1
|
Evich MG, Mosley JD, Ntai I, Cavallin JE, Villeneuve DL, Ankley GT, Collette TW, Ekman DR. Untargeted MS n-Based Monitoring of Glucuronides in Fish: Screening Complex Mixtures for Contaminants with Biological Relevance. ACS ES&T WATER 2022; 2:2481-2490. [PMID: 37288388 PMCID: PMC10243500 DOI: 10.1021/acsestwater.2c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The complexity of contaminant mixtures in surface waters has presented long-standing challenges to the assessment of risks to human health and the environment. As a result, novel strategies for both identifying contaminants that have not been routinely monitored through targeted methods and prioritizing detected compounds with respect to their biological relevance are needed. Tracking biotransformation products in biofluids and tissues in an untargeted fashion facilitates the identification of chemicals taken up by the resident species (e.g., fish), so by default ensuring that detected compounds are biologically relevant in terms of exposure. In this study, we investigated xenobiotic glucuronidation, which is arguably the most important phase II metabolism pathway for many pharmaceuticals, pesticides, and other environmental contaminants. The application of an untargeted high-resolution mass spectrometry-based approach tentatively revealed the presence of over 70 biologically relevant xenobiotics in bile collected from male and female fathead minnows exposed to wastewater treatment plant effluents. The majority of these were not targets of conventional contaminant monitoring. These results highlight the utility of biologically based untargeted screening methods when evaluating chemical contaminants in complex environmental mixtures.
Collapse
Affiliation(s)
- Marina G. Evich
- 1. Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Jonathan D. Mosley
- 1. Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Ioanna Ntai
- 2. Thermo Fisher Scientific, San Jose, California 95134, United States; Present Address: BioMarin Pharmaceutical Inc, San Rafael, CA 94901, USA
| | - Jenna E. Cavallin
- 3. Center for Computational Toxicology and Exposure, Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Daniel L. Villeneuve
- 3. Center for Computational Toxicology and Exposure, Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Gerald T. Ankley
- 3. Center for Computational Toxicology and Exposure, Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Timothy W. Collette
- 1. Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Drew R. Ekman
- 1. Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, Georgia 30605, United States
| |
Collapse
|
2
|
Stereoselective Covalent Adduct Formation of Acyl Glucuronide Metabolite of Nonsteroidal Anti-Inflammatory Drugs with UDP-Glucuronosyltransferase. Int J Mol Sci 2022; 23:ijms23094724. [PMID: 35563116 PMCID: PMC9104950 DOI: 10.3390/ijms23094724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
A reactive metabolite of nonsteroidal anti-inflammatory drugs (NSAIDs), acyl-β-D-glucuronide (AG), covalently binds to endogenous proteins. The covalent adduct formation of NSAIDs-AG may lead to the dysfunction of target proteins. Therefore, it is important to clarify the detailed characterization of the formation of covalent protein adducts of NSAID-AG. UDP-glucuronosyltransferase (UGT) catalyzes the conversion of NSAIDs to NSAIDs-AG. The aim of this study was to perform a quantitative analysis of the covalent adduct formation of NSAIDs-AG with UGT. Diclofenac-AG and ketoprofen-AG formed covalent adducts with organelle proteins. Next, the number of covalent adducts formed between NSAIDs-AG and UGT isoforms (UGT1A1, UGT1A9, UGT2B4, and UGT2B9) was determined. The capacity of diclofenac-AG to form covalent adducts with UGT1A9 or UGT2B7 was approximately 10 times higher than that of mefenamic acid-AG. The amounts of covalent adducts of AG of propionic acid derivative NSAIDs with UGT2B were higher than those with UGT1A. Stereoselectivity was observed upon covalent binding to UGT. A significant negative correlation between the half-lives of NSAIDs-AG in phosphate buffers and the amount of covalent adduct with UGT2B7 was observed, suggesting the more labile NSAID-AG forms higher irreversible bindings to UGT. This report provides comprehensive information on the covalent adduct formation of NSAIDs-AGs with UGT.
Collapse
|
3
|
The Application of Mass Spectrometry in Drug Metabolism and Pharmacokinetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33834449 DOI: 10.1007/978-981-33-6064-8_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Drug metabolism and pharmacokinetics (DMPK) are fundamental in drug discovery. New chemical entities (NCEs) are typically evaluated with various in vitro and in vivo assays, which are time-consuming and labor intensive. These experiments are essential in identifying potential new drugs. Recently, mass spectrometry (MS) has played a key role in examining the drug-like properties of NCEs. Quantitative and qualitative mass spectrometry approaches are routinely utilized to obtain high-quality data in an efficient, timely, and cost-effective manner. Especially, liquid chromatography (LC) coupled with MS technology has been refined for metabolite identification (Met ID), which is critical for lead optimization. These qualitative and quantitative MS approaches and their specific utility in DMPK characterization will be described in this chapter.
Collapse
|
4
|
Khojasteh SC, Driscoll JP, Jackson KD, Miller GP, Mitra K, Rietjens IMCM, Zhang D. Novel advances in biotransformation and bioactivation research-2019 year in review .. Drug Metab Rev 2020; 52:333-365. [PMID: 32645275 PMCID: PMC10805366 DOI: 10.1080/03602532.2020.1772281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 01/25/2023]
Abstract
Biotransformation is one of the main mechanisms used by the body to eliminate drugs. As drug molecules become more complicated, the involvement of drug metabolizing enzymes increases beyond those that are typically studied, such as the cytochrome P450 enzymes. In this review, we try to capture the many outstanding articles that were published in the past year in the field of biotransformation (see Table 1). We have divided the articles into two categories of (1) metabolites and drug metabolizing enzymes, and (2) bioactivation and safety. This annual review is the fifth of its kind since 2016 (Baillie et al. 2016; Khojasteh et al. 2017, 2018, 2019). This effort in itself also continues to evolve. We have followed the same format we used in previous years in terms of the selection of articles and the authoring of each section. I am pleased of the continued support of Rietjens, Miller, Zhang, Driscoll and Mitra to this review. We would like to welcome Klarissa D. Jackson as a new author for this year's issue. We strive to maintain a balance of authors from academic and industry settings. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. Cyrus Khojasteh, on behalf of the authors.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics, MyoKardia, Inc, South San Francisco, CA, USA
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kaushik Mitra
- Department of Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories (MRL), Merck & Co., Inc, West Point, PA, USA
| | | | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
5
|
Harada H, Toyoda Y, Abe Y, Endo T, Takeda H. Quantitative Evaluation of Reactivity and Toxicity of Acyl Glucuronides by [35S]Cysteine Trapping. Chem Res Toxicol 2019; 32:1955-1964. [DOI: 10.1021/acs.chemrestox.9b00111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hiroshi Harada
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka-Kashiwabara, Azumino, Nagano 399-8304, Japan
| | - Yasuyuki Toyoda
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka-Kashiwabara, Azumino, Nagano 399-8304, Japan
| | - Yoshikazu Abe
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka-Kashiwabara, Azumino, Nagano 399-8304, Japan
| | - Takuro Endo
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka-Kashiwabara, Azumino, Nagano 399-8304, Japan
| | - Hiroo Takeda
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka-Kashiwabara, Azumino, Nagano 399-8304, Japan
| |
Collapse
|
6
|
Limban C, Nuţă DC, Chiriţă C, Negreș S, Arsene AL, Goumenou M, Karakitsios SP, Tsatsakis AM, Sarigiannis DA. The use of structural alerts to avoid the toxicity of pharmaceuticals. Toxicol Rep 2018; 5:943-953. [PMID: 30258789 PMCID: PMC6151358 DOI: 10.1016/j.toxrep.2018.08.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/12/2018] [Accepted: 08/29/2018] [Indexed: 01/18/2023] Open
Abstract
In order to identify compounds with potential toxicity problems, particular attention is paid to structural alerts, which are high chemical reactivity molecular fragments or fragments that can be transformed via bioactivation by human enzymes into fragments with high chemical reactivity. The concept has been introduced in order to reduce the likelihood that future candidate substances as pharmaceuticals will have undesirable toxic effects. A significant proportion (∼78–86%) of drugs characterized by residual toxicity contain structural alerts; there is also evidence indicating the formation of active metabolites as a causal factor for the toxicity of 62–69% of these molecules. On the other hand, the pharmacological action of certain drugs depends on the formation of reactive metabolites. Detailed assessment of the potential for the formation of active metabolites is recommended to characterize a biologically active compound. Although many prescribed drugs frequently contain structural alerts and form reactive metabolites, the vast majority of these drugs are administered in low daily doses. Avoiding structural alerts has become almost a norm in new drug design. An in-depth review of the biochemical reactivity of these structural alerts for new drug candidates is critical from a safety point of view and is currently being monitored in the discovery of drugs. The chemical strategies applied to structural alerts in molecules to limit the toxicity are: partial replacement or full replacement of the structural alert; reduction of electronic density; introduction of a structural element of metabolic interest (metabolic switching); multiple approaches.
Therefore, chemical intervention strategies to eliminate bioactivation are often interactive processes; their success depends largely on a close working relationship between drug chemists, pharmacologists and researchers in metabolic science.
