1
|
Deng M, Zhang Z, Xing M, Liang X, Li Z, Wu J, Jiang S, Weng Y, Guo Q, Zou W. LncRNA MRAK159688 facilitates morphine tolerance by promoting REST-mediated inhibition of mu opioid receptor in rats. Neuropharmacology 2022; 206:108938. [PMID: 34982972 DOI: 10.1016/j.neuropharm.2021.108938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Morphine tolerance (MT) caused by the long-term use of morphine is a major medical problem. The molecular mechanism of morphine tolerance remains elusive. Here, we established a morphine tolerance model in rats and verified whether the long noncoding RNA (lncRNA) MRAK159688 is involved in morphine tolerance and its specific molecular mechanism. We show the significant upregulation of MRAK159688 expression in the spinal cord of morphine-tolerant rats. Overexpression of MRAK159688 by a lentivirus reduces the analgesic efficacy of morphine and induces pain behavior. Downregulation of MRAK159688 using a small interfering RNA (siRNA) attenuates the formation of morphine tolerance, partially reverses the development of morphine tolerance and alleviates morphine-induced hyperalgesia. MRAK159688 is located in the nucleus and cytoplasm of neurons, and it colocalizes with repressor element-1 silencing transcription factor (REST) in the nucleus. MRAK159688 potentiates the expression and function of REST, thereby inhibiting the expression of mu opioid receptor (MOR) and subsequently inducing morphine tolerance. Moreover, REST overexpression blocks the effects of MRAK159688 siRNA on relieving morphine tolerance. In general, chronic morphine administration-mediated upregulation of MRAK159688 in the spinal cord contributes to morphine tolerance and hyperalgesia by promoting REST-mediated inhibition of MOR. MRAK159688 downregulation may represent a novel RNA-based therapy for morphine tolerance.
Collapse
Affiliation(s)
- Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zengli Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300000, China
| | - Manyu Xing
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xia Liang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zhengyiqi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing Wu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shasha Jiang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Zhou J, Ma R, Jin Y, Fang J, Du J, Shao X, Liang Y, Fang J. Molecular mechanisms of opioid tolerance: From opioid receptors to inflammatory mediators (Review). Exp Ther Med 2021; 22:1004. [PMID: 34345286 PMCID: PMC8311239 DOI: 10.3892/etm.2021.10437] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Opioids are considered the most effective analgesics for the treatment of both acute and chronic pain. However, prolonged opioid use can induce a certain level of tolerance to its analgesic effects, leading to a reduction in its effectiveness, addiction and abuse. A better understanding of the mechanisms underlying opioid tolerance may provide insights into this phenomenon and aid in the development of novel methods to combat the side effects of opioid tolerance. The present review focused on two major contributors to tolerance, opioid receptors and inflammatory mediators. The molecular mechanisms involved in the desensitization of the opioid receptors were briefly described, including their phosphorylation, internalisation and recycling. Subsequently, the effects of Toll like receptor 4/NOD-like receptor family pyrin domain containing 3-mediated proinflammatory responses in opioid tolerance were discussed, aiming in supporting the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Ruijie Ma
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Ying Jin
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Junfan Fang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Junying Du
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiaomei Shao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
3
|
de Corde-Skurska A, Krzascik P, Lesniak A, Sacharczuk M, Nagraba L, Bujalska-Zadrozny M. Disulfiram Abrogates Morphine Tolerance-A Possible Role of µ-Opioid Receptor-Related G-Protein Activation in the Striatum. Int J Mol Sci 2021; 22:4057. [PMID: 33919998 PMCID: PMC8071001 DOI: 10.3390/ijms22084057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
One of the key strategies for effective pain management involves delaying analgesic tolerance. Early clinical reports indicate an extraordinary effectiveness of off-label disulfiram-an agent designed for alcohol use disorder-in potentiating opioid analgesia and abrogation of tolerance. Our study aimed to determine whether sustained µ-opioid signaling upon disulfiram exposure contributes to these phenomena. Wistar rats were exposed to acute and chronic disulfiram and morphine cotreatment. Nociceptive thresholds were assessed with the mechanical Randal-Selitto and thermal tail-flick tests. µ-opioid receptor activation in brain structures important for pain processing was carried out with the [35S]GTPγS assay. The results suggest that disulfiram (12.5-50 mg/kg i.g.) augmented morphine antinociception and diminished morphine (25 mg/kg, i.g.) tolerance in a supraspinal, opioid-dependent manner. Disulfiram (25 mg/kg, i.g.) induced a transient enhancement of µ-opioid receptor activation in the periaqueductal gray matter (PAG), rostral ventromedial medulla (RVM), hypothalamus, prefrontal cortex and the dorsal striatum at day 1 of morphine treatment. Disulfiram rescued µ-opioid receptor signaling in the nucleus accumbens and caudate-putamen 14 days following morphine and disulfiram cotreatment. The results of this study suggest that striatal µ-opioid receptors may contribute to the abolition of morphine tolerance following concomitant treatment with disulfiram.
Collapse
Affiliation(s)
- Anna de Corde-Skurska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b Str., 02-097 Warsaw, Poland; (A.d.C.-S.); (A.L.)
| | - Pawel Krzascik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b Str., 02-097 Warsaw, Poland;
| | - Anna Lesniak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b Str., 02-097 Warsaw, Poland; (A.d.C.-S.); (A.L.)
| | - Mariusz Sacharczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology in Jastrzebiec, Polish Academy of Sciences, Postepu 36A Str., 05-552 Magdalenka, Poland;
| | - Lukasz Nagraba
- Department of Orthopaedics and Rehabilitation, Medical University of Warsaw, Bursztynowa 2 Str., 04-749 Warsaw, Poland;
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b Str., 02-097 Warsaw, Poland; (A.d.C.-S.); (A.L.)
| |
Collapse
|
4
|
Soluble epoxide hydrolase inhibitor mediated analgesia lacks tolerance in rat models. Brain Res 2019; 1728:146573. [PMID: 31790682 DOI: 10.1016/j.brainres.2019.146573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/05/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022]
Abstract
Effectively treating chronic pain remains a therapeutic challenge in the clinic. Recent evidence has shown the inhibition of the soluble epoxide hydrolase (sEH) to be an effective strategy to limit chronic pain in preclinical models, horses and companion animals. Determining the safety of sEH inhibition in addition to this demonstrated efficacy is a critical step to the further development of sEH inhibitors (sEHI) as analgesics. Here we describe a comparison of the sEHI TPPU with other first in class analgesics for human chronic pain. We assess the development of tolerance to the analgesia mediated by TPPU with extended use. We also assess for CNS effects by measuring changes in motor control and functioning. The sEHI are multimodal analgesics that have demonstrated potent efficacy against chronic pain. They have previously been tested and show no reward potential using operant methods. The results of the current experiments show that they lack motor function effects and also lack the development of tolerance with extended dosing.
