1
|
Jiang K, Tian K, Yu Y, Wu E, Yang M, Pan F, Qian J, Zhan C. Kupffer cells determine intrahepatic traffic of PEGylated liposomal doxorubicin. Nat Commun 2024; 15:6136. [PMID: 39033145 PMCID: PMC11271521 DOI: 10.1038/s41467-024-50568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Intrahepatic accumulation dominates organ distribution for most nanomedicines. However, obscure intrahepatic fate largely hampers regulation on their in vivo performance. Herein, PEGylated liposomal doxorubicin is exploited to clarify the intrahepatic fate of both liposomes and the payload in male mice. Kupffer cells initiate and dominate intrahepatic capture of liposomal doxorubicin, following to deliver released doxorubicin to hepatocytes with zonated distribution along the lobule porto-central axis. Increasing Kupffer cells capture promotes doxorubicin accumulation in hepatocytes, revealing the Kupffer cells capture-payload release-hepatocytes accumulation scheme. In contrast, free doxorubicin is overlooked by Kupffer cells, instead quickly distributing into hepatocytes by directly crossing fenestrated liver sinusoid endothelium. Compared to free doxorubicin, liposomal doxorubicin exhibits sustained metabolism/excretion due to the extra capture-release process. This work unveils the pivotal role of Kupffer cells in intrahepatic traffic of PEGylated liposomal therapeutics, and quantitively describes the intrahepatic transport/distribution/elimination process, providing crucial information for guiding further development of nanomedicines.
Collapse
Affiliation(s)
- Kuan Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200030, P.R. China.
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China.
| | - Kaisong Tian
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Yifei Yu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Ercan Wu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Min Yang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Feng Pan
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, P.R. China
| | - Jun Qian
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, P.R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China.
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, P.R. China.
| |
Collapse
|
2
|
Arakawa H, Ishida N, Nakatsuji T, Matsumoto N, Imamura R, Shengyu D, Araya K, Horike SI, Tanaka-Yachi R, Kasahara M, Yoshioka T, Sumida Y, Ohmiya H, Daikoku T, Wakayama T, Nakamura K, Fujita KI, Kato Y. Endoplasmic reticulum transporter OAT2 regulates drug metabolism and interaction. Biochem Pharmacol 2024; 225:116322. [PMID: 38815630 DOI: 10.1016/j.bcp.2024.116322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Xenobiotic metabolic reactions in the hepatocyte endoplasmic reticulum (ER) including UDP-glucuronosyltransferase and carboxylesterase play central roles in the detoxification of medical agents with small- and medium-sized molecules. Although the catalytic sites of these enzymes exist inside of ER, the molecular mechanism for membrane permeation in the ER remains enigmatic. Here, we investigated that organic anion transporter 2 (OAT2) regulates the detoxification reactions of xenobiotic agents including anti-cancer capecitabine and antiviral zidovudine, via the permeation process across the ER membrane in the liver. Pharmacokinetic studies in patients with colorectal cancer revealed that the half-lives of capecitabine in rs2270860 (1324C > T) variants was 1.4 times higher than that in the C/C variants. Moreover, the hydrolysis of capecitabine to 5'-deoxy-5-fluorocytidine in primary cultured human hepatocytes was reduced by OAT2 inhibitor ketoprofen, whereas capecitabine hydrolysis directly assessed in human liver microsomes were not affected. The immunostaining of OAT2 was merged with ER marker calnexin in human liver periportal zone. These results suggested that OAT2 is involved in distribution of capecitabine into ER. Furthermore, we clarified that OAT2 plays an essential role in drug-drug interactions between zidovudine and valproic acid, leading to the alteration in zidovudine exposure to the body. Our findings contribute to mechanistically understanding medical agent detoxification, shedding light on the ER membrane permeation process as xenobiotic metabolic machinery to improve chemical changes in hydrophilic compounds.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Naoki Ishida
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tomoki Nakatsuji
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Natsumi Matsumoto
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Rikako Imamura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Dai Shengyu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Karin Araya
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shin-Ichi Horike
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi, Kanazawa 920-8640, Japan
| | - Rieko Tanaka-Yachi
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yuto Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takiko Daikoku
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi, Kanazawa 920-8640, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Ken-Ichi Fujita
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
3
|
Li X, Jusko WJ. Utility of Minimal Physiologically Based Pharmacokinetic Models for Assessing Fractional Distribution, Oral Absorption, and Series-Compartment Models of Hepatic Clearance. Drug Metab Dispos 2023; 51:1403-1418. [PMID: 37460222 PMCID: PMC10506700 DOI: 10.1124/dmd.123.001403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 09/16/2023] Open
Abstract
