1
|
Airola C, Pallozzi M, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Microvascular Thrombosis and Liver Fibrosis Progression: Mechanisms and Clinical Applications. Cells 2023; 12:1712. [PMID: 37443746 PMCID: PMC10341358 DOI: 10.3390/cells12131712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Fibrosis is an unavoidable consequence of chronic inflammation. Extracellular matrix deposition by fibroblasts, stimulated by multiple pathways, is the first step in the onset of chronic liver disease, and its propagation promotes liver dysfunction. At the same time, chronic liver disease is characterized by alterations in primary and secondary hemostasis but unlike previously thought, these changes are not associated with an increased risk of bleeding complications. In recent years, the role of coagulation imbalance has been postulated as one of the main mechanisms promoting hepatic fibrogenesis. In this review, we aim to investigate the function of microvascular thrombosis in the progression of liver disease and highlight the molecular and cellular networks linking hemostasis to fibrosis in this context. We analyze the predictive and prognostic role of coagulation products as biomarkers of liver decompensation (ascites, variceal hemorrhage, and hepatic encephalopathy) and liver-related mortality. Finally, we evaluate the current evidence on the application of antiplatelet and anticoagulant therapies for prophylaxis of hepatic decompensation or prevention of the progression of liver fibrosis.
Collapse
Affiliation(s)
- Carlo Airola
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Maria Pallozzi
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Lucia Cerrito
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Francesco Santopaolo
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Leonardo Stella
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Antonio Gasbarrini
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
2
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
3
|
Greimel T, Jahnel J, Pohl S, Strini T, Tischitz M, Meier-Allard N, Holasek S, Meinel K, Aguiriano-Moser V, Zobel J, Haidl H, Gallistl S, Panzitt K, Wagner M, Schlagenhauf A. Bile acid-induced tissue factor activity in hepatocytes correlates with activation of farnesoid X receptor. J Transl Med 2021; 101:1394-1402. [PMID: 34145381 PMCID: PMC8440176 DOI: 10.1038/s41374-021-00628-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BA) have been found to promote coagulation by increasing tissue factor (TF) activity. The contribution of elevated BA levels and cholestasis to TF decryption within the liver parenchyma and the role of farnesoid X receptor (FXR) in this process remain unclear. We investigated the effects of BA on TF activity and thrombin generation in hepatocytes and correlated these effects with activation of FXR-dependent signaling and apoptosis. HepG2 cells and primary hepatocytes were incubated with chenodeoxycholic acid (CDCA), glycochenodeoxycholic acid (GCDCA), ursodeoxycholic acid (UCDA), or the synthetic FXR agonist GW4064 for 24 h. MTT tests demonstrated cell viability throughout experiments. TF activity was tested via factor Xa generation and thrombin generation was measured by calibrated automated thrombography. Increased TF activity alongside enhanced thrombin generation was observed with CDCA and GW4064 but not with GCDCA and UDCA. TF activity was substantially reduced when FXR activation was blocked with the antagonist DY 268. Quantitative polymerase chain reaction revealed upregulation of FXR target genes only by CDCA and GW4064. Western blot analysis and fluorescence microscopy showed no TF overexpression arguing for TF decryption. Caspase 3 activity measurements and flow cytometric analysis of Annexin V binding showed no signs of apoptosis. Long-term exposure of hepatocytes to nontoxic BA may cause intracellular FXR overstimulation, triggering TF decryption irrespective of the amphiphilic properties of BA. The effect of BA on TF activation correlates with the molecule's ability to enter the cells and activate FXR. TF decryption occurs independently of apoptotic mechanisms.
Collapse
Affiliation(s)
- Theresa Greimel
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Jörg Jahnel
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Sina Pohl
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Tanja Strini
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Martin Tischitz
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Nathalie Meier-Allard
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Sandra Holasek
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Katharina Meinel
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Victor Aguiriano-Moser
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Joachim Zobel
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Harald Haidl
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Siegfried Gallistl
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Katrin Panzitt
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Martin Wagner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Axel Schlagenhauf
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria.
| |
Collapse
|
4
|
Poole LG, Pant A, Cline‐Fedewa HM, Williams KJ, Copple BL, Palumbo JS, Luyendyk JP. Liver fibrosis is driven by protease-activated receptor-1 expressed by hepatic stellate cells in experimental chronic liver injury. Res Pract Thromb Haemost 2020; 4:906-917. [PMID: 32685902 PMCID: PMC7354391 DOI: 10.1002/rth2.12403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Blood coagulation protease activity is proposed to drive hepatic fibrosis through activation of protease-activated receptors (PARs). Whole-body PAR-1 deficiency reduces experimental hepatic fibrosis, and in vitro studies suggest a potential contribution by PAR-1 expressed by hepatic stellate cells. However, owing to a lack of specific tools, the cell-specific role of PAR-1 in experimental hepatic fibrosis has never been formally investigated. Using a novel mouse expressing a conditional PAR-1 allele, we tested the hypothesis that PAR-1 expressed by hepatic stellate cells contributes to hepatic fibrosis. METHODS PAR-1flox/flox mice were crossed with mice expressing Cre recombinase controlled by the lecithin retinol acyltransferase (LRAT) promoter, which induces recombination in hepatic stellate cells. Male PAR-1flox/flox/LRATCre and PAR-1flox/flox mice were challenged twice weekly with carbon tetrachloride (CCl4, 1 mL/kg i.p.) for 6 weeks to induce liver fibrosis. RESULTS PAR-1 mRNA levels were reduced (>95%) in hepatic stellate cells isolated from PAR-1flox/flox/LRATCre mice. Hepatic stellate cell activation was evident in CCl4-challenged PAR-1flox/flox mice, indicated by increased α-smooth muscle actin labeling and induction of several profibrogenic genes. CCl4-challenged PAR-1flox/flox mice displayed robust hepatic collagen deposition, indicated by picrosirius red staining and type I collagen immunolabeling. Notably, stellate cell activation and collagen deposition were significantly reduced (>30%) in PAR-1flox/flox/LRATCre mice. Importantly, the reduction in liver fibrosis was not a consequence of reduced acute CCl4 hepatotoxicity in PAR-1flox/flox/LRATCre mice. CONCLUSIONS The results constitute the first direct experimental evidence that PAR-1 expressed by stellate cells directly promotes their profibrogenic phenotype and hepatic fibrosis in vivo.
