1
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL. Mineralocorticoid receptor blockage in kidney transplantation: too much of a good thing or not? Int Urol Nephrol 2025; 57:839-854. [PMID: 39470940 DOI: 10.1007/s11255-024-04256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Although, kidney transplantation (KT) is the best treatment option for patients with end-stage kidney disease, long-term complications including chronic kidney allograft disease (CKAD) and major adverse cardiovascular events (MACE) are common. To decrease these complications new therapeutic options are necessary. Mineralocorticoid receptor antagonists (MRAs) are one of the promising drugs in this context. In the general population, MRAs had favorable effects on blood pressure regulation, MACE, proteinuria and progression of chronic kidney disease. In the context of KT, there are limited studies showing beneficial effects such as reducing proteinuria and oxidative stress. In this review, we performed a narrative review to assess the use and impact of MRAs in kidney transplant recipients. We found that in KTRs, MRAs are safe and they have favorable or neutral impact on blood pressure, glomerular filtration rate, urinary protein/albumin excretion, and oxidative stress. No data was found regarding major cardiovascular adverse events.
Collapse
Affiliation(s)
- Baris Afsar
- School of Medicine, Division of Nephrology, Saint Louis University, SSM Health Saint Louis University Hospital, St. Louis, MO, USA.
| | - Rengin Elsurer Afsar
- School of Medicine, Division of Nephrology, Saint Louis University, SSM Health Saint Louis University Hospital, St. Louis, MO, USA
| | - Yasar Caliskan
- School of Medicine, Division of Nephrology, Saint Louis University, SSM Health Saint Louis University Hospital, St. Louis, MO, USA
| | - Krista L Lentine
- School of Medicine, Division of Nephrology, Saint Louis University, SSM Health Saint Louis University Hospital, St. Louis, MO, USA
| |
Collapse
|
2
|
Qian M, Jiang Z, Xu C, Wang L, Hu N. Changes in the gut microbiota and derived fecal metabolites may play a role in tacrolimus-induced diabetes in mice. Future Microbiol 2025; 20:237-246. [PMID: 39711145 PMCID: PMC11812427 DOI: 10.1080/17460913.2024.2444761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
AIMS A notable scarcity of research has focused on examining alterations in gut microbiota and its metabolites within tacrolimus (TAC)-induced diabetes models. METHODS Tacrolimus-induced changes in glucose and lipid metabolism indices were analyzed through different routes of administration. The potential role of gut microbiota and its metabolites in TAC-induced diabetes was investigated using 16S rRNA sequencing and non-targeted metabolomics. RESULTS After intraperitoneal(ip) and oral(po) administration of TAC, the α-diversity index of gut microbiota was significantly increased. The gut microbiota of the three groups of mice was significantly separated, and there were significant changes in composition and functional genes. Fecal metabolites changed significantly after TAC administration by different routes, and 53 metabolites (38 down-regulated and 15 up-regulated) were identified (CON vs. TACip). Similarly, 29 metabolites (8 down-regulated and 21 up-regulated) were identified (CON vs. TACpo). KEGG pathway analysis identified 4 and 13 significantly altered metabolic pathways, respectively. Correlation analysis suggested that microbiota and metabolites were involved in the pathogenesis of TAC-induced diabetes. CONCLUSION This study investigated the alterations in gut microbiota and fecal metabolites in TAC-induced diabetic mice and evaluated the correlation between these changes. These findings provide valuable insights into potential biomarkers in the development of TAC-induced diabetes.
Collapse
Affiliation(s)
- Minyan Qian
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Caomei Xu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Liying Wang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| |
Collapse
|
3
|
Kunasol C, Chattipakorn N, Chattipakorn SC. Impact of calcineurin inhibitors on gut microbiota: Focus on tacrolimus with evidence from in vivo and clinical studies. Eur J Pharmacol 2025; 987:177176. [PMID: 39637933 DOI: 10.1016/j.ejphar.2024.177176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Calcineurin Inhibitors (CNIs), including tacrolimus and cyclosporine A, are the most widely used immunosuppressive drugs in solid organ transplantation. Those drugs play a pivotal role in preventing graft rejection and reducing autoimmunity. However, recent studies indicate that CNIs can disrupt the composition of gut microbiota or result in "gut dysbiosis". This dysbiosis has been shown to be a significant factor in reducing host immunity by decreasing innate immune cells and impairing metabolic regulation, leading to lipid and glucose accumulation. Several in vivo and clinical studies have demonstrated a mechanistic link between gut dysbiosis and the side effects of CNI. Those studies have unveiled that gut dysbiosis induced by CNIs contributes to adverse effects such as hyperglycemia, nephrotoxicity, and diarrhea. These adverse effects of the induced gut dysbiosis require interventions to restore microbial balance. Probiotics and dietary supplements have emerged as potential interventions to mitigate the side effects of gut dysbiosis caused by CNIs. In this complex relationship between CNI treatment, gut dysbiosis, and interventions, several types of gut microbiota and host immunity are involved. However, the mechanisms underlying these relationships remain elusive. Therefore, the aim of this review is to comprehensively summarize and discuss the major findings from in vivo and clinical data regarding the impact of treatment with CNIs on gut microbiota. This review also explores interventions to mitigate dysbiosis for therapeutic approaches of the side effects of CNIs. The possible underlying mechanisms of CNIs-induced gut dysbiosis with or without interventions are also presented and discussed.
Collapse
Affiliation(s)
- Chanon Kunasol
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Viglioli M, Rizzo SM, Alessandri G, Fontana F, Milani C, Turroni F, Mancabelli L, Croci N, Rivara S, Vacondio F, Ventura M, Mor M. Investigating drug-gut microbiota interactions: reductive and hydrolytic metabolism of oral glucocorticoids by in vitro artificial gut microbiota. Int J Pharm 2024; 665:124663. [PMID: 39265854 DOI: 10.1016/j.ijpharm.2024.124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Elucidation of the role of gut microbiota in the metabolism of orally administered drugs may improve therapeutic effectiveness and contribute to the development of personalized medicine. In this study, ten different artificial gut microbiota (AGM), obtained by culturing fecal samples in a continuous fermentation system, were challenged for their metabolizing capacity on a panel of six glucocorticoids selected from either prodrugs or drugs. Data from metabolic stability assays highlighted that, while the hydrolysis-mediated conversion of prodrugs to drugs represented only a minor metabolic pathway, significant differences in the stability of parent compounds and in their conversion rates to multiple reductive metabolites were obtained for the selected drugs. In the latter case, a taxonomic composition-dependent ability to convert parent drugs to metabolites was observed. Indeed, the artificial microbial communities dominated by the genus Bacteroides showed the maximal conversion of parent glucocorticoids to several metabolites. Furthermore, the effect of drugs on AGM was also evaluated through shallow shotgun sequencing and flow cytometry-based total bacterial cell count highlighting that these drugs can affect both the taxonomic composition and growth performances of the human gut microbiota.
Collapse
Affiliation(s)
- Martina Viglioli
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Sonia Mirjam Rizzo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Giulia Alessandri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Federico Fontana
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Christian Milani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; Department of Medicine and Surgery, University of Parma, 43120 Parma, Italy
| | - Nicole Croci
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Marco Ventura
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Xiang X, Zhu Y, Wang T, Ding P, Cheng K, Ming Y. Association between salivary microbiota and tacrolimus pharmacokinetic variability in kidney transplant. Genomics 2024; 116:110952. [PMID: 39426572 DOI: 10.1016/j.ygeno.2024.110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Kidney transplantation (KT) serves as a highly effective treatment for end-stage renal disease (ESRD). Nonetheless, the administration of tacrolimus, a commonly used immunosuppressant in KT, faces challenges due to the lack of dependable biomarkers for its efficacy and the considerable variability in tacrolimus pharmacokinetics (TacIPV). In this study, 183 saliva samples from 48 KT recipients under tacrolimus therapy, alongside 9 healthy control samples, were subjected to 16S rRNA sequencing. The analysis revealed significant differences in the composition of salivary microbiota among KT recipients, patients with ESRD, and healthy controls. Moreover, trough blood concentrations (C0) of tacrolimus were associated with alterations in microbiota composition. Notably, Capnocytophage consistently exhibited a negative correlation in both group-level and individual trends. Furthermore, distinct taxa were identified that effectively distinguished recipients with varying TacIPV, as demonstrated by a cross-validation random forest model (mean AUC = 0.7560), with Anaerolinea emerging as a prominent contributor to the classifier. These findings suggest that salivary microbiota is closely linked to tacrolimus C0 levels and could aid clinicians in differentiating KT recipients based on TacIPV.
Collapse
Affiliation(s)
- Xuyu Xiang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yi Zhu
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Tianyin Wang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Peng Ding
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Ke Cheng
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yingzi Ming
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China.
| |
Collapse
|
6
|
Mohamed ME, Saqr A, Staley C, Onyeaghala G, Teigen L, Dorr CR, Remmel RP, Guan W, Oetting WS, Matas AJ, Israni AK, Jacobson PA. Pharmacomicrobiomics: Immunosuppressive Drugs and Microbiome Interactions in Transplantation. Transplantation 2024; 108:1895-1910. [PMID: 38361239 PMCID: PMC11327386 DOI: 10.1097/tp.0000000000004926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The human microbiome is associated with human health and disease. Exogenous compounds, including pharmaceutical products, are also known to be affected by the microbiome, and this discovery has led to the field of pharmacomicobiomics. The microbiome can also alter drug pharmacokinetics and pharmacodynamics, possibly resulting in side effects, toxicities, and unanticipated disease response. Microbiome-mediated effects are referred to as drug-microbiome interactions (DMI). Rapid advances in the field of pharmacomicrobiomics have been driven by the availability of efficient bacterial genome sequencing methods and new computational and bioinformatics tools. The success of fecal microbiota transplantation for recurrent Clostridioides difficile has fueled enthusiasm and research in the field. This review focuses on the pharmacomicrobiome in transplantation. Alterations in the microbiome in transplant recipients are well documented, largely because of prophylactic antibiotic use, and the potential for DMI is high. There is evidence that the gut microbiome may alter the pharmacokinetic disposition of tacrolimus and result in microbiome-specific tacrolimus metabolites. The gut microbiome also impacts the enterohepatic recirculation of mycophenolate, resulting in substantial changes in pharmacokinetic disposition and systemic exposure. The mechanisms of these DMI and the specific bacteria or communities of bacteria are under investigation. There are little or no human DMI data for cyclosporine A, corticosteroids, and sirolimus. The available evidence in transplantation is limited and driven by small studies of heterogeneous designs. Larger clinical studies are needed, but the potential for future clinical application of the pharmacomicrobiome in avoiding poor outcomes is high.