Collapse
Affiliation(s)
- Carmen Limban
- "Carol Davila" University of Medicine and Pharmacy, Department of Pharmaceutical Chemistry, Traian Vuia 6, Bucharest, 020956, Romania
| | - Diana C Nuţă
- "Carol Davila" University of Medicine and Pharmacy, Department of Pharmaceutical Chemistry, Traian Vuia 6, Bucharest, 020956, Romania
| | - Cornel Chiriţă
- "Carol Davila" University of Medicine and Pharmacy, Department of Pharmacology and Clinical Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania
| | - Simona Negreș
- "Carol Davila" University of Medicine and Pharmacy, Department of Pharmacology and Clinical Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania
| | - Andreea L Arsene
- "Carol Davila" University of Medicine and Pharmacy, Department of Pharmaceutical Microbiology, Traian Vuia 6, Bucharest, 020956, Romania
| | - Marina Goumenou
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, 71409, Crete, Greece
| | - Spyros P Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece.,HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, 71409, Crete, Greece
| | - Dimosthenis A Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece.,HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece.,University School for Advanced Study (IUSS), Piazza della Vittoria 15, Pavia 27100, Italy
| |
Collapse
|
7
|
Iwaki M, Shimada H, Irino Y, Take M, Egashira S. Inhibition of Methotrexate Uptake via Organic Anion Transporters OAT1 and OAT3 by Glucuronides of Nonsteroidal Anti-inflammatory Drugs. Biol Pharm Bull 2018; 40:926-931. [PMID: 28566636 DOI: 10.1248/bpb.b16-00970] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combination therapy of non-steroidal anti-inflammatory drugs (NSAIDs) and methotrexate (MTX) sometimes triggers adverse effects, such as liver injury, renal failure, gastrointestinal disorders, and myelosuppression, owing to the reduction of MTX clearance. Previous reports have suggested that NSAIDs inhibit renal MTX uptake via organic anion transporters (OATs) and reduced folate transporter (RFC)-1 and efflux via multidrug resistance-associated proteins (MRPs). Recently, our laboratory found inhibitory effects of NSAIDs-glucuronide (NSAIDs-Glu), a major metabolite of NSAIDs, on MRP-mediated MTX transport as a new site of interaction between MTX and NSAIDs. However, it remains unclear that whether NSAIDs-Glu inhibit renal uptake of MTX. Therefore, the present study aimed to evaluate inhibitory effects of several NSAIDs-Glu (diclofenac, R- and S-ibuprofen, R- and S-flurbiprofen, and R- and S-naproxen) on human OAT1 and OAT3-mediated MTX transport. In this study, [3H]MTX uptake was observed by using human OAT1 and OAT3-overexpressing HEK293 cells in the presence or absence of NSAIDs-Glu. All examined NSAIDs-Glu exhibited concentration-dependent inhibitory effects on MTX uptake via OAT1 and OAT3. Our results indicated that NSAIDs-Glu are more potent (5- to 15-fold) inhibitors of OAT3 than OAT1. Moreover, stereoselective inhibitory effects of NSAIDs-Glu on OATs-mediated MTX uptake were not observed, unlike on MRPs-mediated transport. These findings suggest that inhibition of OAT1 and OAT3-mediated renal uptake of MTX by plasma NSAIDs-Glu may be one of the competitive sites underlying complex drug interaction between MTX and NSAIDs.
Collapse
Affiliation(s)
- Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University
| | - Hiroaki Shimada
- Department of Pharmacy, Faculty of Pharmacy, Kindai University
| | - Yuri Irino
- Department of Pharmacy, Faculty of Pharmacy, Kindai University
| | - Manami Take
- Department of Pharmacy, Faculty of Pharmacy, Kindai University
| | | |
Collapse
|
8
|
Camilleri P, Buch A, Soldo B, Hutt AJ. The influence of physicochemical properties on the reactivity and stability of acyl glucuronides. Xenobiotica 2017; 48:958-972. [DOI: 10.1080/00498254.2017.1384967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Akshay Buch
- Aerpio Therapeutics, Inc., Cincinnati, OH, USA, and
| | - Brandi Soldo
- Aerpio Therapeutics, Inc., Cincinnati, OH, USA, and
| | - Andrew J. Hutt
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, College Lane, Hatfield, UK
| |
Collapse
|
9
|
Kawase A, Hashimoto R, Shibata M, Shimada H, Iwaki M. Involvement of Reactive Metabolites of Diclofenac in Cytotoxicity in Sandwich-Cultured Rat Hepatocytes. Int J Toxicol 2017; 36:260-267. [DOI: 10.1177/1091581817700584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background and Objectives: Diclofenac (DIC) is metabolized to reactive metabolites such as diclofenac acyl-β-d-glucuronide (DIC-AG). It is possible that such reactive metabolites could cause tissue damage by formation of covalent protein adducts and other modification of cellular proteins or by induction of immune responses against its covalent protein adducts. However, the detailed mechanisms of idiosyncratic drug-induced liver injury (DILI) have been unclear. The objective is to clarify the involvement of DIC-AG and 4′hydroxydiclofenac (4′OH-DIC) in acute DILI. Methods: We examined the effects of inhibiting DIC-AG and 4′OH-DIC production on covalent protein adduct formation and lactate dehydrogenase leakage using sandwich-cultured rat hepatocytes (SCRHs). Results: After pretreatment of SCRH with (−)-borneol (BOR, a uridine diphosphate (UDP)-glucuronosyltransferase inhibitor) or sulfaphenazole (SUL, a cytochrome P450 2C9 inhibitor) for 30 minutes, intracellular concentrations of DIC, DIC-AG, and 4′OH-DIC were determined after further treating cells with 300 μM DIC for 3 hours. The decreased levels of reactive metabolites caused by BOR or SUL pretreatment resulted in decreased lactate dehydrogenase leakage from SCRH, although the formation of covalent protein adducts was not affected. Conclusion: These results suggested that both DIC-AG and 4′OH-DIC may be involved in acute cytotoxicity by DIC.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Ryota Hashimoto
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Mai Shibata
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Hiroaki Shimada
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| |
Collapse
|
10
|
Van Vleet TR, Liu H, Lee A, Blomme EAG. Acyl glucuronide metabolites: Implications for drug safety assessment. Toxicol Lett 2017; 272:1-7. [PMID: 28286018 DOI: 10.1016/j.toxlet.2017.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/17/2017] [Accepted: 03/05/2017] [Indexed: 12/23/2022]
Abstract
Acyl glucuronides are important metabolites of compounds with carboxylic acid moieties and have unique properties that distinguish them from other phase 2 metabolites. In particular, in addition to being often unstable, acyl glucuronide metabolites can be chemically reactive leading to covalent binding with macromolecules and toxicity. While there is circumstantial evidence that drugs forming acyl glucuronide metabolites can be associated with rare, but severe idiosyncratic toxic reactions, many widely prescribed drugs with good safety records are also metabolized through acyl glucuronidation. Therefore, there is a need to understand the various factors that can affect the safety of acyl glucuronide-producing drugs including the rate of acyl glucuronide formation, the relative reactivity of the acyl glucuronide metabolite formed, the rate of elimination, potential proteins being targeted, and the rate of aglucuronidation. In this review, these factors are discussed and various approaches to de-risk the safety liabilities of acyl glucuronide metabolites are evaluated.
Collapse
Affiliation(s)
- Terry R Van Vleet
- Abbvie, Development Sciences, Department of Preclinical Safety, United States.
| | - Hong Liu
- Abbvie, Development Sciences, Biomeasure and Metabolism, United States
| | - Anthony Lee
- Abbvie, Development Sciences, Biomeasure and Metabolism, United States
| | - Eric A G Blomme
- Abbvie, Development Sciences, Department of Preclinical Safety, United States
| |
Collapse
|
11
|
Toxicological potential of acyl glucuronides and its assessment. Drug Metab Pharmacokinet 2017; 32:2-11. [DOI: 10.1016/j.dmpk.2016.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
|
12
|
Investigation of a recently detected 11-nor-9-carboxy-Δ 9 -tetrahydrocannabinol isomer: Studies on the degradation of 11-nor-9-carboxy-Δ 9 -tetrahydrocannabinol glucuronide. J Pharm Biomed Anal 2016; 129:294-298. [DOI: 10.1016/j.jpba.2016.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/18/2022]
|
13
|
Pham DL, Kim JH, Trinh THK, Park HS. What we know about nonsteroidal anti-inflammatory drug hypersensitivity. Korean J Intern Med 2016; 31:417-32. [PMID: 27030979 PMCID: PMC4855107 DOI: 10.3904/kjim.2016.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/05/2016] [Indexed: 02/07/2023] Open
Abstract
Nonsteroidal anti-inf lammatory drugs (NSAIDs) are widely prescribed for the treatment of inflammatory diseases, but their use is frequently related to hypersensitivity reactions. This review outlines our current knowledge of NSAID hypersensitivity (NHS) with regard to its pathogenic, molecular, and genetic mechanisms, as well as diagnosis and treatment. The presentation of NHS varies from a local (skin and/or airways) reaction to systemic reactions, including anaphylaxis. At the molecular level, NHS reactions can be classified as cross-reactive (mediated by cyclooxygenase inhibition) or selective (specific activation of immunoglobulin E antibodies or T cells). Genetic polymorphisms and epigenetic factors have been shown to be closely associated with NHS, and may be useful as predictive markers. To diagnose NHS, inhalation or oral challenge tests are applied, with the exclusion of any cross-reactive NSAIDs. For patients diagnosed with NHS, absolute avoidance of NSAIDs/aspirin is essential, and pharmacological treatment, including biologics, is often used to control their respiratory and cutaneous symptoms. Finally, desensitization is recommended only for selected patients with NHS. However, further research is required to develop new diagnostic methods and more effective treatments against NHS.