Collapse
|
5
|
Fujita W, Yokote M, Gomes I, Gupta A, Ueda H, Devi LA. Regulation of an Opioid Receptor Chaperone Protein, RTP4, by Morphine. Mol Pharmacol 2018; 95:11-19. [PMID: 30348895 DOI: 10.1124/mol.118.112987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022] Open
Abstract
Signaling by classic analgesics, such as morphine, is governed primarily by the relative abundance of opioid receptors at the cell surface, and this is regulated by receptor delivery to, and retrieval from, the plasma membrane. Although retrieval mechanisms, such as receptor endocytosis, have been extensively investigated, fewer studies have explored mechanisms of receptor maturation and delivery to the plasma membrane. A previous study implicated receptor transporter proteins (RTPs) in the latter process. Since not much is known about regulation of RTP expression, we initiated studies examining the effect of chronic morphine administration on the levels of RTPs in the brain. Among the four RTPs, we detected selective and region-specific changes in RTP4 expression; RTP4 mRNA is significantly upregulated in the hypothalamus compared with other brain regions. We examined whether increased RTP4 expression impacted receptor protein levels and found a significant increase in the abundance of mu opioid receptors (MOPrs) but not other related G protein-coupled receptors (GPCRs, such as delta opioid, CB1 cannabinoid, or D2 dopamine receptors) in hypothalamic membranes from animals chronically treated with morphine. Next, we used a cell culture system to show that RTP4 expression is necessary and sufficient for regulating opioid receptor abundance at the cell surface. Interestingly, selective MOPr-mediated increase in RTP4 expression leads to increases in cell surface levels of MOPr-delta opioid receptor heteromers, and this increase is significantly attenuated by RTP4 small interfering RNA. Together, these results suggest that RTP4 expression is regulated by chronic morphine administration, and this, in turn, regulates opioid receptor cell surface levels and function.
Collapse
Affiliation(s)
- Wakako Fujita
- Departments of Frontier Life Science (W.F.) and Therapeutic Innovation and Pharmacology (M.Y., H.U.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., A.G., L.A.D.)
| | - Mini Yokote
- Departments of Frontier Life Science (W.F.) and Therapeutic Innovation and Pharmacology (M.Y., H.U.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., A.G., L.A.D.)
| | - Ivone Gomes
- Departments of Frontier Life Science (W.F.) and Therapeutic Innovation and Pharmacology (M.Y., H.U.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., A.G., L.A.D.)
| | - Achla Gupta
- Departments of Frontier Life Science (W.F.) and Therapeutic Innovation and Pharmacology (M.Y., H.U.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., A.G., L.A.D.)
| | - Hiroshi Ueda
- Departments of Frontier Life Science (W.F.) and Therapeutic Innovation and Pharmacology (M.Y., H.U.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., A.G., L.A.D.)
| | - Lakshmi A Devi
- Departments of Frontier Life Science (W.F.) and Therapeutic Innovation and Pharmacology (M.Y., H.U.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., A.G., L.A.D.)
| |
Collapse
|
6
|
Lamberts JT, Rosenthal LD, Jutkiewicz EM, Traynor JR. Role of the guanine nucleotide binding protein, Gα o, in the development of morphine tolerance and dependence. Psychopharmacology (Berl) 2018; 235:71-82. [PMID: 28971229 PMCID: PMC5819733 DOI: 10.1007/s00213-017-4742-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
RATIONALE The use of morphine and other opioids for chronic pain is limited by the development of analgesic tolerance and physical dependence. Morphine produces its effects by activating the μ opioid receptor, which couples to Gαi/o-containing heterotrimeric G proteins. Evidence suggests that the antinociceptive effects of morphine are mediated by Gαo. However, the role of Gαo in the development of morphine tolerance and dependence is unknown. OBJECTIVE The objective of the study is to evaluate the contribution of Gαo to the development of morphine tolerance and dependence in mice. METHODS 129S6 mice lacking one copy of the Gαo gene (Gαo +/-) were administered morphine acutely or chronically. Mice were examined for tolerance to the antinociceptive action of morphine using the 52 °C hot plate as the nociceptive stimulus and for dependence by evaluating the severity of naltrexone-precipitated withdrawal. Wild-type littermates of the Gαo +/- mice were used as controls. Changes in μ receptor number and function were determined in midbrain and hindbrain homogenates using radioligand binding and μ agonist-stimulated [35S]GTPγS binding, respectively. RESULTS Following either acute or chronic morphine treatment, all mice developed antinociceptive tolerance and physical dependence, regardless of genotype. With chronic morphine treatment, Gαo +/- mice developed tolerance faster and displayed more severe naltrexone-precipitated withdrawal in some behaviors than did wild-type littermates. Morphine tolerance was not associated with changes in μ receptor number or function in brain homogenates from either wild-type or Gαo +/- mice. CONCLUSIONS These data suggest that the guanine nucleotide binding protein Gαo offers some protection against the development of morphine tolerance and dependence.
Collapse
Affiliation(s)
- Jennifer T Lamberts
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA
- College of Pharmacy, Ferris State University, Big Rapids, MI, 49307, USA
| | - Lisa D Rosenthal
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA
| | - Emily M Jutkiewicz
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA
| | - John R Traynor
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA.
| |
Collapse
|
7
|
Zhao J, Wang H, Song T, Yang Y, Gu K, Ma P, Zhang Z, Shen L, Liu J, Wang W. Thalidomide Promotes Morphine Efficacy and Prevents Morphine-Induced Tolerance in Rats with Diabetic Neuropathy. Neurochem Res 2016; 41:3171-3180. [DOI: 10.1007/s11064-016-2041-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/13/2016] [Accepted: 08/20/2016] [Indexed: 12/24/2022]
|
8
|
Ahmadi S, Rafieenia F, Rostamzadeh J. Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex. Basic Clin Neurosci 2016; 7:241-8. [PMID: 27563417 PMCID: PMC4981836 DOI: 10.15412/j.bcn.03070309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels in rat striatum and prefrontal cortex (PFC) after induction of morphine tolerance. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: The results showed that long-term morphine a administration induces tolerance to analgesic effect of the opioid, as revealed by a significant decrease in morphine-induced analgesia on day 8 compared to day 1 of the injections (P<0.001). The results also showed that the NR1 gene expression at mRNA level in rats tolerant to morphine was significantly increased in the striatum (P<0.01) but decreased in the PFC (P<0.001). Conclusion: Therefore, changes in the NR1 gene expression in rat striatum and PFC have a region-specific association with morphine-induced analgesic tolerance.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Fatemeh Rafieenia
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Jalal Rostamzadeh
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
9
|
Allouche S, Noble F, Marie N. Opioid receptor desensitization: mechanisms and its link to tolerance. Front Pharmacol 2014; 5:280. [PMID: 25566076 PMCID: PMC4270172 DOI: 10.3389/fphar.2014.00280] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/02/2014] [Indexed: 02/04/2023] Open
Abstract
Opioid receptors (OR) are part of the class A of G-protein coupled receptors and the target of the opiates, the most powerful analgesic molecules used in clinic. During a protracted use, a tolerance to analgesic effect develops resulting in a reduction of the effectiveness. So understanding mechanisms of tolerance is a great challenge and may help to find new strategies to tackle this side effect. This review will summarize receptor-related mechanisms that could underlie tolerance especially receptor desensitization. We will focus on the latest data obtained on molecular mechanisms involved in opioid receptor desensitization: phosphorylation, receptor uncoupling, internalization, and post-endocytic fate of the receptor.
Collapse
Affiliation(s)
- Stéphane Allouche
- Laboratoire de Signalisation, Électrophysiologie et Imagerie des Lésions D'ischémie-Reperfusion Myocardique, Université de Caen, UPRES EA 4650, IFR 146 ICORE Caen, France
| | - Florence Noble
- Centre National de la Recherche Scientifique, ERL 3649 Paris, France ; Institut National de la Santé et de la Recherche Médicale, UMR-S 1124 Paris, France ; Université Paris Descartes, Neuroplasticité et Thérapies des Addictions Paris, France
| | - Nicolas Marie
- Centre National de la Recherche Scientifique, ERL 3649 Paris, France ; Institut National de la Santé et de la Recherche Médicale, UMR-S 1124 Paris, France ; Université Paris Descartes, Neuroplasticité et Thérapies des Addictions Paris, France
| |
Collapse
|
10
|
Dopamine D₄ receptor counteracts morphine-induced changes in µ opioid receptor signaling in the striosomes of the rat caudate putamen. Int J Mol Sci 2014; 15:1481-98. [PMID: 24451133 PMCID: PMC3907881 DOI: 10.3390/ijms15011481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 11/17/2022] Open
Abstract
The mu opioid receptor (MOR) is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine.