Minimal physiologically based pharmacokinetic (mPBPK) models are physiologically relevant, require less information than full PBPK models, and offer flexibility in pharmacokinetics (PK). The well-stirred hepatic model (WSM) is commonly used in PBPK, whereas the more plausible dispersion model (DM) poses computational complexities. The series-compartment model (SCM) mimics the DM but is easier to operate. This work implements the SCM and mPBPK models for assessing fractional tissue distribution, oral absorption, and hepatic clearance using literature-reported blood and liver concentration-time data in rats for compounds mainly cleared by the liver. Further handled were various complexities, including nonlinear hepatic binding and metabolism, differing absorption kinetics, and sites of administration. The SCM containing one to five (n) liver subcompartments yields similar fittings and provides comparable estimates for hepatic extraction ratio (ER), prehepatic availability (Fg ), and first-order absorption rate constants (ka ). However, they produce decreased intrinsic clearances (CLint ) and liver-to-plasma partition coefficients (Kph ) with increasing n as expected. Model simulations demonstrated changes in intravenous and oral PK profiles with alterations in Kph and ka and with hepatic metabolic zonation. The permeability (PAMPA P) of the various compounds well explained the fitted fractional distribution (fd ) parameters. The SCM and mPBPK models offer advantages in distinguishing systemic, extrahepatic, and hepatic clearances. The SCM allows for incorporation of liver zonation and is useful in assessing changes in internal concentration gradients potentially masked by similar blood PK profiles. Improved assessment of intraorgan drug concentrations may offer insights into active moieties driving metabolism, biliary excretion, pharmacodynamics, and hepatic toxicity. SIGNIFICANCE STATEMENT: The minimal physiologically based pharmacokinetic model and the series-compartment model are useful in assessing oral absorption and hepatic clearance. They add flexibility in accounting for various drug- or system-specific complexities, including fractional distribution, nonlinear binding and saturable hepatic metabolism, and hepatic zonation. These models can offer improved insights into the intraorgan concentrations that reflect physiologically active moieties often driving disposition, pharmacodynamics, and toxicity.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
4
|
Li X, Jusko WJ. Exploring the Pharmacokinetic Mysteries of the Liver: Application of Series Compartment Models of Hepatic Elimination. Drug Metab Dispos 2023; 51:618-628. [PMID: 36732075 PMCID: PMC10158499 DOI: 10.1124/dmd.122.001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Among the basic hepatic clearance models, the dispersion model (DM) is the most physiologically sound compared with the well-stirred model and the parallel tube model. However, its application in physiologically-based pharmacokinetic (PBPK) modeling has been limited due to computational complexities. The series compartment models (SCM) of hepatic elimination that treats the liver as a cascade of well-stirred compartments connected by hepatic blood flow exhibits some mathematical similarities to the DM but is easier to operate. This work assesses the quantitative correlation between the SCM and DM and demonstrates the operation of the SCM in PBPK with the published single-dose blood and liver concentration-time data of six flow-limited compounds. The predicted liver concentrations and the estimated intrinsic clearance (CLint ) and PBPK-operative tissue-to-plasma partition coefficient (Kp ) values were shown to depend on the number of liver sub-compartments (n) and hepatic enzyme zonation in the SCM. The CLint and Kp decreased with increasing n, with more remarkable differences for drugs with higher hepatic extraction ratios. Given the same total CLint , the SCM yields a higher Kp when the liver perivenous region exhibits a lower CLint as compared with a high CLint at this region. Overall, the SCM nicely approximates the DM in characterizing hepatic elimination and offers an alternative flexible approach as well as providing some insights regarding sequential drug concentrations in the liver. SIGNIFICANCE STATEMENT: The SCM nicely approximates the DM when applied in PBPK for characterizing hepatic elimination. The number of liver sub-compartments and hepatic enzyme zonation are influencing factors for the SCM resulting in model-dependent predictions of total/internal liver concentrations and estimates of CLint and the PBPK-operative Kp . Such model-dependency may have an impact when the SCM is used for in vitro-to-in vivo extrapolation (IVIVE) and may also be relevant for PK/PD/toxicological effects when it is the driving force for such responses.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
5
|
Albadry M, Höpfl S, Ehteshamzad N, König M, Böttcher M, Neumann J, Lupp A, Dirsch O, Radde N, Christ B, Christ M, Schwen LO, Laue H, Klopfleisch R, Dahmen U. Periportal steatosis in mice affects distinct parameters of pericentral drug metabolism. Sci Rep 2022; 12:21825. [PMID: 36528753 PMCID: PMC9759570 DOI: 10.1038/s41598-022-26483-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Little is known about the impact of morphological disorders in distinct zones on metabolic zonation. It was described recently that periportal fibrosis did affect the expression of CYP proteins, a set of pericentrally located drug-metabolizing enzymes. Here, we investigated whether periportal steatosis might have a similar effect. Periportal steatosis was induced in C57BL6/J mice by feeding a high-fat diet with low methionine/choline content for either two or four weeks. Steatosis severity was quantified using image analysis. Triglycerides and CYP activity were quantified in photometric or fluorometric assay. The distribution of CYP3A4, CYP1A2, CYP2D6, and CYP2E1 was visualized by immunohistochemistry. Pharmacokinetic parameters of test drugs were determined after injecting a drug cocktail (caffeine, codeine, and midazolam). The dietary model resulted in moderate to severe mixed steatosis confined to periportal and midzonal areas. Periportal steatosis did not affect the zonal distribution of CYP expression but the activity of selected CYPs was associated with steatosis severity. Caffeine elimination was accelerated by microvesicular steatosis, whereas midazolam elimination was delayed in macrovesicular steatosis. In summary, periportal steatosis affected parameters of pericentrally located drug metabolism. This observation calls for further investigations of the highly complex interrelationship between steatosis and drug metabolism and underlying signaling mechanisms.