Collapse
Affiliation(s)
- Duy Le Pham
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, Korea
| | - Ji-Hye Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Tu Hoang Kim Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, Korea
- Correspondence to Hae-Sim Park, M.D. Department of Allergy and Clinical Immunology, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Korea Tel: +82-31-219-5150 Fax: +82-31-219-5154 E-mail:
| |
Collapse
|
14
|
Lassila T, Hokkanen J, Aatsinki SM, Mattila S, Turpeinen M, Tolonen A. Toxicity of Carboxylic Acid-Containing Drugs: The Role of Acyl Migration and CoA Conjugation Investigated. Chem Res Toxicol 2015; 28:2292-303. [PMID: 26558897 DOI: 10.1021/acs.chemrestox.5b00315] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many carboxylic acid-containing drugs are associated with idiosyncratic drug toxicity (IDT), which may be caused by reactive acyl glucuronide metabolites. The rate of acyl migration has been earlier suggested as a predictor of acyl glucuronide reactivity. Additionally, acyl Coenzyme A (CoA) conjugates are known to be reactive. Here, 13 drugs with a carboxylic acid moiety were incubated with human liver microsomes to produce acyl glucuronide conjugates for the determination of acyl glucuronide half-lives by acyl migration and with HepaRG cells to monitor the formation of acyl CoA conjugates, their further conjugate metabolites, and trans-acylation products with glutathione. Additionally, in vitro cytotoxicity and mitochondrial toxicity experiments were performed with HepaRG cells to compare the predictability of toxicity. Clearly, longer acyl glucuronide half-lives were observed for safe drugs compared to drugs that can cause IDT. Correlation between half-lives and toxicity classification increased when "relative half-lives," taking into account the formation of isomeric AG-forms due to acyl migration and eliminating the effect of hydrolysis, were used instead of plain disappearance of the initial 1-O-β-AG-form. Correlation was improved further when a daily dose of the drug was taken into account. CoA and related conjugates were detected primarily for the drugs that have the capability to cause IDT, although some exceptions to this were observed. Cytotoxicity and mitochondrial toxicity did not correlate to drug safety. On the basis of the results, the short relative half-life of the acyl glucuronide (high acyl migration rate), high daily dose and detection of acyl CoA conjugates, or further metabolites derived from acyl CoA together seem to indicate that carboxylic acid-containing drugs have a higher probability to cause drug-induced liver injury (DILI).
Collapse
Affiliation(s)
- Toni Lassila
- Department of Chemistry, University of Oulu , P.O. Box 3000, 90014 Oulu, Finland.,Research Unit of Biomedicine, Department of Pharmacology and Toxicology, and Medical Research Center Oulu, University of Oulu , P.O. Box 5000, 90014 Oulu, Finland
| | | | | | - Sampo Mattila
- Department of Chemistry, University of Oulu , P.O. Box 3000, 90014 Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, and Medical Research Center Oulu, University of Oulu , P.O. Box 5000, 90014 Oulu, Finland.,Administration Center, Oulu University Hospital , P.O. Box 10, 90029 OYS, Oulu, Finland
| | - Ari Tolonen
- Admescope Ltd. , Typpitie 1, 90620 Oulu, Finland
| |
Collapse
|
15
|
Stone SF, Phillips EJ, Wiese MD, Heddle RJ, Brown SGA. Immediate-type hypersensitivity drug reactions. Br J Clin Pharmacol 2015; 78:1-13. [PMID: 24286446 DOI: 10.1111/bcp.12297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/18/2013] [Indexed: 11/27/2022] Open
Abstract
Hypersensitivity reactions including anaphylaxis have been reported for nearly all classes of therapeutic reagents and these reactions can occur within minutes to hours of exposure. These reactions are unpredictable, not directly related to dose or the pharmacological action of the drug and have a relatively high mortality risk. This review will focus on the clinical presentation, immune mechanisms, diagnosis and prevention of the most serious form of immediate onset drug hypersensitivity reaction, anaphylaxis. The incidence of drug-induced anaphylaxis deaths appears to be increasing and our understanding of the multiple and complex reasons for the unpredictable nature of anaphylaxis to drugs is also expanding. This review highlights the importance of enhancing our understanding of the biology of the patient (i.e. immune response, genetics) as well as the pharmacology and chemistry of the drug when investigating, diagnosing and treating drug hypersensitivity. Misdiagnosis of drug hypersensitivity leads to substantial patient risk and cost. Although oral provocation is often considered the gold standard of diagnosis, it can pose a potential risk to the patient. There is an urgent need to improve and standardize diagnostic testing and desensitization protocols as other diagnostic tests currently available for assessment of immediate drug allergy are not highly predictive.
Collapse
Affiliation(s)
- Shelley F Stone
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Western Australia; Department of Emergency Medicine, Royal Perth Hospital, Perth, Western Australia
| | | | | | | | | |
Collapse
|
16
|
Zhong S, Jones R, Lu W, Schadt S, Ottaviani G. A New Rapid In Vitro Assay for Assessing Reactivity of Acyl Glucuronides. Drug Metab Dispos 2015; 43:1711-7. [DOI: 10.1124/dmd.115.066159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/12/2015] [Indexed: 01/31/2023] Open
|
17
|
Zollinger M, Lozac'h F, Hurh E, Emotte C, Bauly H, Swart P. Absorption, distribution, metabolism, and excretion (ADME) of ¹⁴C-sonidegib (LDE225) in healthy volunteers. Cancer Chemother Pharmacol 2014; 74:63-75. [PMID: 24817600 DOI: 10.1007/s00280-014-2468-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/12/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE The absorption, distribution, metabolism, and excretion of the hedgehog pathway inhibitor sonidegib (LDE225) were determined in healthy male subjects. METHODS Six subjects received a single oral dose of 800 mg ¹⁴C-sonidegib (74 kBq, 2.0 µCi) under fasting conditions. Blood, plasma, urine, and fecal samples were collected predose, postdose in-house (days 1-22), and during 24-h visits (weekly, days 29-43; biweekly, days 57-99). Radioactivity was determined in all samples using accelerator mass spectrometry (AMS). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine concentrations of sonidegib and its main circulating metabolite in plasma. Metabolite profiles and structures were determined in pooled plasma, urine, and fecal samples using high-performance LC-AMS and LC-MS/MS, respectively. RESULTS A single dose of ¹⁴C-sonidegib was well tolerated in healthy subjects. Unchanged sonidegib and total radioactivity reached peak concentration in plasma by 2 and 3 h, respectively, and demonstrated similarly long half-lives of 319 and 331 h, respectively. Absorbed sonidegib (estimated 6-7 %) was extensively distributed, and the approximate terminal volume of distribution was 2,500 L. Unchanged sonidegib and a metabolite resulting from amide hydrolysis were the major circulating components (36.4 and 15.4 % of radioactivity area under the curve, respectively). Absorbed sonidegib was eliminated predominantly through oxidative metabolism of the morpholine part and amide hydrolysis. Unabsorbed sonidegib was excreted through the feces. Metabolites in excreta accounted for 4.49 % of the dose (1.20 % in urine, 3.29 % in feces). The recovery of radioactivity in urine and feces was essentially complete (95.3 ± 1.93 % of the dose in five subjects; 56.9 % of the dose in one subject with incomplete feces collection suspected). CONCLUSIONS Sonidegib exhibited low absorption, was extensively distributed, and was slowly metabolized. Elimination of absorbed sonidegib occurred largely by oxidative and hydrolytic metabolism.