Collapse
|
11
|
Skrabalova J, Drastichova Z, Novotny J. Morphine as a Potential Oxidative Stress-Causing Agent. MINI-REV ORG CHEM 2013; 10:367-372. [PMID: 24376392 PMCID: PMC3871421 DOI: 10.2174/1570193x113106660031] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 12/21/2022]
Abstract
Morphine exhibits important pharmacological effects for which it has been used in medical practice for quite a long time. However, it has a high addictive potential and can be abused. Long-term use of this drug can be connected with some pathological consequences including neurotoxicity and neuronal dysfunction, hepatotoxicity, kidney dysfunction, oxidative stress and apoptosis. Therefore, most studies examining the impact of morphine have been aimed at determining the effects induced by chronic morphine exposure in the brain, liver, cardiovascular system and macrophages. It appears that different tissues may respond to morphine diversely and are distinctly susceptible to oxidative stress and subsequent oxidative damage of biomolecules. Importantly, production of reactive oxygen/nitrogen species induced by morphine, which have been observed under different experimental conditions, can contribute to some pathological processes, degenerative diseases and organ dysfunctions occurring in morphine abusers or morphine-treated patients. This review attempts to provide insights into the possible relationship between morphine actions and oxidative stress.
Collapse
Affiliation(s)
- Jitka Skrabalova
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| |
Collapse
|
12
|
Chen M, Zhang X, Xu H, Ma X, Jiang W, Xu T. Inhibitory effect of spinal mGlu(5) receptor antisense oligonucleotide on the up-regulated expression of spinal G protein associated with chronic morphine treatment. Eur J Pharmacol 2013; 723:253-8. [PMID: 24296320 DOI: 10.1016/j.ejphar.2013.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 11/19/2022]
Abstract
Knockdown of spinal metabotropic glutamate 5 (mGlu5) receptor was shown to inhibit the development of intrathecal morphine antinociceptive tolerance. The present work was designed to evaluate the expression of spinal G-protein during morphine tolerance and knockdown of spinal mGlu5 receptor with antisense oligonucleotide (ODN). Rats were treated with saline, morphine, mGlu5 receptor antisense or mismatch ODN intrathecally. Behavioral tests were employed to test the thermal and mechanical pain thresholds. Five days later, rats were scarified and spinal expression of spinal Gαi, Gαo, Gαq and Gβ were detected. Consistent with the previous results, knockdown of spinal mGlu5 receptor could inhibit spinal morphine antinociceptive tolerance in behavioral tests (P<0.05). The mGlu5 receptor antisense ODN produced a significant reduction in mGlu5 receptor protein of about 56.6% compared with the control group (P<0.05). Expression of spinal Gαi, Gαo, Gαq and Gβ were up-regulated while morphine tolerance developed (P<0.05). Antisense ODN of spinal mGlu5 receptor, but not mismatched ODN, reduced the spinal dorsal horn levels of Gαi, Gαo, Gαs, Gαq and Gβ (P<0.05). We conclude that expression of spinal G (αi, αo, αs, αq and β) protein may be up-regulated after chronic morphine treatment which could be attenuated by knockdown of spinal mGlu5 receptor with antisense ODN.
Collapse
Affiliation(s)
- Moxi Chen
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaoli Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai 200233, China
| | - Hao Xu
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaqing Ma
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai 200233, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai 200233, China.
| | - Tao Xu
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai 200233, China.
| |
Collapse
|
13
|
Ligand-specific regulation of the endogenous mu-opioid receptor by chronic treatment with mu-opioid peptide agonists. BIOMED RESEARCH INTERNATIONAL 2013; 2013:501086. [PMID: 24350273 PMCID: PMC3857906 DOI: 10.1155/2013/501086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/22/2013] [Accepted: 09/06/2013] [Indexed: 11/17/2022]
Abstract
Since the discovery of the endomorphins (EM), the postulated endogenous peptide agonists of the mu-opioid receptors, several analogues have been synthesized to improve their binding and pharmacological profiles. We have shown previously that a new analogue, cis-1S,2R-aminocyclohexanecarboxylic acid2-endomorphin-2 (ACHC-EM2), had elevated mu-receptor affinity, selectivity, and proteolytic stability over the parent compound. In the present work, we have studied its antinociceptive effects and receptor regulatory processes. ACHC-EM2 displayed a somewhat higher (60%) acute antinociceptive response than the parent peptide, EM2 (45%), which peaked at 10 min after intracerebroventricular (icv) administration in the rat tail-flick test. Analgesic tolerance developed to the antinociceptive effect of ACHC-EM2 upon its repeated icv injection that was complete by a 10-day treatment. This was accompanied by attenuated coupling of mu-sites to G-proteins in subcellular fractions of rat brain. Also, the density of mu-receptors was upregulated by about 40% in the light membrane fraction, with no detectable changes in surface binding. Distinct receptor regulatory processes were noted in subcellular fractions of rat brains made tolerant by the prototypic full mu-agonist peptide, DAMGO, and its chloromethyl ketone derivative, DAMCK. These results are discussed in light of the recently discovered phenomenon, that is, the “so-called biased agonism” or “functional selectivity”.
Collapse
|
14
|
Comparison of tolerance to morphine-induced respiratory and analgesic effects in mice. Toxicol Lett 2013; 217:251-9. [DOI: 10.1016/j.toxlet.2012.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 12/26/2012] [Accepted: 12/27/2012] [Indexed: 11/18/2022]
|
15
|
Borics A, Mallareddy JR, Timári I, Kövér KE, Keresztes A, Tóth G. The Effect of Pro2 Modifications on the Structural and Pharmacological Properties of Endomorphin-2. J Med Chem 2012; 55:8418-28. [DOI: 10.1021/jm300836n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Attila Borics
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| | - Jayapal R. Mallareddy
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| | - István Timári
- Department of Chemistry, University
of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Katalin E. Kövér
- Department of Chemistry, University
of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Attila Keresztes
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| | - Géza Tóth
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| |
Collapse
|
16
|
Szentirmay AK, Király KP, Lenkey N, Lackó E, Al-Khrasani M, Friedmann T, Timár J, Gyarmati S, Tóth G, Fürst S, Riba P. Spinal interaction between the highly selective μ agonist DAMGO and several δ opioid receptor ligands in naive and morphine-tolerant mice. Brain Res Bull 2012; 90:66-71. [PMID: 22995282 DOI: 10.1016/j.brainresbull.2012.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 12/11/2022]
Abstract
Since the discovery of opioid receptor dimers their possible roles in opioid actions were intensively investigated. Here we suggest a mechanism that may involve the μ-δ opioid heterodimers. The exact role of δ opioid receptors in antinociception and in the development of opioid tolerance is still unclear. While receptor up-regulation can be observed during the development of opioid tolerance no μ receptor down-regulation could be detected within five days. In our present work we investigated how the selective δ opioid receptor agonists and antagonists influence the antinociceptive effect of the selective μ receptor agonist DAMGO in naïve and morphine-tolerant mice. We treated male NMRI mice with 200 μmol/kg subcutaneous (s.c.) morphine twice daily for three days. On the fourth day we measured the antinociceptive effect of DAMGO alone and combined with delta ligands: DPDPE, deltorphin II (agonists), TIPP and TICPψ (antagonists), respectively, administered intrathecally (i.t.) in mouse tail-flick test. In naive control mice none of the δ ligands caused significant changes in the antinociceptive action of DAMGO. The treatment with s.c. morphine resulted in approximately four-fold tolerance to i.t. DAMGO, i.e. the ED₅₀ value of DAMGO was four times as high as in naive mice. 500 and 1000 pmol/mouse of the δ₁ selective agonist DPDPE enhanced the tolerance to DAMGO while 1000 pmol/mouse of the δ₂ selective agonist deltorphin II did not influence the degree of tolerance. However, both δ antagonists TIPP and TICPψ potentiated the antinociceptive effect of i.t. DAMGO, thus they restored the potency of DAMGO to the control level. The inhibitory action of DPDPE against the antinociceptive effect of DAMGO could be antagonized by TIPP and TICPψ. We hypothesize that during the development of morphine tolerance the formation of μδ heterodimers may contribute to the spinal opioid tolerance. δ ligands may affect the dimer formation differently. Those, like DPDPE may facilitate the dimer formation hence inhibit the antinociceptive effect of DAMGO by causing virtual μ receptor down-regulation. Ligands that do not affect the dimer formation do not influence antinociception either but ligands with the presumed capability of disconnecting the dimers may decrease the spinal tolerance to DAMGO.
