1
|
Wang R, Lin Y, Sun Y, Zhao B, Chen L. Insight into the molecular recognition of human and polar bear pregnane X receptor by three organic pollutants using molecular docking and molecular dynamics simulations. ENVIRONMENT INTERNATIONAL 2024; 190:108926. [PMID: 39098090 DOI: 10.1016/j.envint.2024.108926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Pregnane X receptor (PXR) is a heterologous biosensor that is involved in the metabolic pathway of environmental pollutants, regulating the transcription of genes involved in biotransformation. There are significant differences in the selectivity and specificity of organic pollutants (OPs) toward polar bear PXR (pbPXR) and human PXR (hPXR), but the detailed dynamical characteristics of their interactions are unclear. Homology Modeling, molecular docking, molecular dynamics simulation, and free energy calculation were used to analyze the recognition of pbPXR and hPXR by three OPs: BPA, chlordane and toxaphene. Comparing interaction patterns along with binding free energy of pbPXR and hPXR with these three OPs revealed that although pbPXR and hPXR interact similar with these three OPs, these OPs have different effects on the internal dynamics of pbPXR and hPXR. This results in significant alterations in the interaction of key residues near Leu209, Met243, Phe288, Met323, and His407 with OPs, thereby influencing their binding energy. Non-polar interactions, especially van der Waals interactions, were found to be the dominating factors in interacting of these OPs with PXRs. The region surrounding these key residues facilitates hydrophobic contacts with PXR, which are crucial for the selective activation of PXRs in different species by these three OPs. These findings are of significant guidance in understanding the impacts of environmental endocrine disruptors on different organisms.
Collapse
Affiliation(s)
- Ruige Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Yaqi Lin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Ying Sun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China; Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar, 161006, China
| | - Lin Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
| |
Collapse
|
2
|
Chang X, Qu F, Li C, Zhang J, Zhang Y, Xie Y, Fan Z, Bian J, Wang J, Li Z, Xu X. Development and therapeutic potential of GSPT1 molecular glue degraders: A medicinal chemistry perspective. Med Res Rev 2024; 44:1727-1767. [PMID: 38314926 DOI: 10.1002/med.22024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Unprecedented therapeutic targeting of previously undruggable proteins has now been achieved by molecular-glue-mediated proximity-induced degradation. As a small GTPase, G1 to S phase transition 1 (GSPT1) interacts with eRF1, the translation termination factor, to facilitate the process of translation termination. Studied demonstrated that GSPT1 plays a vital role in the acute myeloid leukemia (AML) and MYC-driven lung cancer. Thus, molecular glue (MG) degraders targeting GSPT1 is a novel and promising approach for treating AML and MYC-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of GSPT1, highlighting the latest advances and challenges in MG degraders, as well as some representative patents. The structure-activity relationships, mechanism of action and pharmacokinetic features of MG degraders are emphasized to provide a comprehensive compendium on the rational design of GSPT1 MG degraders. We hope to provide an updated overview, and design guide for strategies targeting GSPT1 for the treatment of cancer.
Collapse
Affiliation(s)
- Xiujin Chang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangui Qu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunxiao Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingtian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanqing Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongpeng Fan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Boscolo Bielo L, Natangelo S, Katrini J, Trapani D, Curigliano G. A comprehensive update of hormone-related pharmacokinetic variations associated with breast cancer drugs. Expert Opin Drug Metab Toxicol 2023; 19:389-403. [PMID: 37695692 DOI: 10.1080/17425255.2023.2244870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Drugs available for the treatment of breast cancer are increasing, yielding improved oncological outcomes. The efficacy and safety of anticancer drugs significantly depend on pharmacokinetic profiles, which could be influenced by several factors, such as sex hormones. AREAS COVERED This article discusses the potential hormone-related pharmacokinetic influences on novel breast cancer pharmacotherapies. EXPERT OPINION Recently approved drugs for the treatment of breast cancer belong to different classes, each with unique pharmacokinetic profile. The impact of hormones, such as estrogen and progesterone, may occur at different steps of drug metabolism. Key effects of sex hormones ha ve been reported on multidrug-resistant transporters and enzymes involved in the liver metabolism of drugs, such as cytochromes. Nevertheless, no data is currently available to establish hormone-related metabolic interactions that may account for variability in drug scheduling and selection. Whereas we recognize influences may occur, we do not assume hormones alone can yield clinically significant metabolic changes. Rather, we believe that hormonal influences should be considered along with other elements that may affect drugs metabolism, such as concomitant medications, age-related pharmacokinetic changes, and genetic polymorphisms, in order to deliver treatment personalization and ensure better tolerability and safety of anticancer treatments.
Collapse
Affiliation(s)
- Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefano Natangelo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Jalissa Katrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Zeng W, Liu X, Wu Y, Cai Y, Li Z, Ye F, Sun Y, Li F, Xing H, Wang S. Dysregulated hepatic UDP-glucuronosyltransferases and flavonoids glucuronidation in experimental colitis. Front Pharmacol 2022; 13:1053610. [DOI: 10.3389/fphar.2022.1053610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Glucuronidation catalyzed by UDP-glucuronosyltransferases (UGTs) is one of the most important phase II mechanisms, facilitating drug clearance via conjugation of glucuronic acid with polar groups of xenobiotics. Accumulating evidence suggests that IBDs impact drug disposition, but whether and how IBDs regulate UGTs and drug glucuronidation remains undefined. In this study, we aim to investigate the expression of UGTs and drug glucuronidation in experimental colitis. Given that glucuronidation occurs primarily in the liver, we analyzed the mRNA changes in hepatic UGTs with a DSS-induced mouse colitis model. Twelve UGTs were downregulated in the liver of colitis mice including UGT1A1 and UGT1A9 (two representative UGTs). Colitis in mice downregulated UGT1A1 and UGT1A9 in the liver but not in small intestine, colon, and kidney. We also established that the downregulation of UGTs was attributed to the disease itself rather than the DSS compound. Moreover, colitis-reduced UGT1A1 and UGT1A9 lead to dampened baicalein and puerarin glucuronidation. PXR was the only UGT regulator significantly downregulated in colitis mice, suggesting dysregulation of PXR is associated with the downregulation of UGT1A1 and UGT1A9, thereby potentially resulting in dysfunction of baicalein and puerarin glucuronidation. Collectively, we establish that UGTs and glucuronidation are dysregulated in colitis, and this effect may cause variation in drug responsiveness in IBDs.
Collapse
|
5
|
Jiang Y, Zhou Y, Song S, Fan S, Gao Y, Li Y, Huang M, Bi H. St. John's Wort exacerbates acetaminophen-induced liver injury by activation of PXR and CYP-mediated bioactivation. Toxicol Sci 2022; 190:54-63. [PMID: 36073954 DOI: 10.1093/toxsci/kfac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
St. John's wort (SJW) is a medicinal herb remedy for mild depression. However, long-term use of SJW has raised safety concerns in clinical practice because of drug-drug interactions. Excessive use of acetaminophen (APAP) causes severe hepatotoxicity, but whether SJW modulates APAP-induced liver injury remains unclear. In this study, the effect of long-term SJW administration on APAP-induced acute hepatotoxicity and the involved mechanisms were investigated. Morphological and biochemical assessments clearly demonstrated that SJW exacerbates APAP-induced toxicity in vivo and in vitro. Moreover, SJW markedly promoted glutathione depletion and increased the levels of the APAP-cysteine and APAP-N-acetylcysteinyl adducts in mice, which enhanced APAP metabolic activation and aggravated APAP-induced liver injury. To further elucidate APAP metabolic activation in liver injury induced by SJW, the activities and expression levels of CYP2E1 and CYP3A were measured. The results showed that the activities and expression levels of CYP2E1 and CYP3A were increased after SJW treatment. Furthermore, the PXR-CYP signaling pathway was activated by SJW, and its downstream target genes were upregulated. Collectively, this study demonstrated that the long-term administration of SJW extract led to the metabolic activation of APAP and significantly exacerbated APAP-induced liver injury, which may suggest caution for the clinical use of SJW and APAP.
Collapse
Affiliation(s)
- Yiming Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shaofei Song
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Huber A, Li Y, Lin W, Galbraith AN, Mishra A, Porter SN, Wu J, Florke Gee RR, Zhuang W, Pruett-Miller SM, Peng J, Chen T. SJPYT-195: A Designed Nuclear Receptor Degrader That Functions as a Molecular Glue Degrader of GSPT1. ACS Med Chem Lett 2022; 13:1311-1320. [PMID: 35978691 PMCID: PMC9377019 DOI: 10.1021/acsmedchemlett.2c00223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
We previously reported a specific inverse agonist (SPA70) of the nuclear receptor pregnane X receptor (PXR). However, derivatization of SPA70 yielded only agonists and neutral antagonists, suggesting that inverse agonism of PXR is difficult to achieve. Therefore, we sought to design proteolysis targeting chimeras (PROTACs) aimed at inducing PXR degradation. Conjugation of a SPA70 derivative to ligands of the E3 substrate receptor cereblon (CRBN) resulted in one molecule, SJPYT-195, that reduced PXR protein level in an optimized degradation assay described here. Further analysis revealed that SJPYT-195 was a molecular glue degrader of the translation termination factor GSPT1 and that GSPT1 degradation resulted in subsequent reduction of PXR protein. GSPT1 has recently gained interest as an anticancer target, and our results give new insights into chemical determinants of drug-induced GSPT1 degradation. Additionally, we have developed assays and cell models for PXR degrader discovery that can be applied to additional protein targets.