Collapse
Affiliation(s)
- Moataz E Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Abdelrahman Saqr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | | | - Guillaume Onyeaghala
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Levi Teigen
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN
| | - Casey R Dorr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
- Department of Medicine, Hennepin Healthcare, Minneapolis, MN
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Ajay K Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, Hennepin Healthcare, Minneapolis, MN
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| |
Collapse
|
7
|
Maryam, Rehman MU, Hussain I, Tayara H, Chong KT. A graph neural network approach for predicting drug susceptibility in the human microbiome. Comput Biol Med 2024; 179:108729. [PMID: 38955124 DOI: 10.1016/j.compbiomed.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Recent studies have illuminated the critical role of the human microbiome in maintaining health and influencing the pharmacological responses of drugs. Clinical trials, encompassing approximately 150 drugs, have unveiled interactions with the gastrointestinal microbiome, resulting in the conversion of these drugs into inactive metabolites. It is imperative to explore the field of pharmacomicrobiomics during the early stages of drug discovery, prior to clinical trials. To achieve this, the utilization of machine learning and deep learning models is highly desirable. In this study, we have proposed graph-based neural network models, namely GCN, GAT, and GINCOV models, utilizing the SMILES dataset of drug microbiome. Our primary objective was to classify the susceptibility of drugs to depletion by gut microbiota. Our results indicate that the GINCOV surpassed the other models, achieving impressive performance metrics, with an accuracy of 93% on the test dataset. This proposed Graph Neural Network (GNN) model offers a rapid and efficient method for screening drugs susceptible to gut microbiota depletion and also encourages the improvement of patient-specific dosage responses and formulations.
Collapse
Affiliation(s)
- Maryam
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Mobeen Ur Rehman
- Khalifa University Center for Autonomous Robotic Systems (KUCARS), Khalifa University, United Arab Emirates
| | - Irfan Hussain
- Khalifa University Center for Autonomous Robotic Systems (KUCARS), Khalifa University, United Arab Emirates
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea; Advances Electronics and Information Research Centre, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
8
|
Mohamed ME, Guo B, Wu B, Schladt DP, Muthusamy A, Guan W, Abrahante JE, Onyeaghala G, Saqr A, Pankratz N, Agarwal G, Mannon RB, Matas AJ, Oetting WS, Remmel RP, Israni AK, Jacobson PA, Dorr CR. Extreme phenotype sampling and next generation sequencing to identify genetic variants associated with tacrolimus in African American kidney transplant recipients. THE PHARMACOGENOMICS JOURNAL 2024; 24:29. [PMID: 39179559 DOI: 10.1038/s41397-024-00349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
African American (AA) kidney transplant recipients (KTRs) have poor outcomes, which may in-part be due to tacrolimus (TAC) sub-optimal immunosuppression. We previously determined the common genetic regulators of TAC pharmacokinetics in AAs which were CYP3A5 *3, *6, and *7. To identify low-frequency variants that impact TAC pharmacokinetics, we used extreme phenotype sampling and compared individuals with extreme high (n = 58) and low (n = 60) TAC troughs (N = 515 AA KTRs). Targeted next generation sequencing was conducted in these two groups. Median TAC troughs in the high group were 7.7 ng/ml compared with 6.3 ng/ml in the low group, despite lower daily doses of 5 versus 12 mg, respectively. Of 34,542 identified variants across 99 genes, 1406 variants were suggestively associated with TAC troughs in univariate models (p-value < 0.05), however none were significant after multiple testing correction. We suggest future studies investigate additional sources of TAC pharmacokinetic variability such as drug-drug-gene interactions and pharmacomicrobiome.
Collapse
Affiliation(s)
- Moataz E Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Bin Guo
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Baolin Wu
- Department of Epidemiology and Biostatistics, University of California Irvine, Irvine, CA, USA
| | - David P Schladt
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | | | - Weihua Guan
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Juan E Abrahante
- Research Informatics, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Guillaume Onyeaghala
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Nephrology Division, Hennepin Healthcare, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Abdelrahman Saqr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Gaurav Agarwal
- Division of Nephrology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roslyn B Mannon
- Division of Nephrology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arthur J Matas
- Division of Transplantation, Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ajay K Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Nephrology Division, Hennepin Healthcare, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Casey R Dorr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA.
- Nephrology Division, Hennepin Healthcare, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Clinical and Translational Sciences Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Ouyang H, Xu Z, Hong J, Malroy J, Qian L, Ji S, Zhu X. Mining the Metabolic Capacity of Clostridium sporogenes Aided by Machine Learning. Angew Chem Int Ed Engl 2024; 63:e202319925. [PMID: 38286754 PMCID: PMC10986427 DOI: 10.1002/anie.202319925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Anaerobes dominate the microbiota of the gastrointestinal (GI) tract, where a significant portion of small molecules can be degraded or modified. However, the enormous metabolic capacity of gut anaerobes remains largely elusive in contrast to aerobic bacteria, mainly due to the requirement of sophisticated laboratory settings. In this study, we employed an in silico machine learning platform, MoleculeX, to predict the metabolic capacity of a gut anaerobe, Clostridium sporogenes, against small molecules. Experiments revealed that among the top seven candidates predicted as unstable, six indeed exhibited instability in C. sporogenes culture. We further identified several metabolites resulting from the supplementation of everolimus in the bacterial culture for the first time. By utilizing bioinformatics and in vitro biochemical assays, we successfully identified an enzyme encoded in the genome of C. sporogenes responsible for everolimus transformation. Our framework thus can potentially facilitate future understanding of small molecules metabolism in the gut, further improve patient care through personalized medicine, and guide the development of new small molecule drugs and therapeutic approaches.
Collapse
Affiliation(s)
- Huanrong Ouyang
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, United States
| | - Zhao Xu
- Department of Computer Science & Engineering, Texas A&M University, College Station, 77843, United States
| | - Joshua Hong
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, United States
| | - Jeshua Malroy
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, United States
| | - Liangyu Qian
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, United States
| | - Shuiwang Ji
- Department of Computer Science & Engineering, Texas A&M University, College Station, 77843, United States
| | - Xuejun Zhu
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, United States; Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, 77843, United States
| |
Collapse
|
10
|
Salvadori M, Rosso G. Update on the reciprocal interference between immunosuppressive therapy and gut microbiota after kidney transplantation. World J Transplant 2024; 14:90194. [PMID: 38576749 PMCID: PMC10989467 DOI: 10.5500/wjt.v14.i1.90194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 03/15/2024] Open
Abstract
Gut microbiota is often modified after kidney transplantation. This principally happens in the first period after transplantation. Antibiotics and, most of all, immunosuppressive drugs are the main responsible. The relationship between immunosuppressive drugs and the gut microbiota is bilateral. From one side immunosuppressive drugs modify the gut microbiota, often generating dysbiosis; from the other side microbiota may interfere with the immunosuppressant pharmacokinetics, producing products more or less active with respect to the original drug. These phenomena have influence over the graft outcomes and clinical consequences as rejections, infections, diarrhea may be caused by the dysbiotic condition. Corticosteroids, calcineurin inhibitors such as tacrolimus and cyclosporine, mycophenolate mofetil and mTOR inhibitors are the immunosuppressive drugs whose effect on the gut microbiota is better known. In contrast is well known how the gut microbiota may interfere with glucocorticoids, which may be transformed into androgens. Tacrolimus may be transformed by micro biota into a product called M1 that is 15-fold less active with respect to tacrolimus. The pro-drug mycophenolate mofetil is normally transformed in mycophenolic acid that according the presence or not of microbes producing the enzyme glu curonidase, may be transformed into the inactive product.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Tuscany, Italy
| | - Giuseppina Rosso
- Division of Nephrology, San Giovanni di Dio Hospital, Florence 50143, Toscana, Italy
| |
Collapse
|
11
|
Mohamed M, Guo B, Wu B, Schladt D, Muthusamy A, Guan W, Abrahante J, Onyeaghala G, Saqr A, Pankratz N, Agarwal G, Mannon R, Matas A, Oetting W, Remmel R, Israni A, Jacobson P, Dorr C. Extreme Phenotype Sampling and Next Generation Sequencing to Identify Genetic Variants Associated with Tacrolimus in African American Kidney Transplant Recipients. RESEARCH SQUARE 2024:rs.3.rs-4050136. [PMID: 38558983 PMCID: PMC10980152 DOI: 10.21203/rs.3.rs-4050136/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
African American (AA) kidney transplant recipients (KTRs) have poor outcomes, which may in-part be due to tacrolimus (TAC) sub-optimal immunosuppression. We previously determined the common genetic regulators of TAC pharmacokinetics in AAs which were CYP3A5 *3, *6, and *7. To identify low-frequency variants that impact TAC pharmacokinetics, we used extreme phenotype sampling and compared individuals with extreme high (n=58) and low (n=60) TAC troughs (N=515 AA KTRs). Targeted next generation sequencing was conducted in these two groups. Median TAC troughs in the high group were 7.7 ng/ml compared with 6.3 ng/ml in the low group, despite lower daily doses of 5 versus 12mg, respectively. Of 34,542 identified variants across 99 genes, 1,406 variants were suggestively associated with TAC troughs in univariate models (p-value <0.05), however none were significant after multiple testing correction. We suggest future studies investigate additional sources of TAC pharmacokinetic variability such as drug-drug-gene interactions and pharmacomicrobiome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Pamala Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota
| | | |
Collapse
|
12
|
Jimonet P, Druart C, Blanquet-Diot S, Boucinha L, Kourula S, Le Vacon F, Maubant S, Rabot S, Van de Wiele T, Schuren F, Thomas V, Walther B, Zimmermann M. Gut Microbiome Integration in Drug Discovery and Development of Small Molecules. Drug Metab Dispos 2024; 52:274-287. [PMID: 38307852 DOI: 10.1124/dmd.123.001605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Human microbiomes, particularly in the gut, could have a major impact on the efficacy and toxicity of drugs. However, gut microbial metabolism is often neglected in the drug discovery and development process. Medicen, a Paris-based human health innovation cluster, has gathered more than 30 international leading experts from pharma, academia, biotech, clinical research organizations, and regulatory science to develop proposals to facilitate the integration of microbiome science into drug discovery and development. Seven subteams were formed to cover the complementary expertise areas of 1) pharma experience and case studies, 2) in silico microbiome-drug interaction, 3) in vitro microbial stability screening, 4) gut fermentation models, 5) animal models, 6) microbiome integration in clinical and regulatory aspects, and 7) microbiome ecosystems and models. Each expert team produced a state-of-the-art report of their respective field highlighting existing microbiome-related tools at every stage of drug discovery and development. The most critical limitations are the growing, but still limited, drug-microbiome interaction data to produce predictive models and the lack of agreed-upon standards despite recent progress. In this paper we will report on and share proposals covering 1) how microbiome tools can support moving a compound from drug discovery to clinical proof-of-concept studies and alert early on potential undesired properties stemming from microbiome-induced drug metabolism and 2) how microbiome data can be generated and integrated in pharmacokinetic models that are predictive of the human situation. Examples of drugs metabolized by the microbiome will be discussed in detail to support recommendations from the working group. SIGNIFICANCE STATEMENT: Gut microbial metabolism is often neglected in the drug discovery and development process despite growing evidence of drugs' efficacy and safety impacted by their interaction with the microbiome. This paper will detail existing microbiome-related tools covering every stage of drug discovery and development, current progress, and limitations, as well as recommendations to integrate them into the drug discovery and development process.