Collapse
Affiliation(s)
- A K Szentirmay
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu Q, Cao M, Wang T, Jiang P, Zhou K. Downregulation of cAMP response element-binding protein by lentiviral vector-mediated RNAi attenuates morphine withdrawal syndromes in rats. Behav Brain Res 2012; 233:217-23. [DOI: 10.1016/j.bbr.2012.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/16/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
|
18
|
Antiarrhythmic effect of prolonged morphine exposure is accompanied by altered myocardial adenylyl cyclase signaling in rats. Pharmacol Rep 2012; 64:351-9. [DOI: 10.1016/s1734-1140(12)70775-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/21/2011] [Indexed: 11/18/2022]
|
19
|
Vandormael B, De Wachter R, Martins JC, Hendrickx PMS, Keresztes A, Ballet S, Mallareddy JR, Tóth F, Tóth G, Tourwé D. Asymmetric Synthesis and Conformational Analysis by NMR Spectroscopy and MD of Aba- and α-MeAba-Containing Dermorphin Analogues. ChemMedChem 2011; 6:2035-47. [DOI: 10.1002/cmdc.201100314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Indexed: 11/10/2022]
|
20
|
Oláh J, Vincze O, Virók D, Simon D, Bozsó Z, Tõkési N, Horváth I, Hlavanda E, Kovács J, Magyar A, Szũcs M, Orosz F, Penke B, Ovádi J. Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein. J Biol Chem 2011; 286:34088-100. [PMID: 21832049 DOI: 10.1074/jbc.m111.243907] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The disordered tubulin polymerization promoting protein (TPPP/p25) was found to be co-enriched in neuronal and glial inclusions with α-synuclein in Parkinson disease and multiple system atrophy, respectively; however, co-occurrence of α-synuclein with β-amyloid (Aβ) in human brain inclusions has been recently reported, suggesting the existence of mixed type pathologies that could result in obstacles in the correct diagnosis and treatment. Here we identified TPPP/p25 as an interacting partner of the soluble Aβ oligomers as major risk factors for Alzheimer disease using ProtoArray human protein microarray. The interactions of oligomeric Aβ with proteins involved in the etiology of neurological disorders were characterized by ELISA, surface plasmon resonance, pelleting experiments, and tubulin polymerization assay. We showed that the Aβ(42) tightly bound to TPPP/p25 (K(d) = 85 nm) and caused aberrant protein aggregation by inhibiting the physiologically relevant TPPP/p25-derived microtubule assembly. The pair-wise interactions of Aβ(42), α-synuclein, and tubulin were found to be relatively weak; however, these three components formed soluble ternary complex exclusively in the absence of TPPP/p25. The aggregation-facilitating activity of TPPP/p25 and its interaction with Aβ was monitored by electron microscopy with purified proteins by pelleting experiments with cell-free extracts as well as by confocal microscopy with CHO cells expressing TPPP/p25 or amyloid. The finding that the interaction of TPPP/p25 with Aβ can produce pathological-like aggregates is tightly coupled with unusual pathology of the Alzheimer disease revealed previously; that is, partial co-localization of Aβ and TPPP/p25 in the case of diffuse Lewy body disease with Alzheimer disease.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1113 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
A comprehensive study on the putative δ-opioid receptor (sub)types using the highly selective δ-antagonist, Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH. Neurochem Int 2011; 59:192-201. [DOI: 10.1016/j.neuint.2011.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 11/23/2022]
|
22
|
Le Marec T, Marie-Claire C, Noble F, Marie N. Chronic and intermittent morphine treatment differently regulates opioid and dopamine systems: a role in locomotor sensitization. Psychopharmacology (Berl) 2011; 216:297-303. [PMID: 21340469 DOI: 10.1007/s00213-011-2223-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/03/2011] [Indexed: 11/25/2022]
Abstract
RATIONALE Behavioral sensitization induced by repeated morphine administrations may depend on patterns of administration. However, neurobiological mechanisms involved in this sensitization are largely unknown. OBJECTIVES We compared the effects of intermittent (20 mg/kg, once daily for 7 days) and chronic (escalating doses from 5 to 40 mg/kg, three times a day for 5 days) morphine treatments in mice on locomotor activity. We also quantified, by autoradiography, mu opioid receptor (MOR) in ventral tegmental area (VTA), dopamine D1 (D1R) and D2 (D2R) receptors in striatum. RESULTS Whereas the intermittent treatment led to a long-term sensitization to locomotor effects of morphine [until withdrawal day (WD) 14], the chronic treatment induced a tolerance (WD1) followed by a transient sensitization (WD14). Binding studies demonstrated a decrease of MOR in VTA at WD1 for the chronic treatment. In contrast, striatal D1R level was decreased at WD1, and increased at WD14 for the chronic treatment. For the D2R, we observed a decrease from WD1 to WD14 for the intermittent treatment and an increase at WD1 followed by a decrease at WD14 for the chronic treatment. CONCLUSIONS These results demonstrate that chronic and intermittent morphine treatments could induce different behavioral adaptations that could be explained in part by distinct changes occurring in dopamine and opioid systems.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Autoradiography
- Behavior, Animal/drug effects
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Tolerance
- Male
- Mice
- Morphine/administration & dosage
- Morphine/pharmacology
- Motor Activity/drug effects
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Receptors, Opioid, mu/metabolism
- Time Factors
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Thierry Le Marec
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8206, Paris, France
| | | | | | | |
Collapse
|
23
|
Long-lasting, distinct changes in central opioid receptor and urinary bladder functions in models of schizophrenia in rats. Eur J Pharmacol 2011; 661:35-41. [DOI: 10.1016/j.ejphar.2011.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 04/04/2011] [Accepted: 04/14/2011] [Indexed: 11/23/2022]
|
24
|
Mallareddy JR, Borics A, Keresztes A, Kövér KE, Tourwé D, Tóth G. Design, synthesis, pharmacological evaluation, and structure-activity study of novel endomorphin analogues with multiple structural modifications. J Med Chem 2011; 54:1462-72. [PMID: 21287991 DOI: 10.1021/jm101515v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study reports on new proteolytically stable, pharmacologically active endomorphin analogues, incorporating Dmt(1), Achc(2), pFPhe(4), or βMePhe(4) unnatural amino acids. Consistent with earlier results, it was found that the analogues carrying Dmt(1) and Achc(2) residues displayed the highest μ-opioid receptor affinities, depending upon the configuration of the incorporated Achc(2). Combination of such derivatives with pFPhe(4) or βMePhe(4) yielded further compounds with variable binding potencies. Combined application of Dmt(1), cis-(1S,2R)Achc(2), and pFPhe(4) (compound 16) resulted in the most potent analogue. Ligand stimulated [(35)S]GTPγS binding assays indicated that the analogues retained their agonist activities and opioid receptor specificities. NMR and molecular modeling studies of the analogues containing βMePhe(4) or pFPhe(4) confirmed the predominance of bent structures, however, it is apparent that bent structures are energetically more favored than random/extended structures for all studied compounds.