Collapse
Affiliation(s)
- Andrew
D. Huber
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Yongtao Li
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Wenwei Lin
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Annalise N. Galbraith
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Ashutosh Mishra
- Center
for Proteomics and Metabolomics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Shaina N. Porter
- Department
of Cell and Molecular Biology, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Center
for Advanced Genome Engineering, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Jing Wu
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Rebecca R. Florke Gee
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Graduate
School of Biomedical Sciences, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Wei Zhuang
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Shondra M. Pruett-Miller
- Department
of Cell and Molecular Biology, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Center
for Advanced Genome Engineering, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Junmin Peng
- Center
for Proteomics and Metabolomics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Developmental Neurobiology, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
7
|
Kamyshna I, Kamyshnyi A. Transcription factors and regulators pathway-focused genes expression analysis in patients with different forms of thyroid pathology. Curr Pharm Biotechnol 2022; 23:1396-1404. [PMID: 35176984 DOI: 10.2174/1389201023666220217123454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autoimmune thyroiditis (AIT) is a T cell-mediated organ-specific disorder and transcription factors have a critical role in the regulation of immune responses, especially in the fate of T-helper cells. OBJECTIVE This study aims to investigate changes in the gene expression profile of transcription factors and regulators in patients with different forms of thyroid pathology Methods. We used the pathway-specific real-time PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) to identify and verify transcription factors and regulators pathway-focused genes expression in peripheral white blood cells of patients with postoperative hypothyroidism, hypothyroidism as a result of AIT and AIT with elevated serum an anti-thyroglobulin (anti-Tg) and anti-thyroid peroxidase (anti-TPO) antibodies. RESULTS It was shown that in patients with postoperative hypothyroidism FOS, NR1I2, STAT4, and TP53 significantly increased their expression whereas the expression of STAT1, STAT2, and STAT3 decreased. In patients with hypothyroidism as a result of AIT, we have found increased expression of NR1I2, STAT2, and STAT3. In contrast, the expression of STAT1 and TP53 decreased. FOS and STAT4 mRNAs did not change their expression. In patients with AIT and elevated serum anti-Tg and anti-TPO antibodies, the expression of FOS and NR1I2 reduced whereas the mRNA level of STAT3 increased. STAT1, STAT2, and STAT4 mRNAs did not change their expression. MYC did not change its expression in all groups of patients. CONCLUSIONS The results of this study demonstrate that autoimmune thyroiditis and hypothyroidism affect the mRNA-level expression of transcription factors and regulators genes in a gene-specific manner and that these changes to genes expression can be among the triggers of autoimmune inflammation progression in the thyroid gland.
Collapse
Affiliation(s)
- Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, Ternopil, Ukraine
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, Ternopil, Ukraine
| |
Collapse
|
8
|
Plummer S, Beaumont B, Elcombe M, Wallace S, Wright J, Mcinnes EF, Currie RA, Cowie D. Species differences in phenobarbital-mediated UGT gene induction in rat and human liver microtissues. Toxicol Rep 2021; 8:155-161. [PMID: 33473352 PMCID: PMC7803626 DOI: 10.1016/j.toxrep.2020.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022] Open
Abstract
Species differences in UGT induction could mediate thyroid cancer susceptibility. The effect of CAR activators on rat thyroid carcinogenesis could be partly explained by differential induction of Ugt 2b17. Human UGT changes would likely contribute less to species differences in T4 metabolism than rat UGT changes.
Species differences in hepatic metabolism of thyroxine (T4) by uridine diphosphate glucuronosyl transferase (UGT) and susceptibility to thyroid hormone imbalance could underlie differences in thyroid carcinogenesis caused by hepatic enzyme inducers in rats and humans. To investigate this hypothesis we examined profiles of hepatic UGT induction by the prototypical CAR activator phenobarbital (PB) in rat and human liver 3D microtissues. The rationale for this approach was that 3D microtissues would generate data more relevant to humans. Rat and human liver 3D microtissues were exposed to PB over a range of concentrations (500 u M - 2000 u M) and times (24−96 hr). Microarray and proteomics analyses were performed on parallel samples to generate integrated differentially expressed gene (DEG) datasets. Bioinformatics analysis of DEG data, including CAR response element (CRE) sequence analysis of UGT promoters, was used to assess species differences in UGT induction relative to CAR-mediated transactivation potential. A higher proportion of human UGT promoters were found to contain consensus CREs compared to the rat homologs. UGTs 1a6, 2b17 and 2b37 were upregulated by PB in rat liver 3D microtissues, but unaltered in human liver 3D microtissues. By contrast, human UGTs 1A8, 1A10 and 2B10 showed higher levels of induction (RNA and /or protein) compared to the rat homologs. There was general concordance between the presence of CREs and the induction of UGT RNA. As UGT1A and 2B isoforms metabolise T4, these results suggest that differences in UGT induction could contribute to differential susceptibility to CAR-mediated thyroid carcinogenesis in rats and humans.
Collapse
|
9
|
Jinhua W, Ying Z, Yuhua L. PXR-ABC drug transporters/CYP-mediated ursolic acid transport and metabolism in vitro and vivo. Arch Pharm (Weinheim) 2020; 353:e2000082. [PMID: 32628284 DOI: 10.1002/ardp.202000082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
The transporting kinetics and metabolic kinetics of ursolic acid were studied in transgenic cell models. Then, the pharmacokinetics features of ursolic acid and the expression of ATP-binding cassette transporters (ABC transporter) and cytochrome P450 (CYP) enzymes in tissues after pregnane X receptor (PXR) activation by 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN) were investigated in rats. After silencing of PXR in Caco2-siRNA-PXR cells, there was a decrease in the protein abundance of P-glycoprotein, breast cancer-resistant protein, multidrug resistance-associated protein 2 (MRP2), and CYP2C9. The apparent permeability (PDR) values of 10, 20, and 50 µM ursolic acid in Caco2 cells were 2.19 ± 0.44, 1.40 ± 0.17, and 1.25 ± 0.07, respectively, whereas in Caco2-siRNA-PXR cells, they were 1.85 ± 0.36, 1.24 ± 0.11, and 1.19 ± 0.04, respectively. PXR-RXRα would significantly activate ABC transporter expression in Caco2 cells. Compared with Caco2 cells, when the concentrations of ursolic acid were 10, 20, and 50 µM, the PDR values increased in Caco2-PXR-RXRα cells after PXR activation: 1.60 ± 0.31 versus 1.97 ± 0.21, 1.46 ± 0.08 versus 2.01 ± 0.19, and 1.32 ± 0.26 versus 2.09 ± 0.22, respectively. Simultaneously, PXR-RXRα would activate the expression of CYP2C9; metabolic kinetics of ursolic acid in CYP metabolizing enzyme lysate of Caco2 cells and Caco2-PXR-RXR cells was studied and it was found that the Km values were 81.99 ± 44.32 and 60.05 ± 29.62 µg/ml, and Vmax values were 3.77 ± 0.86 and 3.41 ± 0.96 µg · ml-1 · min-1 , respectively. However, in human CYP metabolizing recombinase, we found that both CYP2C9 and CYP34A were involved in the metabolism of ursolic acid. Vm and Km values for CYP3A4 and CYP2C9 were 3.57 ± 1.12 µg · ml-1 · min-1 and 81.71 ± 18.38 µg/ml, 3.85 ± 1.46 µg · ml-1 · min-1 and 62.18 ± 14.56 µg/ml, respectively. As a strong agonist for mouse pxr, PCN could significantly affect pharmacokinetics of ursolic acid in rats, and it showed discrepant effects on messenger RNA expression of cyp and transporters in tissues.
Collapse
Affiliation(s)
- Wen Jinhua
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhou Ying
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Yuhua
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Ženata O, Vrzalová A, Bachleda P, Janečková J, Panáček A, Kvítek L, Vrzal R. The effect of graphene oxide on signalling of xenobiotic receptors involved in biotransformation. CHEMOSPHERE 2020; 253:126753. [PMID: 32464781 DOI: 10.1016/j.chemosphere.2020.126753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) is an engineered nanomaterial which was demonstrated to have outstanding capacity for adsorption of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), the ligands and activators of the aryl hydrocarbon receptor (AhR). Due to the partially overlapping ligand capacity of AhR and pregnane X receptor (PXR), we tested the impact of GO particles on their signalling. While reporter gene assay revealed potentiating effect of GO on ligand-activated AhR-dependent luciferase activity, there was no effect for PXR. However, inducible target genes for AhR (CYP1A1) or PXR (ABCB1) were decreased at mRNA as well as protein levels by the presence of GO in HepG2 (for AhR), LS180 (for PXR) or primary human hepatocytes (both receptors). Moreover, the presence of GO diminished PXR and AhR protein levels in primary cultures of human hepatocytes. This was partially reversed by proteasome inhibitor MG132 for AhR but not for PXR. In conclusion, GO decreases ligand-stimulated activities of AhR and PXR in human cells.
Collapse
Affiliation(s)
- Ondřej Ženata
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| | - Aneta Vrzalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| | - Petr Bachleda
- Department of Surgery, University Hospital, I.P. Pavlova 6, 775 15, Olomouc, Czech Republic
| | - Jana Janečková
- Department of Surgery, University Hospital, I.P. Pavlova 6, 775 15, Olomouc, Czech Republic
| | - Aleš Panáček
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Libor Kvítek
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic.
| |
Collapse
|
11
|
Mutation of a single amino acid of pregnane X receptor switches an antagonist to agonist by altering AF-2 helix positioning. Cell Mol Life Sci 2020; 78:317-335. [PMID: 32232515 DOI: 10.1007/s00018-020-03505-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Pregnane X receptor (PXR) is activated by chemicals to transcriptionally regulate drug disposition and possibly decrease drug efficacy and increase resistance, suggesting therapeutic value for PXR antagonists. We previously reported the antagonist SPA70 and its analog SJB7, which unexpectedly is an agonist. Here, we describe another unexpected observation: mutating a single residue (W299A) within the PXR ligand-binding domain converts SPA70 to an agonist. After characterizing wild-type and W299A PXR activity profiles, we used molecular dynamics simulations to reveal that in wild-type PXR, agonists stabilize the activation function 2 (AF-2) helix in an "inward" position, but SPA70 displaces the AF-2. In W299A, however, SPA70 stabilizes the AF-2 "inward", like agonists. We validated our model by predicting the antagonist SJC2 to be a W299A agonist, which was confirmed experimentally. Our work correlates previously unobserved ligand-induced conformational changes to PXR cellular activity and, for the first time, reveals how PXR antagonists work.
