1
|
Plante C, Lee PM, Haines JM, Nelson OL, Martinez SE, Court MH. The effect of concurrent clopidogrel and omeprazole administration on clopidogrel metabolism and platelet function in healthy cats. J Vet Intern Med 2024; 38:3206-3214. [PMID: 39439219 PMCID: PMC11586560 DOI: 10.1111/jvim.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Some studies in humans show that the concurrent use of clopidogrel and omeprazole decreases plasma clopidogrel active metabolite (CAM) concentrations and clopidogrel antiplatelet effects. Whether this drug interaction occurs in cats is unknown. HYPOTHESIS We hypothesized that administration of clopidogrel with omeprazole would decrease plasma CAM concentrations and decrease clopidogrel antiplatelet effects in healthy cats. ANIMALS Ten domestic cats. METHODS In this 2-sequence, 2-period, 2-treatment randomized crossover study, healthy cats were randomly assigned to receive clopidogrel only (18.75 mg PO q24h) or clopidogrel with omeprazole (1 mg/kg PO q12h) for 10 days, followed by a 2-week washout period, and then the opposite treatment for another 10 days. Blood was collected by jugular venipuncture on days 0, 5, and 10. Plasma CAM concentrations were measured using high-performance liquid chromatography-tandem mass spectrometry. Platelet function was evaluated using Plateletworks, Multiplate Analyzer, and Platelet Function Analyzer-100 (PFA-100). RESULTS Multiplate Analyzer and PFA-100 detected no difference in platelet function between days or treatment groups. Plateletworks detected a significant difference (P < .001) in platelet function from day 0 to 5 and day 0 to 10 in both treatment groups but no difference between treatment groups. Plasma CAM concentrations were significantly lower on day 10 (P < .02) in cats receiving both medications versus clopidogrel only. CONCLUSIONS AND CLINICAL IMPORTANCE Concurrent omeprazole and clopidogrel administration was associated with altered pharmacokinetics on day 10, but no difference in pharmacodynamics between the 2 treatment groups. The short-term use of clopidogrel and omeprazole does not seem to alter platelet function significantly.
Collapse
Affiliation(s)
| | - Pamela M. Lee
- VRCC Veterinary Specialty and Emergency HospitalEnglewoodColoradoUSA
| | | | | | | | | |
Collapse
|
2
|
Uno Y, Shimizu M, Yamazaki H. A variety of cytochrome P450 enzymes and flavin-containing monooxygenases in dogs and pigs commonly used as preclinical animal models. Biochem Pharmacol 2024; 228:116124. [PMID: 38490520 DOI: 10.1016/j.bcp.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Drug oxygenation is mainly mediated by cytochromes P450 (P450s, CYPs) and flavin-containing monooxygenases (FMOs). Polymorphic variants of P450s and FMOs are known to influence drug metabolism. Species differences exist in terms of drug metabolism and can be important when determining the contributions of individual enzymes. The success of research into drug-metabolizing enzymes and their impacts on drug discovery and development has been remarkable. Dogs and pigs are often used as preclinical animal models. This research update provides information on P450 and FMO enzymes in dogs and pigs and makes comparisons with their human enzymes. Newly identified dog CYP3A98, a testosterone 6β- and estradiol 16α-hydroxylase, is abundantly expressed in small intestine and is likely the major CYP3A enzyme in small intestine, whereas dog CYP3A12 is the major CYP3A enzyme in liver. The roles of recently identified dog CYP2J2 and pig CYP2J33/34/35 were investigated. FMOs have been characterized in humans and several other species including dogs and pigs. P450 and FMO family members have been characterized also in cynomolgus macaques and common marmosets. P450s have industrial applications and have been the focus of attention of many pharmaceutical companies. The techniques used to investigate the roles of P450/FMO enzymes in drug oxidation and clinical treatments have not yet reached maturity and require further development. The findings summarized here provide a foundation for understanding individual pharmacokinetic and toxicological results in dogs and pigs as preclinical models and will help to further support understanding of the molecular mechanisms of human P450/FMO functionality.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
3
|
Uno Y, Yamato O, Yamazaki H. Transcript abundance of hepatic drug-metabolizing enzymes in two dog breeds compared with 14 species including humans. Drug Metab Pharmacokinet 2024; 55:101002. [PMID: 38452615 DOI: 10.1016/j.dmpk.2024.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
Drug-metabolizing enzymes are important in drug development and therapy, but have not been fully identified and characterized in many species, lines, and breeds. Liver transcriptomic data were analyzed for phase I cytochromes P450, flavin-containing monooxygenases, and carboxylesterases and phase II UDP-glucuronosyltransferases, sulfotransferases, and glutathione S-transferases. Comparisons with a variety of species (humans, rhesus macaques, African green monkeys, baboons, common marmosets, cattle, sheep, pigs, cats, dogs, rabbits, tree shrews, rats, mice, and chickens) revealed both general similarities and differences in the transcript abundances of drug-metabolizing enzymes. Similarly, Beagle and Shiba dogs were examined by next-generation sequencing (RNA-seq). Consequently, no substantial differences in transcript abundance were noted in different breeds of pigs and dogs and in different lines of mice and rats. Therefore, the expression profiles of hepatic drug-metabolizing enzyme transcripts appear to be similar in Shiba and Beagle dogs and pig breeds and the rat and mouse lines analyzed, although some differences were found in other species.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, 890-0065, Japan.