Collapse
Affiliation(s)
- Lauren G. Poole
- Institute for Integrative ToxicologyMichigan State UniversityEast LansingMIUSA
- Department of Pathobiology & Diagnostic InvestigationMichigan State UniversityEast LansingMIUSA
| | - Asmita Pant
- Department of Pathobiology & Diagnostic InvestigationMichigan State UniversityEast LansingMIUSA
| | - Holly M. Cline‐Fedewa
- Department of Pathobiology & Diagnostic InvestigationMichigan State UniversityEast LansingMIUSA
| | - Kurt J. Williams
- Department of Pathobiology & Diagnostic InvestigationMichigan State UniversityEast LansingMIUSA
| | - Bryan L. Copple
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMIUSA
| | - Joseph S. Palumbo
- Cancer and Blood Diseases InstituteCincinnati Children’s Hospital Medical Center and the University of Cincinnati College of MedicineCincinnatiOHUSA
| | - James P. Luyendyk
- Institute for Integrative ToxicologyMichigan State UniversityEast LansingMIUSA
- Department of Pathobiology & Diagnostic InvestigationMichigan State UniversityEast LansingMIUSA
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
5
|
Kopec AK, Luyendyk JP. Role of Fibrin(ogen) in Progression of Liver Disease: Guilt by Association? Semin Thromb Hemost 2016; 42:397-407. [PMID: 27144445 DOI: 10.1055/s-0036-1579655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Strong experimental evidence indicates that components of the hemostatic system, including thrombin, exacerbate diverse features of experimental liver disease. Clinical studies have also begun to address this connection and some studies have suggested that anticoagulants can improve outcome in patients with liver disease. Among the evidence of coagulation cascade activation in models of liver injury and disease is the frequent observation of thrombin-driven hepatic fibrin(ogen) deposition. Indeed, hepatic fibrin(ogen) deposition has long been recognized as a consequence of hepatic injury. Although commonly inferred as pathologic due to protective effects of anticoagulants in mouse models, the role of fibrin(ogen) in acute liver injury and chronic liver disease may not be universally detrimental. The localization of hepatic fibrin(ogen) deposits within the liver is connected to the disease stimulus and in animal models of liver toxicity and chronic disease, fibrin(ogen) deposition may not always be synonymous with large vessel thrombosis. Here, we provide a balanced review of the experimental evidence supporting a direct connection between fibrin(ogen) and liver injury/disease pathogenesis, and suggest a path forward bridging experimental and clinical research to improve our knowledge on the nature and function of fibrin(ogen) in liver disease.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| |
Collapse
|
6
|
Xu QL, Guo XH, Liu JX, Chen B, Liu ZF, Su L. Blockage of protease-activated receptor 1 ameliorates heat-stress induced intestinal high permeability and bacterial translocation. Cell Biol Int 2015; 39:411-7. [PMID: 25492552 DOI: 10.1002/cbin.10408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/14/2014] [Indexed: 11/06/2022]
Abstract
Accumulated evidences indicate intestinal lesions play an important role in the pathogenesis of heatstroke. However, the underlying mechanisms by which heat stress causes intestinal barrier dysfunction and bacterial translocation remain unclear. In this study, we investigated the role of protease-activated receptor 1 (PAR1) in heat stress-induced intestinal hyper-permeability and bacterial translocation. Intestinal permeability in heat stressed mouse was evaluated by determining plasma endotoxin concentration and urinal lactulose/mannitol (L/M) ratio with gastric administration of L/M solution. Venous blood, liver, spleen and mesenteric lymph node tissues were collected for bacterial load test. Real time PCR was used to determine ileum PAR1 mRNA expression. In vitro study, permeability was assessed by determining trans-epithelial electrical resistance (TEER) in human intestinal Caco-2 cell line. RWJ-58259, a selective antagonist of PAR1, was used both in vivo and in vitro studies. The results showed that heat stress could increase ileum PAR1 mRNA level, urinal L/M ratio, plasma endotoxin concentration and bacterial load in the blood, spleen and mesenteric lymph nodes. Blocking PAR1 with RWJ-58259 (10 mg/kg) pretreatment could significantly reduce heat stress-induced above changes, but have no role to PAR1 mRNA level. In Caco-2 cells, heat stress-induced high permeability could also be reduced by RWJ-58259 (5-20 µmol/L). In summary, our results demonstrated that PAR1 signaling pathway may play an important role in the heat stress-induced elevation of intestinal permeability, bacterial translocation and the occurrence of endotoxemia.
Collapse
Affiliation(s)
- Qiu-lin Xu
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, 510010, China; Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, 510010, China
| | | | | | | | | | | |
Collapse
|
7
|
Kopec AK, Joshi N, Towery KL, Kassel KM, Sullivan BP, Flick MJ, Luyendyk JP. Thrombin inhibition with dabigatran protects against high-fat diet-induced fatty liver disease in mice. J Pharmacol Exp Ther 2014; 351:288-97. [PMID: 25138021 PMCID: PMC4201275 DOI: 10.1124/jpet.114.218545] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/13/2014] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of obesity and metabolic syndrome. Robust coagulation cascade activation is common in obese patients with NAFLD. We identified a critical temporal relationship between thrombin generation and the manifestation of hepatic steatosis, inflammation, and injury in C57BL/6J mice fed a high-fat diet (HFD) for 1, 2, and 3 months. Mice fed a HFD exhibited dramatic increases in hepatocellular injury and inflammation over time. Hepatic fibrin deposition preceded an increase in serum alanine aminotransferase, and the most dramatic changes in liver histopathology occurred in conjunction with a detectable increase in plasma thrombin-antithrombin levels at 3 months. To directly determine whether thrombin activity promotes NAFLD pathogenesis, mice were fed a HFD and simultaneously treated with the direct thrombin inhibitor dabigatran etexilate for 3 months. Notably, dabigatran treatment significantly reduced hepatic fibrin deposition, hepatic inflammation, hepatocellular injury, and steatosis in mice fed a HFD. Of interest, dabigatran treatment also significantly attenuated HFD-induced body weight gain. Gene expression analysis suggested that thrombin potentially drives NAFLD pathogenesis by altering the expression of genes associated with lipid metabolism and bile acid synthesis. Collectively, the results suggest that thrombin activity is central to HFD-induced body weight gain, liver injury, and inflammation and provide the proof-of-principle evidence that pharmacological thrombin inhibition could be effective in limiting NAFLD and associated pathologies.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| | - Nikita Joshi
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| | - Keara L Towery
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| | - Karen M Kassel
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| | - Bradley P Sullivan
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| | - Matthew J Flick
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| |
Collapse
|
8
|
Zou W, Roth RA, Younis HS, Malle E, Ganey PE. Neutrophil-cytokine interactions in a rat model of sulindac-induced idiosyncratic liver injury. Toxicology 2011; 290:278-85. [PMID: 22019926 DOI: 10.1016/j.tox.2011.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/09/2011] [Indexed: 12/29/2022]
Abstract
Previous studies indicated that lipopolysaccharide (LPS) interacts with the nonsteroidal anti-inflammatory drug sulindac (SLD) to produce liver injury in rats. In the present study, the mechanism of SLD/LPS-induced liver injury was further investigated. Accumulation of polymorphonuclear neutrophils (PMNs) in the liver was greater in SLD/LPS-cotreated rats compared to those treated with SLD or LPS alone. In addition, PMN activation occurred specifically in livers of rats cotreated with SLD/LPS. The hypothesis that PMNs and proteases released from them play critical roles in the hepatotoxicity was tested. SLD/LPS-induced liver injury was attenuated by prior depletion of PMNs or by treatment with the PMN protease inhibitor, eglin C. Previous studies suggested that tumor necrosis factor-α (TNF) and the hemostatic system play critical roles in the pathogenesis of liver injury induced by SLD/LPS. TNF and plasminogen activator inhibitor-1 (PAI-1) can contribute to hepatotoxicity by affecting PMN activation and fibrin deposition. Therefore, the role of TNF and PAI-1 in PMN activation and fibrin deposition in the SLD/LPS-induced liver injury model was tested. Neutralization of TNF or inhibition of PAI-1 attenuated PMN activation. TNF had no effect on PAI-1 production or fibrin deposition. In contrast, PAI-1 contributed to fibrin deposition in livers of rats treated with SLD/LPS. In summary, PMNs, TNF and PAI-1 contribute to the liver injury induced by SLD/LPS cotreatment. TNF and PAI-1 independently contributed to PMN activation, which is critical to the pathogenesis of liver injury. Moreover, PAI-1 contributed to liver injury by promoting fibrin deposition.