Collapse
Affiliation(s)
- Markus Zollinger
- Drug Metabolism and Pharmacokinetics (DMPK), Novartis Institutes for BioMedical Research, Fabrikstrasse 14, 4002, Basel, Switzerland,
| | | | | | | | | | | |
Collapse
|
18
|
Predicted multiple selected reaction monitoring to screen activated drug-mediated modifications on human serum albumin. Anal Biochem 2014; 449:59-67. [DOI: 10.1016/j.ab.2013.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/12/2013] [Indexed: 01/01/2023]
|
19
|
Ramm S, Mally A. Role of drug-independent stress factors in liver injury associated with diclofenac intake. Toxicology 2013; 312:83-96. [PMID: 23939143 DOI: 10.1016/j.tox.2013.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 01/08/2023]
Abstract
Although a basic understanding of the chemical and biological events leading to idiosyncratic drug toxicity is still lacking, it appears that drug-independent risk factors that increase reactive metabolite formation or alter cellular stress and immune response may be critical determinants in the response to an otherwise non-toxic drug. Thus, we were interested to determine the impact of various drug-independent stress factors - lipopolysaccharide (LPS), poly I:C (PIC) or glutathione depletion via buthionine sulfoximine (BSO) - on the toxicity of diclofenac (Dcl), a model drug associated with rare but significant cases of serious hepatotoxicity, and to understand if enhanced toxicity occurs through alterations of drug metabolism and/or modulation of stress response pathways. Co-treatment of rats repeatedly given therapeutic doses of Dcl for 7 days with a single dose of LPS 2h before the last Dcl dose resulted in severe liver toxicity. Neither LPS nor diclofenac alone or in combination with PIC or BSO had such an effect. While it is thought that bioactivation to reactive Dcl acyl glucuronides (AG) and subsequent protein adduct formation contribute to Dcl induced liver injury, LC-MS/MS analyses did not reveal increased formation of 4'- and 5-hydroxy-Dcl, Dcl-AG or Dcl-AG dependent protein adducts in animals treated with LPS/Dcl. Hepatic gene expression analysis suggested enhanced activation of NFκB and MAPK pathways and up-regulation of co-stimulatory molecules (IL-1β, TNF-α, CINC-1) by LPS/Dcl and PIC/Dcl, while protective factors (HSPs, SOD2) were down-regulated. LPS/Dcl led to extensive release of pro-inflammatory cytokines (IL-1β, IL-6, IFN-γ, TNF-α) and factors thought to constitute danger signals (HMGB1, CINC-1) into plasma. Taken together, our results show that Dcl enhanced the inflammatory response induced by LPS - and to a lesser extent by PIC - through up-regulation of pro-inflammatory molecules and down-regulation of protective factors. This suggests sensitization of cells to cellular stress mediated by non-drug-related risk factors by therapeutic doses of Dcl, rather than potentiation of Dcl toxicity by the stress factors.
Collapse
Affiliation(s)
- Susanne Ramm
- Department of Toxicology, University of Würzburg, Germany
| | | |
Collapse
|
20
|
Waring MJ, Birch AM, Birtles S, Buckett LK, Butlin RJ, Campbell L, Gutierrez PM, Kemmitt PD, Leach AG, MacFaul PA, O'Donnell C, Turnbull AV. Optimisation of biphenyl acetic acid inhibitors of diacylglycerol acetyl transferase 1 – the discovery of AZD2353. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20190a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Focus on ligand efficiency, ligand lipophilicity efficiency, and conformational restriction led to the discovery of AZD2353.
Collapse
Affiliation(s)
- Michael J. Waring
- Cardiovascular and Gastrointestinal Innovative Medicines Unit
- AstraZeneca R&D
- Cheshire
- UK
| | - Alan M. Birch
- Cardiovascular and Gastrointestinal Innovative Medicines Unit
- AstraZeneca R&D
- Cheshire
- UK
| | - Susan Birtles
- Cardiovascular and Gastrointestinal Innovative Medicines Unit
- AstraZeneca R&D
- Cheshire
- UK
| | - Linda K. Buckett
- Cardiovascular and Gastrointestinal Innovative Medicines Unit
- AstraZeneca R&D
- Cheshire
- UK
| | - Roger J. Butlin
- Cardiovascular and Gastrointestinal Innovative Medicines Unit
- AstraZeneca R&D
- Cheshire
- UK
| | - Leonie Campbell
- Cardiovascular and Gastrointestinal Innovative Medicines Unit
- AstraZeneca R&D
- Cheshire
- UK
| | | | - Paul D. Kemmitt
- Cardiovascular and Gastrointestinal Innovative Medicines Unit
- AstraZeneca R&D
- Cheshire
- UK
| | - Andrew G. Leach
- Cardiovascular and Gastrointestinal Innovative Medicines Unit
- AstraZeneca R&D
- Cheshire
- UK
| | - Philip A. MacFaul
- Cardiovascular and Gastrointestinal Innovative Medicines Unit
- AstraZeneca R&D
- Cheshire
- UK
| | - Charles O'Donnell
- Cardiovascular and Gastrointestinal Innovative Medicines Unit
- AstraZeneca R&D
- Cheshire
- UK
| | - Andrew V. Turnbull
- Cardiovascular and Gastrointestinal Innovative Medicines Unit
- AstraZeneca R&D
- Cheshire
- UK
| |
Collapse
|
21
|
Stachulski AV, Baillie TA, Kevin Park B, Scott Obach R, Dalvie DK, Williams DP, Srivastava A, Regan SL, Antoine DJ, Goldring CEP, Chia AJL, Kitteringham NR, Randle LE, Callan H, Castrejon JL, Farrell J, Naisbitt DJ, Lennard MS. The Generation, Detection, and Effects of Reactive Drug Metabolites. Med Res Rev 2012; 33:985-1080. [DOI: 10.1002/med.21273] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew V. Stachulski
- Department of Chemistry, Robert Robinson Laboratories; University of Liverpool; Liverpool; L69 7ZD; UK
| | - Thomas A. Baillie
- School of Pharmacy; University of Washington; Box 357631; Seattle; Washington; 98195-7631
| | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - R. Scott Obach
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; Groton; Connecticut 06340
| | - Deepak K. Dalvie
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; La Jolla; California 94121
| | - Dominic P. Williams
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Abhishek Srivastava
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Sophie L. Regan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Daniel J. Antoine
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Christopher E. P. Goldring
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Alvin J. L. Chia
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Neil R. Kitteringham
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Laura E. Randle
- School of Pharmacy and Biomolecular Sciences, Faculty of Science; Liverpool John Moores University; James Parsons Building, Byrom Street; Liverpool L3 3AF; UK
| | - Hayley Callan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - J. Luis Castrejon
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - John Farrell
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Martin S. Lennard
- Academic Unit of Medical Education; University of Sheffield; 85 Wilkinson Street; Sheffield S10 2GJ; UK
| |
Collapse
|
22
|
Assessment of reactive metabolites in drug-induced liver injury. Arch Pharm Res 2011; 34:1879-86. [PMID: 22139687 DOI: 10.1007/s12272-011-1108-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/05/2011] [Accepted: 09/05/2011] [Indexed: 10/14/2022]
Abstract
The aim of the current review is to summarize present methods used for the determination of reactive metabolites, which can predict drug-induced liver injury (DILI) in drug discovery and development. DILI is one of the most frequent reasons for the withdrawal of an approved drug from the market, and it accounts for up to 50% of acute liver failure cases. This review is structured into three sections. The first section is a general overview of the relationship between drug metabolism and liver injury. The second section introduces in vitro methods for the assessment of reactive metabolites for drug discovery and development. In the third section, limitations and future directions for the development of methods for predicting DILI are described.
Collapse
|
23
|
In silico prediction of acyl glucuronide reactivity. J Comput Aided Mol Des 2011; 25:997-1005. [DOI: 10.1007/s10822-011-9479-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/12/2011] [Indexed: 11/26/2022]
|
24
|
Regan SL, Maggs JL, Hammond TG, Lambert C, Williams DP, Park BK. Acyl glucuronides: the good, the bad and the ugly. Biopharm Drug Dispos 2011; 31:367-95. [PMID: 20830700 DOI: 10.1002/bdd.720] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acyl glucuronidation is the major metabolic conjugation reaction of most carboxylic acid drugs in mammals. The physiological consequences of this biotransformation have been investigated incompletely but include effects on drug metabolism, protein binding, distribution and clearance that impact upon pharmacological and toxicological outcomes. In marked contrast, the exceptional but widely disparate chemical reactivity of acyl glucuronides has attracted far greater attention. Specifically, the complex transacylation and glycation reactions with proteins have provoked much inconclusive debate over the safety of drugs metabolised to acyl glucuronides. It has been hypothesised that these covalent modifications could initiate idiosyncratic adverse drug reactions. However, despite a large body of in vitro data on the reactions of acyl glucuronides with protein, evidence for adduct formation from acyl glucuronides in vivo is limited and potentially ambiguous. The causal connection of protein adduction to adverse drug reactions remains uncertain. This review has assessed the intrinsic reactivity, metabolic stability and pharmacokinetic properties of acyl glucuronides in the context of physiological, pharmacological and toxicological perspectives. Although numerous experiments have characterised the reactions of acyl glucuronides with proteins, these might be attenuated substantially in vivo by rapid clearance of the conjugates. Consequently, to delineate a relationship between acyl glucuronide formation and toxicological phenomena, detailed pharmacokinetic analysis of systemic exposure to the acyl glucuronide should be undertaken adjacent to determining protein adduct concentrations in vivo. Further investigation is required to ascertain whether acyl glucuronide clearance is sufficient to prevent covalent modification of endogenous proteins and consequentially a potential immunological response.