| | - Osamu Yamato
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, 890-0065, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
4
|
Martinez SE, Pandey AV, Perez Jimenez TE, Zhu Z, Court MH. Pharmacogenomics of poor drug metabolism in greyhounds: Canine P450 oxidoreductase genetic variation, breed heterogeneity, and functional characterization. PLoS One 2024; 19:e0297191. [PMID: 38300925 PMCID: PMC10833530 DOI: 10.1371/journal.pone.0297191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
Greyhounds metabolize cytochrome P450 (CYP) 2B11 substrates more slowly than other dog breeds. However, CYP2B11 gene variants associated with decreased CYP2B11 expression do not fully explain reduced CYP2B11 activity in this breed. P450 oxidoreductase (POR) is an essential redox partner for all CYPs. POR protein variants can enhance or repress CYP enzyme function in a CYP isoform and substrate dependent manner. The study objectives were to identify POR protein variants in greyhounds and determine their effect on coexpressed CYP2B11 and CYP2D15 enzyme function. Gene sequencing identified two missense variants (Glu315Gln and Asp570Glu) forming four alleles, POR-H1 (reference), POR-H2 (570Glu), POR-H3 (315Gln, 570Glu) and POR-H4 (315Gln). Out of 68 dog breeds surveyed, POR-H2 was widely distributed across multiple breeds, while POR-H3 was largely restricted to greyhounds and Scottish deerhounds (35% allele frequencies), and POR-H4 was rare. Three-dimensional protein structure modelling indicated significant effects of Glu315Gln (but not Asp570Glu) on protein flexibility through loss of a salt bridge between Glu315 and Arg519. Recombinant POR-H1 (reference) and each POR variant (H2-H4) were expressed alone or with CYP2B11 or CYP2D15 in insect cells. No substantial effects on POR protein expression or enzyme activity (cytochrome c reduction) were observed for any POR variant (versus POR-H1) when expressed alone or with CYP2B11 or CYP2D15. Furthermore, there were no effects on CYP2B11 or CYP2D15 protein expression, or on CYP2D15 enzyme kinetics by any POR variant (versus POR-H1). However, Vmax values for 7-benzyloxyresorufin, propofol and bupropion oxidation by CYP2B11 were significantly reduced by coexpression with POR-H3 (by 34-37%) and POR-H4 (by 65-72%) compared with POR-H1. Km values were unaffected. Our results indicate that the Glu315Gln mutation (common to POR-H3 and POR-H4) reduces CYP2B11 enzyme function without affecting at least one other major canine hepatic P450 (CYP2D15). Additional in vivo studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Stephanie E. Martinez
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Biomedical Research, University Children’s Hospital Bern, Switzerland and Translational Hormone Research Program, University of Bern, Bern, Switzerland
| | - Tania E. Perez Jimenez
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zhaohui Zhu
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Michael H. Court
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
5
|
Court MH, Mealey KL, Burke NS, Jimenez TP, Zhu Z, Wakshlag JJ. Cannabidiol and cannabidiolic acid: Preliminary in vitro evaluation of metabolism and drug-drug interactions involving canine cytochrome P-450, UDP-glucuronosyltransferase, and P-glycoprotein. J Vet Pharmacol Ther 2024; 47:1-13. [PMID: 37469115 DOI: 10.1111/jvp.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Phytocannabinoid-rich hemp extracts containing cannabidiol (CBD) and cannabidiolic acid (CBDA) are increasingly being used to treat various disorders in dogs. The objectives of this study were to obtain preliminary information regarding the in vitro metabolism of these compounds and their capacity to inhibit canine cytochrome P450 (CYP)-mediated drug metabolism and canine P-glycoprotein-mediated transport. Pure CBD and CBDA, and hemp extracts enriched for CBD and for CBDA were evaluated. Substrate depletion assays using pooled dog liver microsomes showed CYP cofactor-dependent depletion of CBD (but not CBDA) and UDP-glucuronosytransferase cofactor-dependent depletion of CBDA (but not CBD) indicating major roles for CYP and UDP-glucuronosytransferase in the metabolism of these phytocannabinoids, respectively. Further studies using recombinant canine CYPs demonstrated substantial CBD depletion by the major hepatic P450 enzymes CYP1A2 and CYP2C21. These results were confirmed by showing increased CBD depletion by liver microsomes from dogs treated with a known CYP1A2 inducer (β-naphthoflavone) and with a known CYP2C21 inducer (phenobarbital). Cannabinoid-drug inhibition experiments showed inhibition (IC50 = 4.6-8.1 μM) of tramadol metabolism via CYP2B11-mediated N-demethylation (CBD and CBDA) and CYP2D15-mediated O-demethylation (CBDA only) by dog liver microsomes. CBD and CBDA did not inhibit CYP3A12-mediated midazolam 1'-hydroxylation (IC50 > 10 μM). CBD and CBDA were not substrates or competitive inhibitors of canine P-glycoprotein. Results for cannabinoid-enriched hemp extracts were identical to those for pure cannabinoids. These in vitro studies indicate the potential for cannabinoid-drug interactions involving certain CYPs (but not P-glycoprotein). Confirmatory in vivo studies are warranted.