Collapse
Affiliation(s)
- Wei Zou
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
9
|
Kono Y, Inomata M, Hagiwara S, Shiraishi N, Noguchi T, Kitano S. A newly synthetic vitamin E derivative, E-Ant-S-GS, attenuates lung injury caused by cecal ligation and puncture-induced sepsis in rats. Surgery 2011; 151:420-6. [PMID: 22000829 DOI: 10.1016/j.surg.2011.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/04/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cytokine activation and the ensuing spread of damage to distant organs play a central role in sepsis caused by generalized peritonitis, which accompanies surgical conditions such as gastrointestinal perforation. Anti-inflammatory properties have been discovered in endogenous substances such as vitamin E; we evaluated, in a rat model of peritonitis-induced sepsis, the newly synthetic vitamin E derivative E-Ant-S-GS, in which the endogenous substances vitamin E, glutathione, 5-OH-anthranilic acid, and succinic acid are chemically linked. METHODS We used a model of sepsis in male Wistar rats with the cecal ligation and puncture (CLP) method. To evaluate the anti-inflammatory effects of E-Ant-S-GS, we measured serum interleukin-6 (IL-6) levels at various times after CLP. To assess the effects of E-Ant-S-GS in acute lung injury, we evaluated histologically lung tissue 12 hours after CLP by hematoxylin-eosin staining. In addition, myeloperoxidase (MPO) activity and expression of protease-activated receptor 1 (PAR1) and high mobility group box 1 (HMGB1) in the lung were determined. RESULTS Serum IL-6 levels increased progressively after the CLP procedure; this cytokine induction was attenuated by E-Ant-S-GS. Increased MPO activity in lung tissue and marked changes in lung histology caused by CLP-induced sepsis were also ameliorated by E-Ant-S-GS. In addition, E-Ant-S-GS suppressed the upregulation of PAR1 and HMGB1 in the lungs after CLP. CONCLUSION The newly synthetic vitamin E derivative E-Ant-S-GS showed anti-inflammatory actions and organ-protective effects in a rat model of sepsis, suggesting its potential clinical use as a therapeutic agent against systemic inflammation.
Collapse
Affiliation(s)
- Yohei Kono
- Department of Gastroenterological Surgery, Oita University Faculty of Medicine, Oita, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Kassel KM, Owens AP, Rockwell CE, Sullivan BP, Wang R, Tawfik O, Li G, Guo GL, Mackman N, Luyendyk JP. Protease-activated receptor 1 and hematopoietic cell tissue factor are required for hepatic steatosis in mice fed a Western diet. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2278-89. [PMID: 21907177 DOI: 10.1016/j.ajpath.2011.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/15/2011] [Accepted: 07/07/2011] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of obesity and metabolic syndrome and contributes to increased risk of cardiovascular disease and liver-related morbidity and mortality. Indeed, obese patients with metabolic syndrome generate greater amounts of thrombin, an indication of coagulation cascade activation. However, the role of the coagulation cascade in Western diet-induced NAFLD has not been investigated. Using an established mouse model of Western diet-induced NAFLD, we tested whether the thrombin receptor protease-activated receptor 1 (PAR-1) and hematopoietic cell-derived tissue factor (TF) contribute to hepatic steatosis. In association with hepatic steatosis, plasma thrombin-antithrombin levels and hepatic fibrin deposition increased significantly in C57Bl/6J mice fed a Western diet for 3 months. PAR-1 deficiency reduced hepatic inflammation, particularly monocyte chemoattractant protein-1 expression and macrophage accumulation. In addition, PAR-1 deficiency was associated with reduced steatosis in mice fed a Western diet, including reduced liver triglyceride accumulation and CD36 expression. Similar to PAR-1 deficiency, hematopoietic cell TF deficiency was associated with reduced inflammation and reduced steatosis in livers of low-density lipoprotein receptor-deficient mice fed a Western diet. Moreover, hematopoietic cell TF deficiency reduced hepatic fibrin deposition. These studies indicate that PAR-1 and hematopoietic cell TF are required for liver inflammation and steatosis in mice fed a Western diet.
Collapse
Affiliation(s)
- Karen M Kassel
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Luyendyk JP, Kassel KM, Allen K, Guo GL, Li G, Cantor GH, Copple BL. Fibrinogen deficiency increases liver injury and early growth response-1 (Egr-1) expression in a model of chronic xenobiotic-induced cholestasis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1117-25. [PMID: 21356363 DOI: 10.1016/j.ajpath.2010.11.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/15/2010] [Accepted: 11/09/2010] [Indexed: 01/26/2023]
Abstract
Chronic cholestatic liver injury induced by cholestasis in rodents is associated with hepatic fibrin deposition, and we found evidence of fibrin deposition in livers of patients with cholestasis. Key components of the fibrinolytic pathway modulate cholestatic liver injury by regulating activation of hepatocyte growth factor. However, the exact role of hepatic fibrin deposition in chronic cholestasis is not known. We tested the hypothesis that fibrinogen (Fbg) deficiency worsens liver injury induced by cholestasis. Fbg-deficient mice (Fbgα(-/-) mice) and heterozygous control mice (Fbgα(+/-) mice) were fed either the control diet or a diet containing 0.025% α-naphthylisothiocyanate (ANIT), which selectively injures bile duct epithelial cells in the liver, for 2 weeks. Hepatic fibrin and collagen deposits were evident in livers of heterozygous control mice fed the ANIT diet. Complete Fbg deficiency was associated with elevated serum bile acids, periportal necrosis, and increased serum alanine aminotransferase activity in mice fed the ANIT diet. Fbg deficiency was associated with enhanced hepatic expression of the transcription factor early growth response-1 (Egr-1) and enhanced induction of genes encoding the Egr-1-regulated proinflammatory chemokines monocyte chemotactic protein-1, KC growth-regulated protein, and macrophage inflammatory protein-2. Interestingly, peribiliary collagen deposition was not evident near necrotic areas in Fbg-deficient mice. The results suggest that in this model of chronic cholestasis, fibrin constrains the release of bile constituents from injured intrahepatic bile ducts, thereby limiting the progression of hepatic inflammation and hepatocellular injury.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Sullivan BP, Weinreb PH, Violette SM, Luyendyk JP. The coagulation system contributes to alphaVbeta6 integrin expression and liver fibrosis induced by cholestasis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2837-49. [PMID: 21037076 DOI: 10.2353/ajpath.2010.100425] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chronic injury to intrahepatic bile duct epithelial cells (BDECs) elicits expression of various mediators, including the αVβ6 integrin, promoting liver fibrosis. We tested the hypothesis that tissue factor (TF)-dependent thrombin generation and protease activated receptor-1 (PAR-1) activation contribute to liver fibrosis induced by cholestasis via induction of αVβ6 expression. To test this hypothesis, mice deficient in either TF or PAR-1 were fed a diet containing 0.025% α-naphthylisothiocyanate (ANIT), a BDEC-selective toxicant. In genetically modified mice with a 50% reduction in liver TF activity fed an ANIT diet, coagulation cascade activation and liver fibrosis were reduced. Similarly, liver fibrosis was significantly reduced in PAR-1(-/-) mice fed an ANIT diet. Hepatic integrin β6 mRNA induction, expression of αVβ6 protein by intrahepatic BDECs, and SMAD2 phosphorylation were reduced by TF deficiency and PAR-1 deficiency in mice fed the ANIT diet. Treatment with either an anti-αVβ6 blocking antibody or soluble transforming growth factor-β receptor type II reduced liver fibrosis in mice fed the ANIT diet. PAR-1 activation enhanced transforming growth factor-β1-induced integrin β6 mRNA expression in both transformed human BDECs and primary rat BDECs. Interestingly, TF and PAR-1 mRNA levels were increased in livers from patients with cholestatic liver disease. These results indicate that a TF-PAR-1 pathway contributes to liver fibrosis induced by chronic cholestasis by increasing expression of the αVβ6 integrin, an important regulator of transforming growth factor-β1 activation.