Collapse
Affiliation(s)
- Mohamed Albadry
- grid.275559.90000 0000 8517 6224Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany ,grid.411775.10000 0004 0621 4712Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Sebastian Höpfl
- grid.5719.a0000 0004 1936 9713Institute for Systems Theory and Automatic Control, Faculty of Engineering Design, Production Engineering and Automotive Engineering, University of Stuttgart, Stuttgart, Germany
| | - Nadia Ehteshamzad
- grid.275559.90000 0000 8517 6224Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Matthias König
- grid.7468.d0000 0001 2248 7639Institute for Theoretical Biology, Institute of Biology, Humboldt-University, Berlin, Germany
| | - Michael Böttcher
- MVZ Medizinische Labore Dessau Kassel GmbH, Bauhüttenstraße 6, 06847 Dessau-Roßlau, Germany
| | - Jasna Neumann
- MVZ Medizinische Labore Dessau Kassel GmbH, Bauhüttenstraße 6, 06847 Dessau-Roßlau, Germany
| | - Amelie Lupp
- grid.275559.90000 0000 8517 6224Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Olaf Dirsch
- grid.459629.50000 0004 0389 4214Institute of Pathology, Klinikum Chemnitz, Chemnitz, Germany
| | - Nicole Radde
- grid.5719.a0000 0004 1936 9713Institute for Systems Theory and Automatic Control, Faculty of Engineering Design, Production Engineering and Automotive Engineering, University of Stuttgart, Stuttgart, Germany
| | - Bruno Christ
- grid.9647.c0000 0004 7669 9786Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Madlen Christ
- grid.9647.c0000 0004 7669 9786Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Lars Ole Schwen
- grid.428590.20000 0004 0496 8246Fraunhofer MEVIS, Max-Von-Laue-Str. 2, 28359 Bremen, Germany
| | - Hendrik Laue
- grid.428590.20000 0004 0496 8246Fraunhofer MEVIS, Max-Von-Laue-Str. 2, 28359 Bremen, Germany
| | - Robert Klopfleisch
- grid.14095.390000 0000 9116 4836Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Uta Dahmen
- grid.275559.90000 0000 8517 6224Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| |
Collapse
|
6
|
Utilizing virtual experiments to increase understanding of discrepancies involving in vitro-to-in vivo predictions of hepatic clearance. PLoS One 2022; 17:e0269775. [PMID: 35867653 PMCID: PMC9307204 DOI: 10.1371/journal.pone.0269775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/29/2022] [Indexed: 11/19/2022] Open
Abstract
Predictions of xenobiotic hepatic clearance in humans using in vitro-to-in vivo extrapolation methods are frequently inaccurate and problematic. Multiple strategies are being pursued to disentangle responsible mechanisms. The objective of this work is to evaluate the feasibility of using insights gained from independent virtual experiments on two model systems to begin unraveling responsible mechanisms. The virtual culture is a software analog of hepatocytes in vitro, and the virtual human maps to hepatocytes within a liver within an idealized model human. Mobile objects (virtual compounds) map to amounts of xenobiotics. Earlier versions of the two systems achieved quantitative validation targets for intrinsic clearance (virtual culture) and hepatic clearance (virtual human). The major difference between the two systems is the spatial organization of the virtual hepatocytes. For each pair of experiments (virtual culture, virtual human), hepatocytes are configured the same. Probabilistic rules govern virtual compound movements and interactions with other objects. We focus on highly permeable virtual compounds and fix their extracellular unbound fraction at one of seven values (0.05–1.0). Hepatocytes contain objects that can bind and remove compounds, analogous to metabolism. We require that, for a subset of compound properties, per-hepatocyte compound exposure and removal rates during culture experiments directly predict corresponding measures made during virtual human experiments. That requirement serves as a cross-system validation target; we identify compound properties that enable achieving it. We then change compound properties, ceteris paribus, and provide model mechanism-based explanations for when and why measures made during culture experiments under- (or over-) predict corresponding measures made during virtual human experiments. The results show that, from the perspective of compound removal, the organization of hepatocytes within virtual livers is more efficient than within cultures, and the greater the efficiency difference, the larger the underprediction. That relationship is noteworthy because most in vitro-to-in vivo extrapolation methods abstract away the structural organization of hepatocytes within a liver. More work is needed on multiple fronts, including the study of an expanded variety of virtual compound properties. Nevertheless, the results support the feasibility of the approach and plan.