Collapse
Affiliation(s)
- Patrick Jimonet
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Céline Druart
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Stéphanie Blanquet-Diot
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Lilia Boucinha
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Stephanie Kourula
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Françoise Le Vacon
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Sylvie Maubant
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Sylvie Rabot
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Tom Van de Wiele
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Frank Schuren
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Vincent Thomas
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Bernard Walther
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Michael Zimmermann
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| |
Collapse
|
13
|
Gümüs KS, Teegelbekkers A, Sauter M, Meid AD, Burhenne J, Weiss J, Blank A, Haefeli WE, Czock D. Effect of Tacrolimus Formulation (Prolonged-Release vs Immediate-Release) on Its Susceptibility to Drug-Drug Interactions with St. John's Wort. Clin Pharmacol Drug Dev 2024; 13:297-306. [PMID: 38176912 DOI: 10.1002/cpdd.1364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Tacrolimus is metabolized by cytochrome P450 3A (CYP3A) and is susceptible to interactions with the CYP3A and P-glycoprotein inducer St. John's Wort (SJW). CYP3A isozymes are predominantly expressed in the small intestine and liver. Prolonged-release tacrolimus (PR-Tac) is largely absorbed in distal intestinal segments and is less susceptible to CYP3A inhibition. The effect of induction by SJW is unknown. In this randomized, crossover trial, 18 healthy volunteers received single oral tacrolimus doses (immediate-release [IR]-Tac or PR-Tac, 5 mg each) alone and during induction by SJW. Concentrations were quantified using ultra-high performance liquid chromatography coupled with tandem mass spectrometry and non-compartmental pharmacokinetics were evaluated. SJW decreased IR-Tac exposure (area under the concentration-time curve) to 73% (95% confidence interval 60%-88%) and maximum concentration (Cmax ) to 61% (52%-73%), and PR-Tac exposure to 67% (55%-81%) and Cmax to 69% (58%-82%), with no statistical difference between the 2 formulations. The extent of interaction appeared to be less pronounced in volunteers with higher baseline CYP3A4 activity and in CYP3A5 expressors. In contrast to CYP3A inhibition, CYP3A induction by SJW showed a similar extent of interaction with both tacrolimus formulations. A higher metabolic baseline capacity appeared to attenuate the extent of induction by SJW.
Collapse
Affiliation(s)
- Katja S Gümüs
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Anna Teegelbekkers
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Max Sauter
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Andreas D Meid
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Elgarten CW, Margolis EB, Kelly MS. The Microbiome and Pediatric Transplantation. J Pediatric Infect Dis Soc 2024; 13:S80-S89. [PMID: 38417089 PMCID: PMC10901476 DOI: 10.1093/jpids/piad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/25/2023] [Indexed: 03/01/2024]
Abstract
The microbial communities that inhabit our bodies have been increasingly linked to host physiology and pathophysiology. This microbiome, through its role in colonization resistance, influences the risk of infections after transplantation, including those caused by multidrug-resistant organisms. In addition, through both direct interactions with the host immune system and via the production of metabolites that impact local and systemic immunity, the microbiome plays an important role in the establishment of immune tolerance after transplantation, and conversely, in the development of graft-versus-host disease and graft rejection. This review offers a comprehensive overview of the evidence for the role of the microbiome in hematopoietic cell and solid organ transplant complications, drivers of microbiome shift during transplantation, and the potential of microbiome-based therapies to improve pediatric transplantation outcomes.
Collapse
Affiliation(s)
- Caitlin W Elgarten
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elisa B Margolis
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Matthew S Kelly
- Departments of Pediatrics and Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
15
|
Jardou M, Brossier C, Marquet P, Picard N, Druilhe A, Lawson R. Solid organ transplantation and gut microbiota: a review of the potential immunomodulatory properties of short-chain fatty acids in graft maintenance. Front Cell Infect Microbiol 2024; 14:1342354. [PMID: 38476165 PMCID: PMC10927761 DOI: 10.3389/fcimb.2024.1342354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Transplantation is the treatment of choice for several end-stage organ defects: it considerably improves patient survival and quality of life. However, post-transplant recipients may experience episodes of rejection that can favor or ultimately lead to graft loss. Graft maintenance requires a complex and life-long immunosuppressive treatment. Different immunosuppressive drugs (i.e., calcineurin inhibitors, glucocorticoids, biological immunosuppressive agents, mammalian target of rapamycin inhibitors, and antiproliferative or antimetabolic agents) are used in combination to mitigate the immune response against the allograft. Unfortunately, the use of these antirejection agents may lead to opportunistic infections, metabolic (e.g., post-transplant diabetes mellitus) or cardiovascular (e.g., arterial hypertension) disorders, cancer (e.g., non-Hodgkin lymphoma) and other adverse effects. Lately, immunosuppressive drugs have also been associated with gut microbiome alterations, known as dysbiosis, and were shown to affect gut microbiota-derived short-chain fatty acids (SCFA) production. SCFA play a key immunomodulatory role in physiological conditions, and their impairment in transplant patients could partly counterbalance the effect of immunosuppressive drugs leading to the activation of deleterious pathways and graft rejection. In this review, we will first present an overview of the mechanisms of graft rejection that are prevented by the immunosuppressive protocol. Next, we will explain the dynamic changes of the gut microbiota during transplantation, focusing on SCFA. Finally, we will describe the known functions of SCFA in regulating immune-inflammatory reactions and discuss the impact of SCFA impairment in immunosuppressive drug treated patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Roland Lawson
- National Institute of Health and Medical Research (FRANCE) (INSERM), Univ. Limoges, Pharmacology & Transplantation, U1248, Limoges, France
| |
Collapse
|
16
|
Wu T, Bai Y, Jing Y, Chen F. What can we learn from treatments of oral lichen planus? Front Cell Infect Microbiol 2024; 14:1279220. [PMID: 38426013 PMCID: PMC10902003 DOI: 10.3389/fcimb.2024.1279220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Oral lichen planus (OLP), a T-lymphocyte-mediated disease of the oral mucosa, has a complex pathogenesis that involves a number of factors. The disease is characterized by recurrent episodes and requires continuous follow up, and there is no curative treatment available. Erosive lichen planus, among others, has a risk of malignant transformation and requires standardized treatment to control its progression. Different clinical subtypes of oral lichen planus require appropriate treatment. Pharmacological treatments are the most widely available and have the greatest variety of options and a number of novel pharmacological treatments are presented as highlights, including JAK enzyme inhibitors. The second is photodynamic therapy, which is the leading physiological treatment. In addition, periodontal treatment and psychological treatment should not be neglected. In this review, we briefly discuss the most recent developments in therapies for oral lichen planus after summarizing the most widely used clinical treatments, aiming to provide different proposals for future clinical treatment.
Collapse
Affiliation(s)
- Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yin Jing
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
17
|
Verdegaal AA, Goodman AL. Integrating the gut microbiome and pharmacology. Sci Transl Med 2024; 16:eadg8357. [PMID: 38295186 DOI: 10.1126/scitranslmed.adg8357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
The gut microbiome harbors trillions of organisms that contribute to human health and disease. These bacteria can also affect the properties of medical drugs used to treat these diseases, and drugs, in turn, can reshape the microbiome. Research addressing interdependent microbiome-host-drug interactions thus has broad impact. In this Review, we discuss these interactions from the perspective of drug bioavailability, absorption, metabolism, excretion, toxicity, and drug-mediated microbiome modulation. We survey approaches that aim to uncover the mechanisms underlying these effects and opportunities to translate this knowledge into new strategies to improve the development, administration, and monitoring of medical drugs.
Collapse
Affiliation(s)
- Andrew A Verdegaal
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
18
|
Martinelli F, Thiele I. Microbial metabolism marvels: a comprehensive review of microbial drug transformation capabilities. Gut Microbes 2024; 16:2387400. [PMID: 39150897 PMCID: PMC11332652 DOI: 10.1080/19490976.2024.2387400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024] Open
Abstract
This comprehensive review elucidates the pivotal role of microbes in drug metabolism, synthesizing insights from an exhaustive analysis of over two hundred papers. Employing a structural classification system grounded in drug atom involvement, the review categorizes the microbiome-mediated drug-metabolizing capabilities of over 80 drugs. Additionally, it compiles pharmacodynamic and enzymatic details related to these reactions, striving to include information on encoding genes and specific involved microorganisms. Bridging biochemistry, pharmacology, genetics, and microbiology, this review not only serves to consolidate diverse research fields but also highlights the potential impact of microbial drug metabolism on future drug design and in silico studies. With a visionary outlook, it also lays the groundwork for personalized medicine interventions, emphasizing the importance of interdisciplinary collaboration for advancing drug development and enhancing therapeutic strategies.
Collapse
Affiliation(s)
- Filippo Martinelli
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
- School of Microbiology, University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
19
|
Ma B, Gavzy SJ, France M, Song Y, Lwin HW, Kensiski A, Saxena V, Piao W, Lakhan R, Iyyathurai J, Li L, Paluskievicz C, Wu L, WillsonShirkey M, Mongodin EF, Mas VR, Bromberg JS. Rapid intestinal and systemic metabolic reprogramming in an immunosuppressed environment. BMC Microbiol 2023; 23:394. [PMID: 38066426 PMCID: PMC10709923 DOI: 10.1186/s12866-023-03141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Intrinsic metabolism shapes the immune environment associated with immune suppression and tolerance in settings such as organ transplantation and cancer. However, little is known about the metabolic activities in an immunosuppressive environment. In this study, we employed metagenomic, metabolomic, and immunological approaches to profile the early effects of the immunosuppressant drug tacrolimus, antibiotics, or both in gut lumen and circulation using a murine model. Tacrolimus induced rapid and profound alterations in metabolic activities within two days of treatment, prior to alterations in gut microbiota composition and structure. The metabolic profile and gut microbiome after seven days of treatment was distinct from that after two days of treatment, indicating continuous drug effects on both gut microbial ecosystem and host metabolism. The most affected taxonomic groups are Clostriales and Verrucomicrobiae (i.e., Akkermansia muciniphila), and the most affected metabolic pathways included a group of interconnected amino acids, bile acid conjugation, glucose homeostasis, and energy production. Highly correlated metabolic changes were observed between lumen and serum metabolism, supporting their significant interactions. Despite a small sample size, this study explored the largely uncharacterized microbial and metabolic events in an immunosuppressed environment and demonstrated that early changes in metabolic activities can have significant implications that may serve as antecedent biomarkers of immune activation or quiescence. To understand the intricate relationships among gut microbiome, metabolic activities, and immune cells in an immune suppressed environment is a prerequisite for developing strategies to monitor and optimize alloimmune responses that determine transplant outcomes.