Collapse
|
12
|
Cui W, Shen X, Agbas E, Tompkins B, Cameron-Carter H, Staudinger JL. Phosphorylation Modulates the Coregulatory Protein Exchange of the Nuclear Receptor Pregnane X Receptor. J Pharmacol Exp Ther 2020; 373:370-380. [PMID: 32205367 DOI: 10.1124/jpet.119.264762] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023] Open
Abstract
The pregnane X receptor (PXR), or nuclear receptor (NR) 1I2, is a ligand-activated NR superfamily member that is enriched in liver and intestine in mammals. Activation of PXR regulates the expression of genes encoding key proteins involved in drug metabolism, drug efflux, and drug transport. Recent mechanistic investigations reveal that post-translational modifications (PTMs), such as phosphorylation, play a critical role in modulating the bimodal function of PXR-mediated transrepression and transactivation of target gene transcription. Upon ligand binding, PXR undergoes a conformational change that promotes dissociation of histone deacetylase-containing multiprotein corepressor protein complexes while simultaneously favoring recruitment histone acetyl transferase-containing complexes. Here we describe a novel adenoviral vector used to deliver and recover recombinant human PXR protein from primary cultures of hepatocytes. Using liquid chromatography and tandem mass spectrometry we report here that PXR is phosphorylated at amino acid residues threonine 135 (T135) and serine 221 (S221). Biochemical analysis reveals that these two residues play an important regulatory role in the cycling of corepressor and coactivator multiprotein complexes. These data further our foundational knowledge regarding the specific role of PTMs, namely phosphorylation, in regulating the biology of PXR. Future efforts are focused on using the novel tools described here to identify additional PTMs and protein partners of PXR in primary cultures of hepatocytes, an important experimental model system. SIGNIFICANCE STATEMENT: Pregnane X receptor (PXR), or nuclear receptor 1I2, is a key master regulator of drug-inducible CYP gene expression in liver and intestine in mammals. The novel biochemical tools described in this study demonstrate for the first time that in cultures of primary hepatocytes, human PXR is phosphorylated at amino acid residues threonine 135 (T135) and serine 221 (S221). Moreover, phosphorylation of PXR promotes the transrepression of its prototypical target gene CYP3A4 through modulating its interactions with coregulatory proteins.
Collapse
Affiliation(s)
- Wenqi Cui
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Xunan Shen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Emre Agbas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Brandon Tompkins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Hadley Cameron-Carter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Jeff L Staudinger
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| |
Collapse
|
13
|
Nicolussi S, Drewe J, Butterweck V, Meyer Zu Schwabedissen HE. Clinical relevance of St. John's wort drug interactions revisited. Br J Pharmacol 2020; 177:1212-1226. [PMID: 31742659 PMCID: PMC7056460 DOI: 10.1111/bph.14936] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/01/2019] [Accepted: 11/10/2019] [Indexed: 12/22/2022] Open
Abstract
The first clinically relevant reports of preparations of St. John's wort (SJW), a herbal medicine with anti‐depressant effects, interacting with other drugs, altering their bioavailability and efficacy, were published about 20 years ago. In 2000, a pharmacokinetic interaction between SJW and cyclosporine caused acute rejection in two heart transplant patients. Since then, subsequent research has shown that SJW altered the pharmacokinetics of drugs such as digoxin, tacrolimus, indinavir, warfarin, alprazolam, simvastatin, or oral contraceptives. These interactions were caused by pregnane‐X‐receptor (PXR) activation. Preparations of SJW are potent activators of PXR and hence inducers of cytochrome P450 enzymes (most importantly CYP3A4) and P‐glycoprotein. The degree of CYP3A4 induction correlates significantly with the hyperforin content in the preparation. Twenty years after the first occurrence of clinically relevant pharmacokinetic drug interactions with SJW, this review revisits the current knowledge of the mechanisms of action and on how pharmacokinetic drug interactions with SJW could be avoided. Linked Articles This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Simon Nicolussi
- Medical Research, Max Zeller Söhne AG, Romanshorn, Switzerland
| | - Jürgen Drewe
- Medical Research, Max Zeller Söhne AG, Romanshorn, Switzerland
| | | | | |
Collapse
|
14
|
Fan S, Liu C, Jiang Y, Gao Y, Chen Y, Fu K, Yao X, Huang M, Bi H. Lignans from Schisandra sphenanthera protect against lithocholic acid-induced cholestasis by pregnane X receptor activation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112103. [PMID: 31336134 DOI: 10.1016/j.jep.2019.112103] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestasis is a clinical syndrome caused by toxic bile acid retention that will lead to serious liver diseases. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) are the only two FDA-approved drugs for its treatment. Thus, there is a clear need to develop new therapeutic approaches for cholestasis. Here, anti-cholestasis effects of the lignans from a traditional Chinese herbal medicine, Schisandra sphenanthera, were investigated as well as the involved mechanisms. MATERIALS AND METHODS Adult male C57BL/6J mice were randomly divided into 9 groups including the control group, LCA group, LCA with specific lignan treatment of Schisandrin A (SinA), Schisandrin B (SinB), Schisandrin C (SinC), Schisandrol A (SolA), Schisandrol B (SolB), Schisantherin A (StnA) and Schisantherin B (StnB), respectively. Mice were treated with each drug (qd) for 7 days, while the administration of lithocholic acid (LCA) (bid) was launched from the 4th day. Twelve hours after the last LCA injection, mice were sacrificed and samples were collected. Serum biochemical measurement and histological analysis were conducted. Metabolomics analysis of serum, liver, intestine and feces were performed to study the metabolic profile of bile acids. RT-qPCR and Western blot analysis were conducted to determine the hepatic expression of genes and proteins related to bile acid homeostasis. Dual-luciferase reporter gene assay was performed to investigate the transactivation effect of lignans on human pregnane X receptor (hPXR). RT-qPCR analysis was used to detect induction effects of lignans on hPXR-targeted genes in HepG2 cells. RESULTS Lignans including SinA, SinB, SinC, SolA, SolB, StnA, StnB were found to significantly protect against LCA-induced intrahepatic cholestasis, as evidenced by significant decrease in liver necrosis, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activity. More importantly, serum total bile acids (TBA) and total bilirubin (Tbili) were also significantly reduced. Metabolomics analysis revealed these lignans accelerated the metabolism of bile acids and increased the bile acid efflux from liver into the intestine or feces. Gene analysis revealed these lignans induced the hepatic expressions of PXR-target genes such as Cyp3a11 and Ugt1a1. Luciferase reporter gene assays illustrated that these bioactive lignans can activate hPXR. Additionally, they can all upregulate hPXR-regulate genes such as CYP3A4, UGT1A1 and OATP2. CONCLUSION These results clearly demonstrated the lignans from Schisandra sphenanthera exert hepatoprotective effects against LCA-induced cholestasis by activation of PXR. These lignans may provide an effective approach for the prevention and treatment of cholestatic liver injury.
Collapse
Affiliation(s)
- Shicheng Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Conghui Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yue Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yixin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kaili Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xinpeng Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Baldwin WS. Phase 0 of the Xenobiotic Response: Nuclear Receptors and Other Transcription Factors as a First Step in Protection from Xenobiotics. NUCLEAR RECEPTOR RESEARCH 2019; 6:101447. [PMID: 31815118 PMCID: PMC6897393 DOI: 10.32527/2019/101447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This mini-review examines the crucial importance of transcription factors as a first line of defense in the detoxication of xenobiotics. Key transcription factors that recognize xenobiotics or xenobiotic-induced stress such as reactive oxygen species (ROS), include AhR, PXR, CAR, MTF, Nrf2, NF-κB, and AP-1. These transcription factors constitute a significant portion of the pathways induced by toxicants as they regulate phase I-III detoxication enzymes and transporters as well as other protective proteins such as heat shock proteins, chaperones, and anti-oxidants. Because they are often the first line of defense and induce phase I-III metabolism, could these transcription factors be considered the phase 0 of xenobiotic response?
Collapse
Affiliation(s)
- William S Baldwin
- Clemson University, Biological Sciences/Environmental Toxicology, 132 Long Hall, Clemson, SC 29634
| |
Collapse
|
16
|
Shizu R, Yokobori K, Perera L, Pedersen L, Negishi M. Ligand induced dissociation of the AR homodimer precedes AR monomer translocation to the nucleus. Sci Rep 2019; 9:16734. [PMID: 31723170 PMCID: PMC6853983 DOI: 10.1038/s41598-019-53139-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/03/2019] [Indexed: 01/21/2023] Open
Abstract
The androgen receptor (AR) regulates male sexual development. We have now investigated AR homodimerization, hormone-dependent monomerization and nuclear translocation in PC-3 and COS-1 cells, by utilizing mutations associated with the androgen insensitivity syndrome: Pro767Ala, Phe765Leu, Met743Val and Trp742Arg. AR wild type (WT) was expressed as a homodimer in the cytoplasm, while none of these mutants formed homodimers. Unlike AR WT which responded to 1 nM dihydrotestosterone (DHT) to dissociate and translocate into the nucleus, AR Pro767Ala and Phe765Leu mutants remain as the monomer in the cytoplasm. In the crystal structure of the AR LBD homodimer, Pro767 and Phe765 reside closely on a loop that constitutes the dimer interface; their sidechains interact with the Pro767 of the other monomer and with the DHT molecule in the ligand-binding pocket. These observations place Phe765 at a position to facilitate DHT binding to Pro767 and lead to dissociation of the AR homodimer in the cytoplasm. This Pro-Phe Met relay may constitute a structural switch that mediates androgen signaling and is conserved in other steroid hormone receptors.