Collapse
|
7
|
Bao Y, Phan M, Zhu J, Ma X, Manautou JE, Zhong XB. Alterations of Cytochrome P450-Mediated Drug Metabolism during Liver Repair and Regeneration after Acetaminophen-Induced Liver Injury in Mice. Drug Metab Dispos 2022; 50:694-703. [PMID: 34348940 PMCID: PMC9132219 DOI: 10.1124/dmd.121.000459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
Acetaminophen (APAP)-induced liver injury (AILI) is the leading cause of acute liver failure in the United States, but its impact on metabolism, therapeutic efficacy, and adverse drug reactions (ADRs) of co- and/or subsequent administered drugs are not fully investigated. The current work explored this field with a focus on the AILI-mediated alterations of cytochrome P450-mediated drug metabolism. Various levels of liver injury were induced in mice by treatment with APAP at 0, 200, 400, and 600 mg/kg. Severity of liver damage was determined at 24, 48, 72, and 96 hours by plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), microRNA miR122, and tissue staining. The expression and activities of CYP3A11, 1A2, 2B10, 2C29, and 2E1 were measured. Sedation efficacy and ADRs of midazolam, a CYP3A substrate, were monitored after APAP treatment. ALT, AST, and miR122 increased at 24 hours after APAP treatment with all APAP doses, whereas only groups treated with 200 and 400 mg/kg recovered back to normal levels at 72 and 96 hours. The expression and activity of the cytochromes P450 significantly decreased at 24 hours with all APAP doses but only recovered back to normal at 72 and 96 hours with 200 and 400, but not 600, mg/kg of APAP. The alterations of cytochrome P450 activities resulted in altered sedation efficacy and ADRs of midazolam, which were corrected by dose justification of midazolam. Overall, this work illustrated a low cytochrome P450 expression window after AILI, which can decrease drug metabolism and negatively impact drug efficacy and ADRs. SIGNIFICANCE STATEMENT: The data generated in the mouse model demonstrated that expression and activities of cytochrome P450 enzymes and correlated drug efficacy and ADRs are altered during the time course of liver repair and regeneration after liver is injured by treatment with APAP. Dose justifications based on predicted changes of cytochrome P450 activities can achieve desired therapeutic efficacy and avoid ADRs. The generated data provide fundamental knowledge for translational research to drug treatment for patients during liver recovery and regeneration who have experienced AILI.
Collapse
Affiliation(s)
- Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - Mi Phan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - Junjie Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| |
Collapse
|
8
|
de Hoyos-Vega JM, Hong HJ, Stybayeva G, Revzin A. Hepatocyte cultures: From collagen gel sandwiches to microfluidic devices with integrated biosensors. APL Bioeng 2021; 5:041504. [PMID: 34703968 PMCID: PMC8519630 DOI: 10.1063/5.0058798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocytes are parenchymal cells of the liver responsible for drug detoxification, urea and bile production, serum protein synthesis, and glucose homeostasis. Hepatocytes are widely used for drug toxicity studies in bioartificial liver devices and for cell-based liver therapies. Because hepatocytes are highly differentiated cells residing in a complex microenvironment in vivo, they tend to lose hepatic phenotype and function in vitro. This paper first reviews traditional culture approaches used to rescue hepatic function in vitro and then discusses the benefits of emerging microfluidic-based culture approaches. We conclude by reviewing integration of hepatocyte cultures with bioanalytical or sensing approaches.
Collapse
Affiliation(s)
- Jose M. de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| |
Collapse
|
9
|
Pastor CM, Brouwer KLR. New Pharmacokinetic Parameters of Imaging Substrates Quantified from Rat Liver Compartments. Drug Metab Dispos 2021; 50:58-64. [PMID: 34670777 DOI: 10.1124/dmd.121.000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Hepatobiliary imaging is increasingly used by pharmacologists to quantify liver concentrations of transporter-dependent drugs. However, liver imaging does not quantify concentrations in extracellular space, hepatocytes, and bile canaliculi. Our study compared the compartmental distribution of two hepatobiliary substrates gadobenate dimeglumine [BOPTA; 0.08 liver extraction ratio (ER)] and mebrofenin (MEB; 0.93 ER) in a model of perfused rat liver. A gamma counter placed over livers measured liver concentrations. Livers were preperfused with gadopentetate dimeglumine to measure extracellular concentrations. Concentrations coming from bile canaliculi and hepatocytes were calculated. Transporter activities were assessed by concentration ratios between compartments and pharmacokinetic parameters that describe the accumulation and decay profiles of hepatocyte concentrations. The high liver concentrations of MEB relied mainly on hepatocyte and bile canaliculi concentrations. In contrast, the three compartments contributed to the low liver concentrations obtained during BOPTA perfusion. Nonlinear regression analysis of substrate accumulation in hepatocytes revealed that cellular efflux is measurable ∼4 minutes after the start of perfusion. The hepatocyte-to-extracellular concentration ratio measured at this time point was much higher during MEB perfusion. BOPTA transport by multidrug resistance associated protein 2 induced an aquaporin-mediated water transport, whereas MEB transport did not. BOPTA clearance from hepatocytes to bile canaliculi was higher than MEB clearance. MEB did not efflux back to sinusoids, whereas BOPTA basolateral efflux contributed to the decrease in hepatocyte concentrations. In conclusion, our ex vivo model quantifies substrate compartmental distribution and transport across hepatocyte membranes and provides an additional understanding of substrate distribution in the liver. SIGNIFICANCE STATEMENT: When transporter-dependent drugs target hepatocytes, cellular concentrations are important to investigate. Low concentrations on cellular targets impair drug therapeutic effects, whereas excessive hepatocyte concentrations may induce cellular toxicity. With a gamma counter placed over rat perfused livers, we measured substrate concentrations in the extracellular space, hepatocytes, and bile canaliculi. Transport across hepatocyte membranes was calculated. The study provides an additional understanding of substrate distribution in the liver.