Collapse
Affiliation(s)
- Michael H Court
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Katrina L Mealey
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Neal S Burke
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Tania Perez Jimenez
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Zhaohui Zhu
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Joseph J Wakshlag
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Ushirozako G, Murayama N, Tsukiyama-Kohara K, Yamazaki H, Uno Y. Tree shrew cytochrome P450 2E1 is a functional enzyme that metabolises chlorzoxazone and p-nitrophenol. Xenobiotica 2023; 53:573-580. [PMID: 37934191 DOI: 10.1080/00498254.2023.2280996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/05/2023] [Indexed: 11/08/2023]
Abstract
Cytochromes P450 (CYPs or P450s) are important enzymes for drug metabolism. Tree shrews are non-primate animal species used in various fields of biomedical research, including infection (especially hepatitis viruses), depression, and myopia. A recent tree shrew genome analysis indicated that the sequences and the numbers of P450 genes are similar to those of humans; however, P450s have not been adequately identified and analysed in this species.In this study, a novel CYP2E1 was isolated from tree shrew liver and was characterised in comparison with human, dog, and pig CYP2E1. Tree shrew CYP2E1 and human CYP2E1 showed high amino acid sequence identity (83%) and were closely related in a phylogenetic tree.Gene and genome structures of CYP2E1 were generally similar in humans, dogs, pigs, and tree shrews. Tissue expression patterns showed that tree shrew CYP2E1 mRNA was predominantly expressed in liver, just as for dog and pig CYP2E1 mRNAs. In tree shrews, recombinant CYP2E1 protein and liver microsomes metabolised chlorzoxazone and p-nitrophenol, probe substrates of human CYP2E1, just as they do in dogs and pigs.These results suggest that tree shrew CYP2E1 encodes a functional drug-metabolising enzyme that plays a role in the liver, similar to human CYP2E1.
Collapse
Affiliation(s)
- Genki Ushirozako
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| | | | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| | - Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| |
Collapse
|
7
|
Uno Y, Noda Y, Morikuni S, Murayama N, Yamazaki H. Liver microsomal cytochrome P450 3A-dependent drug oxidation activities in individual dogs. Xenobiotica 2023:1-9. [PMID: 37144920 DOI: 10.1080/00498254.2023.2211673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Drug oxidations are mediated mainly by cytochromes P450 (P450s or CYPs). CYP3As are an important P450 subfamily and include liver-specific CYP3A12 and intestine-specific CYP3A98 in dogs. Individual differences in drug oxidation activities were investigated, including correlations with immunoreactive CYP3A protein intensities and CYP3A mRNA expression levels in liver microsomes.Pooled and individual dog liver microsomes showed activities toward nifedipine, midazolam, alprazolam, and estradiol, but the levels of catalytic activities varied approximately twofold among the individual dogs. One dog harbored a CYP1A2 variant causing protein deletion, but showed higher activities than the other dogs toward nifedipine oxidation, midazolam 1'-hydroxylation, alprazolam 4-hydroxylation, estradiol 16α-hydroxylation activities, and caffeine C8-hydroxylation; the latter is used as a reference reaction for CYP1A.In individual dog liver microsomes, the intensities of the immunochemical bands with anti-human CYP3A4 and anti-rat CYP3A2 antibodies along with CYP3A12 and CYP3A26 mRNA expression levels showed good correlations (p < 0.05) with nifedipine oxidation, midazolam 1'- and 4-hydroxylation, alprazolam 1'- and 4-hydroxylation, and estradiol 16α-hydroxylation activities.These results suggest that the oxidation activities of dog liver microsomes toward nifedipine and other typical CYP3A-catalyzed drugs exhibit approximately twofold individual differences and were predominantly mediated by liver-specific CYP3A12 in the dogs.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Yutaro Noda
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Saho Morikuni
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
8
|
Jimenez TP, Zhu Z, Court MH. Association of cytochrome P450 2D15 (CYP2D15) nonsynonymous polymorphisms and exon 3 deleted RNA splice variant with CYP2D15 protein content and enzyme function in dog liver microsomes. J Vet Pharmacol Ther 2023; 46:77-90. [PMID: 36691326 DOI: 10.1111/jvp.13113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023]
Abstract