Collapse
Affiliation(s)
- Sophie L Regan
- MRC Centre for Drug Safety Science, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3GE, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Sawamura R, Okudaira N, Watanabe K, Murai T, Kobayashi Y, Tachibana M, Ohnuki T, Masuda K, Honma H, Kurihara A, Okazaki O. Predictability of Idiosyncratic Drug Toxicity Risk for Carboxylic Acid-Containing Drugs Based on the Chemical Stability of Acyl Glucuronide. Drug Metab Dispos 2010; 38:1857-64. [DOI: 10.1124/dmd.110.034173] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
26
|
Johnson CH, Karlsson E, Sarda S, Iddon L, Iqbal M, Meng X, Harding JR, Stachulski AV, Nicholson JK, Wilson ID, Lindon JC. Integrated HPLC-MS and (1)H-NMR spectroscopic studies on acyl migration reaction kinetics of model drug ester glucuronides. Xenobiotica 2010; 40:9-23. [PMID: 19919325 DOI: 10.3109/00498250903348720] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acyl glucuronides (AGs) are common, chemically reactive metabolites of acidic xenobiotics. Concerns about the potential of this class of conjugate to cause toxicity in man require efficient methods for the determination of reactivity, and this is commonly done by measuring transacylation kinetics. High-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) spectroscopy were applied to the kinetic analysis of AG isomerization and hydrolysis for the 1-beta-O-AGs of ibufenac, (R)- and (S)-ibuprofen, and an alpha,alpha-dimethylated ibuprofen analogue. Each AG was incubated in either aqueous buffer at pH 7.4 or human plasma at 37 degrees C. Aliquots of these samples, taken throughout the reaction time course, were analysed by HPLC-MS and (1)H-NMR spectroscopy and the results compared. For identification of the AGs incubated in pH 7.4 buffer and for analysis of kinetic rates, (1)H-NMR spectroscopy generally gave the most complete set of data, but for human plasma the use of (1)H-NMR spectroscopy was impractical and HPLC-MS was more suitable. HPLC-MS was more sensitive than (1)H-NMR spectroscopy, but the lack of suitable stable-isotope labelled internal standards, together with differences in response between glucuronides and aglycones, made quantification problematic. Using HPLC-MS a specific 1-beta-O-AG-related ion at m/z 193 (the glucuronate fragment) was noted enabling selective determination of these isomers. In buffer, transacylation reactions predominated, with relatively little hydrolysis to the free aglycone observed. In human plasma incubations the observed rates of reaction were much faster than for buffer, and hydrolysis to the free aglycone was the major route. These results illustrate the strengths and weaknesses of each analytical approach for this class of analyte.
Collapse
Affiliation(s)
- C H Johnson
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Miura M, Hori W, Kasahara Y, Nakagawa I. Quantitative assessment of the metabolic activation of alicyclic amines via aldehyde. J Pharmacol Toxicol Methods 2010; 61:44-51. [DOI: 10.1016/j.vascn.2009.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/30/2009] [Accepted: 10/30/2009] [Indexed: 11/27/2022]
|
28
|
Baba A, Yoshioka T. Structure−Activity Relationships for the Degradation Reaction of 1-β-O-Acyl Glucuronides. Part 3: Electronic and Steric Descriptors Predicting the Reactivity of Aralkyl Carboxylic Acid 1-β-O-Acyl Glucuronides. Chem Res Toxicol 2009; 22:1998-2008. [DOI: 10.1021/tx9002963] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Akiko Baba
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Tadao Yoshioka
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| |
Collapse
|
29
|
Yoshioka T, Baba A. Structure−Activity Relationships for the Degradation Reaction of 1-β-O-Acyl Glucuronides. Part 2: Electronic and Steric Descriptors Predicting the Reactivity of 1-β-O-Acyl Glucuronides Derived from Benzoic Acids. Chem Res Toxicol 2009; 22:1559-69. [DOI: 10.1021/tx900092z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tadao Yoshioka
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Akiko Baba
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| |
Collapse
|
30
|
MacDonald JS, Robertson RT. Toxicity Testing in the 21st Century: A View from the Pharmaceutical Industry. Toxicol Sci 2009; 110:40-6. [DOI: 10.1093/toxsci/kfp088] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Baba A, Yoshioka T. Structure−Activity Relationships for Degradation Reaction of 1-β-O-Acyl Glucuronides: Kinetic Description and Prediction of Intrinsic Electrophilic Reactivity under Physiological Conditions. Chem Res Toxicol 2008; 22:158-72. [DOI: 10.1021/tx800292m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Akiko Baba
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, 047-0264, Hokkaido, Japan
| | - Tadao Yoshioka
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, 047-0264, Hokkaido, Japan
| |
Collapse
|
32
|
Skonberg C, Olsen J, Madsen KG, Hansen SH, Grillo MP. Metabolic activation of carboxylic acids. Expert Opin Drug Metab Toxicol 2008; 4:425-38. [PMID: 18433345 DOI: 10.1517/17425255.4.4.425] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Carboxylic acids constitute a large and heterogeneous class of both endogenous and xenobiotic compounds. A number of carboxylic acid drugs have been associated with adverse reactions, linked to the metabolic activation of the carboxylic acid moiety of the compounds, i.e., formation of acyl-glucuronides and acyl-CoA thioesters. OBJECTIVE The objective is to give an overview of the current knowledge on metabolic activation of carboxylic acids and how such metabolites may play a role in adverse reactions and toxicity. METHODS Literature concerning the formation and disposition of acyl glucuronides and acyl-CoA thioesters was searched. Also included were papers on the chemical reactivity of acyl glutathione-thioesters, and literature concerning possible links between metabolic activation of carboxylic acids and reported cellular and clinical effects. RESULTS/CONCLUSION This review demonstrates that metabolites of carboxylic acid drugs must be considered chemically reactive, and that the current knowledge about metabolic activation of this compound class can be a good starting-point for further studies on the consequences of chemically reactive metabolites.
Collapse
Affiliation(s)
- Christian Skonberg
- University of Copenhagen, Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
33
|
Noort D, van Zuylen A, Fidder A, van Ommen B, Hulst AG. Protein adduct formation by glucuronide metabolites of permethrin. Chem Res Toxicol 2008; 21:1396-406. [PMID: 18549292 DOI: 10.1021/tx8000362] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biomonitoring of exposure to the insecticide permethrin is usually performed by analysis of its urinary metabolites 3-phenoxybenzoic acid (3-PBA) or cis/ trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (Cl 2 CA). We are engaged in the development of a methodology to assess the cumulative internal dose of exposure to permethrin, which is based on the assumption that (reactive) glucuronide conjugates of the major permethrin metabolites 3-PBA and Cl 2 CA will form persistent (weeks to months) adducts to proteins, in analogy with the glucuronide conjugates of structurally related drugs. The 3-PBA and Cl 2 CA beta-glucuronide metabolites of permethrin have been successfully chemically and enzymatically synthesized. Their identities have been assessed by means of (1)H NMR spectroscopy and liquid chromatography-tandem mass spectrometry. The reactivity of these metabolites with various amino acids, peptides, and albumin in human plasma has been studied. Several distinct adducts could be identified by liquid chromatography-tandem mass spectrometry. After pronase digestion of albumin isolated from exposed human plasma, various lysine derivatives resulted with favorable mass spectrometric and chromatographic properties. Covalent binding was quantified by using [(14)C]-3-PBA glucuronide; >1.5% of total radioactivity was bound to proteins. It is envisaged that the obtained results can form a firm basis for the development of a protein adduct-based methodology for biomonitoring exposure to permethrin. In view of the widespread use of permethrin, the toxicological relevance of protein binding by its metabolites will be addressed in more detail in future work.
Collapse
Affiliation(s)
- D Noort
- TNO Defense, Security and Safety, P.O. Box 45, 2280 AA Rijswijk, The Netherlands.
| | | | | | | | | |
Collapse
|
34
|
Meng X, Maggs JL, Pryde DC, Planken S, Jenkins RE, Peakman TM, Beaumont K, Kohl C, Park BK, Stachulski AV. Cyclization of the acyl glucuronide metabolite of a neutral endopeptidase inhibitor to an electrophilic glutarimide: synthesis, reactivity, and mechanistic analysis. J Med Chem 2007; 50:6165-76. [PMID: 17985860 DOI: 10.1021/jm0706766] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neutral endopeptidase inhibitor (2R)-2-[(1-{[(5-ethyl-1,3,4-thiadiazol-2-yl)amino]carbonyl}cyclopentyl)methyl]pentanoic acid 2 is metabolized to acyl glucuronide 3. Unprecedentedly, at pH 7.4, 3 does not undergo the O-acyl migration characteristic of acyl glucuronides but rapid, eliminative cyclization (t1/2 at 37 degrees C, 10.2 min) to glutarimide 4. Glucuronide 3 was synthesized efficiently via acylation of benzylglucuronate with N-benzyloxymethyl-protected 2. Glucuronide and imide reacted rapidly in aqueous solution, pH 7.4, with amino acids and glutathione to form stable amides and unstable thioesters. Imide 4 acylated eight lysine Nepsilon-amino groups of human serum albumin. Rapid cyclization of 3 was attributed to attack on the ester linkage by an unusually nucleophilic glutaramide NH (pKa in 2 = 9.76). N-propyl 3 was refractory to acyl migration and cyclization. This suggested a synthetic strategy for preparing analogues of 2 that form chemically stable acyl glucuronides.