Collapse
Affiliation(s)
- Catherine M Pastor
- Department of Radiology, University Hospital of Geneva, Switzerland (C.M.P.); Université de Paris, Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, F-75006 Paris, France (C.M.P.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (K.L.R.B.)
| | - Kim L R Brouwer
- Department of Radiology, University Hospital of Geneva, Switzerland (C.M.P.); Université de Paris, Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, F-75006 Paris, France (C.M.P.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (K.L.R.B.)
| |
Collapse
|
10
|
Kling S, Lang B, Hammer HS, Naboulsi W, Sprenger H, Frenzel F, Pötz O, Schwarz M, Braeuning A, Templin MF. Characterization of hepatic zonation in mice by mass-spectrometric and antibody-based proteomics approaches. Biol Chem 2021; 403:331-343. [PMID: 34599868 DOI: 10.1515/hsz-2021-0314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/19/2021] [Indexed: 01/05/2023]
Abstract
Periportal and perivenous hepatocytes show zonal heterogeneity in metabolism and signaling. Here, hepatic zonation in mouse liver was analyzed by non-targeted mass spectrometry (MS) and by the antibody-based DigiWest technique, yielding a comprehensive overview of protein expression in periportal and perivenous hepatocytes. Targeted immunoaffinity-based proteomics were used to substantiate findings related to drug metabolism. 165 (MS) and 82 (DigiWest) zonated proteins were identified based on the selected criteria for statistical significance, including 7 (MS) and 43 (DigiWest) proteins not identified as zonated before. New zonated proteins especially comprised kinases and phosphatases related to growth factor-dependent signaling, with mainly periportal localization. Moreover, the mainly perivenous zonation of a large panel of cytochrome P450 enzymes was characterized. DigiWest data were shown to complement the MS results, substantially improving possibilities to bioinformatically identify zonated biological processes. Data mining revealed key regulators and pathways preferentially active in either periportal or perivenous hepatocytes, with β-catenin signaling and nuclear xeno-sensing receptors as the most prominent perivenous regulators, and several kinase- and G-protein-dependent signaling cascades active mainly in periportal hepatocytes. In summary, the present data substantially broaden our knowledge of hepatic zonation in mouse liver at the protein level.
Collapse
Affiliation(s)
- Simon Kling
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Benedikt Lang
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Helen S Hammer
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstr. 55, D-72770Reutlingen, Germany.,Signatope, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Wael Naboulsi
- Signatope, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Heike Sprenger
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589Berlin, Germany
| | - Falko Frenzel
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589Berlin, Germany
| | - Oliver Pötz
- Signatope, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, D-72074Tübingen, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589Berlin, Germany
| | - Markus F Templin
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstr. 55, D-72770Reutlingen, Germany
| |
Collapse
|
11
|
Yang ASP, van Waardenburg YM, van de Vegte-Bolmer M, van Gemert GJA, Graumans W, de Wilt JHW, Sauerwein RW. Zonal human hepatocytes are differentially permissive to Plasmodium falciparum malaria parasites. EMBO J 2021; 40:e106583. [PMID: 33459428 PMCID: PMC7957391 DOI: 10.15252/embj.2020106583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum (Pf) is a major cause of human malaria and is transmitted by infected Anopheles mosquitoes. The initial asymptomatic infection is characterized by parasite invasion of hepatocytes, followed by massive replication generating schizonts with blood‐infective merozoites. Hepatocytes can be categorized by their zonal location and metabolic functions within a liver lobule. To understand specific host conditions that affect infectivity, we studied Pf parasite liver stage development in relation to the metabolic heterogeneity of fresh human hepatocytes. We found selective preference of different Pf strains for a minority of hepatocytes, which are characterized by the particular presence of glutamine synthetase (hGS). Schizont growth is significantly enhanced by hGS uptake early in development, showcasing a novel import system. In conclusion, Pf development is strongly determined by the differential metabolic status in hepatocyte subtypes. These findings underscore the importance of detailed understanding of hepatocyte host‐Pf interactions and may delineate novel pathways for intervention strategies.