Collapse
Affiliation(s)
- Bradley P Sullivan
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
13
|
Luyendyk JP, Mackman N, Sullivan BP. Role of fibrinogen and protease-activated receptors in acute xenobiotic-induced cholestatic liver injury. Toxicol Sci 2010; 119:233-43. [PMID: 20974703 DOI: 10.1093/toxsci/kfq327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury causes tissue factor (TF)-dependent coagulation in mice, and TF deficiency reduces ANIT-induced liver injury. However, the mechanism whereby TF contributes to hepatotoxicity in this model is not known. Utilizing pharmacological and genetic strategies, we evaluated the contribution of fibrinogen and two distinct receptors for thrombin, protease-activated receptor-1 (PAR-1) and PAR-4, in a model of acute ANIT hepatotoxicity. ANIT administration (60 mg/kg, po) caused a marked induction of the genes encoding the three fibrinogen chains (α, β, and γ) in liver, an increase in plasma fibrinogen, and concurrent deposition of thrombin-cleaved fibrin in liver. Partial depletion of circulating fibrinogen with ancrod did not impact ANIT hepatotoxicity. However, complete fibrin(ogen) deficiency significantly reduced serum alanine aminotransferase activity and hepatocellular necrosis in ANIT-treated mice. ANIT-induced hepatocellular necrosis was similar in PAR-1(-/-) mice compared with PAR-1(+/+) mice. Interestingly, the progression of ANIT-induced hepatocellular necrosis was significantly reduced in PAR-4(-/-) mice and by administration of an inhibitory PAR-4 pepducin (P4Pal-10, 0.5 mg/kg, sc) to wild-type mice 8 h after ANIT treatment. Interestingly, a distinct lesion, parenchymal-type peliosis, was also observed in PAR-4(-/-) mice treated with ANIT and in mice that were given P4Pal-10 prior to ANIT administration. The results suggest that fibrin(ogen), but not PAR-1, contributes to the progression of ANIT hepatotoxicity in mice. Moreover, the data suggest a dual role for PAR-4 in ANIT hepatotoxicity, both mediating an early protection against peliosis and contributing to the progression of hepatocellular necrosis.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
14
|
Cheluvappa R, Denning GM, Lau GW, Grimm MC, Hilmer SN, Le Couteur DG. Pathogenesis of the hyperlipidemia of Gram-negative bacterial sepsis may involve pathomorphological changes in liver sinusoidal endothelial cells. Int J Infect Dis 2010; 14:e857-67. [PMID: 20609608 DOI: 10.1016/j.ijid.2010.02.2263] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 11/30/2009] [Accepted: 02/25/2010] [Indexed: 12/11/2022] Open
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is one of the most common opportunistic pathogens, especially after liver transplantation. Pathophysiological alterations of liver sinusoidal endothelial cells (LSECs) have far-reaching repercussions on the liver and on metabolism. LSECs are perforated with fenestrations, pores that facilitate the transfer of lipoproteins and macromolecules between blood and hepatocytes. Gram-negative bacterial endotoxin (lipopolysaccharide, LPS) and the P. aeruginosa toxin, pyocyanin, have marked effects on LSECs. Initial loss of LSEC porosity (defenestration) induced by P. aeruginosa pyocyanin and LPS may confer subsequent immune tolerance to circulating bacterial antigens and toxins. This review collates the known immune responses of the liver to Gram-negative bacterial toxins, with a focus on LSECs. Hyperlipidemia is an important response to Gram-negative bacterial sepsis. The mechanisms proposed for sepsis-associated hyperlipidemia include tissue lipoprotein lipase inhibition and upregulated hepatic triglyceride production. In this review, we propose defenestration of the LSECs by bacterial toxins as an additional mechanism for the hyperlipidemia of sepsis. Given the role of LSECs in hyperlipidemia and liver allograft rejection, LSEC changes induced by P. aeruginosa toxins including LPS and pyocyanin may have significant clinical implications.
Collapse
Affiliation(s)
- Rajkumar Cheluvappa
- Department of Medicine, St. George Clinical School and Centre for Infection and Inflammation Research, School of Medical Sciences, Wallace Wurth Building, University of New South Wales, Gate 9 High Street, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
15
|
Luyendyk JP, Sullivan BP, Guo GL, Wang R. Tissue factor-deficiency and protease activated receptor-1-deficiency reduce inflammation elicited by diet-induced steatohepatitis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:177-86. [PMID: 20008134 DOI: 10.2353/ajpath.2010.090672] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Altered hepatic lipid homeostasis, hepatocellular injury, and inflammation are features of nonalcoholic steatohepatitis, which contributes significantly to liver-related morbidity and mortality in the Western population. A collection of inflammatory mediators have been implicated in the pathogenesis of steatohepatitis in mouse models. However, the pathways essential for coordination and amplification of hepatic inflammation and injury caused by steatosis are not completely understood. We tested the hypothesis that tissue factor (TF)-dependent thrombin generation and the thrombin receptor protease activated receptor-1 (PAR-1) contribute to liver inflammation induced by steatosis in mice. Wild-type C57Bl/6J mice fed a diet deficient in methionine and choline for 2 weeks manifested steatohepatitis characterized by increased serum alanine aminotransferase activity, macrovesicular hepatic steatosis, hepatic inflammatory gene expression, and lobular inflammation. Steatohepatitis progression was associated with thrombin generation and hepatic fibrin deposition. Coagulation cascade activation was significantly reduced in low TF mice, which express 1% of normal TF levels. Hepatic triglyceride accumulation was not affected in low TF mice or PAR-1-deficient mice. In contrast, biomarkers of hepatocellular injury, inflammatory gene induction, and hepatic accumulation of macrophages and neutrophils were greatly reduced by TF-deficiency and PAR-1-deficiency. The results suggest that TF-dependent thrombin generation and activation of PAR-1 amplify hepatic inflammation and injury during the pathogenesis of steatohepatitis.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, 3901 Rainbow Blvd, MS-1018, Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
16
|
Deng X, Luyendyk JP, Ganey PE, Roth RA. Inflammatory stress and idiosyncratic hepatotoxicity: hints from animal models. Pharmacol Rev 2009; 61:262-82. [PMID: 19805476 PMCID: PMC2763781 DOI: 10.1124/pr.109.001727] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adverse drug reactions (ADRs) present a serious human health problem. They are major contributors to hospitalization and mortality throughout the world (Lazarou et al., 1998; Pirmohamed et al., 2004). A small fraction (less than 5%) of ADRs can be classified as "idiosyncratic." Idiosyncratic ADRs (IADRs) are caused by drugs with diverse pharmacological effects and occur at various times during drug therapy. Although IADRs affect a number of organs, liver toxicity occurs frequently and is the primary focus of this review. Because of the inconsistency of clinical data and the lack of experimental animal models, how IADRs arise is largely undefined. Generation of toxic drug metabolites and induction of specific immunity are frequently cited as causes of IADRs, but definitive evidence supporting either mechanism is lacking for most drugs. Among the more recent hypotheses for causation of IADRs is that inflammatory stress induced by exogenous or endogenous inflammagens is a susceptibility factor. In this review, we give a brief overview of idiosyncratic hepatotoxicity and the inflammatory response induced by bacterial lipopolysaccharide. We discuss the inflammatory stress hypothesis and use as examples two drugs that have caused IADRs in human patients: ranitidine and diclofenac. The review focuses on experimental animal models that support the inflammatory stress hypothesis and on the mechanisms of hepatotoxic response in these models. The need for design of epidemiological studies and the potential for implementation of inflammation interaction studies in preclinical toxicity screening are also discussed briefly.