Collapse
Affiliation(s)
- Ryota Shizu
- Pharmacogenetic section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Kosuke Yokobori
- Pharmacogenetic section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Lee Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Masahiko Negishi
- Pharmacogenetic section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
17
|
Staudinger JL. Clinical applications of small molecule inhibitors of Pregnane X receptor. Mol Cell Endocrinol 2019; 485:61-71. [PMID: 30726709 DOI: 10.1016/j.mce.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 01/19/2023]
Abstract
The canonical effect of Pregnane X Receptor (PXR, NR1I2) agonism includes enhanced hepatic uptake and a concomitant increase in the first-pass metabolism and efflux of drugs in mammalian liver and intestine. In patients undergoing combination therapy, PXR-mediated gene regulation represents the molecular basis of numerous food-drug, herb-drug, and drug-drug interactions. Moreover, PXR activation promotes chemotherapeutic resistance in certain malignancies. Additional research efforts suggest that sustained PXR activation exacerbates the development of fatty liver disease. Additional metabolic effects of PXR activation in liver are the inhibition of fatty acid oxidation and gluconeogenesis. The identification of non-toxic and selective PXR antagonists is therefore of current research interest. Inhibition of PXR should decrease adverse effects, improve therapeutic effectiveness, and advance clinical outcomes in patients with cancer, fatty liver, and diabetes. This review identifies small molecule PXR antagonists described to date, discusses possible molecular mechanisms of inhibition, and seeks to describe the likely biomedical consequences of the inhibition of this nuclear receptor superfamily member.
Collapse
Affiliation(s)
- Jeff L Staudinger
- Basic Sciences, Kansas City University of Medicine and Biosciences, Joplin, MO, USA.
| |
Collapse
|
18
|
Zhang N, Shon J, Kim M, Yu C, Zhang L, Huang S, Lee L, Tran D, Li L. Role of CYP3A in Oral Contraceptives Clearance. Clin Transl Sci 2018; 11:251-260. [PMID: 28986954 PMCID: PMC5944580 DOI: 10.1111/cts.12499] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Nan Zhang
- Office of Clinical Pharmacology (OCP), Office of Translational Sciences (OTS)Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
- Oak Ridge Institute for Science and Education (ORISE)TennesseeOak RidgeUSA
| | - Jihong Shon
- Office of Clinical Pharmacology (OCP), Office of Translational Sciences (OTS)Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Myong‐Jin Kim
- Office of Clinical Pharmacology (OCP), Office of Translational Sciences (OTS)Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Chongwoo Yu
- Office of Clinical Pharmacology (OCP), Office of Translational Sciences (OTS)Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Lei Zhang
- Office of Clinical Pharmacology (OCP), Office of Translational Sciences (OTS)Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Shiew‐Mei Huang
- Office of Clinical Pharmacology (OCP), Office of Translational Sciences (OTS)Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - LaiMing Lee
- Office of Clinical Pharmacology (OCP), Office of Translational Sciences (OTS)Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Doanh Tran
- Office of Clinical Pharmacology (OCP), Office of Translational Sciences (OTS)Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Li Li
- Office of Clinical Pharmacology (OCP), Office of Translational Sciences (OTS)Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| |
Collapse
|
19
|
Kaur J, Sodhi RK, Madan J, Chahal SK, Kumar R. Forskolin convalesces memory in high fat diet-induced dementia in wistar rats—Plausible role of pregnane x receptors. Pharmacol Rep 2018; 70:161-171. [DOI: 10.1016/j.pharep.2017.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/14/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
|
20
|
Gotoh S, Miyauchi Y, Moore R, Negishi M. Glucose elicits serine/threonine kinase VRK1 to phosphorylate nuclear pregnane X receptor as a novel hepatic gluconeogenic signal. Cell Signal 2017; 40:200-209. [DOI: 10.1016/j.cellsig.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/26/2017] [Accepted: 09/10/2017] [Indexed: 12/11/2022]
|
21
|
Zeng H, Jiang Y, Chen P, Fan X, Li D, Liu A, Ma X, Xie W, Liu P, Gonzalez FJ, Huang M, Bi H. Schisandrol B protects against cholestatic liver injury through pregnane X receptors. Br J Pharmacol 2017; 174:672-688. [PMID: 28128437 DOI: 10.1111/bph.13729] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Currently, ursodeoxycholic acid and obeticholic acid are the only two FDA-approved drugs for cholestatic liver diseases. Thus, new therapeutic approaches need to be developed. Here we have evaluated the anti-cholestasis effects of Schisandrol B (SolB), a bioactive compound isolated from Schisandra sphenanthera. EXPERIMENTAL APPROACH Hepatoprotective effect of SolB against intrahepatic cholestasis, induced by lithocholic acid (LCA), was evaluated in mice. Metabolomic analysis and gene analysis were used to assess involvement of pregnane X receptor (PXR). Molecular docking, cell-based reporter gene analysis and knockout mice were used to demonstrate the critical role of the PXR pathway in the anti-cholestasis effects of SolB. KEY RESULTS SolB protected against LCA-induced intrahepatic cholestasis. Furthermore, therapeutic treatment with SolB decreased mortality in cholestatic mice. Metabolomics and gene analysis showed that SolB accelerated metabolism of bile acids, promoted bile acid efflux into the intestine, and induced hepatic expression of the PXR-target genes Cyp3a11, Ugt1a1, and Oatp2, which are involved in bile acid homeostasis. Mechanistic studies showed that SolB activated human PXR and up-regulated PXR target genes in human cell lines. Additionally, SolB did not protect Pxr-null mice from liver injury induced by intrahepatic cholestasis, thus providing genetic evidence that the effect of SolB was PXR-dependent. CONCLUSION AND IMPLICATIONS These findings provide direct evidence for the hepatoprotective effects of SolB against cholestasis by activating PXR. Therefore, SolB may provide a new and effective approach to the prevention and treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Hang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaomei Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongshun Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo, China
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Louis GW, Hallinger DR, Braxton MJ, Kamel A, Stoker TE. Effects of chronic exposure to triclosan on reproductive and thyroid endpoints in the adult Wistar female rat. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:236-249. [PMID: 28569618 PMCID: PMC5994608 DOI: 10.1080/15287394.2017.1287029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Triclosan (TCS), an antibacterial, has been shown to be an endocrine disruptor in the rat. Previously, subchronic TCS treatment to female rats was found to advance puberty and potentiate the effect of ethinyl estradiol (EE) on uterine growth when EE and TCS were co-administered prior to weaning. In the pubertal study, a decrease in serum thyroxine (T4) concentrations with no significant change in serum thyroid-stimulating hormone (TSH) was also observed. The purpose of the present study was to further characterize the influence of TCS on the reproductive and thyroid axes of the female rat using a chronic exposure regimen. Female Wistar rats were exposed by oral gavage to vehicle control, EE (1 μg/kg), or TCS (2.35, 4.69, 9.375 or 37.5 mg/kg) for 8 months and estrous cyclicity monitored. Although a divergent pattern of reproductive senescence appeared to emerge from 5 to 11 months of age between controls and EE-treated females, no significant difference in cyclicity was noted between TCS-treated and control females. A higher % control females displayed persistent diestrus (PD) by the end of the study, whereas animals administered with positive control (EE) were predominately persistent estrus (PE). Thyroxine concentration was significantly decreased in TCS-administered 9.375 and 37.5 mg/kg groups, with no marked effects on TSH levels, thyroid tissue weight, or histology. Results demonstrate that a long-term exposure to TCS did not significantly alter estrous cyclicity or timing of reproductive senescence in females but suppressed T4 levels at a lower dose than previously observed.
Collapse
Affiliation(s)
- Gwendolyn W. Louis
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
- Oak Ridge Institute for Science and Education (ORISE), US Department of Energy, Oak Ridge, TN, USA
| | - Daniel R. Hallinger
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| | - M. Janay Braxton
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| | - Alaa Kamel
- Analytical Chemistry Branch, Biological and Economic Analysis Division, Office of Pesticide Programs, U.S. EPA, Fort Meade, MD, USA
| | - Tammy E. Stoker
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| |
Collapse
|
23
|
Vrzal R, Illes P, Dvorak Z. Transplant drugs affect the expression of phase II and antioxidant enzymes in human carcinoma cells HepG2 but not in primary cultures of human hepatocytes: In vitro comparative study. Pharmacol Rep 2016; 68:1008-14. [DOI: 10.1016/j.pharep.2016.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/02/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
|
24
|
Zhong S, Han W, Hou C, Liu J, Wu L, Liu M, Liang Z, Lin H, Zhou L, Liu S, Tang L. Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis. AAPS JOURNAL 2016; 19:203-214. [PMID: 27681103 DOI: 10.1208/s12248-016-9990-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) play important roles in the metabolism of exogenous and endogenous compounds. The gene transcription of CYPs and UGTs can be enhanced or reduced by transcription factors (TFs). This study aims to explore novel TFs involved in the regulatory network of human hepatic UGTs/CYPs. Correlations between the transcription levels of 683 key TFs and CYPs/UGTs in three different human liver expression profiles (n = 640) were calculated first. Supervised weighted correlation network analysis (sWGCNA) was employed to define hub genes among the selected TFs. The relationship among 17 defined TFs, CYPs/UGTs expression, and activity were evaluated in 30 liver samples from Chinese patients. The positive controls (e.g., PPARA, NR1I2, NR1I3) and hub TFs (NFIA, NR3C2, and AR) in the GreysWGCNA Module were significantly and positively associated with CYPs/UGTs expression. And the cancer- or inflammation-related TFs (TEAD4, NFKB2, and NFKB1) were negatively associated with mRNA expression of CYP2C9/CYP2E1/UGT1A9. Furthermore, the effect of NR1I2, NR1I3, AR, TEAD4, and NFKB2 on CYP450/UGT1A gene transcription translated into moderate influences on enzyme activities. To our knowledge, this is the first study to integrate Gene Expression Omnibus (GEO) datasets and supervised weighted correlation network analysis (sWGCNA) for defining TFs potentially related to CYPs/UGTs. We detected several novel TFs involved in the regulatory network of hepatic CYPs and UGTs in humans. Further validation and investigation may reveal their exact mechanism of CYPs/UGTs regulation.