CYP2D15 is a major drug metabolizing P450 in canine liver. Like the human orthologue (CYP2D6), this enzyme is highly polymorphic with at least five common nonsynonymous variants reported that result in amino acid changes, including p.Ile109Val, p.Leu115Phe, p.Gly186Ser, p.Ile250Phe and p.Ile307Val. Furthermore, a mRNA splice variant of CYP2D15 has been found in canine liver that lacks the exon 3 gene region resulting in an inactive enzyme. The objective of this study was to evaluate whether any of these amino acid variants or the exon 3 deletion mRNA variant (exon3-delta) was associated with differences in CYP2D15-selective activities or protein content in a bank of canine livers. Livers were obtained from 25 Beagles and 34 dogs of various other breeds. CYP2D15-selective activities measured included dextromethorphan o-demethylation and tramadol o-demethylation. Reverse transcription PCR showed that 76% of livers (44/58) expressed both exon3-delta and normally spliced CYP2D15 RNA, while the remaining 24% (14/58) expressed only normally spliced RNA. The presence of exon3-delta was not correlated with CYP2D15 activities or protein content. Compared with wild-type livers, Beagle dog livers heterozygous for the p.Ile109Val and p.Gly186Ser variants showed from 40 to 50% reductions in median enzyme activities, while heterozygous p.Gly186Ser livers were associated with a 41% reduction in median CYP2D15 protein content (p < .05; Dunn's test). In the entire liver bank, livers homozygous for p.Ile109Val were also associated with a 40% reduction in median dextromethorphan O-demethylation activities versus wild-type livers (p < .05). These results identify several nonsynonymous CYP2D15 gene variants associated with variable CYP2D15 metabolism in canine liver.
Collapse
Affiliation(s)
- Tania Perez Jimenez
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Zhaohui Zhu
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Michael H Court
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
9
|
Uno Y, Jikuya S, Noda Y, Murayama N, Yamazaki H. A Comprehensive Investigation of Dog Cytochrome P450 3A (CYP3A) Reveals a Functional Role of Newly Identified CYP3A98 in Small Intestine. Drug Metab Dispos 2023; 51:38-45. [PMID: 35772769 DOI: 10.1124/dmd.121.000749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Dogs are frequently used in drug metabolism studies, and their important drug-metabolizing enzymes, including cytochromes P450 (P450), have been analyzed. In humans, CYP3A4 is an especially important P450 due to its abundance and major roles in liver and intestine. In the present study, dog CYP3A98 and CYP3A99 were identified and characterized, along with previously identified CYP3A12 and CYP3A26. The dog CYP3A cDNAs contained open reading frames of 503 amino acids and shared high sequence identity (78%-80%) with human CYP3As. Among the dog CYP3A mRNAs, CYP3A98 mRNA was expressed most abundantly in small intestine. In contrast, dog CYP3A12 and CYP3A26 mRNAs were expressed in liver, where CYP3A12 mRNA was the most abundant. The four CYP3A genes had similar gene structures and formed a gene cluster in the dog and human genomes. Metabolic assays of dog CYP3A proteins heterologously expressed in Escherichia coli indicated that the dog CYP3As tested were functional enzymes with respect to typical human CYP3A4 substrates. Dog CYP3A98 efficiently catalyzed oxidations of nifedipine, alprazolam, and midazolam, indicating major roles of CYP3A98 in the small intestine. Dog CYP3A12 and CYP3A26 metabolizing nifedipine and/or midazolam would play roles in these reactions in the liver. In contrast, dog CYP3A99 showed minimal mRNA expression and minimal metabolic activity, and its contribution to overall drug metabolism is, therefore, negligible. These results indicated that newly identified dog CYP3A98, a testosterone 6 β - and estradiol 16 α -hydroxylase, was abundantly expressed in the small intestine and is likely the major CYP3A in the small intestine in combination with liver-specific CYP3A12. SIGNIFICANCE STATEMENT: Novel dog cytochromes P450 3A98 (CYP3A98) and CYP3A99 were identified and characterized to be functional and highly identical to human CYP3A4. Known CYP3A12 and new CYP3A98 efficiently catalyzed estradiol 16α-hydroxylation and midazolam 1'-hydroxylation. CYP3A98 mRNA was expressed in small intestine, whereas CYP3A12 mRNA was predominant in liver. Dog hepatic CYP3A12 and intestinal CYP3A98 are the enzymes likely responsible for the metabolic clearances of orally administered drugs, unlike human CYP3A4/5, which are in both the liver and intestine.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Shiori Jikuya
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Yutaro Noda
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| |
Collapse
|
10
|