Collapse
Affiliation(s)
- Xiaomin Deng
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
17
|
Luyendyk JP, Cantor GH, Kirchhofer D, Mackman N, Copple BL, Wang R. Tissue factor-dependent coagulation contributes to alpha-naphthylisothiocyanate-induced cholestatic liver injury in mice. Am J Physiol Gastrointest Liver Physiol 2009; 296:G840-9. [PMID: 19179621 PMCID: PMC2670671 DOI: 10.1152/ajpgi.90639.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Separation of concentrated bile acids from hepatic parenchymal cells is a key function of the bile duct epithelial cells (BDECs) that form intrahepatic bile ducts. Using coimmunostaining, we found that tissue factor (TF), the principal activator of coagulation, colocalized with cytokeratin 19, a marker of BDECs in the adult mouse liver. BDEC injury induced by xenobiotics such as alpha-naphthylisothiocyanate (ANIT) causes cholestasis, inflammation, and hepatocellular injury. We tested the hypothesis that acute ANIT-induced cholestatic hepatitis is associated with TF-dependent activation of coagulation and determined the role of TF in ANIT hepatotoxicity. Treatment of mice with ANIT (60 mg/kg) caused multifocal hepatic necrosis and significantly increased serum biomarkers of cholestasis and hepatic parenchymal cell injury. ANIT treatment also significantly increased liver TF expression and activity. ANIT-induced activation of the coagulation cascade was shown by increased plasma thrombin-antithrombin levels and significant deposition of fibrin within the necrotic foci. ANIT-induced coagulation and liver injury were reduced in low-TF mice, which express 1% of normal TF levels. The results indicate that ANIT-induced liver injury is accompanied by TF-dependent activation of the coagulation cascade and that TF contributes to the progression of injury during acute cholestatic hepatitis.
Collapse
Affiliation(s)
- James P. Luyendyk
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas; Discovery Toxicology, Bristol-Myers Squibb, Princeton, New Jersey; Department of Protein Engineering, Genentech, South San Francisco, California; and Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Glenn H. Cantor
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas; Discovery Toxicology, Bristol-Myers Squibb, Princeton, New Jersey; Department of Protein Engineering, Genentech, South San Francisco, California; and Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Daniel Kirchhofer
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas; Discovery Toxicology, Bristol-Myers Squibb, Princeton, New Jersey; Department of Protein Engineering, Genentech, South San Francisco, California; and Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Nigel Mackman
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas; Discovery Toxicology, Bristol-Myers Squibb, Princeton, New Jersey; Department of Protein Engineering, Genentech, South San Francisco, California; and Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Bryan L. Copple
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas; Discovery Toxicology, Bristol-Myers Squibb, Princeton, New Jersey; Department of Protein Engineering, Genentech, South San Francisco, California; and Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ruipeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas; Discovery Toxicology, Bristol-Myers Squibb, Princeton, New Jersey; Department of Protein Engineering, Genentech, South San Francisco, California; and Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Nakanowatari Y, Nemoto K, Hara S, Ninomiya N, Yamamoto Y. Effects of direct haemoperfusion through fibres immobilizing polymyxin B and nafamostat mesilate on endotoxaemia in conscious Guinea-pigs. Clin Exp Pharmacol Physiol 2008; 35:17-22. [PMID: 18047622 DOI: 10.1111/j.1440-1681.2007.04741.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Direct haemoperfusion through a network of fibres immobilizing polymyxin B (PMX-B) is used for the treatment of septic shock, but the mechanism underlying its clinical benefits remains unclear. The aims of the present study were to assess the actions of direct haemoperfusion through fibres immobilizing PMX-B (PMX-DHP) on the effects of exogenously administered endotoxin in conscious guinea-pigs and to examine the difference in the effects of heparin compared with nafamostat mesilate (NM) used as an anticoagulant. Although nafamostat is widely used in Japan, the agent cannot necessarily be used elsewhere in the world. Therefore, the study aimed to investigate and elucidate the effectiveness of NM compared with heparin. 2. Colonic motion was monitored continuously via telemetry using a force transducer attached to the taenia caecum, whereas blood pressure was monitored using a carotid artery catheter. To establish a haemoperfusion circuit in each freely moving and conscious guinea-pig, catheters were implanted in the carotid artery and the jugular vein, tunnelled subcutaneously, exteriorized at the back of the neck in contact with a lightweight tethering spring and attached to a swivel device at the top of the cage. On the day after the operation, lipopolysaccharide (LPS; Escherichia coli, O111:B4; 1 mg/kg) was administered i.v. and PMX-DHP was conducted for 2 h. Heparin (50 IU/h) or NM (0.4 mg/h) was used as the anticoagulant. Furthermore, guinea-pigs were administered a lethal dose of LPS (10 mg/kg) and the survival rate was examined for animals undergoing PMX-DHP compared with control animals. 3. In guinea-pigs treated with PMX-DHP, relaxation of colonic longitudinal muscle caused by LPS was significantly suppressed, as were decreases in blood pressure. Of the two anticoagulants used, NM was more effective than heparin. In addition, PMX-DHP significantly increased the survival rate of guinea-pigs that received potentially lethal doses of LPS. 4. In conscious and unrestrained guinea-pig endotoxaemia model, PMX-DHP significantly improved intestinal paralysis and decreases in blood pressure. These effects were augmented more by NM than by heparin when an anticoagulant was used in the perfusion process. These findings suggest that haemoperfusion using PMX and NM performed in the early stage of endotoxaemia is an effective treatment.
Collapse
|
19
|
Ganey PE, Luyendyk JP, Newport SW, Eagle TM, Maddox JF, Mackman N, Roth RA. Role of the coagulation system in acetaminophen-induced hepatotoxicity in mice. Hepatology 2007; 46:1177-86. [PMID: 17654741 DOI: 10.1002/hep.21779] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
UNLABELLED Acetaminophen (N-acetyl-p-aminophenol [APAP]) is one of the leading causes of acute liver failure, and APAP hepatotoxicity is associated with coagulopathy in humans. We tested the hypothesis that activation of the coagulation system and downstream protease-activated receptor (PAR)-1 signaling contribute to APAP-induced liver injury. Fasted C57BL/J6 mice were treated with either saline or APAP (400 mg/kg intraperitoneally) and were euthanized 0.5-24 hours later. Hepatotoxicity and coagulation system activation occurred by 2 hours after administration of APAP. Treatment with APAP also caused a rapid and transient increase in liver procoagulant activity. In addition, significant deposition of fibrin was observed in the liver by 2 hours, and the concentration of plasminogen activator inhibitor-1 in plasma increased between 2 and 6 hours. Pretreatment with heparin attenuated the APAP-induced activation of the coagulation system and hepatocellular injury and diminished hepatic fibrin deposition at 6 hours. Loss of hepatocellular glutathione was similar in APAP-treated mice pretreated with saline or heparin, suggesting that heparin did not diminish bioactivation of APAP. In mice deficient in tissue factor, the principal cellular activator of coagulation, APAP-induced liver injury, activation of coagulation, and hepatic fibrin deposition were reduced at 6 hours. Formation of the tissue factor-factor VIIa complex leads to the generation of thrombin that can activate cells through cleavage of PAR-1. Mice lacking PAR-1 developed less injury and hepatic fibrin deposits at 6 hours in response to APAP than control mice. CONCLUSION Activation of the coagulation system and PAR-1 signaling contribute significantly to APAP-induced liver injury.