Collapse
Affiliation(s)
- Shilong Zhong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Medical Research Center of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Weichao Han
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuqi Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junjin Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lili Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Menghua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haoming Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Lan Tang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
25
|
Zeng H, Li D, Qin X, Chen P, Tan H, Zeng X, Li X, Fan X, Jiang Y, Zhou Y, Chen Y, Wang Y, Huang M, Bi H. Hepatoprotective Effects of Schisandra sphenanthera Extract against Lithocholic Acid-Induced Cholestasis in Male Mice Are Associated with Activation of the Pregnane X Receptor Pathway and Promotion of Liver Regeneration. Drug Metab Dispos 2015; 44:337-42. [DOI: 10.1124/dmd.115.066969] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022] Open
|
26
|
Shehu AI, Li G, Xie W, Ma X. The pregnane X receptor in tuberculosis therapeutics. Expert Opin Drug Metab Toxicol 2015; 12:21-30. [PMID: 26592418 DOI: 10.1517/17425255.2016.1121381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Among the infectious diseases, tuberculosis (TB) remains the second most common cause of death after HIV. TB treatment requires the combination of multiple drugs including the rifamycin class. However, rifamycins are activators of human pregnane X receptor (PXR), a transcription factor that regulates drug metabolism, drug resistance, energy metabolism and immune response. Rifamycin-mediated PXR activation may affect the outcome of TB therapy. AREAS COVERED This review describes the role of PXR in modulating metabolism, efficacy, toxicity and resistance to anti-TB drugs; as well as polymorphisms of PXR that potentially affect TB susceptibility. EXPERT OPINION The wide range of PXR functions that mediate drug metabolism and toxicity in TB therapy are often underappreciated and thus understudied. Further studies are needed to determine the overall impact of PXR activation on the outcome of TB therapy.
Collapse
Affiliation(s)
- Amina I Shehu
- a Center for Pharmacogenetics, Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA 15261 , USA
| | - Guangming Li
- b Department of Hepatology, the 6th People's Hospital of Zhengzhou , the Hospital for Infectious Diseases in Henan Province , Zhengzhou , China
| | - Wen Xie
- a Center for Pharmacogenetics, Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA 15261 , USA
| | - Xiaochao Ma
- a Center for Pharmacogenetics, Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA 15261 , USA
| |
Collapse
|
27
|
van der Schoor LWE, Verkade HJ, Kuipers F, Jonker JW. New insights in the biology of ABC transporters ABCC2 and ABCC3: impact on drug disposition. Expert Opin Drug Metab Toxicol 2014; 11:273-93. [PMID: 25380746 DOI: 10.1517/17425255.2015.981152] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION For the elimination of environmental chemicals and metabolic waste products, the body is equipped with a range of broad specificity transporters that are present in excretory organs as well as in several epithelial blood-tissue barriers. AREAS COVERED ABCC2 and ABCC3 (also known as MRP2 and MRP3) mediate the transport of various conjugated organic anions, including many drugs, toxicants and endogenous compounds. This review focuses on the physiology of these transporters, their roles in drug disposition and how they affect drug sensitivity and toxicity. It also examines how ABCC2 and ABCC3 are coordinately regulated at the transcriptional level by members of the nuclear receptor (NR) family of ligand-modulated transcription factors and how this can be therapeutically exploited. EXPERT OPINION Mutations in both ABCC2 and ABCC3 have been associated with changes in drug disposition, sensitivity and toxicity. A defect in ABCC2 is associated with Dubin-Johnson syndrome, a recessively inherited disorder characterized by conjugated hyperbilirubinemia. Pharmacological manipulation of the activity of these transporters can potentially improve the pharmacokinetics and thus therapeutic activity of substrate drugs but also affect the physiological function of these transporters and consequently ameliorate associated disease states.
Collapse
Affiliation(s)
- Lori W E van der Schoor
- University of Groningen, University Medical Center Groningen, Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics , Hanzeplein 1, 9713 GZ Groningen , The Netherlands
| | | | | | | |
Collapse
|
28
|
Cheng X, Gu J, Klaassen CD. Adaptive hepatic and intestinal alterations in mice after deletion of NADPH-cytochrome P450 Oxidoreductase (Cpr) in hepatocytes. Drug Metab Dispos 2014; 42:1826-33. [PMID: 25147274 DOI: 10.1124/dmd.114.060053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 enzymes (P450) play an important role in first-pass metabolism in both the intestine and liver. NADPH-cytochrome P450 oxidoreductase (Cpr) is an essential electron transfer protein required for microsomal P450 activity. Mice with conditional knockout of Cpr in hepatocytes develop normally and survive even with complete loss of liver microsomal P450 activity. Our current studies were performed to determine whether alternative drug-metabolizing pathways increase in an attempt to maintain whole-body homeostasis. In addition to the liver, Cpr is mainly expressed in tissues such as lung, kidney, and gastrointestinal tract. In livers of H-Cpr-null mice, there is a marked increase in mRNA expression of phase I enzymes (Aldh1a1, 1a7, 3a2; Ces1b2, 2a6, and 2a12), antioxidant enzymes (Ho-1, Nqo1, and epoxide hydrolase), phase II enzymes (Ugt1a9; Gsta1/2, m3, m4, m6, t1, and t3; and Sult1a1 and 1d1), and drug transporters (Oatp1a4, Oct3, Mate1, Mdr1a, and Mrp3 and 4). In addition, glucuronide-conjugated bilirubin concentrations are doubled in serum of H-Cpr-null mice. Both constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2) protein in nuclei are higher in the livers of H-Cpr-null mice, indicating that CAR and Nrf2 are activated. In the small intestine of H-Cpr-null mice, mRNA expression of Cyp3a11 and Mdr1a, two genes critical for intestinal first-pass metabolism, are markedly up-regulated. In addition, nutrient (Pept1) and cholesterol (Npc1l1) transporters are induced in the small intestine of H-Cpr-null mice. In conclusion, in H-Cpr-null mice, adaptive regulation of alternative detoxification genes in liver and small intestine appear to partially compensate for the loss of microsomal P450 function in liver.
Collapse
Affiliation(s)
- Xingguo Cheng
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York (X.C.); Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| | - Jun Gu
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York (X.C.); Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| | - Curtis D Klaassen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York (X.C.); Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| |
Collapse
|
29
|
Dvorak Z, Srovnalova A, Svecarova M, Vrzal R. The effect of anthocyans on the expression of selected phase II xenobiotic-metabolizing enzymes in primary cultures of human hepatocytes. Food Funct 2014; 5:2145-51. [DOI: 10.1039/c4fo00347k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Baghdasaryan A, Chiba P, Trauner M. Clinical application of transcriptional activators of bile salt transporters. Mol Aspects Med 2014; 37:57-76. [PMID: 24333169 PMCID: PMC4045202 DOI: 10.1016/j.mam.2013.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/21/2013] [Accepted: 12/01/2013] [Indexed: 02/07/2023]
Abstract
Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular BS efflux through bile salt export pump (BSEP), basolateral elimination through organic solute transporters alpha and beta (OSTα/OSTβ) as well as inhibition of hepatocellular BS uptake through basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP) represent critical steps in protection from hepatocellular BS overload and can be targeted therapeutically. In this article, we review the potential clinical implications of the major BS transporters BSEP, OSTα/OSTβ and NTCP in the pathogenesis of hereditary and acquired cholestatic syndromes, provide an overview on transcriptional control of these transporters by the key regulatory nuclear receptors and discuss the potential therapeutic role of novel transcriptional activators of BS transporters in cholestasis.
Collapse
Affiliation(s)
- Anna Baghdasaryan
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria; Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University of Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria.
| |
Collapse
|
31
|
Pinne M, Raucy JL. Advantages of cell-based high-volume screening assays to assess nuclear receptor activation during drug discovery. Expert Opin Drug Discov 2014; 9:669-86. [DOI: 10.1517/17460441.2014.913019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Chen P, Zeng H, Wang Y, Fan X, Xu C, Deng R, Zhou X, Bi H, Huang M. Low dose of oleanolic acid protects against lithocholic acid-induced cholestasis in mice: potential involvement of nuclear factor-E2-related factor 2-mediated upregulation of multidrug resistance-associated proteins. Drug Metab Dispos 2014; 42:844-52. [PMID: 24510383 DOI: 10.1124/dmd.113.056549] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oleanolic acid (OA) is a natural triterpenoid and has been demonstrated to protect against varieties of hepatotoxicants. Recently, however, OA at high doses was reported to produce apparent cholestasis in mice. In this study, we characterized the protective effect of OA at low doses against lithocholic acid (LCA)-induced cholestasis in mice and explored further mechanisms. OA cotreatment (5, 10, and 20 mg/kg, i.p.) significantly improved mouse survival rate, attenuated liver necrosis, and decreased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase; more importantly, serum total bile acids and bilirubin, as well as hepatic total bile acids were also remarkably reduced. Gene and protein expression analysis showed that hepatic expression of multidrug resistance-associated protein 2 (Mrp2), Mrp3, and Mrp4 was significantly increased by OA cotreatment, whereas other bile acid metabolism- and transport-related genes, including Na+/taurocholate cotransporter, organic anion transporter 1b2, bile salt export pump, multidrug resistance protein 3, Cyp3a11, Cyp2b10, Sulfotransferase 2a1 (Sult2a1), and UDP-glucuronosyltransferase 1a1 (Ugt1a1), were only slightly changed. OA also caused increased nuclear factor-E2-related factor (Nrf2) mRNA expression and nuclear protein accumulation, whereas nuclear receptors farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane receptor were not significantly influenced by OA. Luciferase (Luc) assays performed in HepG2 cells illustrated that OA was a strong Nrf2 agonist with moderate PXR and weak FXR agonism. Finally, in mouse primary cultured hepatocytes, OA dose- and time-dependently induced expression of Mrp2, Mrp3, and Mrp4; however, this upregulation was abrogated when Nrf2 was silenced. In conclusion, OA produces a protective effect against LCA-induced hepatotoxicity and cholestasis, possibly due to Nrf2-mediated upregulation of Mrp2, Mrp3, and Mrp4.