Collapse
Affiliation(s)
- Jayapal Reddy Mallareddy
- Institute of Biochemistry , Biological Research Center, Hungarian Academy of Sciences, PO Box 521, H-6701 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
25
|
Sobor M, Timár J, Riba P, Friedmann T, Király KP, Gyarmati S, Al-Khrasani M, Fürst S. Effects of opioid agonist and antagonist in dams exposed to morphine during the perinatal period. Brain Res Bull 2011; 84:53-60. [DOI: 10.1016/j.brainresbull.2010.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/05/2010] [Accepted: 10/01/2010] [Indexed: 12/01/2022]
|
26
|
Abstract
Our laboratory embarked on research to discover proteins the interaction of which with the mu opioid receptor (MOPr) is required for its function and regulation. We performed yeast two-hybrid screens, using the carboxy tail of the human MOPr as bait and a human brain library. This yielded a number of proteins that seemed to bind to the MOPr C-tail. The one we chose to study in detail was filamin A (FLNA). Evidence was obtained that there was indeed protein-protein binding between the C-tail of MOPr and FLNA. A human melanoma cell line (M2) lacking the gene for FLNA and a control cell line (A7) which differed from M2 only in having been transfected with the gene for FLNA and expressing the FLNA protein were made available to us. We transfected these cell lines with the gene for MOPr and used them in our studies. The absence of FLNA strongly reduced MOPr downregulation as well as desensitization of adenylyl cyclase inhibition and G protein activation. A recent finding, published here for the first time, is that FLNA is required for the activation by mu opioid agonists of the MAP kinase p38. Deletion studies indicated that the MOPr binding site on FLNA is in the 24th repeat, close to its C-terminal. It was further found that FLNA lacking the N-terminal actin binding domain is as capable as full length FLNA to restore cells to control status, suggesting that actin binding is not required. A surprising finding was that upregulation of MOPr by morphine and some agonist analogs occurs in M2 cells lacking FLNA, whereas normal receptor downregulation takes place in A7 cells.
Collapse
|
27
|
Billa SK, Xia Y, Morón JA. Disruption of morphine-conditioned place preference by a delta2-opioid receptor antagonist: study of mu-opioid and delta-opioid receptor expression at the synapse. Eur J Neurosci 2010; 32:625-31. [PMID: 20626460 DOI: 10.1111/j.1460-9568.2010.07314.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The addictive properties of morphine limit its clinical use. Learned associations that develop between the abused opiate and the environment in which it is consumed are engendered through Pavlovian conditioning processes. Disruption of the learned associations between the opiate and environmental cues may be a therapeutic approach to prevent morphine dependence. Although a role for the delta-opioid receptor in the regulation of the rewarding properties of morphine has already been shown, in this study we further characterized the role of the delta-opioid receptor in morphine-induced conditioned responses by examining the effect of a selective delta2-opioid receptor antagonist (naltriben), using a conditioned place preference paradigm in rats. Additionally, we used a subcellular fractionation technique to analyze the synaptic localization of mu-opioid and delta-opioid receptors in the hippocampus, in order to examine the molecular mechanisms that may underlie this morphine-induced conditioned behavior. Our data show that the administration of 1 mg/kg naltriben (but not 0.1 mg/kg) prior to morphine was able to block morphine-induced conditioned place preference. Interestingly, this naltriben-induced disruption of morphine conditioned place preference was associated with a significant increase in the expression of the delta-opioid receptor dimer at the postsynaptic density. In addition, we also observed that morphine conditioned place preference was associated with an increase in the expression of the mu-opoid receptor in the total homogenate. Overall, these results suggest that modulation of the delta-opioid receptor expression and its synaptic localization may constitute a viable therapeutic approach to disrupt morphine-induced conditioned responses.
Collapse
Affiliation(s)
- Sophie K Billa
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
28
|
Wang JF, Wang ZY, Wu N, Yan HT, Li J. Effects of aquaporin4 deficiency on opioid receptors characteristics in naive and chronic morphine-treated mice. Neurosci Lett 2009; 457:111-4. [DOI: 10.1016/j.neulet.2009.03.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 10/21/2022]
|
29
|
Ray SB, Gupta H, Gupta YK. Up-regulation of mu-opioid receptors in the spinal cord of morphine-tolerant rats. J Biosci 2009; 29:51-6. [PMID: 15286403 DOI: 10.1007/bf02702561] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Though morphine remains the most powerful drug for treating pain, its effectiveness is limited by the development of tolerance and dependence. The mechanism underlying development of tolerance to morphine is still poorly understood. One of the factors could be an alteration in the number of micro-receptors within specific parts of the nervous system. However, reports on changes in the micro-opioid receptor density in the spinal cord after chronic morphine administration are conflicting. Most of the studies have used subcutaneously implanted morphine pellets to produce tolerance. However, it does not simulate clinical conditions, where it is more common to administer morphine at intervals, either by injections or orally. In the present study, rats were made tolerant to morphine by injecting increasing doses of morphine (10-50 mg/kg, subcutaneously) for five days. In vitro tissue autoradiography for localization of micro-receptor in the spinal cord was done using [3H]-DAMGO. As compared to the spinal cord of control rats, the spinal cord of tolerant rats showed an 18.8% increase or up-regulation in the density of micro-receptors in the superficial layers of the dorsal horn. This up-regulation of micro-receptors after morphine tolerance suggests that a fraction of the receptors have been rendered desensitized, which in turn could lead to tolerance
Collapse
Affiliation(s)
- Subrata Basu Ray
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | | | | |
Collapse
|
30
|
Kest B, Smith SB, Schorscher-Petcu A, Austin JS, Ritchie J, Klein G, Rossi GC, Fortin A, Mogil JS. Gnao1 (G alphaO protein) is a likely genetic contributor to variation in physical dependence on opioids in mice. Neuroscience 2009; 162:1255-64. [PMID: 19460419 DOI: 10.1016/j.neuroscience.2009.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 12/17/2022]
Abstract
Chronic exposure to opioids leads to physical dependence, which manifests as the symptoms of drug withdrawal. Interindividual differences in withdrawal symptom severity are well known, and at least partially due to genetic variation. To identify genes contributing to variation in withdrawal severity, we chronically treated 30 strains of the AcB/BcA recombinant congenic mouse strain set, including their A/J and C57BL/6J (B6) progenitors, with morphine for seven days and compared jumping frequencies--a sensitive and widely used index of withdrawal magnitude--during naloxone-precipitated withdrawal (NPW). Jumping frequencies of B6 mice were more than threefold greater than values obtained in A/J mice. Visual inspection of the genomic distribution of parental haplotypes in the AcB/BcA strains identified a putative quantitative trait locus (QTL) localized to chromosome 8 (90-117 Mb), and this QTL was confirmed in a B6AF2 intercross. The most salient candidate gene within this QTL, Gnao1 (guanine nucleotide binding protein, alpha(o); G alpha(o); 96.3 Mb), was tested for functional relevance using quantitative PCR and an antisense oligodeoxynucleotide strategy. The expression of Gnao1 in the locus coeruleus was found to be upregulated in morphine-dependent B6 but not A/J mice. Antisense knockdown of Gnao1 reduced NPW jumping in B6, but not A/J, mice rendered dependent on either morphine or heroin, largely rescuing the original strain difference. These data strongly implicate the G alpha(o) protein in the locus coeruleus as contributing to interindividual variability in physical dependence on opioids in mice.