Collapse
Affiliation(s)
- Patricia E Ganey
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Shiga N, Nemoto K, Shimada Y, Nakanowatari Y, Ninomiya N, Yamamoto Y. Elimination of 2-arachidonoylglycerol action by direct hemoperfusion through immobilized polymyxin B fibers: an experimental study in conscious guinea pigs. Ther Apher Dial 2007; 10:504-9. [PMID: 17199882 DOI: 10.1111/j.1744-9987.2006.00427.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Direct hemoperfusion through a network of immobilized polymyxin B fibers is used for the treatment of septic shock, but the mechanism underlying the clinical benefits remains unclear. The aims of the present study were to assess the actions of direct hemoperfusion through immobilized polymyxin B fibers on effects of exogenous endotoxin or 2-arachidonoylglycerol in conscious guinea pigs; and to examine the underlying mechanisms. In the present study, colonic motion was monitored continuously by telemetry using a force transducer attached to the taenia caecum, while blood pressure was monitored with a carotid artery catheter. To establish a hemoperfusion circuit in a freely moving, conscious guinea pig, catheters were implanted in the carotid artery and the jugular vein, tunneled subcutaneously, exteriorized at the back of the neck in contact with a lightweight tethering spring, and attached to a swivel device at the top of the cage. On the day after the operation, lipopolysaccharide (Escherichia coli, O111:B4; 1 mg/kg) or 2-arachidonoylglycerol (1 mg/kg) was given intraperitoneally (i.p.) and direct hemoperfusion through immobilized polymyxin B fibers was carried out for 2 h. The results showed that in guinea pigs treated with direct hemoperfusion through immobilized polymyxin B fibers, relaxation of colonic longitudinal muscle caused by lipopolysaccharide or 2-arachidonoylglycerol was significantly suppressed, as were decreases in blood pressure. We conclude that the actions following exogenous administration of 2-arachidonoylglycerol were eliminated by direct hemoperfusion through immobilized polymyxin B fibers. These results suggest that effectiveness of direct hemoperfusion through immobilized polymyxin B fibers in endotoxemia involves elimination of 2-arachidonoylglycerol action.
Collapse
Affiliation(s)
- Naoko Shiga
- Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Jesmin S, Gando S, Zaedi S, Sakuraya F. Differential expression, time course and distribution of four PARs in rats with endotoxin-induced acute lung injury. Inflammation 2006; 30:14-27. [PMID: 17136598 PMCID: PMC7102102 DOI: 10.1007/s10753-006-9017-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 10/09/2006] [Indexed: 11/23/2022]
Abstract
The hypothesis that the expression of protease-activated receptors (PARs) protein is regulated at the level of transcription and that PAR isoforms, PAR-1, PAR-2, PAR-3, and PAR-4, in lung tissue show different patterns of expression in lipopolysaccharide (LPS)-induced acute lung injury (ALI) was tested. Male Wistar rats were rendered endotoxemic by intra-peritoneal injection of LPS (15 mg/kg body weight). We examined the expression of protein and mRNA and the immunohistochemical localization of PAR isoforms in lung tissues 1, 3, 6, and 10 h after LPS administration. Induction of ALI by LPS was confirmed based on histopathological changes. LPS administration induced significant increases in the expression of PAR isoforms (protein) at the level of transcription in ALI. While the time course of PAR-1 and -2 expressions were different, those of PAR-3 and -4 were almost similar. An immunohistochemical analysis showed localization of PAR isoforms in the vascular endothelium, alveolar epithelium, and alveolar macrophages. However, the cellular distribution patterns of PAR isoforms were different. We conclude that LPS induces increase in protein expression of PAR isoforms at the level of transcription in rats with ALI. The differential expression patterns (over a time course) and distribution of PAR isoforms suggests a distinct role for each isoform in the pathogenesis of LPS-induced ALI.
Collapse
MESH Headings
- Animals
- Blood Pressure
- Blotting, Western
- Disease Models, Animal
- Endothelial Cells/metabolism
- Epithelial Cells/metabolism
- Fibrin/metabolism
- Immunohistochemistry
- Lipopolysaccharides
- Lung/metabolism
- Lung/pathology
- Macrophages, Alveolar/metabolism
- Male
- Nitric Oxide Synthase Type II/blood
- Nitric Oxide Synthase Type II/metabolism
- Oxygen/blood
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/pathology
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, PAR-1/metabolism
- Receptor, PAR-2/metabolism
- Receptors, Proteinase-Activated/genetics
- Receptors, Proteinase-Activated/metabolism
- Receptors, Thrombin/metabolism
- Respiratory Distress Syndrome/chemically induced
- Respiratory Distress Syndrome/metabolism
- Respiratory Distress Syndrome/pathology
- Respiratory Distress Syndrome/physiopathology
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription, Genetic
- Tumor Necrosis Factor-alpha/blood
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Subrina Jesmin
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, 060 Japan
| | - Satoshi Gando
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, 060 Japan
| | - Sohel Zaedi
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, 060 Japan
| | - Fumika Sakuraya
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, 060 Japan
| |
Collapse
|
22
|
Nitescu N, Grimberg E, Ricksten SE, Marcussen N, Nordlinder H, Guron G. Effects of thrombin inhibition with melagatran on renal hemodynamics and function and liver integrity during early endotoxemia. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1117-24. [PMID: 17068159 DOI: 10.1152/ajpregu.00471.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sepsis is associated with an activation of the coagulation system and multiorgan failure. The aim of the study was to examine the effects of selective thrombin inhibition with melagatran on renal hemodynamics and function, and liver integrity, during early endotoxemia. Endotoxemia was induced in thiobutabarbital-anesthetized rats by an intravenous bolus dose of lipopolysaccharide (LPS; 6 mg/kg). Sham-Saline, LPS-Saline, and LPS-Melagatran study groups received isotonic saline or melagatran immediately before (0.75 micromol/kg iv) and continuously during (0.75 micromol.kg(-1).h(-1) iv) 4.5 h of endotoxemia. Kidney function, renal blood flow (RBF), and intrarenal cortical and outer medullary perfusion (OMLDF) measured by laser-Doppler flowmetry were analyzed throughout. Markers of liver injury and tumor necrosis factor (TNF)-alpha were measured in plasma after 4.5 h of endotoxemia. In addition, liver histology and gene expression were examined. Melagatran treatment prevented the decline in OMLDF observed in the LPS-Saline group (P < 0.05, LPS-Melagatran vs. LPS-Saline). However, melagatran did not ameliorate reductions in mean arterial pressure, RBF, renal cortical perfusion, and glomerular filtration rate or attenuate tubular dysfunctions during endotoxemia. Melagatran reduced the elevated plasma concentrations of aspartate aminotransferase (-34 +/- 11%, P < 0.05), alanine aminotransferase (-21 +/- 7%, P < 0.05), bilirubin (-44 +/- 9%, P < 0.05), and TNF-alpha (-32 +/- 14%, P < 0.05) in endotoxemia. Melagatran did not diminish histological abnormalities in the liver or the elevated hepatic gene expression of TNF-alpha, intercellular adhesion molecule-1, and inducible nitric oxide synthase in endotoxemic rats. In summary, thrombin inhibition with melagatran preserved renal OMLDF, attenuated liver dysfunction, and reduced plasma TNF-alpha levels during early endotoxemia.