Collapse
Affiliation(s)
- Annie S P Yang
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Youri M van Waardenburg
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marga van de Vegte-Bolmer
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert-Jan A van Gemert
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Graumans
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes H W de Wilt
- Department of surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Ölander M, Wegler C, Flörkemeier I, Treyer A, Handin N, Pedersen JM, Vildhede A, Mateus A, LeCluyse EL, Urdzik J, Artursson P. Hepatocyte size fractionation allows dissection of human liver zonation. J Cell Physiol 2021; 236:5885-5894. [PMID: 33452735 DOI: 10.1002/jcp.30273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/08/2022]
Abstract
Human hepatocytes show marked differences in cell size, gene expression, and function throughout the liver lobules, an arrangement termed liver zonation. However, it is not clear if these zonal size differences, and the associated phenotypic differences, are retained in isolated human hepatocytes, the "gold standard" for in vitro studies of human liver function. Here, we therefore explored size differences among isolated human hepatocytes and investigated whether separation by size can be used to study liver zonation in vitro. We used counterflow centrifugal elutriation to separate cells into different size fractions and analyzed them with label-free quantitative proteomics, which revealed an enrichment of 151 and 758 proteins (out of 5163) in small and large hepatocytes, respectively. Further analysis showed that protein abundances in different hepatocyte size fractions recapitulated the in vivo expression patterns of previously described zonal markers and biological processes. We also found that the expression of zone-specific cytochrome P450 enzymes correlated with their metabolic activity in the different fractions. In summary, our results show that differences in hepatocyte size matches zonal expression patterns, and that our size fractionation approach can be used to study zone-specific liver functions in vitro.
Collapse
Affiliation(s)
- Magnus Ölander
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Andrea Treyer
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Anna Vildhede
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - André Mateus
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Jozef Urdzik
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Tachikawa M, Akaogi R, Taii A, Akanuma SI, Uchida Y, Terasaki T. Distinct Transport Properties of Human Pannexin 1 and Connexin 32 Hemichannels. J Pharm Sci 2020; 109:1395-1402. [PMID: 31837976 DOI: 10.1016/j.xphs.2019.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/19/2022]
Abstract
Pannexin (Px) and connexin (Cx) hemichannels mediate bidirectional membrane transport in response to various stimuli and are involved in drug efficacy and toxicity. The purpose of the present study was to clarify in detail the transport characteristics of Px1 and Cx32 hemichannels by establishing transport assay systems using human Px1- and P2RX7 receptor-overexpressing HEK293 cells (Px1/P2RX7/HEK293) and Cx32-overexpressing HEK293 cells (Cx32/HEK293), in which P2RX7 and an extracellular Ca2+-depleted condition serve as the opening trigger, respectively. Uptake of the cationic fluorescent dye propidium iodide (PI) was significantly increased in Px1/P2RX7/HEK293 cells compared to that in mock cells, whereas there was no significant uptake of the anionic fluorescent dye sulforhodamine 101 (SR101). Uptake of [3H]cholesterol by Px1/P2RX7/HEK293 cells was significantly decreased, whereas that of [3H]taurine was not, compared to mock cells. On the other hand, uptakes of PI and SR-101 by Cx32/HEK293 cells were both significantly increased compared to mock cells. The PI uptake by Cx32/HEK293 cells was significantly inhibited by thioacetamide, acetaminophen, and N-acetyl-p-benzoquinoneimine. Cellular uptake of [3H]cholesterol was significantly increased in Cx32/HEK293 cells and that of [3H]taurine was significantly decreased. These results support the idea that Px1 and Cx32 hemichannels have distinct substrate recognition specificities and transport directions.
Collapse
Affiliation(s)
- Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan; Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| | - Ryo Akaogi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| | - Ayaka Taii
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
14
|
Roscam Abbing RL, Slijepcevic D, Donkers JM, Havinga R, Duijst S, Paulusma CC, Kuiper J, Kuipers F, Groen AK, Oude Elferink RP, van de Graaf SF. Blocking Sodium-Taurocholate Cotransporting Polypeptide Stimulates Biliary Cholesterol and Phospholipid Secretion in Mice. Hepatology 2020; 71:247-258. [PMID: 31136002 PMCID: PMC7003915 DOI: 10.1002/hep.30792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
Active secretion of bile salts into the canalicular lumen drives bile formation and promotes biliary cholesterol and phospholipid output. Disrupting hepatic bile salt uptake, by inhibition of sodium-taurocholate cotransporting polypetide (NTCP; Slc10a1) with Myrcludex B, is expected to limit bile salt flux through the liver and thereby to decrease biliary lipid excretion. Here, we show that Myrcludex B-mediated NTCP inhibition actually causes an increase in biliary cholesterol and phospholipid excretion whereas biliary bile salt output and bile salt composition remains unchanged. Increased lysosomal discharge into bile was excluded as a potential contributor to increased biliary lipid secretion. Induction of cholesterol secretion was not a consequence of increased ATP-binding cassette subfamily G member 5/8 activity given that NTCP inhibition still promoted cholesterol excretion in Abcg8-/- mice. Stimulatory effects of NTCP inhibition were maintained in Sr-b1-/- mice, eliminating the possibility that the increase in biliary lipids was derived from enhanced uptake of high-density lipoprotein-derived lipids. NTCP inhibition shifts bile salt uptake, which is generally more periportally restricted, toward pericentral hepatocytes, as was visualized using a fluorescently labeled conjugated bile salt. As a consequence, exposure of the canalicular membrane to bile salts was increased, allowing for more cholesterol and phospholipid molecules to be excreted per bile salt. Conclusion: NTCP inhibition increases biliary lipid secretion, which is independent of alterations in bile salt output, biliary bile salt hydrophobicity, or increased activity of dedicated cholesterol and phospholipid transporters. Instead, NTCP inhibition shifts hepatic bile salt uptake from mainly periportal hepatocytes toward pericentral hepatocytes, thereby increasing exposure of the canalicular membrane to bile salts linking to increased biliary cholesterol secretion. This process provides an additional level of control to biliary cholesterol and phospholipid secretion.