Collapse
Affiliation(s)
- B Kest
- Department of Psychology and Center for Developmental Neuroscience, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Keresztes A, Szűcs M, Borics A, Kövér KE, Forró E, Fülöp F, Tömböly C, Péter A, Páhi A, Fábián G, Murányi M, Tóth G. New Endomorphin Analogues Containing Alicyclic β-Amino Acids: Influence on Bioactive Conformation and Pharmacological Profile. J Med Chem 2008; 51:4270-9. [DOI: 10.1021/jm800223t] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Attila Keresztes
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Mária Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Attila Borics
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Katalin E. Kövér
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Enikő Forró
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Antal Péter
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Annamária Páhi
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Gabriella Fábián
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Mariann Murányi
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Géza Tóth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
32
|
Cinar R, Freund TF, Katona I, Mackie K, Szucs M. Reciprocal inhibition of G-protein signaling is induced by CB(1) cannabinoid and GABA(B) receptor interactions in rat hippocampal membranes. Neurochem Int 2008; 52:1402-9. [PMID: 18407377 DOI: 10.1016/j.neuint.2008.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 02/21/2008] [Indexed: 11/27/2022]
Abstract
Cannabinoid CB(1) and the metabotropic GABA(B) receptors have been shown to display similar pharmacological effects and co-localization in certain brain regions. Previous studies have reported a functional link between the two systems. As a first step to investigate the underlying molecular mechanism, here we show cross-inhibition of G-protein signaling between GABA(B) and CB(1) receptors in rat hippocampal membranes. The CB(1) agonist R-Win55,212-2 displayed high potency and efficacy in stimulating guanosine-5'-O-(3-[(35)S]thio)triphosphate, [(35)S]GTPgammaS binding. Its effect was completely blocked by the specific CB(1) antagonist AM251 suggesting that the signaling was via CB(1) receptors. The GABA(B) agonists baclofen and SKF97541 also elevated [(35)S]GTPgammaS binding by about 60%, with potency values in the micromolar range. Phaclofen behaved as a low potency antagonist with an ED(50) approximately 1mM. However, phaclofen at low doses (1 and 10nM) slightly but significantly attenuated maximal stimulation of [(35)S]GTPgammaS binding by the CB(1) agonist R-Win55,212-2. The observation that higher concentrations of phaclofen had no such effect rule out the possibility of its direct action on CB(1) receptors. The pharmacologically inactive stereoisomer S-Win55,212-3 had no effect either alone or in combination with phaclofen establishing that the interaction is stereospecific in hippocampus. The specific CB(1) antagonist AM251 at a low dose (1 nM) also inhibited the efficacy of G-protein signaling of the GABA(B) receptor agonist SKF97541. Cross-talk of the two receptor systems was not detected in either spinal cord or cerebral cortex membranes. It is speculated that the interaction might occur via an allosteric interaction between a subset of GABA(B) and CB(1) receptors in rat hippocampal membranes. Although the exact molecular mechanism of the reciprocal inhibition between CB(1) and GABA(B) receptors will have to be explored by future studies it is intriguing that the cross-talk might be involved in balance tuning the endocannabinoid and GABAergic signaling in hippocampus.
Collapse
Affiliation(s)
- Resat Cinar
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | |
Collapse
|
33
|
Birkas E, Kertesz I, Toth G, Bakota L, Gulya K, Szucs M. Synthesis and pharmacological characterization of a novel, highly potent, peptidomimetic delta-opioid radioantagonist, [3H]Tyr-Tic-(2S,3R)-beta-MePhe-Phe-OH. Neuropeptides 2008; 42:57-67. [PMID: 18068762 DOI: 10.1016/j.npep.2007.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 10/03/2007] [Accepted: 10/11/2007] [Indexed: 11/20/2022]
Abstract
[(3)H]Tyr-Tic-(2S,3R)-beta-MePhe-Phe-OH (where Tic: 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) with a specific radioactivity of 53.7 Ci/mmol was synthesized and characterized in receptor binding assays at 25 degrees C in rat brain membranes. The specific binding was saturable and displayed high affinity, with a K(D) of 0.16+/-0.005 nM and B(max) of 85.9+/-6.3 fmol/mg protein. NaCl increased its affinity by about 4-fold in membranes of rat brain and Chinese Hamster Ovary Cells stably transfected with the human delta-opioid receptors (hDOR-CHO) showing that the new ligand is an antagonist. The prototypic delta-opioid ligands were much more potent than mu- or kappa-specific ligands in competition assays. The autoradiographic distribution of the binding sites of the new ligand agreed with the known locations of the delta-opioid receptors in rat brain. The unlabeled new ligand was about 7-fold more potent than the parent peptide in competing for the binding sites of [(3)H]Tyr-Tic-(2S,3R)-beta-MePhe-Phe-OH in rat brain membranes. Likewise, the threo-beta-methyl analog was 3.8-fold more potent than the parent compound in antagonizing the effect of DPDPE in the [(35)S]GTPgammaS functional assay in hDOR-CHO membranes. The new, highly potent, conformationally constrained antagonist may be a valuable pharmacological tool in understanding the structural and topographical requirements of peptide ligand binding to the delta-opioid receptors.
Collapse
Affiliation(s)
- Erika Birkas
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
34
|
Characterization of the interaction between Aβ 1–42 and glyceraldehyde phosphodehydrogenase. J Pept Sci 2008; 14:755-62. [DOI: 10.1002/psc.998] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Kokkola T, Vaittinen M, Laitinen JT. Inverse agonist exposure enhances ligand binding and G protein activation of the human MT1 melatonin receptor, but leads to receptor down-regulation. J Pineal Res 2007; 43:255-62. [PMID: 17803522 DOI: 10.1111/j.1600-079x.2007.00470.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin binds and activates G protein-coupled melatonin receptors. The density and affinity of the endogenous melatonin receptors change throughout the 24-hr day, and the exposure of recombinant melatonin receptors to melatonin often results in desensitization of the receptors. Receptor density, G protein activation and expression level were analyzed in CHO cell lines stably expressing the human MT1 receptors after 1 or 72 hr of exposure to melatonin (agonist, 10 nm) and luzindole (antagonist/inverse agonist, 10 microm). The 72-hr exposure to luzindole significantly increased the apparent receptor density in cell lines with both high and low MT1 receptor expression levels (MT1(high) and MT1(low) cells, respectively). In the constitutively active MT1(high) cells, luzindole pretreatment also stimulated the functional response to melatonin in [(35)S]GTPgammaS binding assays, whereas melatonin pretreatment attenuated the functional response at both time points. Receptor ELISA was used to analyze the cell membrane and total expression level of the MT1 receptor in intact and permeabilized cells, respectively. Luzindole pretreatment decreased the total cellular level of MT1 receptor in the MT1(high) cells at both time points but increased the cell surface expression of MT1 receptor at 72 hr. Melatonin significantly decreased MT1 receptor cell surface expression only in MT1(high) cells after a 1-hr treatment. These results indicate that melatonin treatment desensitizes MT1 receptors, whereas luzindole increases ligand binding and G-protein activation. Luzindole also stimulates downregulation of the MT1 receptor protein, interfering with the synthesis and/or degradation of the receptor.