Collapse
Affiliation(s)
- Nicoletta Nitescu
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
23
|
Luyendyk JP, Lehman-McKeeman LD, Nelson DM, Bhaskaran VM, Reilly TP, Car BD, Cantor GH, Deng X, Maddox JF, Ganey PE, Roth RA. Coagulation-dependent gene expression and liver injury in rats given lipopolysaccharide with ranitidine but not with famotidine. J Pharmacol Exp Ther 2006; 317:635-43. [PMID: 16401727 DOI: 10.1124/jpet.105.096305] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In an animal model of drug idiosyncrasy, rats cotreated with nonhepatotoxic doses of lipopolysaccharide (LPS) and ranitidine (RAN) develop hepatocellular injury, whereas rats treated with LPS and famotidine (FAM) do not. The coagulation system and neutrophils (PMNs) are requisite mediators of LPS/RAN-induced liver injury. We tested the hypothesis that unique gene expression in LPS/RAN-treated rats requires coagulation system activation and that these changes are absent in rats given LPS and FAM. Rats were treated with a nonhepatotoxic dose of LPS (44.4 x 10(6) endotoxin units/kg i.v.) or its vehicle, and then 1 h later, they were treated with heparin (3000 U/kg) or its vehicle. One hour thereafter, they were given RAN (30 mg/kg), FAM (6 mg/kg, a pharmacologically equiefficacious dose, or 28.8 mg/kg, an equimolar dose), or vehicle (i.v.). They were killed 2 or 6 h after drug treatment for evaluation of hepatotoxicity, coagulation system activation, and liver gene expression (2 h only). Statistical filtering of gene array results and real-time polymerase chain reaction identified groups of genes expressed in LPS/RAN-treated rats but not LPS/FAM-treated rats that were either changed or unchanged by heparin administration. For example, LPS/RAN-induced mRNA expression of the inflammatory mediators interleukin-6, cyclooxygenase-2, and macrophage inflammatory protein-2 (MIP-2) was reduced by anticoagulation. Enhancement of serum MIP-2 and plasminogen activator inhibitor-1 concentrations in LPS/RAN-treated rats was prevented by anticoagulation. The results suggest cross-talk between hemostasis-induced gene expression and inflammation (e.g., PMN function) in the genesis of hepatocellular injury in LPS/RAN-treated rats. In contrast, neither the expression of such genes nor hepatocellular necrosis occurred in rats treated with LPS/FAM.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Endotoxemia caused by bacterial lipopolysaccharides (LPS) deleteriously affects many aspects of hemostasis. Much of this effect is well characterized as being secondary to the LPS-mediated inflammatory response, but direct effects of LPS on coagulation factors may also contribute to disregulation of the hemostatic process. Spectrophotometric assays were used to investigate the effects of LPS from different bacteria on thrombin and plasmin activities. We found that enzymatic activity of purified thrombin, but not plasmin, decreases in the presence of endotoxin. LPS-mediated inhibition of thrombin activity can be reversed by plasma gelsolin and recombinant endotoxin-neutralizing protein. Preincubation of thrombin with LPS before platelet activation results in inhibition of aggregation and secretion. Additionally, a decrease of elastic shear moduli of fibrin gels was observed when their formation was induced with thrombin preincubated with LPS or when LPS was present in fibrinogen solutions during fibrin gel formation. When added to platelet-rich plasma, after activation with collagen, LPS-inhibited thrombin activity. LPS-mediated inhibition of thrombin activity may contribute to the hemostasis dysfunctions observed during endotoxemia.
Collapse
Affiliation(s)
- Robert Bucki
- Department of Physiology and the Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
25
|
Kim ND, Moon JO, Slitt AL, Copple BL. Early growth response factor-1 is critical for cholestatic liver injury. Toxicol Sci 2006; 90:586-95. [PMID: 16423862 DOI: 10.1093/toxsci/kfj111] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatocyte injury during cholestasis depends in part on the release of proinflammatory mediators that cause neutrophils to accumulate in the liver and become activated to damage hepatocytes. The mechanism by which cholestasis stimulates production of proinflammatory mediators in the liver is not completely understood. The studies presented here tested the hypothesis that the transcription factor early growth response factor-1 (Egr-1) is required for inflammation to occur in the liver during cholestasis. The results of these studies show that Egr-1 was rapidly upregulated, primarily in hepatocytes, in mice subjected to bile duct ligation, an animal model of cholestasis. To determine whether Egr-1 was required for inflammation and hepatocyte injury during cholestasis, bile duct ligation was performed in wild-type and Egr-1 knockout mice. Hepatocyte injury, neutrophil accumulation, and upregulation of macrophage inflammatory protein-2 (MIP-2) and intercellular adhesion molecule-1 (ICAM-1) in the liver were significantly reduced in Egr-1 knockouts. By contrast, levels of tumor necrosis factor-alpha (TNF-alpha) and collagen (i.e., a biomarker of liver fibrosis) were not different between wild-types and Egr-1 knockouts subjected to bile duct ligation. Because hepatocytes are exposed to elevated concentrations of bile acids during cholestasis, it was determined that bile acids upregulate Egr-1 in primary mouse hepatocytes. Deoxycholic acid dose-dependently increased Egr-1 protein in hepatocytes. Results from these studies suggest a scenario in which elevated concentrations of bile acids during cholestasis increase expression of Egr-1 in hepatocytes. Egr-1 then upregulates proinflammatory mediators that cause neutrophils to accumulate in the liver and become activated to damage hepatocytes.
Collapse
Affiliation(s)
- Nam Deuk Kim
- Department of Pharmacology, Toxicology, and Experimental Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
26
|
Luyendyk JP, Shaw PJ, Green CD, Maddox JF, Ganey PE, Roth RA. Coagulation-mediated hypoxia and neutrophil-dependent hepatic injury in rats given lipopolysaccharide and ranitidine. J Pharmacol Exp Ther 2005; 314:1023-31. [PMID: 15933155 DOI: 10.1124/jpet.105.087981] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiosyncrasy-like liver injury occurs in rats cotreated with nonhepatotoxic doses of ranitidine (RAN) and bacterial lipopolysaccharide (LPS). Hepatocellular oncotic necrosis is accompanied by neutrophil (PMN) accumulation and fibrin deposition in LPS/RAN-treated rats, but the contribution of PMNs to injury has not been shown. We tested the hypothesis that PMNs are critical mediators of LPS/RAN-induced liver injury and explored the potential for interaction between PMNs and hemostasis-induced hypoxia. Rats were given either LPS (44.4 x 10(6) endotoxin units/kg) or its vehicle and then RAN (30 mg/kg) or its vehicle 2 h later. They were killed 3 or 6 h after RAN treatment, and hepatocellular injury was estimated from serum alanine aminotransferase activity and liver histopathology. Plasma PMN chemokine concentration and the number of PMNs in liver increased after LPS treatment at 3 h and were not markedly altered by RAN cotreatment. Depletion of circulating PMNs attenuated hepatic PMN accumulation and liver injury and had no effect on coagulation system activation. Anticoagulation with heparin attenuated liver fibrin deposition and injury in LPS/RAN-treated rats; however, heparin had little effect on liver PMN accumulation or plasma chemokine concentration. Liver hypoxia occurred in LPS/RAN-cotreated rats and was significantly reduced by heparin. In vitro, hypoxia enhanced the killing of rat hepatocytes by PMN elastase and shortened its onset, indicating a synergistic interaction between PMNs and hypoxia. The results suggest that PMNs are involved in the hepatocellular injury caused by LPS/RAN-cotreatment and that hemostasis increases sensitivity to PMN-induced hepatocellular injury by causing liver hypoxia.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center, Michigan State University, East Lansing, 48824, USA
| | | | | | | | | | | |
Collapse
|
27
|
Diao H, Kon S, Iwabuchi K, Kimura C, Morimoto J, Ito D, Segawa T, Maeda M, Hamuro J, Nakayama T, Taniguchi M, Yagita H, Van Kaer L, Onóe K, Denhardt D, Rittling S, Uede T. Osteopontin as a mediator of NKT cell function in T cell-mediated liver diseases. Immunity 2004; 21:539-50. [PMID: 15485631 DOI: 10.1016/j.immuni.2004.08.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 07/19/2004] [Accepted: 08/18/2004] [Indexed: 02/06/2023]
Abstract
Both osteopontin (OPN) and natural killer T (NKT) cells play a role in the development of immunological disorders. We examined a functional link between OPN and NKT cells. Concanavalin A (Con A)-induced hepatitis is a well-characterized murine model of T cell-mediated liver diseases. Here, we show that NKT cells secrete OPN, which augments NKT cell activation and triggers neutrophil infiltration and activation. Thus, OPN- and NKT cell-deficient mice were refractory to Con A-induced hepatitis. In addition, a neutralizing antibody specific for a cryptic epitope of OPN, exposed by thrombin cleavage, ameliorated hepatitis. These findings identify NKT cell-derived OPN as a novel target for the treatment of inflammatory liver diseases.