Specific Gene Duplication and Loss of Cytochrome P450 in Families 1-3 in Carnivora (Mammalia, Laurasiatheria). Animals (Basel) 2022; 12:ani12202821. [PMID: 36290207 PMCID: PMC9597770 DOI: 10.3390/ani12202821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary In this study we investigated the specific duplication and loss events of cytochrome P450 (CYP) genes in families 1-3 in Carnivora. These genes have been recognized as essential detoxification enzymes, and, using genomic data, we demonstrated a synteny analysis of the CYP coding cluster and a phylogenetic analysis of these genes. We discovered the CYP2Cs and CYP3As expansion in omnivorous species such as the badger, the brown bear, the black bear, and the dog. Furthermore, phylogenetic analysis revealed the evolution of CYP2Cs and 3As in Carnivora. These findings are essential for the appropriate estimation of pharmacokinetics or toxicokinetic in wild carnivorans. Abstract Cytochrome P450s are among the most important xenobiotic metabolism enzymes that catalyze the metabolism of a wide range of chemicals. Through duplication and loss events, CYPs have created their original feature of detoxification in each mammal. We performed a comprehensive genomic analysis to reveal the evolutionary features of the main xenobiotic metabolizing family: the CYP1-3 families in Carnivora. We found specific gene expansion of CYP2Cs and CYP3As in omnivorous animals, such as the brown bear, the black bear, the dog, and the badger, revealing their daily phytochemical intake as providing the causes of their evolutionary adaptation. Further phylogenetic analysis of CYP2Cs revealed Carnivora CYP2Cs were divided into CYP2C21, 2C41, and 2C23 orthologs. Additionally, CYP3As phylogeny also revealed the 3As’ evolution was completely different to that of the Caniformia and Feliformia taxa. These studies provide us with fundamental genetic and evolutionary information on CYPs in Carnivora, which is essential for the appropriate interpretation and extrapolation of pharmacokinetics or toxicokinetic data from experimental mammals to wild Carnivora.
Collapse
|
11
|
Uno Y, Ushirozako G, Uehara S, Murayama N, Fujiki Y, Kawaguchi H, Tsukiyama-Kohara K, Yamazaki H. Newly identified tree shrew cytochrome P450 2B6 (CYP2B6) and pig CYP2B6b are functional drug-metabolising enzymes. Xenobiotica 2022; 52:687-696. [PMID: 36286316 DOI: 10.1080/00498254.2022.2141153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tree shrews have high phylogenetic affinity to humans and are used in various fields of biomedical research, especially hepatitis virus infection; however, cytochromes P450 (P450s or CYPs) have not been investigated in this species.In this study, tree shrew CYP2B6 and pig CYP2B6b were newly identified and had amino acid sequences highly identical (80% and 78%, respectively) to human CYP2B6, containing sequence motifs characteristic of P450s.Phylogenetic analysis revealed that novel tree shrew CYP2B6 was more closely related to known human CYP2B6 than dog, pig, or rat CYP2Bs are.Among the tissue types analysed, tree shrew CYP2B6 mRNA was preferentially expressed in liver and lung, whereas pig CYP2B6b mRNA was preferentially expressed in jejunum and lung.Tree shrew CYP2B6 and pig CYP2B6b proteins heterologously expressed in Escherichia coli metabolised human CYP2B6 substrates efavirenz, ethoxycoumarin, propofol, and testosterone, suggesting that these novel CYP2Bs are functional drug-metabolizing enzymes in liver and/or lung.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Genki Ushirozako
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Yuki Fujiki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | | | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Kagoshima University, Kagoshima, Japan.,Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
12
|
Tonero ME, Li Z, Reinhart JM. Cytochrome P450 reaction phenotyping of itraconazole hydroxylation in the dog. J Vet Pharmacol Ther 2022; 45:255-264. [PMID: 35389533 DOI: 10.1111/jvp.13058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Itraconazole (ITZ) is an important drug in the treatment of superficial and deep mycoses in dogs. Its primary metabolite is hydroxy-itraconazole, which has antifungal activity similar to the parent compound. The purpose of this study was to identify the cytochrome P450 enzyme (CYP) isoform(s) responsible for ITZ hydroxylation in canine liver. Reaction kinetics for ITZ hydroxylation were determined in a panel of canine recombinant CYPs and dog liver microsomes (DLMs). Findings were confirmed using CYP isoform-specific inhibitors in rCYPs and DLMs. In rCYP experiments, CYP2D15 and CYP3A12 had highest activity for ITZ hydroxylation. In inhibitor experiments, quinidine and erythromycin inhibited ITZ hydroxylation in CYP2D15 and CYP3A12, respectively, in an isoform-specific manner. In DLMs, quinidine and erythromycin combined inhibited ITZ hydroxylation more than erythromycin alone but not quinidine alone. However, this may be related to inhibitor potency rather than the contribution of the individual CYP isoforms to the reaction. These findings support a role for CYP2D15 and CYP3A12 in ITZ biotransformation in canine liver.