Collapse
Affiliation(s)
- Tarja Kokkola
- Institute of Biomedicine/Physiology, University of Kuopio, Kuopio, Finland.
| | | | | |
Collapse
|
36
|
Onoprishvili I, Simon EJ. Chronic morphine treatment up-regulates mu opioid receptor binding in cells lacking filamin A. Brain Res 2007; 1177:9-18. [PMID: 17897634 PMCID: PMC2175075 DOI: 10.1016/j.brainres.2007.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/31/2007] [Accepted: 08/09/2007] [Indexed: 11/19/2022]
Abstract
We investigated the effects of morphine and other agonists on the human mu opioid receptor (MOP) expressed in M2 melanoma cells, lacking the actin cytoskeleton protein filamin A and in A7, a subclone of the M2 melanoma cells, stably transfected with filamin A cDNA. The results of binding experiments showed that after chronic morphine treatment (24 h) of A7 cells, MOP-binding sites were down-regulated to 63% of control, whereas, unexpectedly, in M2 cells, MOP binding was up-regulated to 188% of control naive cells. Similar up-regulation was observed with the agonists methadone and levorphanol. The presence of antagonists (naloxone or CTAP) during chronic morphine treatment inhibited MOP down-regulation in A7 cells. In contrast, morphine-induced up-regulation of MOP in M2 cells was further increased by these antagonists. Chronic morphine desensitized MOP in A7 cells, i.e., it decreased DAMGO-induced stimulation of GTPgammaS binding. In M2 cells DAMGO stimulation of GTPgammaS binding was significantly greater than in A7 cells and was not desensitized by chronic morphine. Pertussis toxin treatment abolished morphine-induced receptor up-regulation in M2 cells, whereas it had no effect on morphine-induced down-regulation in A7 cells. These results indicate that, in the absence of filamin A, chronic treatment with morphine, methadone or levorphanol leads to up-regulation of MOP, to our knowledge, the first instance of opioid receptor up-regulation by agonists in cell culture.
Collapse
MESH Headings
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Contractile Proteins/deficiency
- Contractile Proteins/physiology
- Data Interpretation, Statistical
- Diprenorphine/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Filamins
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Ligands
- Melanoma/genetics
- Melanoma/pathology
- Microfilament Proteins/deficiency
- Microfilament Proteins/physiology
- Morphine/pharmacology
- Narcotic Antagonists/metabolism
- Narcotic Antagonists/pharmacology
- Narcotics/pharmacology
- Pertussis Toxin/pharmacology
- Radioligand Assay
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Tubulin/pharmacology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Irma Onoprishvili
- Department of Psychiatry, New York University School of Medicine, New York, NY
| | - Eric J. Simon
- Department of Psychiatry, New York University School of Medicine, New York, NY
- Department of Pharmacology, New York University School of Medicine, New York, NY
| |
Collapse
|
37
|
Fernández-Dueñas V, Pol O, García-Nogales P, Hernández L, Planas E, Puig MM. Tolerance to the Antinociceptive and Antiexudative Effects of Morphine in a Murine Model of Peripheral Inflammation. J Pharmacol Exp Ther 2007; 322:360-8. [PMID: 17468301 DOI: 10.1124/jpet.106.118901] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Opioids are used in humans in the management of chronic osteoarticular pains, but the development of tolerance to the analgesic effects after continuous administration is still not well understood. Our aim was to characterize morphine tolerance in a murine model of arthritis that mimics the sequence of events occurring in humans. Inflammation was induced by the intraplantar injection of complete Freund's adjuvant (CFA) and tolerance by the implantation of a 75-mg morphine pellet. We assessed the antihyperalgesic (plantar and Randall-Selitto tests), antiallodynic (Von Frey test), and antiexudative (Evans blue) effects of morphine, the mu-opioid receptor (MOR) mRNA levels in dorsal root ganglia (DRG), and MOR protein levels in DRG and plantar tissue. Inflammation induced plasma extravasation, and it significantly increased the antihyperalgesic effects of morphine (p < 0.05). Morphine pellet implantation decreased morphine potency in all tests. ED(50) values decreased 4.4 and 7.3 times in the absence and presence of inflammation in the plantar test and 2.7 and 5.3 times in the Randall-Selitto test, whereas plasma extravasation decreased 4.2 times. MOR mRNA levels in the DRG were not affected 7 days after inflammation, whereas chronic morphine administration induced a discrete increase (p < 0.05). MOR protein in the DRG or the paw was unchanged. The results show that inflammation enhances the development of tolerance to the antihyperalgesic and antiexudative effects of morphine. At the molecular level, our results suggest that these effects are not mediated by changes in MOR expression but by other changes in receptor activation/internalization.
Collapse
Affiliation(s)
- Víctor Fernández-Dueñas
- Department of Anesthesiology, UAB, Hospital del Mar, Paseo Marítimo 25, 08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Verdier Y, Huszár E, Penke B, Penke Z, Woffendin G, Scigelova M, Fülöp L, Szucs M, Medzihradszky K, Janáky T. Identification of synaptic plasma membrane proteins co-precipitated with fibrillar β-amyloid peptide. J Neurochem 2005; 94:617-28. [PMID: 16001971 DOI: 10.1111/j.1471-4159.2005.03158.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The beta-amyloid peptide that is overproduced in Alzheimer's disease rapidly forms fibrils, which are able to interact with various molecular partners. This study aimed to identify abundant synaptosomal proteins binding to the fibrillar beta-amyloid (fAbeta) 1-42. Triton X-100-soluble proteins were extracted from the rat synaptic plasma membrane fraction. Interacting proteins were isolated by co-precipitation with fAbeta, or with fibrillar crystallin as a negative control. Protein identification was accomplished (1) by separating the tryptically digested peptides of the protein pellet by one-dimensional reversed-phase HPLC and analysing them using an ion-trap mass spectrometer with electrospray ionization; and (2) by subjecting the precipitated proteins to gel electrophoretic fractionation, in-gel tryptic digestion and to matrix-assisted laser desorption/ionization time-of-flight mass measurements and post-source decay analysis. Six different synaptosomal proteins co-precipitated with fAbeta were identified by both methods: vacuolar proton-pump ATP synthase, glyceraldehyde-3-phosphate dehydrogenase, synapsins I and II, beta-tubulin and 2',3'-cyclic nucleotide 3'-phosphodiesterase. Most of these proteins have already been associated with Alzheimer's disease, and the biological and pathophysiological significance of their interaction with fAbeta is discussed.