Collapse
Affiliation(s)
- Bing Ma
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Samuel J Gavzy
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michael France
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yang Song
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hnin Wai Lwin
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ram Lakhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jegan Iyyathurai
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lushen Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christina Paluskievicz
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Long Wu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marina WillsonShirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Emmanuel F Mongodin
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Division of Lung Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Valeria R Mas
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, 21201, USA
| | - Jonathan S Bromberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, 21201, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
20
|
Chan WN, Ho DR, Huang YC, Lin JH, Liu YL, Chen MJ, Chen CS. A Pilot Study of Nephrogenic Probiotics to Further Improve an Already Stabilized Graft Function After Kidney Transplantation. Transplant Proc 2023; 55:2090-2094. [PMID: 37806868 DOI: 10.1016/j.transproceed.2023.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The majority of kidney recipients are a subset of chronic kidney disease. Our previous study demonstrated that the combination of Lactobacillus plantarum and Lactobacillus paracasei (Lm) had the highest clearance ability of uremic toxins and improved kidney function in a mouse model. This study aimed to evaluate Lm in improving graft function, effects on immunosuppressants, and safety in transplant recipients. METHODS We retrospectively reviewed 24 patients. Twelve of them take Lm regularly; we compared the creatinine measurements and estimated glomerular filtration rate 3 months before and after Lm using a 2-tailed Wilcoxon matched-pairs signed-rank test while also evaluating the drug level of immunosuppressants and infection events. Other 12 patients who do not have Lm for evaluation of laboratory calibration and compared the proportion of improving creatinine using Fisher's exact test. RESULTS The creatinine decreased by 0.06 mg/dL (P = .02), and the estimated glomerular filtration rate increased by 3.1 mL/min/1.73 m2 (P = .03) after Lm supplementation. This pilot study revealed the association of higher incidence (odds ratio 13.3, 95% CI 1.64-77.2, P = .01) of decreasing creatinine in transplant recipients using Lm. Furthermore, results showed a trend of higher trough levels of tacrolimus and sirolimus, which might provide a potential strategy for reducing the dosages of immunosuppressants. CONCLUSION Our findings revealed an association between a higher incidence of decreasing creatinine in kidney transplant recipients using Lm, which may also provide a potential strategy for reducing the acquired dosages of immunosuppressants.
Collapse
Affiliation(s)
- Wai-Nga Chan
- Divisions of Urology, Department of Surgery, Chang Gung Medical Foundation, Chiayi City 613, Taiwan
| | - Dong-Ru Ho
- Divisions of Urology, Department of Surgery, Chang Gung Medical Foundation, Chiayi City 613, Taiwan
| | - Yun-Ching Huang
- Divisions of Urology, Department of Surgery, Chang Gung Medical Foundation, Chiayi City 613, Taiwan
| | - Jian-Hui Lin
- Divisions of Urology, Department of Surgery, Chang Gung Medical Foundation, Chiayi City 613, Taiwan
| | - Yu-Liang Liu
- Divisions of Urology, Department of Surgery, Chang Gung Medical Foundation, Chiayi City 613, Taiwan
| | - Ming-Ju Chen
- Center for Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chih-Shou Chen
- Divisions of Urology, Department of Surgery, Chang Gung Medical Foundation, Chiayi City 613, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan.
| |
Collapse
|
21
|
Chu XY, Ho PC. Intestinal Microbiome and Its Impact on Metabolism and Safety of Drugs. ORAL BIOAVAILABILITY AND DRUG DELIVERY 2023:483-500. [DOI: 10.1002/9781119660699.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
O’Reilly C, Mills S, Rea MC, Lavelle A, Ghosh S, Hill C, Ross RP. Interplay between inflammatory bowel disease therapeutics and the gut microbiome reveals opportunities for novel treatment approaches. MICROBIOME RESEARCH REPORTS 2023; 2:35. [PMID: 37849974 PMCID: PMC7615213 DOI: 10.20517/mrr.2023.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Inflammatory bowel disease (IBD) is a complex heterogeneous disorder defined by recurring chronic inflammation of the gastrointestinal tract, attributed to a combination of factors including genetic susceptibility, altered immune response, a shift in microbial composition/microbial insults (infection/exposure), and environmental influences. Therapeutics generally used to treat IBD mainly focus on the immune response and include non-specific anti-inflammatory and immunosuppressive therapeutics and targeted therapeutics aimed at specific components of the immune system. Other therapies include exclusive enteral nutrition and emerging stem cell therapies. However, in recent years, scientists have begun to examine the interplay between these therapeutics and the gut microbiome, and we present this information here. Many of these therapeutics are associated with alterations to gut microbiome composition and functionality, often driving it toward a "healthier profile" and preclinical studies have revealed that such alterations can play an important role in therapeutic efficacy. The gut microbiome can also improve or hinder IBD therapeutic efficacy or generate undesirable metabolites. For certain IBD therapeutics, the microbiome composition, particularly before treatment, may serve as a biomarker of therapeutic efficacy. Utilising this information and manipulating the interactions between the gut microbiome and IBD therapeutics may enhance treatment outcomes in the future and bring about new opportunities for personalised, precision medicine.
Collapse
Affiliation(s)
- Catherine O’Reilly
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Authors contributed equally
| | - Susan Mills
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Authors contributed equally
| | - Mary C. Rea
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Subrata Ghosh
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Colin Hill
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - R. Paul Ross
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| |
Collapse
|
23
|
Ma B, Gavzy SJ, France M, Song Y, Lwin HW, Kensiski A, Saxena V, Piao W, Lakhan R, Iyyathurai J, Li L, Paluskievicz C, Wu L, WillsonShirkey M, Mongodin EF, Mas VR, Bromberg J. Rapid intestinal and systemic metabolic reprogramming in an immunosuppressed environment. RESEARCH SQUARE 2023:rs.3.rs-3364037. [PMID: 37790403 PMCID: PMC10543476 DOI: 10.21203/rs.3.rs-3364037/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Intrinsic metabolism shapes the immune environment associated with immune suppression and tolerance in settings such as organ transplantation and cancer. However, little is known about the metabolic activities in an immunosuppressive environment. In this study, we employed metagenomic, metabolomic, and immunological approaches to profile the early effects of the immunosuppressant drug tacrolimus, antibiotics, or both in gut lumen and circulation using a murine model. Tacrolimus induced rapid and profound alterations in metabolic activities within two days of treatment, prior to alterations in gut microbiota composition and structure. The metabolic profile and gut microbiome after seven days of treatment was distinct from that after two days of treatment, indicating continuous drug effects on both gut microbial ecosystem and host metabolism. The most affected taxonomic groups are Clostriales and Verrucomicrobiae (i.e., Akkermansia muciniphila), and the most affected metabolic pathways included a group of interconnected amino acids, bile acid conjugation, glucose homeostasis, and energy production. Highly correlated metabolic changes were observed between lumen and serum metabolism, supporting their significant interactions. Despite a small sample size, this study explored the largely uncharacterized microbial and metabolic events in an immunosuppressed environment and demonstrated that early changes in metabolic activities can have significant implications that may serve as antecedent biomarkers of immune activation or quiescence. To understand the intricate relationships among gut microbiome, metabolic activities, and immune cells in an immune suppressed environment is a prerequisite for developing strategies to monitor and optimize alloimmune responses that determine transplant outcomes.
Collapse
Affiliation(s)
- Bing Ma
- University of Maryland, Baltimore
| | | | | | | | | | | | | | | | | | | | | | | | - Long Wu
- University of Maryland, Baltimore
| | | | | | | | | |
Collapse
|
24
|
Manes A, Di Renzo T, Dodani L, Reale A, Gautiero C, Di Lauro M, Nasti G, Manco F, Muscariello E, Guida B, Tarantino G, Cataldi M. Pharmacomicrobiomics of Classical Immunosuppressant Drugs: A Systematic Review. Biomedicines 2023; 11:2562. [PMID: 37761003 PMCID: PMC10526314 DOI: 10.3390/biomedicines11092562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical response to classical immunosuppressant drugs (cIMDs) is highly variable among individuals. We performed a systematic review of published evidence supporting the hypothesis that gut microorganisms may contribute to this variability by affecting cIMD pharmacokinetics, efficacy or tolerability. The evidence that these drugs affect the composition of intestinal microbiota was also reviewed. The PubMed and Scopus databases were searched using specific keywords without limits of species (human or animal) or time from publication. One thousand and fifty five published papers were retrieved in the initial database search. After screening, 50 papers were selected to be reviewed. Potential effects on cIMD pharmacokinetics, efficacy or tolerability were observed in 17/20 papers evaluating this issue, in particular with tacrolimus, cyclosporine, mycophenolic acid and corticosteroids, whereas evidence was missing for everolimus and sirolimus. Only one of the papers investigating the effect of cIMDs on the gut microbiota reported negative results while all the others showed significant changes in the relative abundance of specific intestinal bacteria. However, no unique pattern of microbiota modification was observed across the different studies. In conclusion, the available evidence supports the hypothesis that intestinal microbiota could contribute to the variability in the response to some cIMDs, whereas data are still missing for others.
Collapse
Affiliation(s)
- Annalaura Manes
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Loreta Dodani
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Anna Reale
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Claudia Gautiero
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Mariastella Di Lauro
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Gilda Nasti
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Federica Manco
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Espedita Muscariello
- Nutrition Unit, Department of Prevention, Local Health Authority Napoli 3 Sud, 80059 Naples, Italy;
| | - Bruna Guida
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy;
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| |
Collapse
|
25
|
Gnatzy L, Ismailos G, Vertzoni M, Reppas C. Managing the clinical effects of drug-induced intestinal dysbiosis with a focus to antibiotics: Challenges and opportunities. Eur J Pharm Sci 2023; 188:106510. [PMID: 37380062 DOI: 10.1016/j.ejps.2023.106510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
The term "intestinal dysbiosis" is used for indicating change(s) of the intestinal microbiota which have been associated with the development of diseases and the deterioration of disease treatments in humans. In this review, documented clinical effects of drug-induced intestinal dysbiosis are briefly presented, and methodologies which could be considered for the management of drug-induced intestinal dysbiosis based on clinical data are critically reviewed. Until relevant methodologies are optimized and/or their effectiveness to the general population is confirmed, and, since drug-induced intestinal dysbiosis refers predominantly to antibiotic-specific intestinal dysbiosis, a pharmacokinetically-based approach for mitigating the impact of antimicrobial therapy on intestinal dysbiosis is proposed.
Collapse
Affiliation(s)
- Lea Gnatzy
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - George Ismailos
- Experimental, Research and Training Center ELPEN, ELPEN Pharmaceuticals, Pikermi, Greece; National Antimicrobial Testing Committee, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
26
|
Henkel L, Jehn U, Thölking G, Reuter S. Tacrolimus-why pharmacokinetics matter in the clinic. FRONTIERS IN TRANSPLANTATION 2023; 2:1160752. [PMID: 38993881 PMCID: PMC11235362 DOI: 10.3389/frtra.2023.1160752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/07/2023] [Indexed: 07/13/2024]
Abstract
The calcineurin inhibitor (CNI) Tacrolimus (Tac) is the most prescribed immunosuppressant drug after solid organ transplantation. After renal transplantation (RTx) approximately 95% of recipients are discharged with a Tac-based immunosuppressive regime. Despite the high immunosuppressive efficacy, its adverse effects, narrow therapeutic window and high intra- and interpatient variability (IPV) in pharmacokinetics require therapeutic drug monitoring (TDM), which makes treatment with Tac a major challenge for physicians. The C/D ratio (full blood trough level normalized by daily dose) is able to classify patients receiving Tac into two major metabolism groups, which were significantly associated with the clinical outcomes of patients after renal or liver transplantation. Therefore, the C/D ratio is a simple but effective tool to identify patients at risk of an unfavorable outcome. This review highlights the challenges of Tac-based immunosuppressive therapy faced by transplant physicians in their daily routine, the underlying causes and pharmacokinetics (including genetics, interactions, and differences between available Tac formulations), and the latest data on potential solutions to optimize treatment of high-risk patients.