Collapse
Affiliation(s)
- Xiaoli Meng
- The Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kalgutkar AS, Driscoll J, Zhao SX, Walker GS, Shepard RM, Soglia JR, Atherton J, Yu L, Mutlib AE, Munchhof MJ, Reiter LA, Jones CS, Doty JL, Trevena KA, Shaffer CL, Ripp SL. A Rational Chemical Intervention Strategy To Circumvent Bioactivation Liabilities Associated with a Nonpeptidyl Thrombopoietin Receptor Agonist Containing a 2-Amino-4-arylthiazole Motif. Chem Res Toxicol 2007; 20:1954-65. [DOI: 10.1021/tx700270r] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amit S. Kalgutkar
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - James Driscoll
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - Sabrina X. Zhao
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - Gregory S. Walker
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - Richard M. Shepard
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - John R. Soglia
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - James Atherton
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - Linning Yu
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - Abdul E. Mutlib
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - Michael J. Munchhof
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - Lawrence A. Reiter
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - Christopher S. Jones
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - Johnathan L. Doty
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - Kristen A. Trevena
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - Christopher L. Shaffer
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| | - Sharon L. Ripp
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, and Ann Arbor, Michigan 48105
| |
Collapse
|
36
|
Hewitt NJ, Lechón MJG, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg C, Guillouzo A, Tuschl G, Li AP, LeCluyse E, Groothuis GMM, Hengstler JG. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 2007; 39:159-234. [PMID: 17364884 DOI: 10.1080/03602530601093489] [Citation(s) in RCA: 533] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review brings you up-to-date with the hepatocyte research on: 1) in vitro-in vivo correlations of metabolism and clearance; 2) CYP enzyme induction, regulation, and cross-talk using human hepatocytes and hepatocyte-like cell lines; 3) the function and regulation of hepatic transporters and models used to elucidate their role in drug clearance; 4) mechanisms and examples of idiosyncratic and intrinsic hepatotoxicity; and 5) alternative cell systems to primary human hepatocytes. We also report pharmaceutical perspectives of these topics and compare methods and interpretations for the drug development process.
Collapse
Affiliation(s)
- Nicola J Hewitt
- Scientific Writing Services, Wingertstrasse, Erzhausen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Williams DP, Antoine DJ, Butler PJ, Jones R, Randle L, Payne A, Howard M, Gardner I, Blagg J, Park BK. The Metabolism and Toxicity of Furosemide in the Wistar Rat and CD-1 Mouse: a Chemical and Biochemical Definition of the Toxicophore. J Pharmacol Exp Ther 2007; 322:1208-20. [PMID: 17556636 DOI: 10.1124/jpet.107.125302] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Furosemide, a loop diuretic, causes hepatic necrosis in mice. Previous evidence suggested hepatotoxicity arises from metabolic bioactivation to a chemically reactive metabolite that binds to hepatic proteins. To define the nature of the toxic metabolite, we examined the relationship between furosemide metabolism in CD-1 mice and Wistar rats. Furosemide (1.21 mmol/kg) was shown to cause toxicity in mice, but not rats, at 24 h, without resulting in glutathione depletion. In vivo covalent binding to hepatic protein was 6-fold higher in the mouse (1.57 +/- 0.98 nmol equivalent bound/mg protein) than rat (0.26 +/- 0.13 nmol equivalent bound/mg protein). In vivo covalent binding to mouse hepatic protein was reduced 14-fold by a predose of the cytochrome P450 (P450) inhibitor, 1-aminobenzotriazole (ABT; 0.11 +/- 0.04 nmol equivalent bound/mg protein), which also reduced hepatotoxicity. Administration of [(14)C]furosemide to bile duct-cannulated rats demonstrated turnover to glutathione conjugate (8.8 +/- 2.8%), gamma-ketocarboxylic acid metabolite (22.1 +/- 3.3%), N-dealkylated metabolite (21.1 +/- 2.9%), and furosemide glucuronide (12.8 +/- 1.8%). Furosemide-glutathione conjugate was not observed in bile from mice dosed with [(14)C]furosemide. The novel gamma-ketocarboxylic acid, identified by nuclear magnetic resonance spectroscopy, indicates bioactivation of the furan ring. Formation of gamma-ketocarboxylic acid was P450-dependent. In mouse liver microsomes, a gamma-ketoenal furosemide metabolite was trapped, forming an N-acetylcysteine/N-acetyl lysine furosemide adduct. Furosemide (1 mM, 6 h) became irreversibly bound to primary mouse and rat hepatocytes, 0.73 +/- 0.1 and 2.44 +/- 0.3 nmol equivalent bound/mg protein, respectively, which was significantly reduced in the presence of ABT, 0.11 +/- 0.03 and 0.21 +/- 0.1 nmol equivalent bound/mg protein, respectively. Furan rings are part of new chemical entities, and mechanisms underlying species differences in toxicity are important to understand to decrease the drug attrition rate.
Collapse
Affiliation(s)
- Dominic P Williams
- Drug Safety Research Group, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool, Merseyside L69 3GE, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lévesque JF, Day SH, Chauret N, Seto C, Trimble L, Bateman KP, Silva JM, Berthelette C, Lachance N, Boyd M, Li L, Sturino CF, Wang Z, Zamboni R, Young RN, Nicoll-Griffith DA. Metabolic activation of indole-containing prostaglandin D2 receptor 1 antagonists: Impacts of glutathione trapping and glucuronide conjugation on covalent binding. Bioorg Med Chem Lett 2007; 17:3038-43. [PMID: 17418572 DOI: 10.1016/j.bmcl.2007.03.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 11/21/2022]
Abstract
Some DP1 receptor antagonists from an indole-containing series were shown to cause in vitro covalent binding to protein in rat and human liver microsomes. Glutathione trapping experiments along with in vitro labeling assays confirmed that the presence of a strong electron withdrawing group was necessary to abrogate in vitro covalent binding, leading to the discovery of MK-0524. Hepatocyte incubations and in vivo studies showed that acyl-glucuronide formation did not translate into covalent binding.
Collapse
Affiliation(s)
- Jean-François Lévesque
- Department of Medicinal Chemistry, Merck Frosst Canada Ltd, 16711 Transcanada Hwy., Kirkland, Qué., Canada H9H 3L1.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bar-Or D, Rael LT, Bar-Or R, Thomas GW, Slone DS, Melamed I, Craun ML. Severe systemic immune response syndrome, low plasma paraoxonase activity, and a new albumin species in a traumatized patient with Gaucher's disease. Clin Chim Acta 2006; 374:135-9. [PMID: 16839535 DOI: 10.1016/j.cca.2006.05.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Gaucher's disease (GD) is an inborn error, autosomal recessive lysosomal lipid storage disorder characterized by the lack of the enzyme glucocerebrosidase. We observed some abnormalities in the plasma of a traumatized patient with GD. CASE REPORT We report of a traumatized patient with GD that developed a severe systemic immune response during the course of an extended hospital stay. Plasma paraoxonase (PON) activity was assayed and found to be extremely low possibly due to the existence of GD in this particular patient. Also, a potentially novel post-translational modification (PTM) of albumin was noticed in the patient's plasma that coincided with enzyme replacement therapy (ERT) with Cerezyme. CONCLUSIONS The decreased plasma PON activity measured might be a contributive factor in the development of an accentuated systemic immune response in a traumatized patient with GD. A modified albumin species could serve as a biomarker for ERT in Gaucher patients.
Collapse
Affiliation(s)
- David Bar-Or
- Swedish Medical Center, Trauma Research Laboratory, Englewood, CO 80113, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Ma S, Subramanian R. Detecting and characterizing reactive metabolites by liquid chromatography/tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1121-39. [PMID: 16967439 DOI: 10.1002/jms.1098] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Metabolic activation of a drug leading to reactive metabolite(s) that can covalently modify proteins is considered an initial step that may lead to drug-induced organ toxicities. Characterization of reactive metabolites is critical to designing new drug candidates with an improved toxicological profile. High performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) predominates over all analytical tools used for screening and characterization of reactive metabolites. In this review, a brief description of experimental approaches employed for assessing reactive metabolites is followed by a discussion on the reactivity of acyl glucuronides and acyl coenzyme A thioesters. Techniques for high-throughput screening and quantitation of reactive metabolite formation are also described, along with proteomic approaches used to identify protein targets and modification sites by reactive metabolites. Strategies for dealing with reactive metabolites are reviewed. In conclusion, we discuss the challenges and future needs in this field of research.
Collapse
Affiliation(s)
- Shuguang Ma
- Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | |
Collapse
|
41
|
Chen Z, Holt TG, Pivnichny JV, Leung K. A simple in vitro model to study the stability of acylglucuronides. J Pharmacol Toxicol Methods 2006; 55:91-5. [PMID: 16713308 DOI: 10.1016/j.vascn.2006.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Compounds containing the carboxylic functional group (e.g. non-steroidal anti-inflammatory drugs) can be metabolized to form acylglucuronides. Acylglucuronides are intrinsically reactive metabolites capable of undergoing hydrolysis, intra-molecular rearrangement, and formation of covalent adducts with proteins, which may generate potential toxicity. The purpose of this study is to develop an in vitro screening model to assess degradation kinetics of acylglucuronides. METHOD Zomepirac, ibuprofen, gemfibrozil, and compounds A, B, C, and D were incubated in the presence of rat microsomal protein and uridine 5'-diphosphoglucuronic acid (UDPGA), followed by addition of human plasma to evaluate degradation kinetics of the acylglucuronides. As a comparison, authentic acylglucuronide standards of zomepirac, ibuprofen, gemfibrozil, and compounds A, B, C, and D were chemically synthesized and were evaluated for degradation kinetics. RESULTS The results demonstrate that degradation half-life values of acylglucuronides of zomepirac, ibuprofen, gemfibrozil, and compounds A, B, C, and D determined by the in vitro formation/degradation model were in the same rank-order with those of the authentic acylglucuronide standards. DISCUSSION For the seven compounds tested, the model placed the stability of the acylglucuronides formed in vitro in a rank-order consistent with authentic acylglucuronide standards. The method allows for a rapid assessment of the stability of acylglucuronides.