Collapse
Affiliation(s)
- Matthew E Tonero
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois, USA
| | - Jennifer M Reinhart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
13
|
Wu Q, Hu Y, Wang C, Wei W, Gui L, Zeng WS, Liu C, Jia W, Miao J, Lan K. Reevaluate In Vitro CYP3A Index Reactions of Benzodiazepines and Steroids between Humans and Dogs. Drug Metab Dispos 2022; 50:741-749. [DOI: 10.1124/dmd.122.000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
|
14
|
Martinez MN, Mochel JP, Neuhoff S, Pade D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS JOURNAL 2021; 23:59. [PMID: 33907906 DOI: 10.1208/s12248-021-00590-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
This review is a summary of factors affecting the drug pharmacokinetics (PK) of dogs versus humans. Identifying these interspecies differences can facilitate canine-human PK extrapolations while providing mechanistic insights into species-specific drug in vivo behavior. Such a cross-cutting perspective can be particularly useful when developing therapeutics targeting diseases shared between the two species such as cancer, diabetes, cognitive dysfunction, and inflammatory bowel disease. Furthermore, recognizing these differences also supports a reverse PK extrapolations from humans to dogs. To appreciate the canine-human differences that can affect drug absorption, distribution, metabolism, and elimination, this review provides a comparison of the physiology, drug transporter/enzyme location, abundance, activity, and specificity between dogs and humans. Supplemental material provides an in-depth discussion of certain topics, offering additional critical points to consider. Based upon an assessment of available state-of-the-art information, data gaps were identified. The hope is that this manuscript will encourage the research needed to support an understanding of similarities and differences in human versus canine drug PK.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland, 20855, USA.
| | - Jonathan P Mochel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
| | - Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Devendra Pade
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
15
|
Karakus E, Prinzinger C, Leiting S, Geyer J. Sequencing of the Canine Cytochrome P450 CYP2C41 Gene and Genotyping of Its Polymorphic Occurrence in 36 Dog Breeds. Front Vet Sci 2021; 8:663175. [PMID: 33969041 PMCID: PMC8100205 DOI: 10.3389/fvets.2021.663175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Cytochrome P450 (CYP) drug metabolizing enzymes play an important role in efficient drug metabolism and elimination. Many CYPs are polymorphic and, thereby, drug metabolism can vary between individuals. In the case of canine CYP2C41, gene polymorphism was identified. However, as the first available canine genome sequences all were CYP2C41 negative, this polymorphism could not be clarified at the genomic level. The present study provides an exact characterization of the CYP2C41 gene deletion polymorphism at the genomic level and presents a PCR-based genotyping method that was used for CYP2C41 genotyping of 1,089 individual subjects from 36 different dog breeds. None of the Bearded Collie, Bernese Mountain, Boxer, Briard, French Bulldog or Irish Wolfhound subjects had the CYP2C41 gene in their genomes. In contrast, in the Chinese Char-Pei, Siberian Husky, Schapendoes and Kangal breeds, the CYP2C41 allele frequency was very high, with values of 67, 57, 43, and 34%, respectively. Interestingly, the site of gene deletion was identical for all CYP2C41 negative dogs, and all CYP2C41 positive dogs showed highly homologous sequence domains upstream and downstream from the CYP2C41 gene. CYP2C41 genotyping can now be routinely used in future pharmacokinetic studies in canines, in order to identify genetically-based poor or extensive drug metabolizers. This, together with more extensive in vitro drug screening for CYP2C41 substrates will help to determine the clinical relevance of CYP2C41, and to optimize drug treatment. Although the relative abundance of the CYP2C41 protein in the canine liver seems to not be very high, this CYP could substantially contribute to hepatic drug metabolism in dogs expressing CYP2C41 from both alleles and, when CYP2C41 shows higher catalytic activity to a given drug than other hepatic metabolic enzymes.
Collapse
Affiliation(s)
- Emre Karakus
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| | - Clarissa Prinzinger
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| | - Silke Leiting
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Geyer
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
16
|
Maxwell EA, King TI, Kamble SH, Raju KSR, Berthold EC, León F, Hampson A, McMahon LR, McCurdy CR, Sharma A. Oral Pharmacokinetics in Beagle Dogs of the Mitragynine Metabolite, 7-Hydroxymitragynine. Eur J Drug Metab Pharmacokinet 2021; 46:459-463. [PMID: 33847897 DOI: 10.1007/s13318-021-00684-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVES 7-Hydroxymitragynine (7-HMG) is an oxidative metabolite of mitragynine, the most abundant alkaloid in the leaves of Mitragyna speciosa (otherwise known as kratom). While mitragynine is a weak partial µ-opioid receptor (MOR) agonist, 7-HMG is a potent and full MOR agonist. It is produced from mitragynine by cytochrome P450 (CYP) 3A, a drug-metabolizing CYP isoform predominate in the liver that is also highly expressed in the intestine. Given the opioidergic potency of 7-HMG, a single oral dose pharmacokinetic and safety study of 7-HMG was performed in beagle dogs. METHODS Following a single oral dose (1 mg/kg) of 7-HMG, plasma samples were obtained from healthy female beagle dogs. Concentrations of 7-HMG were determined using ultra-performance liquid chromatography coupled with a tandem mass spectrometer (UPLC-MS/MS). Pharmacokinetic parameters were calculated using a model-independent non-compartmental analysis of plasma concentration-time data. RESULTS Absorption of 7-HMG was rapid, with a peak plasma concentration (Cmax, 56.4 ± 1.6 ng/ml) observed within 15 min post-dose. In contrast, 7-HMG elimination was slow, exhibiting a mono-exponential distribution and mean elimination half-life of 3.6 ± 0.5 h. Oral dosing of 1 mg/kg 7-HMG was well tolerated with no observed adverse events or significant changes to clinical laboratory tests. CONCLUSIONS These results provide the first pharmacokinetic and safety data for 7-HMG in the dog and therefore contribute to the understanding of the putative pharmacologic role of 7-HMG resulting from an oral delivery of mitragynine from kratom.