Collapse
Affiliation(s)
- Reinout L.P. Roscam Abbing
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Davor Slijepcevic
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Joanne M. Donkers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Rick Havinga
- Departments of Pediatrics & Laboratory MedicineUniversity Medical Center GroningenGroningenThe Netherlands
| | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands,Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Folkert Kuipers
- Departments of Pediatrics & Laboratory MedicineUniversity Medical Center GroningenGroningenThe Netherlands
| | - Albert K. Groen
- Departments of Pediatrics & Laboratory MedicineUniversity Medical Center GroningenGroningenThe Netherlands,Department of Internal and Vascular Medicine, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands,Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands,Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
15
|
Bakos É, Német O, Patik I, Kucsma N, Várady G, Szakács G, Özvegy‐Laczka C. A novel fluorescence‐based functional assay for human OATP1A2 and OATP1C1 identifies interaction between third‐generation P‐gp inhibitors and OATP1A2. FEBS J 2019; 287:2468-2485. [DOI: 10.1111/febs.15156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/16/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Éva Bakos
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Orsolya Német
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Izabel Patik
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Nóra Kucsma
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - György Várady
- Laboratory of Molecular Cell Biology Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Gergely Szakács
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
- Institute of Cancer Research Medical University Vienna Wien Austria
| | - Csilla Özvegy‐Laczka
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| |
Collapse
|
16
|
In vitro metabolic zonation through oxygen gradient on a chip. Sci Rep 2019; 9:13557. [PMID: 31537830 PMCID: PMC6753109 DOI: 10.1038/s41598-019-49412-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/30/2019] [Indexed: 01/05/2023] Open
Abstract
Among the multiple metabolic signals involved in the establishment of the hepatic zonation, oxygen could play a key role. Indeed, depending on hepatocyte position in the hepatic lobule, gene expression and metabolism are differently affected by the oxygen gradient present across the lobule. The aim of this study is to understand whether an oxygen gradient, generated in vitro in our developed device, is sufficient to instruct a functional metabolic zonation during the differentiation of human embryonic stem cells (hESCs) from endoderm toward terminally differentiated hepatocytes, thus mimicking the in vivo situation. For this purpose, a microfluidic device was designed for the generation of a stable oxygen gradient. The oxygen gradient was applied to differentiating hESCs at the pre-hepatoblast stage. The definitive endoderm and hepatic endoderm cells were characterized by the expression of the transcription factor SOX-17 and alpha-fetoprotein (AFP). Immature and mature hepatocytes were characterized by hepatocyte nuclear factor 4-alpha (HNF-4α) and albumin (ALB) expression and also analyzed for cytochrome P450 (CYP3A4) zonation and glycogen accumulation through PAS staining. Metabolic zonated genes expression was assessed through quantitative real time PCR. Application of the oxygen gradient during differentiation induced zonated glycogen storage, which was higher in the hepatocytes grown in high pO2 compared to those grown in low pO2. The mRNA levels of glutamine synthetase (GLUL), beta-catenin (CTNNB) and its direct target cyclin D1 (CCND1) showed significantly higher expression in the cells grown in low pO2 compared to those grown in high pO2. On the contrary, carbamoyl-phosphate synthetase 1 (CPS1), ALB, the proliferative marker ki67 (MKI67) and cyclin A (CCNA) resulted to be significantly higher expressed in cells cultured in high pO2 compared to those cultured in low pO2. These results indicate that the oxygen gradient generated in our device can instruct the establishment of a functional metabolic zonation in differentiating hESCs. The possibility to obtain differentiated hepatocytes in vitro may allow in the future to deepen our knowledge about the physiology/pathology of hepatocytes in relation to the oxygen content.