Collapse
Affiliation(s)
- Lino Henkel
- Department of Medicine D, University of Münster, Münster, Germany
| | - Ulrich Jehn
- Department of Medicine D, University of Münster, Münster, Germany
| | - Gerold Thölking
- Department of Medicine D, University of Münster, Münster, Germany
- Department of Internal Medicine and Nephrology, University Hospital of Münster Marienhospital Steinfurt, Steinfurt, Germany
| | - Stefan Reuter
- Department of Medicine D, University of Münster, Münster, Germany
| |
Collapse
|
27
|
Degraeve AL, Haufroid V, Loriot A, Gatto L, Andries V, Vereecke L, Elens L, Bindels LB. Gut microbiome modulates tacrolimus pharmacokinetics through the transcriptional regulation of ABCB1. MICROBIOME 2023; 11:138. [PMID: 37408070 DOI: 10.1186/s40168-023-01578-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Following solid organ transplantation, tacrolimus (TAC) is an essential drug in the immunosuppressive strategy. Its use constitutes a challenge due to its narrow therapeutic index and its high inter- and intra-pharmacokinetic (PK) variability. As the contribution of the gut microbiota to drug metabolism is now emerging, it might be explored as one of the factors explaining TAC PK variability. Herein, we explored the consequences of TAC administration on the gut microbiota composition. Reciprocally, we studied the contribution of the gut microbiota to TAC PK, using a combination of in vivo and in vitro models. RESULTS TAC oral administration in mice resulted in compositional alterations of the gut microbiota, namely lower evenness and disturbance in the relative abundance of specific bacterial taxa. Compared to controls, mice with a lower intestinal microbial load due to antibiotics administration exhibit a 33% reduction in TAC whole blood exposure and a lower inter-individual variability. This reduction in TAC levels was strongly correlated with higher expression of the efflux transporter ABCB1 (also known as the p-glycoprotein (P-gp) or the multidrug resistance protein 1 (MDR1)) in the small intestine. Conventionalization of germ-free mice confirmed the ability of the gut microbiota to downregulate ABCB1 expression in a site-specific fashion. The functional inhibition of ABCB1 in vivo by zosuquidar formally established the implication of this efflux transporter in the modulation of TAC PK by the gut microbiota. Furthermore, we showed that polar bacterial metabolites could recapitulate the transcriptional regulation of ABCB1 by the gut microbiota, without affecting its functionality. Finally, whole transcriptome analyses pinpointed, among others, the Constitutive Androstane Receptor (CAR) as a transcription factor likely to mediate the impact of the gut microbiota on ABCB1 transcriptional regulation. CONCLUSIONS We highlight for the first time how the modulation of ABCB1 expression by bacterial metabolites results in changes in TAC PK, affecting not only blood levels but also the inter-individual variability. More broadly, considering the high number of drugs with unexplained PK variability transported by ABCB1, our work is of clinical importance and paves the way for incorporating the gut microbiota in prediction algorithms for dosage of such drugs. Video Abstract.
Collapse
Affiliation(s)
- Alexandra L Degraeve
- Department of Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Vincent Haufroid
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Axelle Loriot
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Vanessa Andries
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Ghent Gut Inflammation Group (GGIG), Ghent, Belgium
| | - Lars Vereecke
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Ghent Gut Inflammation Group (GGIG), Ghent, Belgium
| | - Laure Elens
- Department of Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
- WELBIO department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|
28
|
Kamath S, Stringer AM, Prestidge CA, Joyce P. Targeting the gut microbiome to control drug pharmacomicrobiomics: the next frontier in oral drug delivery. Expert Opin Drug Deliv 2023; 20:1315-1331. [PMID: 37405390 DOI: 10.1080/17425247.2023.2233900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION The trillions of microorganisms that comprise the gut microbiome form dynamic bidirectional interactions with orally administered drugs and host health. These relationships can alter all aspects of drug pharmacokinetics and pharmacodynamics (PK/PD); thus, there is a desire to control these interactions to maximize therapeutic efficacy. Attempts to modulate drug-gut microbiome interactions have spurred advancements within the field of 'pharmacomicrobiomics' and are poised to become the next frontier of oral drug delivery. AREAS COVERED This review details the bidirectional interactions that exist between oral drugs and the gut microbiome, with clinically relevant case examples outlining a clear motive for controlling pharmacomicrobiomic interactions. Specific focus is attributed to novel and advanced strategies that have demonstrated success in mediating drug-gut microbiome interactions. EXPERT OPINION Co-administration of gut-active supplements (e.g. pro- and pre-biotics), innovative drug delivery vehicles, and strategic polypharmacy serve as the most promising and clinically viable approaches for controlling pharmacomicrobiomic interactions. Targeting the gut microbiome through these strategies presents new opportunities for improving therapeutic efficacy by precisely mediating PK/PD, while mitigating metabolic disturbances caused by drug-induced gut dysbiosis. However, successfully translating preclinical potential into clinical outcomes relies on overcoming key challenges related to interindividual variability in microbiome composition and study design parameters.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Andrea M Stringer
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Clive A Prestidge
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Paul Joyce
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
29
|
Olek K, Kuczaj AA, Warwas S, Hrapkowicz T, Przybyłowski P, Tanasiewicz M. Gut Microbiome in Patients after Heart Transplantation-Current State of Knowledge. Biomedicines 2023; 11:1588. [PMID: 37371683 DOI: 10.3390/biomedicines11061588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/13/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The human gut microbiota include over 10 trillion microorganisms, such as bacteria, fungi, viruses, archaea, and protozoa. Many reports indicate the strong correlation between dysbiosis and the severity of cardiovascular diseases. Microbiota seem to interact with the host's alloimmunity and may have an immunomodulatory role in graft rejection processes. In our study, we present the current state of the knowledge of microbiota in heart transplant recipients. We present up-to-date microbiota diagnostic methods, interactions between microbiota and immunosuppressive drugs, the immunomodulatory effects of dysbiosis, and the available strategies (experimental and clinical strategies) to modulate host microbiota.
Collapse
Affiliation(s)
- Katarzyna Olek
- Department of Dental Propedeutics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Agnieszka Anna Kuczaj
- Department of Cardiac Surgery, Transplantology, Vascular and Endovascular Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, M.C. Sklodowskiej 9, 41-800 Zabrze, Poland
| | - Szymon Warwas
- Students' Scientific Association Affiliated with the Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| | - Tomasz Hrapkowicz
- Department of Cardiac Surgery, Transplantology, Vascular and Endovascular Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, M.C. Sklodowskiej 9, 41-800 Zabrze, Poland
| | - Piotr Przybyłowski
- Department of Cardiac Surgery, Transplantology, Vascular and Endovascular Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, M.C. Sklodowskiej 9, 41-800 Zabrze, Poland
| | - Marta Tanasiewicz
- Department of Conservative Dentistry and Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland
| |
Collapse
|
30
|
Isin EM. Unusual Biotransformation Reactions of Drugs and Drug Candidates. Drug Metab Dispos 2023; 51:413-426. [PMID: 36653118 DOI: 10.1124/dmd.121.000744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Detailed assessment of the fate of drugs in nonclinical test species and humans is essential to ensure the safety and efficacy of medicines in patients. In this context, biotransformation of drugs and drug candidates has been an area of keen interest over many decades in the pharmaceutical industry as well as academia. Although many of the enzymes and biotransformation pathways involved in the metabolism of xenobiotics and more specifically drugs have been well characterized, each drug molecule is unique and constitutes specific challenges for the biotransformation scientist. In this mini-review written for the special issue on the occasion of the 50th Anniversary celebration of Drug Metabolism and Disposition and to celebrate contributions of F. Peter Guengerich, one of the pioneers of the drug metabolism field, recently reported "unusual" biotransformation reactions are presented. Scientific and technological advances in the "toolbox" of the biotransformation scientists are summarized. As the pharmaceutical industry continues to explore therapeutic modalities different from the traditional small molecule drugs, the new challenges confronting the biotransformation scientist as well as future opportunities are discussed. SIGNIFICANCE STATEMENT: For the biotransformation scientists, it is essential to share and be aware of unexpected biotransformation reactions so that they can increase their confidence in predicting metabolites of drugs in humans to ensure the safety and efficacy of these metabolites before the medicines reach large numbers of patients. The purpose of this review is to highlight recent observations of "unusual" metabolites so that the scientists working in the area of drug metabolism can strengthen their readiness in expecting the unexpected.
Collapse
Affiliation(s)
- Emre M Isin
- Translational Medicine, Servier, 25/27 Rue Eugène Vignat, 45000, Orléans, France
| |
Collapse
|
31
|
Wang S, Wen Q, Qin Y, Xia Q, Shen C, Song S. Gut microbiota and host cytochrome P450 characteristics in the pseudo germ-free model: co-contributors to a diverse metabolic landscape. Gut Pathog 2023; 15:15. [PMID: 36945019 PMCID: PMC10029254 DOI: 10.1186/s13099-023-00540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The pseudo germ-free (PGF) model has been widely used to research the role of intestinal microbiota in drug metabolism and efficacy, while the modelling methods and the utilization of the PGF model are still not standardized and unified. A comprehensive and systematic research of the PGF model on the composition and function of the intestinal microbiota, changes in host cytochrome P450 (CYP450) enzymes expression and intestinal mucosal permeability in four different modelling cycles of the PGF groups are provided in this paper. RESULTS 16S rRNA gene amplicon sequencing was employed to compare and analyze the alpha and beta diversity, taxonomic composition, taxonomic indicators and predicted function of gut microbiota in the control and PGF groups. Bacterial richness and diversity decreased significantly in the PGF group beginning after the first week of establishment of the PGF model with antibiotic exposure. The PGF group exposed to antibiotics for 4-week-modelling possessed the fewest indicator genera. Moreover, increased intestinal mucosal permeability occurred in the second week of PGF model establishment, indicating that one week of antibiotic exposure is an appropriate time to establish the PGF model. The results of immunoblots revealed that CYP1A2, CYP2C19 and CYP2E1 expression was significantly upregulated in the PGF group compared with the control group, implying that the metabolic clearance of related drugs would change accordingly. The abundance of functional pathways predicted in the gut microbiota changed dramatically between the control and PGF groups. CONCLUSIONS This study provides information concerning the microbial and CYP450 enzyme expression profiles as a reference for evaluating drug metabolism differences co-affected by gut microbiota and host CYP450 enzymes in the PGF model.