Collapse
Affiliation(s)
- Elizabeth A Maxwell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Tamara I King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Shyam H Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.,Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Kanumuri Siva Rama Raju
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.,Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Aidan Hampson
- Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA. .,Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA. .,Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA. .,Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Cheng S, Bo Z, Hollenberg P, Osawa Y, Zhang H. Amphipol-facilitated elucidation of the functional tetrameric complex of full-length cytochrome P450 CYP2B4 and NADPH-cytochrome P450 oxidoreductase. J Biol Chem 2021; 296:100645. [PMID: 33839156 PMCID: PMC8113742 DOI: 10.1016/j.jbc.2021.100645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 10/27/2022] Open
Abstract
Interactions of membrane-bound mammalian cytochromes P450 (CYPs) with NADPH-cytochrome P450 oxidoreductase (POR), which are required for metabolism of xenobiotics, are facilitated by membrane lipids. A variety of membrane mimetics, such as phospholipid liposomes and nanodiscs, have been used to simulate the membrane to form catalytically active CYP:POR complexes. However, the exact mechanism(s) of these interactions are unclear because of the absence of structural information of full-length mammalian CYP:POR complexes in membranes. Herein, we report the use of amphipols (APols) to form a fully functional, soluble, homogeneous preparation of full-length CYP:POR complexes amenable to biochemical and structural study. Incorporation of CYP2B4 and POR into APols resulted in a CYP2B4:POR complex with a stoichiometry of 1:1, which was fully functional in demethylating benzphetamine at a turnover rate of 37.7 ± 2.2 min-1, with a coupling efficiency of 40%. Interestingly, the stable complex had a molecular weight (Mw) of 338 ± 22 kDa determined by multiangle light scattering, suggestive of a tetrameric complex of 2CYP2B4:2POR embedded in one APol nanoparticle. Moreover, negative stain electron microscopy (EM) validated the homogeneity of the complex and allowed us to generate a three-dimensional EM map and model consistent with the tetramer observed in solution. This first report of the full-length mammalian CYP:POR complex by transmission EM not only reveals the architecture that facilitates electron transfer but also highlights a potential use of APols in biochemical and structural studies of functional CYP complexes with redox partners.
Collapse
Affiliation(s)
- Shen Cheng
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhiyuan Bo
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Paul Hollenberg
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yoichi Osawa
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Haoming Zhang
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
18
|
Maxwell EA, King TI, Kamble SH, Raju KSR, Berthold EC, León F, Avery BA, McMahon LR, McCurdy CR, Sharma A. Pharmacokinetics and Safety of Mitragynine in Beagle Dogs. PLANTA MEDICA 2020; 86:1278-1285. [PMID: 32693425 PMCID: PMC7907416 DOI: 10.1055/a-1212-5475] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitragynine is the most abundant psychoactive alkaloid derived from the leaves of Mitragyna speciosa (kratom), a tropical plant indigenous to regions of Southeast Asia. Mitragynine displays a moderate affinity to opioid receptors, and kratom is often self-prescribed to treat pain and/or opioid addiction. The purpose of this study was to investigate the safety and pharmacokinetic properties of mitragynine in the dog. Single dose oral (5 mg/kg) and intravenous (0.1 mg/kg) pharmacokinetic studies of mitragynine were performed in female beagle dogs. The plasma concentrations of mitragynine were measured using ultra-performance liquid chromatography coupled with a tandem mass spectrometer, and the pharmacokinetic properties were analyzed using non-compartmental analysis. Following intravenous administration, mitragynine showed a large volume of distribution (Vd, 6.3 ± 0.6 L/kg) and high clearance (Cl, 1.8 ± 0.4 L/h/kg). Following oral mitragynine dosing, first peak plasma (Cmax, 278.0 ± 47.4 ng/mL) concentrations were observed within 0.5 h. A potent mu-opioid receptor agonist and active metabolite of mitragynine, 7-hydroxymitragynine, was also observed with a Cmax of 31.5 ± 3.3 ng/mL and a Tmax of 1.7 ± 0.6 h in orally dosed dogs while its plasma concentrations were below the lower limit of quantification (1 ng/mL) for the intravenous study. The absolute oral bioavailability of mitragynine was 69.6%. Administration of mitragynine was well tolerated, although mild sedation and anxiolytic effects were observed. These results provide the first detailed pharmacokinetic information for mitragynine in a non-rodent species (the dog) and therefore also provide significant information for allometric scaling and dose predictions when designing clinical studies.