Collapse
Affiliation(s)
- Zhesheng Chen
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065-0900, USA.
| | | | | | | |
Collapse
|
42
|
Baba A, Yoshioka T. Synthesis of 1-β-O-acyl glucuronides of diclofenac, mefenamic acid and (S)-naproxen by the chemo-selective enzymatic removal of protecting groups from the corresponding methyl acetyl derivatives. Org Biomol Chem 2006; 4:3303-10. [PMID: 17036119 DOI: 10.1039/b608755h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a straightforward chemo-enzymatic procedure, 1-beta-O-acyl glucuronides of three non-steroidal anti-inflammatory drugs, diclofenac (DF) 5, mefenamic acid (MF) 6 and (S)-naproxen (NP) 7, were prepared. Caesium salts of these carboxylic acid drugs reacted with commercially available methyl 2,3,4-tri-O-acetyl-1-bromo-1-deoxy-alpha-D-glucopyranuronate 4 to give exclusively the corresponding 1-beta-O-acyl glucuronides 8-10 in moderate yields. The protecting acetyl (for -OH group) and methyl ester (for -CO2H group) groups of each sugar moiety were easily removed to provide the corresponding free 1-beta-O-acyl glucuronides 1-3 in high yields. Deprotection was achieved through effective enzyme-catalysed chemo-selective hydrolyses of the acetyl groups using lipase AS Amano (LAS), and of the methyl ester group using esterase from porcine liver (PLE).
Collapse
Affiliation(s)
- Akiko Baba
- Department of Pharmacy, Hokkaido Pharmaceutical University School of Pharmacy, Otaru, 047-0264, Hokkaido, Japan
| | | |
Collapse
|
43
|
Chen Q, Doss GA, Tung EC, Liu W, Tang YS, Braun MP, Didolkar V, Strauss JR, Wang RW, Stearns RA, Evans DC, Baillie TA, Tang W. Evidence for the bioactivation of zomepirac and tolmetin by an oxidative pathway: identification of glutathione adducts in vitro in human liver microsomes and in vivo in rats. Drug Metab Dispos 2005; 34:145-51. [PMID: 16251255 DOI: 10.1124/dmd.105.004341] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although zomepirac (ZP) and tolmetin (TM) induce anaphylactic reactions and form reactive acyl glucuronides, a direct link between the two events remains obscure. We report herein that, in addition to acyl glucuronidation, both drugs are subject to oxidative bioactivation. Following incubations of ZP with human liver microsomes fortified with NADPH and glutathione (GSH), a metabolite with an MH+ ion at m/z 597 was detected by LC/MS/MS. On the basis of collision-induced dissociation and NMR evidence, the structure of this metabolite was determined to be 5-[4'-chlorobenzoyl]-1,4-dimethyl-3-glutathionylpyrrole-2-acetic acid (ZP-SG), suggesting that the pyrrole moiety of ZP had undergone oxidation to an epoxide intermediate, followed by addition of GSH and loss of the elements of H2O to yield the observed conjugate. The oxidative bioactivation of ZP most likely is catalyzed by cytochrome P450 (P450) 3A4, since the formation of ZP-SG was reduced to approximately 10% of control values following pretreatment of human liver microsomes with ketoconazole or with an inhibitory anti-P450 3A4 IgG. A similar GSH adduct, namely 5-[4'-methylbenzoyl]-1-methyl-3-glutathionylpyrrole-2-acetic acid (TM-SG), was identified when TM was incubated with human liver microsomal preparations. The relevance of these in vitro findings to the in vivo situation was established through the detection of the same thiol adducts in rats treated with ZP and TM, respectively. Taken together, these data suggest that, in addition to the formation of acyl glucuronides, oxidative metabolism of ZP and TM affords reactive species that may haptenize proteins and thereby contribute to the drug-mediated anaphylactic reactions.
Collapse
Affiliation(s)
- Qing Chen
- Department of Drug Metabolism, Merck Research Laboratories, Rahway, NJ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang XX, Hu ZP, Chan SY, Zhou SF. Monitoring drug-protein interaction. Clin Chim Acta 2005; 365:9-29. [PMID: 16199025 DOI: 10.1016/j.cca.2005.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 08/16/2005] [Accepted: 08/23/2005] [Indexed: 11/25/2022]
Abstract
A variety of therapeutic drugs can undergo biotransformation via Phase I and Phase II enzymes to reactive metabolites that have intrinsic chemical reactivity toward proteins and cause potential organ toxicity. A drug-protein adduct is a protein complex that forms when electrophilic drugs or their reactive metabolite(s) covalently bind to a protein molecule. Formation of such drug-protein adducts eliciting cellular damages and immune responses has been a major hypothesis for the mechanism of toxicity caused by numerous drugs. The monitoring of protein-drug adducts is important in the kinetic and mechanistic studies of drug-protein adducts and establishment of dose-toxicity relationships. The determination of drug-protein adducts can also provide supportive evidence for diagnosis of drug-induced diseases associated with protein-drug adduct formation in patients. The plasma is the most commonly used matrix for monitoring drug-protein adducts due to its convenience and safety. Measurement of circulating antibodies against drug-protein adducts may be used as a useful surrogate marker in the monitoring of drug-protein adducts. The determination of plasma protein adducts and/or relevant antibodies following administration of several drugs including acetaminophen, dapsone, diclofenac and halothane has been conducted in clinical settings for characterizing drug toxicity associated with drug-protein adduct formation. The monitoring of drug-protein adducts often involves multi-step laboratory procedure including sample collection and preliminary preparation, separation to isolate or extract the target compound from a mixture, identification and determination. However, the monitoring of drug-protein adducts is often difficult because of short half-lives of the protein adducts, sampling problem and lack of sensitive analytical techniques for the protein adducts. Currently, chromatographic (e.g. high performance liquid chromatography) and immunological methods (e.g. enzyme-linked immunosorbent assay) are two major techniques used to determine protein adducts of drugs in patients. The present review highlights the importance for clinical monitoring of drug-protein adducts, with an emphasis on methodology and with a further discussion of the application of these techniques to individual drugs and their target proteins.
Collapse
Affiliation(s)
- Xiao-Xia Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
45
|
Kalgutkar AS, Soglia JR. Minimising the potential for metabolic activation in drug discovery. Expert Opin Drug Metab Toxicol 2005; 1:91-142. [PMID: 16922655 DOI: 10.1517/17425255.1.1.91] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Investigations into the role of bioactivation in the pathogenesis of xenobiotic-induced toxicity have been a major area of research since the link between reactive metabolites and carcinogenesis was first reported in the 1930s. Circumstantial evidence suggests that bioactivation of relatively inert functional groups to reactive metabolites may contribute towards certain drug-induced adverse reactions. Reactive metabolites, if not detoxified, can covalently modify essential cellular targets. The identity of the susceptible biomacromolecule(s), and the physiological consequence of its covalent modification, will dictate the resulting toxicological response (e.g., covalent modification of DNA by reactive intermediates derived from procarcinogens that potentially leads to carcinogenesis). The formation of drug-protein adducts often carries a potential risk of clinical toxicities that may not be predicted from preclinical safety studies. Animal models used to reliably predict idiosyncratic drug toxicity are unavailable at present. Furthermore, considering that the frequency of occurrence of idiosyncratic adverse drug reactions (IADRs) is fairly rare (1 in 1000 to 1 in 10,000), it is impossible to detect such phenomena in early clinical trials. Thus, the occurrence of IADRs during late clinical trials or after a drug has been released can lead to an unanticipated restriction in its use and even in its withdrawal. Major themes explored in this review include a comprehensive cataloguing of bioactivation pathways of functional groups commonly utilised in drug design efforts with appropriate strategies towards detection of corresponding reactive intermediates. Several instances wherein replacement of putative structural alerts in drugs associated with IADRs with a latent functionality eliminates the underlying liability are also presented. Examples of where bioactivation phenomenon in drug candidates can be successfully abrogated via iterative chemical interventions are also discussed. Finally, appropriate strategies that aid in potentially mitigating the risk of IADRs are explored, especially in circumstances in which the structural alert is also responsible for the primary pharmacology of the drug candidate and cannot be replaced.
