. Characterization of normal longitudinal changes that occur in pregnancy provides context to understand how perturbations in these biochemical pathways and perturbations in nutrient signaling may impact pregnancy.
Collapse
Affiliation(s)
| | | | | | - Sanjay Nigam
- Departments of Pediatrics and Medicine, University of California San Diego, San Diego, California, USA
| | - Theo Bammler
- Department of Environmental and Occupational Health Science, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
9
|
Liao MZ, Gao C, Bhatt DK, Prasad B, Mao Q. Quantitative Proteomics Reveals Changes in Transporter Protein Abundance in Liver, Kidney and Brain of Mice by Pregnancy. Drug Metab Lett 2018; 12:145-152. [PMID: 29938623 PMCID: PMC6350206 DOI: 10.2174/1872312812666180625122810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Background: Few studies have systematically investigated pregnancy-induced changes in protein abundance of drug transporters in organs important for drug/xenobiotic disposition. Objective: The goal of this study was to compare protein abundance of important drug/xenobiotic trans-porters including Abcb1a, Abcg2, Abcc2, and Slco1b2 in the liver, kidney and brain of pregnant mice on gestation day 15 to that of non-pregnant mice. Methods: The mass spectrometry-based proteomics was used to quantify changes in protein abundance of transporters in tissues from pregnant and non-pregnant mice. Results: The protein levels of hepatic Abcc2, Abcc3, and Slco1a4 per µg of total membrane proteins were significantly decreased by pregnancy by 24%, 72%, and 70%, respectively. The protein levels of Abcg2, Abcc2, and Slco2b1 per µg of total membrane proteins in the kidney were significantly decreased by pregnancy by 43%, 50%, and 46%, respectively. After scaling to the whole liver with consideration of increase in liver weight in pregnant mice, the protein abundance of Abcb1a, Abcg2, Abcc2, Abcb11, Abcc4, Slco1a1, and Slco1b2 in the liver was ~50-100% higher in pregnant mice, while those of Abcc3 and Slco1a4 were ~40% lower. After scaling to the whole kidney, none of the transporters examined were significantly changed by pregnancy. Only Abcg2 and Abcb1a were quantifiable in the brain and their abundance in the brain was not influenced by pregnancy. Conclusion: Protein abundance of drug transporters can be significantly changed particularly in the liver by pregnancy. These results will be helpful to understand pregnancy-induced changes in drug/xenobiotic disposition in the mouse model.
Collapse
Affiliation(s)
- Michael Z Liao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington DC, 98195, United States
| | - Chunying Gao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington DC, 98195, United States
| | - Deepak Kumar Bhatt
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington DC, 98195, United States
| | - Bhagwat Prasad
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington DC, 98195, United States
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington DC, 98195, United States
| |
Collapse
|