Collapse
|
17
|
Akanuma SI, Kida R, Tsuchiyama A, Tachikawa M, Kubo Y, Hosoya KI. Organic anion-transporting polypeptide 1a4–mediated heterogeneous distribution of sulforhodamine-101 in rat hepatic lobules. Drug Metab Pharmacokinet 2019; 34:239-246. [DOI: 10.1016/j.dmpk.2019.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/11/2019] [Accepted: 04/05/2019] [Indexed: 01/01/2023]
|
18
|
Kennedy RC, Smith AK, Ropella GEP, McGill MR, Jaeschke H, Hunt CA. Propagation of Pericentral Necrosis During Acetaminophen-Induced Liver Injury: Evidence for Early Interhepatocyte Communication and Information Exchange. Toxicol Sci 2019; 169:151-166. [PMID: 30698817 PMCID: PMC6484890 DOI: 10.1093/toxsci/kfz029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Acetaminophen (APAP)-induced liver injury is clinically significant, and APAP overdose in mice often serves as a model for drug-induced liver injury in humans. By specifying that APAP metabolism, reactive metabolite formation, glutathione depletion, and mitigation of mitochondrial damage within individual hepatocytes are functions of intralobular location, an earlier virtual model mechanism provided the first concrete multiattribute explanation for how and why early necrosis occurs close to the central vein (CV). However, two characteristic features could not be simulated consistently: necrosis occurring first adjacent to the CV, and subsequent necrosis occurring primarily adjacent to hepatocytes that have already initiated necrosis. We sought parsimonious model mechanism enhancements that would manage spatiotemporal heterogeneity sufficiently to enable meeting two new target attributes and conducted virtual experiments to explore different ideas for model mechanism improvement at intrahepatocyte and multihepatocyte levels. For the latter, evidence supports intercellular communication via exosomes, gap junctions, and connexin hemichannels playing essential roles in the toxic effects of chemicals, including facilitating or counteracting cell death processes. Logic requiring hepatocytes to obtain current information about whether downstream and lateral neighbors have triggered necrosis enabled virtual hepatocytes to achieve both new target attributes. A virtual hepatocyte that is glutathione-depleted uses that information to determine if it will initiate necrosis. When a less-stressed hepatocyte is flanked by at least two neighbors that have triggered necrosis, it too will initiate necrosis. We hypothesize that the resulting intercellular communication-enabled model mechanism is analogous to the actual explanation for APAP-induced hepatotoxicity at comparable levels of granularity.
Collapse
Affiliation(s)
- Ryan C Kennedy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Andrew K Smith
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | | | - Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arizona
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - C Anthony Hunt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| |
Collapse
|
19
|
Mao Q, Lai Y, Wang J. Drug Transporters in Xenobiotic Disposition and Pharmacokinetic Prediction. Drug Metab Dispos 2018; 46:561-566. [PMID: 29636376 DOI: 10.1124/dmd.118.081356] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Drug transporters are widely expressed in organs and tissue barriers throughout human and animal bodies. Studies over the last two decades have identified various ATP-binding cassette and solute carrier transporters that play critical roles in the absorption, distribution, metabolism, and elimination of drugs and xenobiotics. This special section contains more than 20 original manuscripts and reviews that cover the most recent advances in the areas of drug transporter research, including the basic biology and function of transporters, expression of drug transporters in organ and tissue barriers, the mechanisms underlying regulation of transporter expression, transporter-mediated drug disposition in animal models, and the development and utilization of new technologies in drug transporter study, as well as pharmacokinetic modeling and simulation to assess transporter involvement in drug disposition and drug-drug interactions. We believe that the topics covered in this special section will advance our understanding of the roles of transporters in drug disposition, efficacy, and safety.
Collapse
Affiliation(s)
- Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (Q.M., J.W.), and Gilead Sciences, Inc., Foster City, California (Y.L.)
| | - Yurong Lai
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (Q.M., J.W.), and Gilead Sciences, Inc., Foster City, California (Y.L.)
| | - Joanne Wang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (Q.M., J.W.), and Gilead Sciences, Inc., Foster City, California (Y.L.)
| |
Collapse
|
20
|
Zhang B, Lauschke VM. Genetic variability and population diversity of the human SLCO (OATP) transporter family. Pharmacol Res 2018; 139:550-559. [PMID: 30359687 DOI: 10.1016/j.phrs.2018.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/14/2018] [Accepted: 10/17/2018] [Indexed: 01/12/2023]
Abstract
Organic anion transporting polypeptides (OATP) encoded by the SLCO gene family constitute clinically important transporters involved in the disposition of endogenous compounds and many commonly prescribed drugs, including statins, methotrexate and antihypertensive medications. Common genetic polymorphisms in SLCO genes are known to affect OATP function and modulate efficacy and safety of OATP substrates. However, current frequency data of these variants and haplotypes is generally based on few rather heterogenous populations of relatively small sample size. Furthermore, the genetic variability beyond these selected pharmacogenetic biomarkers has not been systematically analyzed. Here, we provide a global consolidated map of SLCO variability by leveraging fully compatible Next Generation Sequencing data from 138,632 unrelated individuals across seven major human populations. Overall, we find 9811 exonic single nucleotide variants and 155 copy number variations of which 99.3% were rare with frequencies <1%. Using orthogonal computational functionality predictors optimized for pharmacogenetic assessments, we find that four out of five individuals carry at least one deleterious variant in an SLCO transporter gene and rare variants contribute 23% to the genetically encoded functional variability. Moreover, 74.9% of all variants were found to be population-specific with important consequences for population-specific genotyping strategies and precision public health approaches. Combined, our analyses provide the most comprehensive data set of SLCO variability published to date and incentivize the integration of comprehensive NGS-based genotyping into personalized predictions of OATP substrate disposition.
Collapse
Affiliation(s)
- Boyao Zhang
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|