Collapse
Affiliation(s)
- Elizabeth A. Maxwell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Tamara I. King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Shyam H. Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Kanumuri Siva Rama Raju
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Erin C. Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Bonnie A. Avery
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Lance R. McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christopher R. McCurdy
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Martinez MN, Mochel JP, Pade D. Considerations in the extrapolation of drug toxicity between humans and dogs. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Knych HK, Finno CJ, Baden R, Arthur RM, McKemie DS. Identification and characterization of the enzymes responsible for the metabolism of the non-steroidal anti-inflammatory drugs, flunixin meglumine and phenylbutazone, in horses. J Vet Pharmacol Ther 2020; 44:36-46. [PMID: 32757313 DOI: 10.1111/jvp.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 11/29/2022]
Abstract
The in vivo metabolism and pharmacokinetics of flunixin meglumine and phenylbutazone have been extensively characterized; however, there are no published reports describing the in vitro metabolism, specifically the enzymes responsible for the biotransformation of these compounds in horses. Due to their widespread use and, therefore, increased potential for drug-drug interactions and widespread differences in drug disposition, this study aims to build on the limited current knowledge regarding P450-mediated metabolism in horses. Drugs were incubated with equine liver microsomes and a panel of recombinant equine P450s. Incubation of phenylbutazone in microsomes generated oxyphenbutazone and gamma-hydroxy phenylbutazone. Microsomal incubations with flunixin meglumine generated 5-OH flunixin, with a kinetic profile suggestive of substrate inhibition. In recombinant P450 assays, equine CYP3A97 was the only enzyme capable of generating oxyphenbutazone while several members of the equine CYP3A family and CYP1A1 were capable of catalyzing the biotransformation of flunixin to 5-OH flunixin. Flunixin meglumine metabolism by CYP1A1 and CYP3A93 showed a profile characteristic of biphasic kinetics, suggesting two substrate binding sites. The current study identifies specific enzymes responsible for the metabolism of two NSAIDs in horses and provides the basis for future study of drug-drug interactions and identification of reasons for varying pharmacokinetics between horses.
Collapse
Affiliation(s)
- Heather K Knych
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA.,Department of Veterinary Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Russell Baden
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Rick M Arthur
- School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Daniel S McKemie
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| |
Collapse
|
21
|
Martinez SE, Andresen MC, Zhu Z, Papageorgiou I, Court MH. Pharmacogenomics of poor drug metabolism in Greyhounds: Cytochrome P450 (CYP) 2B11 genetic variation, breed distribution, and functional characterization. Sci Rep 2020; 10:69. [PMID: 31919457 PMCID: PMC6952448 DOI: 10.1038/s41598-019-56660-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/13/2019] [Indexed: 01/11/2023] Open
Abstract
Greyhounds recover more slowly from certain injectable anesthetics than other dog breeds. Previous studies implicate cytochrome P450 (CYP) 2B11 as an important clearance mechanism for these drugs and suggest Greyhounds are deficient in CYP2B11. However, no CYP2B11 gene mutations have been identified that explain this deficiency in Greyhounds. The objectives of this study were to provide additional evidence for CYP2B11 deficiency in Greyhounds, determine the mechanisms underlying this deficiency, and identify CYP2B11 mutations that contribute to this phenotype in Greyhounds. Greyhound livers metabolized CYP2B11 substrates slower, possessed lower CYP2B11 protein abundance, but had similar or higher mRNA expression than other breeds. Gene resequencing identified three CYP2B11 haplotypes, H1 (reference), H2, and H3 that were differentiated by mutations in the gene 3'-untranslated region (3'-UTR). Compared with 63 other dog breeds, Greyhounds had the highest CYP2B11-H3 allele frequency, while CYP2B11-H2 was widely distributed across most breeds. Using 3'-UTR luciferase reporter constructs, CYP2B11-H3 showed markedly lower gene expression (over 70%) compared to CYP2B11-H1 while CYP2B11-H2 expression was intermediate. Truncated mRNA transcripts were observed in CYP2B11-H2 and CYP2B11-H3 but not CYP2B11-H1 transfected cells. Our results implicate CYP2B11 3'-UTR mutations as a cause of decreased CYP2B11 enzyme expression in Greyhounds through reduced translational efficiency.
Collapse
Affiliation(s)
- Stephanie E Martinez
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America.
| | - Marie C Andresen
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zhaohui Zhu
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Ioannis Papageorgiou
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, Florida, United States of America
| | - Michael H Court
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|