Collapse
Affiliation(s)
- Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Qiuyu Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Qin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Chenlin Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Shuai Song
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
32
|
Galvez C, Boza P, González M, Hormazabal C, Encina M, Azócar M, Castañeda LE, Rojo A, Ceballos ML, Krall P. Evaluation of limited-sampling strategies to calculate AUC(0–24) and the role of CYP3A5 in Chilean pediatric kidney recipients using extended-release tacrolimus. Front Pharmacol 2023; 14:1044050. [PMID: 36998611 PMCID: PMC10043346 DOI: 10.3389/fphar.2023.1044050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Background: Kidney transplantation (KTx) requires immunosuppressive drugs such as Tacrolimus (TAC) which is mainly metabolized by CYP3A5. TAC is routinely monitored by trough levels (C0) although it has not shown to be a reliable marker. The area-under-curve (AUC) is a more realistic measure of drug exposure, but sampling is challenging in pediatric patients. Limited-sampling strategies (LSS) have been developed to estimate AUC. Herein, we aimed to determine AUC(0–24) and CYP3A5 genotype in Chilean pediatric kidney recipients using extended-release TAC, to evaluate different LSS-AUC(0–24) formulas and dose requirements.Patients and methods: We analyzed pediatric kidney recipients using different extended-release TAC brands to determine their trapezoidal AUC(0–24) and CYP3A5 genotypes (SNP rs776746). Daily TAC dose (TAC-D mg/kg) and AUC(0–24) normalized by dose were compared between CYP3A5 expressors (*1/*1 and *1/*3) and non-expressors (*3/*3). We evaluated the single and combined time-points to identify the best LSS-AUC(0–24) model. We compared the performance of this model with two pediatric LSS-AUC(0–24) equations for clinical validation.Results: Fifty-one pharmacokinetic profiles were obtained from kidney recipients (age 13.1 ± 2.9 years). When normalizing AUC(0–24) by TAC-D significant differences were found between CYP3A5 expressors and non-expressors (1701.9 vs. 2718.1 ng*h/mL/mg/kg, p < 0.05). C0 had a poor fit with AUC(0–24) (r2 = 0.5011). The model which included C0, C1 and C4, showed the best performance to predict LSS-AUC(0–24) (r2 = 0.8765) and yielded the lowest precision error (7.1% ± 6.4%) with the lowest fraction (9.8%) of deviated AUC(0–24), in comparison to other LSS equations.Conclusion: Estimation of LSS-AUC(0–24) with 3 time-points is an advisable and clinically useful option for pediatric kidney recipients using extended-release TAC to provide better guidance of decisions if toxicity or drug inefficacy is suspected. The different CYP3A5 genotypes associated with variable dose requirements reinforce considering genotyping before KTx. Further multi-centric studies with admixed cohorts are needed to determine the short- and long-term clinical benefits.
Collapse
Affiliation(s)
- Carla Galvez
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Pía Boza
- Laboratorio Clínico, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Mariluz González
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Catalina Hormazabal
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Marlene Encina
- Laboratorio Clínico, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Manuel Azócar
- Servicio de Farmacia Clínica, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Luis E. Castañeda
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Angélica Rojo
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - María Luisa Ceballos
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
- Departamento de Pediatría y Cirugía Infantil Oriente, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
- *Correspondence: María Luisa Ceballos, ; Paola Krall,
| | - Paola Krall
- Departamento de Pediatría y Cirugía Infantil Oriente, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: María Luisa Ceballos, ; Paola Krall,
| |
Collapse
|
33
|
Yuzefpolskaya M, Bohn B, Ladanyi A, Khoruts A, Colombo PC, Demmer RT. Oral and gut microbiome alterations in heart failure: Epidemiology, pathogenesis and response to advanced heart failure therapies. J Heart Lung Transplant 2023; 42:291-300. [PMID: 36586790 DOI: 10.1016/j.healun.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Despite significant advances in therapies, heart failure (HF) remains a progressive disease that, once advanced, is associated with significant death and disability. Cardiac replacement therapies with left ventricular assist device (LVAD) and heart transplantation (HT) are the only treatment options for advanced HF, while lifesaving they can also be lifespan limiting due to the associated complications. Systemic inflammation is mechanistically important in HF pathophysiology and progression. However, directly targeting inflammation in HF has not been beneficial thus far. These failed attempts at therapeutics might be related to our limited understanding of the factors that cause inflammation in HF, and, therefore, to our inability to investigate these triggers in interventional studies. Observational studies have consistently demonstrated associations between alterations in the digestive (gut and oral) microbiome, inflammation and HF risk and progression. Additionally, recent data indicate that these microbial perturbations persist following LVAD and HT, along with residual inflammation and oxidative stress. Furthermore, there is rising recognition of the critical contribution of the microbiome to the metabolism of immunosuppressive drugs after HT. Cumulatively, these findings might posit a mechanistic link between microbiome alterations, systemic inflammation, and adverse outcomes in HF patients before and after cardiac replacement therapies. This review (1) provides an update on available data linking changes in digestive tract microbiota, inflammation, and oxidative stress, to HF pathogenesis and progression; (2) describes evolution of these relationships following LVAD and HT; and (3) outlines present and future intervention strategies that can manipulate the microbiome and possibly modify HF disease trajectory.
Collapse
Affiliation(s)
- Melana Yuzefpolskaya
- Division of Cardiovascular Medicine, Columbia University Irving Medical Center, New York City, New York.
| | - Bruno Bohn
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Annamaria Ladanyi
- Division of Cardiovascular Medicine, Columbia University Irving Medical Center, New York City, New York
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine University of Minnesota, Minneapolis, Minnesota
| | - Paolo C Colombo
- Division of Cardiovascular Medicine, Columbia University Irving Medical Center, New York City, New York
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota; Division of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
34
|
Chadban SJ, Singer J, Coates PT. That sinking gut feeling: is transplant-induced dysbiosis contributing to allograft outcomes? Kidney Int 2023; 103:454-457. [PMID: 36822748 DOI: 10.1016/j.kint.2022.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 02/24/2023]
Affiliation(s)
- Steven J Chadban
- Kidney Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Julian Singer
- Kidney Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - P Toby Coates
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| |
Collapse
|
35
|
Becker HEF, Demers K, Derijks LJJ, Jonkers DMAE, Penders J. Current evidence and clinical relevance of drug-microbiota interactions in inflammatory bowel disease. Front Microbiol 2023; 14:1107976. [PMID: 36910207 PMCID: PMC9996055 DOI: 10.3389/fmicb.2023.1107976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic relapsing-remitting disease. An adverse immune reaction toward the intestinal microbiota is involved in the pathophysiology and microbial perturbations are associated with IBD in general and with flares specifically. Although medical drugs are the cornerstone of current treatment, responses vary widely between patients and drugs. The intestinal microbiota can metabolize medical drugs, which may influence IBD drug (non-)response and side effects. Conversely, several drugs can impact the intestinal microbiota and thereby host effects. This review provides a comprehensive overview of current evidence on bidirectional interactions between the microbiota and relevant IBD drugs (pharmacomicrobiomics). Methods Electronic literature searches were conducted in PubMed, Web of Science and Cochrane databases to identify relevant publications. Studies reporting on microbiota composition and/or drug metabolism were included. Results The intestinal microbiota can both enzymatically activate IBD pro-drugs (e.g., in case of thiopurines), but also inactivate certain drugs (e.g., mesalazine by acetylation via N-acetyltransferase 1 and infliximab via IgG-degrading enzymes). Aminosalicylates, corticosteroids, thiopurines, calcineurin inhibitors, anti-tumor necrosis factor biologicals and tofacitinib were all reported to alter the intestinal microbiota composition, including changes in microbial diversity and/or relative abundances of various microbial taxa. Conclusion Various lines of evidence have shown the ability of the intestinal microbiota to interfere with IBD drugs and vice versa. These interactions can influence treatment response, but well-designed clinical studies and combined in vivo and ex vivo models are needed to achieve consistent findings and evaluate clinical relevance.
Collapse
Affiliation(s)
- Heike E. F. Becker
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Karlijn Demers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy and Pharmacology, Máxima Medical Center, Veldhoven, Netherlands
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, CAPHRI School of Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
36
|
MacLaren R. Considerations when administering medications enterally in the critically ill. Curr Opin Clin Nutr Metab Care 2023; 26:302-306. [PMID: 36942898 DOI: 10.1097/mco.0000000000000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW Enteral administration of medications to critically ill patients may be advantageous to other routes of administration. This review summarizes key considerations for the bedside clinician when medications are administered through enteral access devices (EADs). RECENT FINDINGS Critical illness is associated with gastrointestinal dysfunction that inconsistently affects drug dispersion and absorption and may enhance or reduce bioavailability. Other factors such as the first-pass metabolism, microbiome alterations and the concomitant use of other medications (vasopressors, acid suppressants) may influence drug absorption. Concurrent administration of medications with enteral nutrition is fraught with potential errors. Drug-nutrient and drug-drug interactions may lead to tube occlusion. Although liquid formulations of medications are preferred over solid dosage forms for EAD administration, they may be hyperosmotic or contain sorbitol to cause gastrointestinal disturbances. The size and placement of the EAD tube may influence drug dispersion and absorption to affect the pharmacokinetic profile and efficacy of a particular drug. SUMMARY The therapeutic effect may be diminished, or toxicity enhanced when medications are administered through EADs in the critically ill. The bedside clinician must be aware of factors impacting the bioavailability of enterally administered medications and be cognizant that the effect will differ by medication.
Collapse
Affiliation(s)
- Robert MacLaren
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of Colorado Hospital Department of Pharmacy, Aurora, Colorado, USA
| |
Collapse
|
37
|
García-Martínez Y, Borriello M, Capolongo G, Ingrosso D, Perna AF. The Gut Microbiota in Kidney Transplantation: A Target for Personalized Therapy? BIOLOGY 2023; 12:biology12020163. [PMID: 36829442 PMCID: PMC9952448 DOI: 10.3390/biology12020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Kidney transplantation improves quality of life, morbidity, and mortality of patients with kidney failure. However, integrated immunosuppressive therapy required to preserve graft function is associated with the development of post-transplant complications, including infections, altered immunosuppressive metabolism, gastrointestinal toxicity, and diarrhea. The gut microbiota has emerged as a potential therapeutic target for personalizing immunosuppressive therapy and managing post-transplant complications. This review reports current evidence on gut microbial dysbiosis in kidney transplant recipients, alterations in their gut microbiota associated with kidney transplantation outcomes, and the application of gut microbiota intervention therapies in treating post-transplant complications.