Collapse
Affiliation(s)
- Yann Verdier
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu H, Wang X, Zimmerman D, Boja ES, Wang J, Bilsky EJ, Rothman RB. Chronic morphine up-regulates G alpha12 and cytoskeletal proteins in Chinese hamster ovary cells expressing the cloned mu opioid receptor. J Pharmacol Exp Ther 2005; 315:248-55. [PMID: 15987828 DOI: 10.1124/jpet.105.089367] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A growing body of literature indicates that chronic morphine exposure alters the expression and function of cytoskeletal proteins in addition to the well established interactions between mu opioid receptors and G proteins. In the present study, we hypothesized that chronic morphine alters the expression and functional effects of G alpha12, a G protein that regulates downstream cytoskeletal proteins via its control of RhoA. Our results showed that chronic morphine treatment decreased the expression of G alpha i2 (64%) and G alpha i3 (60%), had no effect of G alpha o, and increased G alpha12 (66%) expression in Chinese hamster ovary (CHO) cells expressing the cloned human mu opioid receptors (hMOR-CHO cells) but not in cells expressing a mutant mu opioid receptor that do not develop morphine tolerance and dependence (T394A-CHO cells). Morphine treatment had no significant effect on PAR-1 thrombin receptor-activated G protein activity, as measured by thrombin-stimulated guanosine 5'-O-(3-[35S]thio)triphosphate binding. Chronic morphine treatment significantly enhanced thrombin-stimulated RhoA activity and thrombin-stimulated expression of alpha-actinin, a cytoskeletal anchoring protein, in hMOR-CHO cells. Proteomic analysis of two-dimensional gel spots prepared from hMOR-CHO cells showed that morphine treatment affected the expression of a number of proteins associated with morphological changes. Up-regulation of G alpha12 and alpha-actinin by chronic morphine was also observed in mouse brain. Viewed collectively, these findings indicate, for the first time, that chronic morphine enhances the G alpha12-associated signaling system, which is involved in regulating cellular morphology and growth, supporting other findings that chronic morphine may alter cellular morphology, in addition to cellular function.
Collapse
Affiliation(s)
- Heng Xu
- Clinical Psychopharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224-2735, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Fábián G, Tombor B, Németh I, Kicsi EG, Szikszay M, Horváth G, Szücs M. Upregulation of mu opioid receptors by voluntary morphine administration in drinking water. ACTA BIOLOGICA HUNGARICA 2004; 54:157-66. [PMID: 14535621 DOI: 10.1556/abiol.54.2003.2.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Morphine was provided to rats in drinking water for 21 days. Profound analgesic tolerance was detected both in hot-plate and tail-flick tests. The density of [3H]DAMGO binding sites increased by 76% in spinal cord membranes due to morphine exposure compared to those in opioid naive animals. Slightly augmented [3H]DAMGO binding was measured in the synaptic plasma membranes, with a concomitant decrease in the microsomal membranes, of morphine tolerant/dependent brains. These observations suggest that the regulation of spinal mu opioid receptors might be different from those in the brain. It is emphasized that the molecular changes underlying tolerance/dependence are influenced by several factors, such as the tissue or subcellular fractions used, besides the obvious importance of the route of drug administration. Results obtained after voluntary morphine intake further support the growing number of experimental data that chronic morphine does not internalize/downregulate the mu opioid receptors in the central nervous system.
Collapse
Affiliation(s)
- Gabriella Fábián
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
41
|
Szücs M, Boda K, Gintzler AR. Dual effects of DAMGO [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin and CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) on adenylyl cyclase activity: implications for mu-opioid receptor Gs coupling. J Pharmacol Exp Ther 2004; 310:256-62. [PMID: 14996951 DOI: 10.1124/jpet.104.066837] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mu-opioid receptor (MOR) couples to multiple G proteins, of which coupling to Gs has long been debated. As expected, in opioid naive Chinese hamster ovary cells expressing recombinant MOR, the predominant action of [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) is inhibitory. However, inactivation of Gi/Go proteins via pertussis toxin (PTX) unmasks its ability to facilitate forskolin activation of adenylyl cyclase (AC) activity. Tolerance develops to this effect of DAMGO, which can also be attenuated by cholera toxin (CTX). The latter suggests G mediation. D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP), previously considered to be a neutral MOR antagonist, also produces a facilitation of forskolin (FSK) activation of AC that is augmented by chronic morphine. Facilitative effects of CTAP in naive as well as its augmentation in tolerant membranes are both substantially reduced by CTX. This suggests that not only Gs mediation but also G(salpha)-linked signaling is critical to the chronic morphine-induced enhanced facilitative action of CTAP. Interestingly, the (augmented) CTAP facilitation of FSK-stimulated AC activity that is observed in opioid tolerant (but not in naive) membranes is also sensitive to PTX. This can best be explained by postulating the involvement of Gi-derived G(betagamma), which would stimulate type 2 ACs, conditional on the presence of activated G(salpha). The emergence of a G(betagamma) dimension of AC stimulation by CTAP after chronic morphine could explain its ability to augment the stimulatory action of CTAP on AC. These results support putative MOR coupling to Gs and underscore the multifaceted nature and plasticity of MOR G protein coupling.
Collapse
Affiliation(s)
- Mária Szücs
- Department of Biochemistry, State University of New York, Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | |
Collapse
|
42
|
Abstract
This review covers beta-phenylethylamines and isoquinoline alkaloids derived from them, including further products of oxidation. condensation with formaldehyde and rearrangement, some of which do not contain an isoquinoline system, together with naphthylisoquinoline alkaloids, which have a different biogenetic origin. The occurrence of the alkaloids, with the structures of new bases, together with their reactions, syntheses and biological activities are reported. The literature from July 2002 to June 2003 is reviewed, with 568 references cited.
Collapse
|
43
|
Abstract
This paper is the twenty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2002 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
44
|
Ko MCH, Lee H, Harrison C, Clark MJ, Song HF, Naughton NN, Woods JH, Traynor JR. Studies of micro-, kappa-, and delta-opioid receptor density and G protein activation in the cortex and thalamus of monkeys. J Pharmacol Exp Ther 2003; 306:179-86. [PMID: 12676881 DOI: 10.1124/jpet.103.050625] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the relative density of micro -, kappa-, and delta-opioid receptors (MOR, KOR, and DOR) and guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding stimulated by full agonists in cortical and thalamic membranes of monkeys. The binding parameters [Bmax (femtomoles per milligram)/Kd (nanomolar)] were as follows: [3H][d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) (MOR; 80/0.7), [3H]U69593 [(5alpha,7alpha,8beta)-(-)-N-methyl-N-(7-(1-pyrrolidinyl)-1-oxaspiro(4,5)dec-8-yl) benzeneacetamide] (KOR; 116/1.3), and [3H][d-Pen2,d-Pen5]-enkephalin (DPDPE) (DOR; 87/1.3) in the cortex; [3H]DAMGO (147/0.9), [3H]U69593 (75/2.5), and [3H]DPDPE (22/2.0) in the thalamus. The relative proportions of MOR, KOR, and DOR in the cortex were 28, 41, and 31% and in the thalamus were 60, 31, and 9%. Full selective opioid agonists, DAMGO (EC50 = 532-565 nM) and U69593 (EC50 = 80-109 nM) stimulated [35S]GTPgammaS binding in membranes of cortex and thalamus, whereas SNC80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethyl-benzamide] (DOR; EC50 = 68 nM) was only active in cortical membranes. The magnitudes of [35S]GTPgammaS binding stimulated by these agonists were similar in the cortex, ranging from 17 to 25% over basal binding. In the thalamus, DAMGO and U69593 increased [35S]GTPgammaS binding by 44 and 23% over basal, respectively. Opioid agonist-stimulated [35S]GTPgammaS binding was blocked selectively by antagonists for MOR, KOR, and DOR. The amount of G protein activated by agonists was highly proportional to the relative receptor densities in both regions. These results distinguish the ability of opioid agonists to activate G proteins and provide a functional correlate of ligand-binding experiments in the monkey brain. In particular, the relative densities of opioid receptor binding sites in the two brain areas reflect their functional roles in the pharmacological actions of opioids in the central nervous system of primates.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Cell Membrane/metabolism
- Cerebral Cortex/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Macaca mulatta
- Radioligand Assay
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Sulfur Radioisotopes
- Thalamus/metabolism
- Tritium
Collapse
Affiliation(s)
- M C H Ko
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, Ann Arbor, MI 48109-0632, USA.
| | | | | | | | | | | | | | | |
Collapse
|