Collapse
Affiliation(s)
- Pan Chen
- School of Pharmaceutical Sciences (P.C., H.Z., Y.W., X.F., R.D., X.Z., H.B., M.H.) and The First Affiliated Hospital (C.X.), Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Roques BB, Leghait J, Lacroix MZ, Lasserre F, Pineau T, Viguié C, Martin PG. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism. Biochem Pharmacol 2013; 86:997-1039. [DOI: 10.1016/j.bcp.2013.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 01/01/2023]
|
34
|
Paul KB, Thompson JT, Simmons SO, Vanden Heuvel JP, Crofton KM. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors. Toxicol In Vitro 2013; 27:2049-60. [PMID: 23899473 DOI: 10.1016/j.tiv.2013.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/05/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
The bacteriostat triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) (TCS) decreases rat serum thyroxine via putative nuclear receptor (NR) interaction(s) and subsequent transcriptional up-regulation of hepatic catabolism and clearance. However, due to the evolutionary divergence of the constitutive androstane and pregnane-X receptors (CAR, PXR), TCS-mediated downstream effects may be species-dependent. To test the hypothesis that TCS activates xenobiotic NRs across species, cell-based NR reporter assays were employed to assess potential activation of rat, mouse, and human PXR, and rat, mouse, and three splice variants of human CAR. TCS activated hPXR, acted as an inverse agonist of hCAR1, and as a weak agonist of hCAR3. TCS failed to activate rPXR in full-length receptor reporter assays, and instead acted as a modest inverse agonist of rCAR. Consistent with the rat data, TCS also failed to activate mPXR and was a modest inverse agonist of mCAR. These data suggest that TCS may interact with multiple NRs, including hPXR, hCAR1, hCAR3, and rCAR in order to potentially affect hepatic catabolism. Overall these data support the conclusion that TCS may interact with NRs to regulate hepatic catabolism and downstream thyroid hormone homeostasis in both rat and human models, though perhaps by divergent mechanisms.
Collapse
Affiliation(s)
- Katie B Paul
- University of North Carolina at Chapel Hill, Curriculum in Toxicology, CB 7270, Chapel Hill, NC 27599, United States; Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, United States
| | | | | | | | | |
Collapse
|
35
|
Abstract
Cholestatic liver diseases encompass a wide spectrum of disorders with different causes, resulting in impaired bile flow and accumulation of bile acids and other potentially hepatotoxic cholephils. The understanding of the molecular mechanisms of bile formation and cholestasis has recently improved significantly through new insights into nuclear receptor (patho)biology. Nuclear receptors are ligand-activated transcription factors, which act as central players in the regulation of genes responsible for elimination and detoxification of biliary constituents accumulating in cholestasis. They also control other pathophysiologic processes such as inflammation, fibrogenesis, and carcinogenesis involved in the pathogenesis and disease progression of cholestasis liver diseases.
Collapse
Affiliation(s)
- Emina Halilbasic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anna Baghdasaryan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Corresponding author. Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Vienna, Austria.
| |
Collapse
|
36
|
Qiao E, Ji M, Wu J, Ma R, Zhang X, He Y, Zha Q, Song X, Zhu LW, Tang J. Expression of the PXR gene in various types of cancer and drug resistance. Oncol Lett 2013; 5:1093-1100. [PMID: 23599746 PMCID: PMC3628904 DOI: 10.3892/ol.2013.1149] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/02/2013] [Indexed: 01/13/2023] Open
Abstract
Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. PXR is a key xenobiotic receptor that regulates the expression of genes implicated in drug metabolism, detoxification and clearance, including drug metabolizing enzymes and transporters, suggesting that it is significant in the drug resistance of cancer cells. PXR is expressed in a wide range of tissues in the human body. Studies have demonstrated that PXR is expressed in a variety of tumor types, correlating not only with drug resistance but also with the cell proliferation, apoptosis and prognosis of cancer. The purpose of the present review is to provide a comprehensive review of PXR and its potential roles in multidrug resistance and the biological characteristics of PXR-positive tumors.
Collapse
Affiliation(s)
- Enqi Qiao
- Department of General Surgery, Jiangsu Cancer Hospital, Affiliated to Nanjing Medical University, Nanjing 210009
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schiffman SS, Rother KI. Sucralose, a synthetic organochlorine sweetener: overview of biological issues. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:399-451. [PMID: 24219506 PMCID: PMC3856475 DOI: 10.1080/10937404.2013.842523] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sucralose is a synthetic organochlorine sweetener (OC) that is a common ingredient in the world's food supply. Sucralose interacts with chemosensors in the alimentary tract that play a role in sweet taste sensation and hormone secretion. In rats, sucralose ingestion was shown to increase the expression of the efflux transporter P-glycoprotein (P-gp) and two cytochrome P-450 (CYP) isozymes in the intestine. P-gp and CYP are key components of the presystemic detoxification system involved in first-pass drug metabolism. The effect of sucralose on first-pass drug metabolism in humans, however, has not yet been determined. In rats, sucralose alters the microbial composition in the gastrointestinal tract (GIT), with relatively greater reduction in beneficial bacteria. Although early studies asserted that sucralose passes through the GIT unchanged, subsequent analysis suggested that some of the ingested sweetener is metabolized in the GIT, as indicated by multiple peaks found in thin-layer radiochromatographic profiles of methanolic fecal extracts after oral sucralose administration. The identity and safety profile of these putative sucralose metabolites are not known at this time. Sucralose and one of its hydrolysis products were found to be mutagenic at elevated concentrations in several testing methods. Cooking with sucralose at high temperatures was reported to generate chloropropanols, a potentially toxic class of compounds. Both human and rodent studies demonstrated that sucralose may alter glucose, insulin, and glucagon-like peptide 1 (GLP-1) levels. Taken together, these findings indicate that sucralose is not a biologically inert compound.
Collapse
Affiliation(s)
- Susan S. Schiffman
- Department of Electrical and Computer Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Address correspondence to Susan S. Schiffman, PhD, Department of Electrical and Computer Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695-7911, USA. E-mail:
| | - Kristina I. Rother
- Section on Pediatric Diabetes & Metabolism, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Wen X, Donepudi AC, Thomas PE, Slitt AL, King RS, Aleksunes LM. Regulation of hepatic phase II metabolism in pregnant mice. J Pharmacol Exp Ther 2012; 344:244-52. [PMID: 23055538 DOI: 10.1124/jpet.112.199034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phase II enzymes, including Ugts, Sults, and Gsts, are critical for the disposition and detoxification of endo- and xenobiotics. In this study, the mRNA and protein expression of major phase II enzymes, as well as key regulatory transcription factors, were quantified in livers of time-matched pregnant and virgin control C57BL/6 mice on gestation days (GD) 7, 11, 14, 17, and postnatal days (PND) 1, 15, and 30. Compared with virgin controls, the mRNA expression of Ugt1a1, 1a6, 1a9, 2a3, 2b1, 2b34, and 2b35 decreased 40 to 80% in pregnant dams. Protein expression of Ugt1a6 also decreased and corresponded with reduced in vitro glucuronidation of bisphenol A in S9 fractions from livers of pregnant mice. Similar to Ugts levels, Gsta1 and a4 mRNAs were reduced in pregnant dams in mid to late gestation; however no change in protein expression was observed. Conversely, Sult1a1, 2a1/2, and 3a1 mRNAs increased 100 to 500% at various time points in pregnant and lactating mice and corresponded with enhanced in vitro sulfation of acetaminophen in liver S9 fractions. Coinciding with maximal decreases in Ugts as well as increases in Sults, the expression of transcription factors CAR, PPARα, and PXR and their target genes were downregulated, whereas ERα mRNA was upregulated. Collectively, these data demonstrate altered regulation of hepatic phase II metabolism in mice during pregnancy and suggest that CAR, PPARα, PXR, and ERα signaling pathways may be candidate signaling pathways responsible for these changes.
Collapse
Affiliation(s)
- Xia Wen
- Dept. of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd. Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chen S, Yueh MF, Evans RM, Tukey RH. Pregnane-x-receptor controls hepatic glucuronidation during pregnancy and neonatal development in humanized UGT1 mice. Hepatology 2012; 56:658-67. [PMID: 22371261 PMCID: PMC3383890 DOI: 10.1002/hep.25671] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 02/13/2012] [Indexed: 02/01/2023]
Abstract
UNLABELLED In humanized UDP glucuronosyltransferase-1 (hUGT1) mice that express the entire UGT1 locus, the maternal hepatic UGT1A genes are dramatically induced 12-14 days after conception. Steroid induction of the UGT1A1 gene indicates that xenobiotic sensors, such as the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), may underlie the induction process. In contrast, neonatal hUGT1 mice display severe hyperbilirubinemia, with limited expression of the UGT1A genes. This study identifies PXR as both a positive and negative regulator of the UGT1A1 gene. Pregnancy hormones, in particular the glucocorticoids, target PXR as a positive regulator of human glucuronidation. Employing reverse genetics, where PXR has been genetically deleted, hUGT1/Pxr(-/-) mice show limited induction of the liver UGT1A genes during pregnancy, whereas the exact opposite occurs in newborn mice. Neonatal hUGT1 mice show delayed expression of hepatic UGT1A1 and are severely hyperbilirubinemic. However, in hUGT1/Pxr(-/-) mice, hyperbilirubinemia is greatly reduced due to induction of hepatic UGT1A1. Thus, PXR serves to repress UGT1A1 gene expression during development. Transcriptional silencing of the UGT1A1 gene was relieved in neonatal hUGT1 hepatocytes through interruption of PXR by small interfering RNA. CONCLUSION PXR is a key regulator of pregnancy induced glucuronidation capacity in addition to modulating the severity of neonatal jaundice.