Collapse
Affiliation(s)
- Yuselys García-Martínez
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy
- Correspondence:
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy
| |
Collapse
|
38
|
Przybyciński J, Drożdżal S, Wilk A, Dziedziejko V, Szumilas K, Pawlik A. The Effect of the Gut Microbiota on Transplanted Kidney Function. Int J Mol Sci 2023; 24:ijms24021260. [PMID: 36674775 PMCID: PMC9866452 DOI: 10.3390/ijms24021260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
The intestinal microflora is extremely important, not only in the processes of absorption, digestion and biosynthesis of vitamins, but also in shaping the immune and cognitive functions of the human body. Several studies demonstrate a correlation between microbiota composition and such events as graft rejection, kidney interstitial fibrosis, urinary tract infections, and diarrhoea or graft tolerance. Some of those changes might be directly linked with pathologies such as colonization with pathogenic bacterial strains. Gut microbiota composition also plays an important role in metabolic complications and viral infections after transplantation. From the other side, gut microbiota might induce graft tolerance by promotion of T and B regulatory cells. Graft tolerance induction is still an extremely important issue regarding transplantology and might allow the reduction or even avoidance of immunosuppressive treatment. Although there is a rising evidence of the pivotal role of gut microbiota in aspects of kidney transplantation there is still a lack of knowledge on the direct mechanisms of microbiota action. Furthermore, some of those negative effects could be reversed by probiotics of faecal microbiota trapoinsplantation. While diabetes and hypertension as well as BKV and CMV viremia are common and important complications of transplantation, both worsening the graft function and causing systemic injuries, it opens up potential clinical treatment options. As has been also suggested in the current review, some bacterial subsets exhibit protective properties. However, currently, there is a lack of evidence on pro- and prebiotic supplementation in kidney transplant patients. In the current review, we describe the effect of the microbiota on the transplanted kidney in renal transplant recipients.
Collapse
Affiliation(s)
- Jarosław Przybyciński
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Sylwester Drożdżal
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Aleksandra Wilk
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Kamila Szumilas
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
39
|
Kleinová P, Beliančinová M, Vnučák M, Graňák K, Dedinská I. Gut microbiome and renal transplantation. VNITRNI LEKARSTVI 2023; 69:41-46. [PMID: 36931881 DOI: 10.36290/vnl.2023.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Gut microbiome research has been a surge of interest in many branches of medicine in the last decade. Our main aim is to show ability of microbes to infuence the functions of human body, especially in the immune system, and on the other hand to clarify changes in composition of gut microbiome in the post-transplantation period and their function for the long-term survival of the graft and the patient in the context of the occurrence of a wide range of complications. Kidney transplantation with the subsequent use of immunosuppressants and antibiotics affects the composition of gut microbiome. The subsequent development of dysbiosis significantly increases the risk of acute rejection, interstitial fibrosis and tubular atrophy of the graft, post-transplant diarrhoea, organ´s infections and metabolic complications such as post-transplant diabetes mellitus. Also important is the influence of the microorganisms of the gut microbiome on metabolism of immunosuppressants with the production of less effective components and the subsequent necessity of modifying their levels with a higher risk of underdosing and the occurrence of graft rejection. Support of the composition of the gut microbiome in the post-transplantation period in favor of bacteria producing short chain fatty acids (SCFA) is possible by changing of diet with predominance of fiber, the application of probiotics, prebiotics. According to available studies, it can lead to benefits in term of metabolic compensation, to the induction of donor-specific tolerance and many others, with an overall improvement in the quality of patient and graft survival.
Collapse
|
40
|
Tomizawa M, Hori S, Inoue K, Nishimura N, Nakai Y, Miyake M, Yoneda T, Fujimoto K. A Low Tacrolimus Concentration-to-Dose Ratio Increases Calcineurin Inhibitor Nephrotoxicity and Cytomegalovirus Infection Risks in Kidney Transplant Recipients: A Single-Center Study in Japan. Transplant Proc 2023; 55:109-115. [PMID: 36623961 DOI: 10.1016/j.transproceed.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Tacrolimus (TAC) has several problems due to its narrow therapeutic window and variations pharmacokinetics and pharmacodynamics. Recently, several studies reported that TAC metabolism, defined by TAC blood trough concentration to dose (C/D) ratio, was associated with TAC toxicity. Reports on once-daily extended-release TAC (TAC-ER) are limited. The present study aimed to investigate the effect of the TAC metabolic rate on TAC-ER and compare TAC area under the curve (AUC) between fast and slow metabolizers. METHODS A total of 58 recipients were included in this study. The optimal cut-off value and time of the C/D ratio on TAC-ER for fast and slow metabolizers was determined using receiver operating characteristic curve analysis for biopsy-proven calcineurin inhibitor (CNI) nephrotoxicity. RESULTS The optimal time to evaluate the C/D ratio was 1 month after kidney transplantation (KT) and the cut-off value was 0.9. The multivariate analysis for CNI nephrotoxicity risk showed that only TAC metabolism was associated with CNI nephrotoxicity (hazard ratio 10.60, P = .005, 95% CI 2.03-55.22). Cytomegalovirus infection occurred more frequently in fast metabolizers when the cut-off value of the C/D ratio was set to 0.9 at 3 months after KT (P = .04). The TAC C4, AUC2-8, was higher in fast metabolizers than in slow metabolizers (P < .01, P = .03, respectively). CONCLUSION The study revealed that TAC fast metabolizers on TAC-ER may be classified as a high-risk group for CNI nephrotoxicity and cytomegalovirus infection. The result of TAC AUC supported the hypothesis that fast metabolizers tended to be overexposed to immunosuppressive agents early after oral administration.
Collapse
Affiliation(s)
| | - Shunta Hori
- Department of Urology, Nara Medical University, Nara, Japan
| | - Kuniaki Inoue
- Department of Urology, Nara Medical University, Nara, Japan
| | | | - Yasushi Nakai
- Department of Urology, Nara Medical University, Nara, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Nara, Japan
| | - Tatsuo Yoneda
- Department of Urology, Nara Medical University, Nara, Japan
| | | |
Collapse
|
41
|
Zhou J, Zhang R, Guo P, Li P, Huang X, Wei Y, Yang C, Zhou J, Yang T, Liu Y, Shi S. Effects of intestinal microbiota on pharmacokinetics of cyclosporine a in rats. Front Microbiol 2022; 13:1032290. [PMID: 36483198 PMCID: PMC9723225 DOI: 10.3389/fmicb.2022.1032290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Intestinal microbiota has been confirmed to influencing the pharmacokinetic processes of a variety of oral drugs. However, the pharmacokinetic effects of the gut microbiota on cyclosporine A, a drug with a narrow therapeutic window, remain to be studied. METHOD Twenty-one rats were randomly divided into three groups: (a) control group (CON), (b) antibiotic treatment group (ABT) and (c) fecal microbe transplantation group (FMT). The ABT group was administrated with water containing multiple antibiotics to deplete microorganisms. FMT was with the same treatment, followed by oral administration of conventional rat fecal microorganisms for normalization. RESULT The bioavailability of CSA increased by 155.6% after intestinal microbes were consumed by antibiotics. After intestinal microbiota reconstruction by fecal transplantation, the increased bioavailability was significantly reduced and basically returned to the control group level. Changes in gut microbiota alter the protein expression of CYP3A1, UGT1A1 and P-gp in liver. The expressions of these three proteins in ABT group were significantly lower than those in CON and FMT groups. The relative abundance of Alloprevolleta and Oscillospiraceae UCG 005 was negatively correlated with CSA bioavailability while the relative abundance of Parasutterella and Eubacterium xylanophilum group was negatively correlated with CSA bioavailability. CONCLUSION Intestinal microbiota affects the pharmacokinetics of CSA by regulating the expression of CYP3A1, UGT1A1 and P-GP.
Collapse
Affiliation(s)
- Jinping Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengpeng Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peixia Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Wei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxiao Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingyu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Union Jiangnan Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Bidell MR, Hobbs ALV, Lodise TP. Gut microbiome health and dysbiosis: A clinical primer. Pharmacotherapy 2022; 42:849-857. [PMID: 36168753 PMCID: PMC9827978 DOI: 10.1002/phar.2731] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 01/12/2023]
Abstract
The gut microbiome has been referred to as the "forgotten organ." Although much about the gut microbiome remains incompletely understood, data on its clinical importance is emerging at rapid speed. Many practicing clinicians may be unaware of the essential role that the microbiome plays in both health and disease. This review aims to improve clinical understanding of the gut microbiome by discussing key terminology and foundational concepts. The role of a healthy microbiome in normal host function is described, as well as the consequences of a disrupted microbiome (i.e., dysbiosis). Management strategies to restore the gut microbiome from a disrupted to a healthy state are also briefly discussed. Lastly, we review emerging areas for therapeutic potential and opportunity to bring determinants of microbiome health from the bench to bedside.
Collapse
|
43
|
Changes in antibiotic residues and the gut microbiota during ciprofloxacin administration throughout Silkie chicken development. Poult Sci 2022; 102:102267. [PMID: 36442306 PMCID: PMC9709234 DOI: 10.1016/j.psj.2022.102267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The use of antibiotics leads to antibiotic residues in livestock and poultry products, adversely affecting human health. Ciprofloxacin (CFX) is a broad-spectrum antibiotic shared between animals and humans that is useful in treatments besides infections. However, changes in the gut microbiota caused by CFX and the possible link with the elimination of CFX residues have not been investigated. Herein, we used the Silkie chicken model to study the changes in the gut microbiota during the entire CFX-metabolic repertoire. We detected CFX residues in different tissues and showed that the elimination time of CFX from different tissues was dissimilar (liver > kidney > chest muscle > skin). Analysis of liver and kidney injury biomarkers and plasma antioxidant indices indicated slight hepatotoxicity and nephrotoxicity in the Silkie chickens. Importantly, the changes in the gut microbial community predominantly occurred early in the metabolic process. Correlation analysis revealed that the particular bacterial microbiota were associated with the pharmacokinetics of CFX in different Silkie chicken tissues (e.g., aerobic bacteria, including Escherichia and Coprococcus, and anaerobic bacteria, including Fusobacterium, Ruminococcus, Bifidobacterium, and Eubacterium). Collectively, certain microbiota may boost antibiotic metabolism and participate in restoring the microbial consortia after CFX is metabolized. Therefore, regulating the core intestinal microbiota may reduce foodborne antibiotics and accelerate the development of drug resistance.
Collapse
|
44
|
Heidrich V, Beule L. Are short-read amplicons suitable for the prediction of microbiome functional potential? A critical perspective. IMETA 2022; 1:e38. [PMID: 38868716 PMCID: PMC10989910 DOI: 10.1002/imt2.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 06/14/2024]
Abstract
Taxonomic marker gene analysis allows uncovering taxonomic profiles of microbial communities at low cost, making it omnipresent in microbiome research. There is an ever-expanding set of tools to extract further biological information from this kind of data. In this perspective, we enunciate several concerns regarding the biological validity of predicting functional potential from taxonomic profiles, especially when they are generated by short-read sequencing. The taxonomic resolution of marker genes, intragenomic variability of marker genes, and the compositional nature of microbiome data are discussed. Combining actual measurements of microbiome functions with predicted functional potentials is proposed as a powerful approach to better understand microbiome functioning. In this context, the significance of predicted functional potentials for generating and testing hypotheses is highlighted. We argue that functions of microbiomes predicted from microbiome DNA read count data generated by short-read amplicon sequencing should not serve as the only basis to draw biological inferences.