Collapse
Affiliation(s)
- Amit S Kalgutkar
- Pfizer Global Research & Development, Pharmacokinetics, Dynamics and Metabolism Department, Groton, CT 06340, USA.
| | | |
Collapse
|
46
|
Zhou S, Chan E, Duan W, Huang M, Chen YZ. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 2005; 37:41-213. [PMID: 15747500 DOI: 10.1081/dmr-200028812] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients. Further studies using proteomic and genomic approaches with high throughput capacity are needed to identify the protein targets of reactive drug metabolites, and to elucidate the structure-activity relationships of drug's covalent binding to proteins and their clinical outcomes.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
47
|
Kenny JR, Maggs JL, Meng X, Sinnott D, Clarke SE, Park BK, Stachulski AV. Syntheses and Characterization of the Acyl Glucuronide and Hydroxy Metabolites of Diclofenac. J Med Chem 2004; 47:2816-25. [PMID: 15139759 DOI: 10.1021/jm030891w] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In humans, metabolism of the commonly used nonsteroidal antiinflammatory drug diclofenac 1 yields principally the 4'-hydroxy 2, 5-hydroxy 3, and acyl glucuronide 4 metabolites. All three metabolites have been implicated in rare idiosyncratic adverse reactions associated with this widely used drug. Therefore, for mechanistic toxicological studies of 1, substantial quantities of 2-4 are required and their syntheses and characterization are described here. Key steps were a convenient two-step preparation of aniline 5 from phenol, efficient and selective 6-iodination of amide 18, and high-yielding Ullmann couplings to generate diarylamines 11 and 21. The acyl glucuronide 4 was obtained by Mitsunobu reaction of 1 (free acid) with allyl glucuronate 23 followed by Pd(0) deprotection, using a modification of a published procedure. We report full characterization of 4 and note that this important metabolite has been made available pure and in quantity for the first time. We report also the metabolic fates of the synthetic metabolites: 2 and 3 were glucuronidated in rats, but only 3 formed glutathione adducts in vivo and by enzymatic synthesis via a quinoneimine intermediate. A previously undescribed glutathione adduct of 3 was obtained by enzymatic synthesis. Compound 4 formed an imine-linked protein conjugate as evinced by sodium cyanoborohydride trapping.
Collapse
Affiliation(s)
- Jane R Kenny
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhou S. Separation and detection methods for covalent drug–protein adducts. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 797:63-90. [PMID: 14630144 DOI: 10.1016/s1570-0232(03)00399-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Covalent binding of reactive metabolites of drugs to proteins has been a predominant hypothesis for the mechanism of toxicity caused by numerous drugs. The development of efficient and sensitive analytical methods for the separation, identification, quantification of drug-protein adducts have important clinical and toxicological implications. In the last few decades, continuous progress in analytical methodology has been achieved with substantial increase in the number of new, more specific and more sensitive methods for drug-protein adducts. The methods used for drug-protein adduct studies include those for separation and for subsequent detection and identification. Various chromatographic (e.g., affinity chromatography, ion-exchange chromatography, and high-performance liquid chromatography) and electrophoretic techniques [e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional SDS-PAGE, and capillary electrophoresis], used alone or in combination, offer an opportunity to purify proteins adducted by reactive drug metabolites. Conventionally, mass spectrometric (MS), nuclear magnetic resonance, and immunological and radioisotope methods are used to detect and identify protein targets for reactive drug metabolites. However, these methods are labor-intensive, and have provided very limited sequence information on the target proteins adducted, and thus the identities of the protein targets are usually unknown. Moreover, the antibody-based methods are limited by the availability, quality, and specificity of antibodies to protein adducts, which greatly hindered the identification of specific protein targets of drugs and their clinical applications. Recently, the use of powerful MS technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight) together with analytical proteomics have enabled one to separate, identify unknown protein adducts, and establish the sequence context of specific adducts by offering the opportunity to search for adducts in proteomes containing a large number of proteins with protein adducts and unmodified proteins. The present review highlights the separation and detection technologies for drug-protein adducts, with an emphasis on methodology, advantages and limitations to these techniques. Furthermore, a brief discussion of the application of these techniques to individual drugs and their target proteins will be outlined.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
49
|
O'Donnell JP, Dalvie DK, Kalgutkar AS, Obach RS. MECHANISM-BASED INACTIVATION OF HUMAN RECOMBINANT P450 2C9 BY THE NONSTEROIDAL ANTI-INFLAMMATORY DRUG SUPROFEN. Drug Metab Dispos 2003; 31:1369-77. [PMID: 14570769 DOI: 10.1124/dmd.31.11.1369] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nonsteroidal anti-inflammatory agent (+ or -)-suprofen [alpha-methyl-4-(2-thienylcarbonyl)benzeneacetic acid] was evaluated as a P450 2C9 inactivator. (+ or -)-Suprofen inactivated the diclofenac-4-hydroxylase activity of baculovirus-expressed P450 2C9 in a time- and concentration-dependent manner, which was consistent with mechanism-based inactivation. The loss of activity followed pseudo-first-order kinetics and was suprofen- and NADPH-dependent. The kinetic parameters for inactivation kinact and KI were 0.091 min-1 and 3.7 microM, respectively, and the partition ratio was 101. Although P450 2C9 substrate S-warfarin partially protected against inactivation, reactive oxygen scavengers such as superoxide dismutase and catalase did not prevent inactivation. Extensive dialysis did not regenerate enzyme activity, suggesting that inactivation proceeded via covalent modification. Inactivated P450 2C9 lost <10% of its ability to form a CO-reduced complex, suggesting that inactivation may have resulted from covalent modification of apoprotein. Addition of exogenous nucleophiles such as glutathione and semicarbazide partially protected against inactivation. Apart from the metabolism of suprofen to 5-hydroxysuprofen, the formation of a suprofen-glutathione conjugate was also discernible in microsomal mixtures containing glutathione. Time of flight mass spectrometry revealed a protonated monoisotopic mass of 566.1304 for this conjugate, consistent with an elemental composition of C24H28N3O9S2. The mass spectrum indicated that conjugation had occurred on the intact thiophene ring, presumably via a thioether linkage. Further evidence for the formation of an electrophilic intermediate in suprofen-P450 2C9 incubations was obtained via the characterization of a novel pyridazine adduct upon addition of semicarbazide to the microsomal mixtures. The pyridazine derivative had a protonated monoisotopic mass of 257.0895 that was consistent with an elemental composition of C14H13O3N2. The formation of the stable pyridazine adduct suggested the generation of an electrophilic gamma-thioketo-alpha, beta-unsaturated aldehyde, analogous to that observed during the cytochrome P450-mediated bioactivation of furan. This electrophilic alpha, beta-unsaturated aldehyde represents a possible reactive intermediate that bioalkylates P450 2C9.
Collapse
Affiliation(s)
- John P O'Donnell
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, Groton, CT 06340, USA.
| | | | | | | |
Collapse
|
50
|
Perkins EJ, Cramer JW, Farid NA, Gadberry MG, Jackson DA, Mattiuz EL, O'Bannon DD, Weiss HJ, Wheeler WJ, Wood PG, Cassidy KC. PRECLINICAL CHARACTERIZATION OF 2-[3-[3-[(5-ETHYL-4′-FLUORO-2-HYDROXY[1,1′-BIPHENYL]-4-YL)OXY]PROPOXY]-2-PROPYLPHENOXY]BENZOIC ACID METABOLISM: IN VITRO SPECIES COMPARISON AND IN VIVO DISPOSITION IN RATS. Drug Metab Dispos 2003; 31:1382-90. [PMID: 14570771 DOI: 10.1124/dmd.31.11.1382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Assessment of the pharmacokinetics of [14C]2-[3-[3-[(5-ethyl-4'-fluoro-2-hydroxy[1,1'-biphenyl]-4-yl)oxy]propoxy]-2-propylphenoxy-]benzoic acid ([14C]LY293111), an experimental anti-cancer agent, suggested long-lived circulating metabolites in rats. In vivo metabolites of LY293111 were examined in plasma, bile, urine, and feces of Fischer 344 (F344) rats after oral administration of [14C]LY293111. Metabolites were profiled by high-performance liquid chromatography-radiochromatography, and identified by liquid chromatography (LC)/mass spectrometry and LC/NMR. The major in vivo metabolites of LY293111 identified in rats were phenolic (ether), acyl, and bisglucuronides of LY293111. Measurement of radioactivity in rat plasma confirmed that a fraction of LY293111-derived material was irreversibly bound to plasma protein and that this bound fraction increased over time. This was consistent with the observed disparity in half-lives between LY293111 and total radioactivity in rats and monkeys, and is likely due to covalent modification of proteins by the acyl glucuronide. In vitro metabolism of [14C]LY293111 in liver slices from CD-1 mice, F344 rats, rhesus and cynomolgus monkeys, and humans indicates that glucuronidation was the primary metabolic pathway in all species. The acyl glucuronide was the most prevalent radioactive peak (16% of total 14C) produced by F344 rat slices, whereas the ether glucuronide was the major metabolite in all other species (26-36% of total 14C). Several minor hydroxylated metabolites were detected in F344 rat slice extracts but were not observed in other species. The data presented suggest that covalent modification of proteins by LY293111 acyl glucuronide is possible in multiple species, although the relative reactivity of this metabolite appears to be low compared with those known to cause adverse drug reactions.
Collapse
Affiliation(s)
- E J Perkins
- Lilly Research Laboratories, Indianapolis, IN, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|