Collapse
Affiliation(s)
- Shujuan Chen
- Department of Pharmacology, Laboratory of Environmental Toxicology, University of CaliforniaSan Diego, La Jolla, CA
| | - Mei-Fei Yueh
- Department of Pharmacology, Laboratory of Environmental Toxicology, University of CaliforniaSan Diego, La Jolla, CA
| | - Ronald M Evans
- Howard Hughes Medical Institute and Gene Expression Laboratory, Salk Institute of Biological StudiesLa Jolla, CA
| | - Robert H Tukey
- Department of Pharmacology, Laboratory of Environmental Toxicology, University of CaliforniaSan Diego, La Jolla, CA,Department of Chemistry & Biochemistry, Laboratory of Environmental Toxicology, University of CaliforniaSan Diego, La Jolla, CA
| |
Collapse
|
40
|
Zhang SY, Surapureddi S, Coulter S, Ferguson SS, Goldstein JA. Human CYP2C8 is post-transcriptionally regulated by microRNAs 103 and 107 in human liver. Mol Pharmacol 2012; 82:529-40. [PMID: 22723340 DOI: 10.1124/mol.112.078386] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The CYP2C genes are extensively regulated at the transcriptional stage. The present study shows for the first time that CYP2Cs are also regulated post-transcriptionally by microRNAs (miRNAs). By using online search engines, we found potential miRNA response elements (MREs) in the 3'-untranslated region (3'-UTR) of the CYP2C mRNAs. Among these were a MRE for the miRNAs miR-103 and miR-107 in the 3'-UTR of human CYP2C8. CYP2C8 protein levels (measured through immunoblot analyses) did not correlate with CYP2C8 mRNA levels (measured through quantitative polymerase chain reaction analyses) in human liver samples. The translation efficiency (protein/mRNA ratio) for CYP2C8 was inversely correlated with the expression of miR-103 and miR-107. When three copies of the putative MRE from CYP2C8 were inserted downstream from a luciferase expression reporter, transfection with precursors for miR-103 or miR-107 decreased luciferase activity in primary hepatocytes, whereas transfection with antisense oligonucleotides (AsOs) for miR-103/miR-107 increased luciferase activity. As expected, there was no effect of the precursors or AsOs when three copies of the putative MRE were inserted in the reverse orientation. When precursors for miR-103/miR-107 were transfected into primary human hepatocytes, CYP2C8 protein levels were decreased, whereas AsOs increased CYP2C8 protein levels. Neither precursors nor AsOs affected CYP2C8 mRNA levels, which indicated that the effect was post-transcriptional. Putative MRE motifs were also found in the 3'-UTRs of CYP2C9 and CYP2C19, which suggested that the same miRNAs could regulate translation of other members of the CYP2C family, although to a lesser degree than CYP2C8. These results clearly show that CYP2Cs are regulated post-transcriptionally by miR-103 and miR-107.
Collapse
Affiliation(s)
- Shu-Yun Zhang
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
41
|
More VR, Wen X, Thomas PE, Aleksunes LM, Slitt AL. Severe diabetes and leptin resistance cause differential hepatic and renal transporter expression in mice. COMPARATIVE HEPATOLOGY 2012; 11:1. [PMID: 22524730 PMCID: PMC3416584 DOI: 10.1186/1476-5926-11-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/23/2012] [Indexed: 12/29/2022]
Abstract
Background Type-2 Diabetes is a major health concern in the United States and other Westernized countries, with prevalence increasing yearly. There is a need to better model and predict adverse drug reactions, drug-induced liver injury, and drug efficacy in this population. Because transporters significantly contribute to drug clearance and disposition, it is highly significant to determine whether a severe diabetes phenotype alters drug transporter expression, and whether diabetic mouse models have altered disposition of acetaminophen (APAP) metabolites. Results Transporter mRNA and protein expression were quantified in livers and kidneys of adult C57BKS and db/db mice, which have a severe diabetes phenotype due to a lack of a functional leptin receptor. The urinary excretion of acetaminophen-glucuronide, a substrate for multidrug resistance-associated proteins transporters was also determined. The mRNA expression of major uptake transporters, such as organic anion transporting polypeptide Slco1a1 in liver and kidney, 1a4 in liver, and Slc22a7 in kidney was decreased in db/db mice. In contrast, Abcc3 and 4 mRNA and protein expression was more than 2 fold higher in db/db male mouse livers as compared to C57BKS controls. Urine levels of APAP-glucuronide, -sulfate, and N-acetyl cysteine metabolites were higher in db/db mice. Conclusion A severe diabetes phenotype/presentation significantly altered drug transporter expression in liver and kidney, which corresponded with urinary APAP metabolite levels.
Collapse
Affiliation(s)
- Vijay R More
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| | | | | | | | | |
Collapse
|
42
|
Chen Y, Tang Y, Guo C, Wang J, Boral D, Nie D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol 2012; 83:1112-26. [PMID: 22326308 PMCID: PMC3339266 DOI: 10.1016/j.bcp.2012.01.030] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 01/18/2023]
Abstract
Chemotherapy is one of the three most common treatment modalities for cancer. However, its efficacy is limited by multidrug resistant cancer cells. Drug metabolizing enzymes (DMEs) and efflux transporters promote the metabolism, elimination, and detoxification of chemotherapeutic agents. Consequently, elevated levels of DMEs and efflux transporters reduce the therapeutic effectiveness of chemotherapeutics and, often, lead to treatment failure. Nuclear receptors, especially pregnane X receptor (PXR, NR1I2) and constitutive androstane activated receptor (CAR, NR1I3), are increasingly recognized for their role in xenobiotic metabolism and clearance as well as their role in the development of multidrug resistance (MDR) during chemotherapy. Promiscuous xenobiotic receptors, including PXR and CAR, govern the inducible expressions of a broad spectrum of target genes that encode phase I DMEs, phase II DMEs, and efflux transporters. Recent studies conducted by a number of groups, including ours, have revealed that PXR and CAR play pivotal roles in the development of MDR in various human carcinomas, including prostate, colon, ovarian, and esophageal squamous cell carcinomas. Accordingly, PXR/CAR expression levels and/or activation statuses may predict prognosis and identify the risk of drug resistance in patients subjected to chemotherapy. Further, PXR/CAR antagonists, when used in combination with existing chemotherapeutics that activate PXR/CAR, are feasible and promising options that could be utilized to overcome or, at least, attenuate MDR in cancer cells.
Collapse
Affiliation(s)
- Yakun Chen
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | | | | | | | | | | |
Collapse
|
43
|
El-Sayed WM. Effect of pregnane X receptor (PXR) prototype agonists on chemoprotective and drug metabolizing enzymes in mice. Eur J Pharmacol 2011; 660:291-297. [PMID: 21496454 DOI: 10.1016/j.ejphar.2011.03.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 03/04/2011] [Accepted: 03/22/2011] [Indexed: 01/28/2023]
Abstract
The effects of known PXR inducers; spironolactone [SPL, (i.p.)], pregnenolone-16 alpha-carbonitrile [PCN, (i.g.)] and dexamethasone (i.p.) on hepatic drug metabolizing enzymes in the male CF1 mouse were examined 24 h after 3 daily doses (50, 100, or 200 mg/kg) in corn oil vehicle. All three compounds produced dose-dependent elevations in cytochrome P450 [CYP3A], glutathione S-transferase [GST] and NAD(P)H quinone oxidoreductase [NQO] activities. Only elevations in CYP3A produced after dexamethasone were statistically significant. An elevation in microsomal epoxide hydrolase [mEH, Ephx1] activity was seen after almost all treatments but was erratic with dose. UDP-glucuronosyltransferase and thioredoxin reductase activities were not increased by any agent. Dexamethasone elevated Cyp1a1/2 mRNA at the low dose but reduced the mRNA transcript and activity of the enzyme at the mid and high doses. The mRNA responses of Ephx1 and Nqo1 showed a close parallel to each other with no increases after dexamethasone or SPL treatment, and elevations at the mid dose of PCN. With the exception of dexamethasone at the high dose, elevations in Gst mRNAs were seen with all doses of the three agents. When a large number of hepatic enzymes are examined, the responses to dexamethasone, SPL and PCN are far from identical, and any dose dependency is agent specific. Induction of enzymes seems more complicated to be controlled by one orphan receptor. This study not only filled the void about the murine PXR-induction profile but also will help in the course of drug development research with respect to extrapolation to human risk assessment.