Collapse
Affiliation(s)
- Vitor Heidrich
- Centro de Oncologia MolecularHospital Sírio‐LibanêsSão PauloBrazil
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
| | - Lukas Beule
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated PlantsInstitute for Ecological Chemistry, Plant Analysis and Stored Product ProtectionBerlinGermany
| |
Collapse
|
45
|
Swarte JC, Li Y, Hu S, Björk JR, Gacesa R, Vich Vila A, Douwes RM, Collij V, Kurilshikov A, Post A, Klaassen MAY, Eisenga MF, Gomes-Neto AW, Kremer D, Jansen BH, Knobbe TJ, Berger SP, Sanders JSF, Heiner-Fokkema MR, Porte RJ, Cuperus FJC, de Meijer VE, Wijmenga C, Festen EAM, Zhernakova A, Fu J, Harmsen HJM, Blokzijl H, Bakker SJL, Weersma RK. Gut microbiome dysbiosis is associated with increased mortality after solid organ transplantation. Sci Transl Med 2022; 14:eabn7566. [PMID: 36044594 DOI: 10.1126/scitranslmed.abn7566] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Organ transplantation is a life-saving treatment for patients with end-stage disease, but survival rates after transplantation vary considerably. There is now increasing evidence that the gut microbiome is linked to the survival of patients undergoing hematopoietic cell transplant, yet little is known about the role of the gut microbiome in solid organ transplantation. We analyzed 1370 fecal samples from 415 liver and 672 renal transplant recipients using shotgun metagenomic sequencing to assess microbial taxonomy, metabolic pathways, antibiotic resistance genes, and virulence factors. To quantify taxonomic and metabolic dysbiosis, we also analyzed 1183 age-, sex-, and body mass index-matched controls from the same population. In addition, a subset of 78 renal transplant recipients was followed longitudinally from pretransplantation to 24 months after transplantation. Our data showed that both liver and kidney transplant recipients suffered from gut dysbiosis, including lower microbial diversity, increased abundance of unhealthy microbial species, decreased abundance of important metabolic pathways, and increased prevalence and diversity of antibiotic resistance genes and virulence factors. These changes were found to persist up to 20 years after transplantation. Last, we demonstrated that the use of immunosuppressive drugs was associated with the observed dysbiosis and that the extent of dysbiosis was associated with increased mortality after transplantation. This study represents a step toward potential microbiome-targeted interventions that might influence the outcomes of recipients of solid organ transplantation.
Collapse
Affiliation(s)
- J Casper Swarte
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Yanni Li
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Johannes R Björk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Rianne M Douwes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Valerie Collij
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Adrian Post
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Marjolein A Y Klaassen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Michele F Eisenga
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - António W Gomes-Neto
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Bernadien H Jansen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Tim J Knobbe
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Jan-Stephan F Sanders
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Robert J Porte
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Frans J C Cuperus
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Cisca Wijmenga
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| |
Collapse
|
46
|
Khan MH, Onyeaghala GC, Rashidi A, Holtan SG, Khoruts A, Israni A, Jacobson PA, Staley C. Fecal β-glucuronidase activity differs between hematopoietic cell and kidney transplantation and a possible mechanism for disparate dose requirements. Gut Microbes 2022; 14:2108279. [PMID: 35921529 PMCID: PMC9351555 DOI: 10.1080/19490976.2022.2108279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The intestinal microbiota produces β-glucuronidase that plays an essential role in the metabolism of the immunosuppressant mycophenolate mofetil (MMF). This drug is commonly used in organ and hematopoietic cell transplantation (HCT), with variations in dosing across transplant types. We hypothesized that β-glucuronidase activity differs between transplant types, which may account for differences in dosing requirements. We evaluated fecal β-glucuronidase activity in patients receiving MMF post-allogeneic HCT and post-kidney transplant. Kidney transplant patients had significantly greater β-glucuronidase activity (8.48 ± 6.21 nmol/hr/g) than HCT patients (3.50 ± 3.29 nmol/hr/g; P = .001). Microbially mediated β-glucuronidase activity may be a critical determinant in the amount of mycophenolate entering the systemic circulation and an important factor to consider for precision dosing of MMF.
Collapse
Affiliation(s)
- Mohammad Haneef Khan
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Armin Rashidi
- Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Shernan G. Holtan
- Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Alexander Khoruts
- Gastroenterology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ajay Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States,Nephrology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Pamala A. Jacobson
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| | - Christopher Staley
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States,CONTACT Christopher Staley 420 Delaware St, SE, MMC 195, Minneapolis, Minnesota55455, United States
| |
Collapse
|
47
|
Sharma A, Giorgakis E. Gut microbiome dysbiosis in the setting of solid organ transplantation: What we have gleaned from human and animal studies. World J Transplant 2022; 12:157-162. [PMID: 36051453 PMCID: PMC9331413 DOI: 10.5500/wjt.v12.i7.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/27/2021] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The human gut microbiome refers to all of the microorganisms present throughout the length of the gastrointestinal tract. Gut flora influence host metabolic and immune processes in myriad ways. They also play an important role in maturation and modulation of the immune system. Dysbiosis or a pathologic alteration in gut flora has been implicated in a number of diseases ranging from metabolic, autoimmune and degenerative. Whether dysbiosis has similar implications in organ transplant has been the focus of a number of pre-clinical and clinical studies. Researchers have observed significant microbiome changes after solid organ transplantation in humans that have been associated with clinical outcomes such as post-transplant urinary tract infections and diarrhea. In this article, we will discuss the available data regarding pathologic alterations in gut microbiome (dysbiosis) in solid organ transplant recipients as well as some of challenges in this field. We will also discuss animal studies focusing on mouse models of transplantation that shed light on the underlying mechanisms that explain these findings.
Collapse
Affiliation(s)
- Aparna Sharma
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR 72223, United States
| | - Emmanouil Giorgakis
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72223, United States
| |
Collapse
|
48
|
Sen T, Thummer RP. The Impact of Human Microbiotas in Hematopoietic Stem Cell and Organ Transplantation. Front Immunol 2022; 13:932228. [PMID: 35874759 PMCID: PMC9300833 DOI: 10.3389/fimmu.2022.932228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
The human microbiota heavily influences most vital aspects of human physiology including organ transplantation outcomes and transplant rejection risk. A variety of organ transplantation scenarios such as lung and heart transplantation as well as hematopoietic stem cell transplantation is heavily influenced by the human microbiotas. The human microbiota refers to a rich, diverse, and complex ecosystem of bacteria, fungi, archaea, helminths, protozoans, parasites, and viruses. Research accumulating over the past decade has established the existence of complex cross-species, cross-kingdom interactions between the residents of the various human microbiotas and the human body. Since the gut microbiota is the densest, most popular, and most studied human microbiota, the impact of other human microbiotas such as the oral, lung, urinary, and genital microbiotas is often overshadowed. However, these microbiotas also provide critical and unique insights pertaining to transplantation success, rejection risk, and overall host health, across multiple different transplantation scenarios. Organ transplantation as well as the pre-, peri-, and post-transplant pharmacological regimens patients undergo is known to adversely impact the microbiotas, thereby increasing the risk of adverse patient outcomes. Over the past decade, holistic approaches to post-transplant patient care such as the administration of clinical and dietary interventions aiming at restoring deranged microbiota community structures have been gaining momentum. Examples of these include prebiotic and probiotic administration, fecal microbial transplantation, and bacteriophage-mediated multidrug-resistant bacterial decolonization. This review will discuss these perspectives and explore the role of different human microbiotas in the context of various transplantation scenarios.
Collapse
Affiliation(s)
| | - Rajkumar P. Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
49
|
Qian L, Ouyang H, Gordils-Valentin L, Hong J, Jayaraman A, Zhu X. Identification of Gut Bacterial Enzymes for Keto-Reductive Metabolism of Xenobiotics. ACS Chem Biol 2022; 17:1665-1671. [PMID: 35687750 DOI: 10.1021/acschembio.2c00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human gastrointestinal microbiota are known for the keto-reductive metabolism of small-molecule pharmaceuticals; however, the responsible enzymes remain poorly understood. Through in vitro biochemical assays, we report the identification of enzymes encoded in the genome of Clostridium bolteae that can reduce the ketone groups of nabumetone, hydrocortisone, and tacrolimus. The homologues to a newly identified enzyme (i.e., DesE) are potentially widely distributed in the gut microbiome. The selected enzymes display different levels of activities against additional chemicals such as two dietary compounds (i.e., raspberry ketone and zingerone), chemotherapeutic drug doxorubicin, and its aglycone metabolite doxorubicinone. Thus, our results expand the repertoire of enzymes that can reduce the ketone groups in small molecules and could serve as the basis for future personalized medicine approaches.
Collapse
Affiliation(s)
- Liangyu Qian
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Huanrong Ouyang
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Lois Gordils-Valentin
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.,Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843, United States
| | - Joshua Hong
- Department of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Xuejun Zhu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.,Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
50
|
Wong HJ, Lim WH, Ng CH, Tan DJH, Bonney GK, Kow AWC, Huang DQ, Siddiqui MS, Noureddin M, Syn N, Muthiah MD. Predictive and Prognostic Roles of Gut Microbial Variation in Liver Transplant. Front Med (Lausanne) 2022; 9:873523. [PMID: 35620719 PMCID: PMC9127379 DOI: 10.3389/fmed.2022.873523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Patients undergoing liver transplant (LTX) typically confront a challenging postoperative journey. A dysbiotic gut microbiome is associated with the development of complications, including post-LTX allograft rejection, metabolic diseases and de novo or recurrent cancer. A major explanation of this are the bipartite interactions between the gut microbiota and host immunity, which modulates the alloimmune response towards the liver allograft. Furthermore, bacterial translocation from dysbiosis causes pathogenic changes in the concentrations of microbial metabolites like lipopolysaccharides, short-chain fatty acids (SCFAs) and Trimethylamine-N-Oxide, with links to cardiovascular disease development and diabetes mellitus. Gut dysbiosis also disrupts bile acid metabolism, with implications for various post-LTX metabolic diseases. Certain taxonomy of microbiota such as lactobacilli, F.prausnitzii and Bacteroides appear to be associated with these undesired outcomes. As such, an interesting but as yet unproven hypothesis exists as to whether induction of a “beneficial” composition of gut microbiota may improve prognosis in LTX patients. Additionally, there are roles of the microbiome as predictive and prognostic indicators for clinicians in improving patient care. Hence, the gut microbiome represents an exceptionally exciting avenue for developing novel prognostic, predictive and therapeutic applications.
Collapse
Affiliation(s)
- Hon Jen Wong
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Glenn K Bonney
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore, Singapore
| | - Alfred W C Kow
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore, Singapore
| | - Daniel Q Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Comprehensive Transplant Centre, Cedars-Sinai Medical Centre, Los Angeles, CA, United States
| | - Nicholas Syn
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| |
Collapse
|