Collapse
Affiliation(s)
- Wael M El-Sayed
- King Faisal University, Faculty of Science, Department of Biological Sciences, Al-Hufof 31982, Ahsaa, Saudi Arabia.
| |
Collapse
|
44
|
Ghose R, Omoluabi O, Gandhi A, Shah P, Strohacker K, Carpenter KC, McFarlin B, Guo T. Role of high-fat diet in regulation of gene expression of drug metabolizing enzymes and transporters. Life Sci 2011; 89:57-64. [PMID: 21620874 DOI: 10.1016/j.lfs.2011.05.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/18/2011] [Accepted: 05/03/2011] [Indexed: 02/06/2023]
Abstract
AIM Our aim is to investigate the molecular mechanism of regulation of gene expression of drug metabolizing enzymes (DMEs) and transporters in diet-induced obesity. MAIN METHODS Adult male CD1 mice were fed diets containing 60% kcal fat (HFD) or 10% kcal fat (LFD) for 14 weeks. RNA levels of hepatic DMEs, transporters and their regulatory nuclear receptors (NRs) were analyzed by real-time PCR. Activation of cell-signaling components (JNK and NF-κΒ) and pro-inflammatory cytokines (IL-1β, IL-6 and TNFα) were measured in the liver. Finally, the pharmacodynamics of drugs metabolized by DMEs was measured to determine the clinical relevance of our findings. KEY FINDINGS RNA levels of the hepatic phase I (Cyp3a11, Cyp2b10, Cyp2a4) and phase II (Ugt1a1, Sult1a1, Sultn) enzymes were reduced ~30-60% in HFD compared to LFD mice. RNA levels of Cyp2e1, Cyp1a2 and the drug transporters, multidrug resistance proteins, (Mrp)2, Mrp3 and multidrug resistant gene (Mdr)1b were unaltered in HFD mice. Gene expression of the NRs, PXR and CAR and nuclear protein levels of RXRα was reduced in HFD mice. Cytokines, JNK and NF-κΒ were induced in HFD mice. Thus reduction in hepatic gene expression in obesity may be modulated by cross-talk between NRs and inflammation-induced cell-signaling. Sleep time of Midazolam (Cyp3a substrate) was prolonged in HFD mice, while Zoxazolamine (Cyp1a2 and Cyp2e1 substrate)-induced sleep time was unaltered. SIGNIFICANCE This study demonstrates that gene-specific reductions in DMEs can affect specific drugs metabolized by these enzymes, thus providing a rationale to monitor the effectiveness of drug therapy in obese individuals.
Collapse
Affiliation(s)
- Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 1441 Moursund Street, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev 2010; 62:1238-49. [PMID: 20727377 DOI: 10.1016/j.addr.2010.08.006] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/24/2022]
Abstract
Drug-metabolizing enzymes (DMEs) and transporters play pivotal roles in the disposition and detoxification of numerous foreign and endogenous chemicals. To accommodate chemical challenges, the expression of many DMEs and transporters is up-regulated by a group of ligand-activated transcription factors namely nuclear receptors (NRs). The importance of NRs in xenobiotic metabolism and clearance is best exemplified by the most promiscuous xenobiotic receptors: pregnane X receptor (PXR, NR1I2) and constitutive androstane/activated receptor (CAR, NR1I3). Together, these two receptors govern the inductive expression of a largely overlapping array of target genes encoding phase I and II DMEs, and drug transporters. Moreover, PXR and CAR also represent two distinctive mechanisms of NR activation, whereby CAR demonstrates both constitutive and ligand-independent activation. In this review, recent advances in our understanding of PXR and CAR as xenosensors are discussed with emphasis placed on the differences rather than similarities of these two xenobiotic receptors in ligand recognition and target gene regulation.
Collapse
|
46
|
Ou Z, Huang M, Zhao L, Xie W. Use of transgenic mice in UDP-glucuronosyltransferase (UGT) studies. Drug Metab Rev 2010; 42:123-31. [PMID: 20070245 DOI: 10.3109/03602530903208983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transgenic mouse models are useful to understand the function and regulation of drug-metabolizing enzymes in vivo. This article is intended to describe the general strategies and to discuss specific examples on how to use transgenic, gene knockout, and humanized mice to study the function as well as genetic and pharmacological regulation of UDP-glucuronosyltransferases (UGTs). The physiological and pharmacological implications of transcription factor-mediated UGT regulation will also be discussed. The UGT-regulating transcription factors to be discussed in this article include nuclear hormone receptors (NRs), aryl hydrocarbon receptor (AhR), and nuclear factor erythroid 2-related factor 2 (Nrf2).
Collapse
Affiliation(s)
- Zhimin Ou
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
47
|
Zollner G, Wagner M, Trauner M. Nuclear receptors as drug targets in cholestasis and drug-induced hepatotoxicity. Pharmacol Ther 2010; 126:228-43. [PMID: 20388526 DOI: 10.1016/j.pharmthera.2010.03.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 01/04/2023]
Abstract
Nuclear receptors are key regulators of various processes including reproduction, development, and metabolism of xeno- and endobiotics such as bile acids and drugs. Research in the last two decades provided researchers and clinicians with a detailed understanding of the regulation of these processes and, most importantly, also prompted the development of novel drugs specifically targeting nuclear receptors for the treatment of a variety of diseases. Some nuclear receptor agonists are already used in daily clinical practice but many more are currently designed or tested for the treatment of diabetes, dyslipidemia, fatty liver disease, cancer, drug hepatotoxicity and cholestasis. The hydrophilic bile acid ursodeoxycholic acid is currently the only available drug to treat cholestasis but its efficacy is limited. Therefore, development of novel treatments represents a major goal for both pharmaceutical industry and academic researchers. Targeting nuclear receptors in cholestasis is an intriguing approach since these receptors are critically involved in regulation of bile acid homeostasis. This review will discuss the general role of nuclear receptors in regulation of transporters and other enzymes maintaining bile acid homeostasis and will review the role of individual receptors as therapeutic targets. In addition, the central role of nuclear receptors and other transcription factors such as the aryl hydrocarbon receptor (AhR) and the nuclear factor-E2-related factor (Nrf2) in mediating drug disposition and their potential therapeutic role in drug-induced liver disease will be covered.
Collapse
Affiliation(s)
- Gernot Zollner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | | | | |
Collapse
|
48
|
Suppression of AhR signaling pathway is associated with the down-regulation of UDP-glucuronosyltransferases during BBN-induced urinary bladder carcinogenesis in mice. ACTA ACUST UNITED AC 2009; 147:353-60. [DOI: 10.1093/jb/mvp169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Ren H, Aleksunes LM, Wood C, Vallanat B, George MH, Klaassen CD, Corton JC. Characterization of peroxisome proliferator-activated receptor alpha--independent effects of PPARalpha activators in the rodent liver: di-(2-ethylhexyl) phthalate also activates the constitutive-activated receptor. Toxicol Sci 2009; 113:45-59. [PMID: 19850644 DOI: 10.1093/toxsci/kfp251] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator chemicals (PPC) are thought to mediate their effects in rodents on hepatocyte growth and liver cancer through the nuclear receptor peroxisome proliferator-activated receptor (PPAR) alpha. Recent studies indicate that the plasticizer di-(2-ethylhexyl) phthalate (DEHP) increased the incidence of liver tumors in PPARalpha-null mice. We hypothesized that some PPC, including DEHP, induce transcriptional changes independent of PPARalpha but dependent on other nuclear receptors, including the constitutive-activated receptor (CAR) that mediates phenobarbital (PB) effects on hepatocyte growth and liver tumor induction. To determine the potential role of CAR in mediating effects of PPC, a meta-analysis was performed on transcript profiles from published studies in which rats and mice were exposed to PPC and compared the profiles to those produced by exposure to PB. Valproic acid, clofibrate, and DEHP in rat liver and DEHP in mouse liver induced genes, including Cyp2b family members that are known to be regulated by CAR. Examination of transcript changes by Affymetrix ST 1.0 arrays and reverse transcription-PCR in the livers of DEHP-treated wild-type, PPARalpha-null, and CAR-null mice demonstrated that (1) most (approximately 94%) of the transcriptional changes induced by DEHP were PPARalpha-dependent, (2) many PPARalpha-independent genes overlapped with those regulated by PB, (3) induction of genes Cyp2b10, Cyp3a11, and metallothionine-1 by DEHP was CAR dependent but PPARalpha-independent, and (4) induction of a number of genes (Cyp8b1, Gstm4, and Gstm7) was independent of both CAR and PPARalpha. Our results indicate that exposure to PPARalpha activators including DEHP leads to activation of multiple nuclear receptors in the rodent liver.
Collapse
Affiliation(s)
- Hongzu Ren
- National Health and Environmental Effects Research Lab Toxicogenomics Core, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Hedge JM, DeVito MJ, Crofton KM. In Vivo Acute Exposure to Polychlorinated Biphenyls: Effects on Free and Total Thyroxine in Rats. Int J Toxicol 2009; 28:382-91. [DOI: 10.1177/1091581809344631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypothyroxinemia in rats has been well documented as a result of exposure to polychlorinated biphenyls (PCBs). Hypothetical mechanisms include induction of hepatic catabolic enzymes and cellular hormone transporters, and/or interference with plasma transport proteins. We hypothesized that if thyroxine displacement from transport proteins by PCBs occurs in vivo, it would result in increased free thyroxine (FT4). This study investigates the effects of a single oral dose of 2,2’,4,4’,5,5'-hexachlorobiphenyl (PCB 153 at 60 mg/kg) or 3,3’,4,4’,5,5'-hexachlorobiphenyl (PCB 169 at 1 mg/kg) on rats at 28 or 76 days of age. Total thyroxine (TT4) and FT4 were measured at 0.5, 1, 2, 4, 8, 24, or 48 hours post -dosing. Microsomal ethoxy- and pentoxy-resorufin-O-deethylase (EROD and PROD) activity and uridine diphosphoglucuronosyl transferase (UGT) activity were determined. No significant increase in TT4 or FT4 concentrations was seen at any time point. PCB 153 significantly decreased TT4 and FT4 in young and adult rats, with young rats showing a time-by-treatment interaction from 2 to 48 hours post -dosing in serum FT4. With PCB 169 exposure, young rats showed a decrease in FT4 only, whereas adult rats showed decreases in TT4 only. Hepatic EROD and PROD activities were both dramatically increased following PCB 169 and 153, respectively. Uridine diphosphoglucuronosyl transferase activity was increased only after PCB 169 exposure. These data demonstrate that neither PCB 153 nor PCB169 increased FT4, which supports the conclusion that these PCBs do not displace thyroxine from serum TTR, or if it does occur, there is no subsequent increase in serum FT4 in vivo.
Collapse
Affiliation(s)
- J. M. Hedge
- From the Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. E.P.A., Research Triangle Park, NC
| | - M. J. DeVito
- From the Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. E.P.A., Research Triangle Park, NC
| | - K. M. Crofton
- From the Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. E.P.A., Research Triangle Park, NC
| |
Collapse
|