Collapse
Affiliation(s)
- Hongyan Diao
- Division of Molecular Immunology, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vergnolle N, Cellars L, Mencarelli A, Rizzo G, Swaminathan S, Beck P, Steinhoff M, Andrade-Gordon P, Bunnett NW, Hollenberg MD, Wallace JL, Cirino G, Fiorucci S. A role for proteinase-activated receptor-1 in inflammatory bowel diseases. J Clin Invest 2004; 114:1444-56. [PMID: 15545995 PMCID: PMC526028 DOI: 10.1172/jci21689] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 09/14/2004] [Indexed: 02/06/2023] Open
Abstract
Proteinase-activated receptor-1 (PAR1), a G protein-coupled receptor activated by thrombin, is highly expressed in different cell types of the gastrointestinal tract. The activity of thrombin and of other proteinases is significantly increased in the colon of inflammatory bowel disease (IBD) patients. Since PAR1 activation in tissues other than the gut provoked inflammation, we hypothesized that PAR1 activation in the colon is involved in the pathogenesis of IBD. Here, we demonstrate that PAR1 is overexpressed in the colon of IBD patients. In mice, intracolonic administration of PAR1 agonists led to an inflammatory reaction characterized by edema and granulocyte infiltration. This PAR1 activation-induced inflammation was dependent on B and T lymphocytes. Moreover, PAR1 activation exacerbated and prolonged inflammation in a mouse model of IBD induced by the intracolonic administration of trinitrobenzene sulfonic acid (TNBS), while PAR1 antagonism significantly decreased the mortality and severity of colonic inflammation induced by TNBS and dextran sodium sulfate. In these 2 models, colitis development was strongly attenuated by PAR1 deficiency. Taken together, these results imply an important role for PAR1 in the pathogenesis of experimental colitis, supporting the notion that PAR1 inhibition may be beneficial in the context of IBD and possibly in other chronic intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Active thrombin is found in the airways of patients with a variety of inflammatory lung diseases. However, whether thrombin contributes to the pathologies of these diseases is unknown, although thrombin is a potent inflammatory mediator in other organ systems. In the present study we have assessed the acute inflammatory effect of inhaled thrombin and investigated the possible receptors mediating any effects in mice. Thrombin (200-2000 U kg(-1) intranasally), induced the recruitment of a small, but significant, number of neutrophils into the airways as assessed by differential counts of cells retrieved by bronchoalveolar lavage (BAL). This small response was mimicked by peptide agonists of proteinase-activated receptor-4 (PAR(4); GYPGKF, AYPGKF; 2-20 mg kg(-1)), but not PAR(1) (SFLLRN; 2-20 mg kg(-1)). By contrast, trypsin (200-2000 U kg(-1)) caused profound inflammation and lung damage. Concentrations of tumour necrosis factor-alpha (TNF-alpha) were elevated in BAL fluid from thrombin-treated mice, and a TNF-alpha-neutralising antibody inhibited the influx of neutrophils in response to thrombin. Although isolated alveolar macrophages appeared to express PAR(1)- and PAR(4)-immunoreactivity, these cells failed to release TNF-alpha above baseline levels in response to thrombin, trypsin or any of the peptide PAR agonists. Neither thrombin (2000 U kg(-1)) nor trypsin (200 U kg(-1)) modified the airway neutrophilia in response to intranasal bacterial lipopolysaccharide (LPS; 100 micrograms kg(-1)). In conclusion, exogenous thrombin has only a modest acute inflammatory action in the lung that appears to be mediated by PAR(4) and involve release of TNF-alpha from an unknown source.
Collapse
MESH Headings
- Administration, Inhalation
- Administration, Intranasal
- Animals
- Bronchoalveolar Lavage Fluid/cytology
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Female
- Inflammation/chemically induced
- Lipopolysaccharides/pharmacology
- Macrophages, Alveolar/immunology
- Mice
- Mice, Inbred BALB C
- Neutrophils/cytology
- Neutrophils/drug effects
- Neutrophils/physiology
- Oligopeptides/administration & dosage
- Oligopeptides/agonists
- Oligopeptides/pharmacokinetics
- Peptide Fragments/administration & dosage
- Pulmonary Alveoli/drug effects
- Pulmonary Alveoli/ultrastructure
- Receptor, PAR-1/analysis
- Receptor, PAR-1/drug effects
- Receptor, PAR-2/analysis
- Receptor, PAR-2/drug effects
- Receptors, Thrombin/administration & dosage
- Receptors, Thrombin/agonists
- Specific Pathogen-Free Organisms
- Thrombin/administration & dosage
- Thrombin/antagonists & inhibitors
- Thrombin/pharmacokinetics
- Trachea/pathology
- Trypsin/administration & dosage
- Trypsin/adverse effects
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- United Kingdom
Collapse
Affiliation(s)
- James D Moffatt
- Sackler Institute of Pulmonary Pharmacology, GKT School of Biomedical Sciences, Kings College London, 5th Floor Hodgkin Building, Guy's Campus, London SE1 9RT.
| | | | | |
Collapse
|
30
|
Minami T, Sugiyama A, Wu SQ, Abid R, Kodama T, Aird WC. Thrombin and phenotypic modulation of the endothelium. Arterioscler Thromb Vasc Biol 2004; 24:41-53. [PMID: 14551154 DOI: 10.1161/01.atv.0000099880.09014.7d] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thrombin signaling in the endothelium is linked to multiple phenotypic changes, including alterations in permeability, vasomotor tone, and leukocyte trafficking. The thrombin signal is transduced, at least in part, at the level of gene transcription. In this review, we focus on the role of thrombin signaling and transcriptional networks in mediating downstream gene expression and endothelial phenotype. In addition, we report the results of DNA microarrays in control and thrombin-treated endothelial cells. We conclude that (1) thrombin induces the upregulation and downregulation of multiple genes in the endothelium, (2) thrombin-mediated gene expression involves a multitude of transcription factors, and (3) future breakthroughs in the field will depend on a better understanding of the spatial and temporal dynamics of these transcriptional networks.
Collapse
Affiliation(s)
- Takashi Minami
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Fiorucci S, Distrutti E. Proteinase-activated receptors (PARs) and immune function. Drug Dev Res 2003. [DOI: 10.1002/ddr.10322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
|
33
|
Yee SB, Harkema JR, Ganey PE, Roth RA. The coagulation system contributes to synergistic liver injury from exposure to monocrotaline and bacterial lipopolysaccharide. Toxicol Sci 2003; 74:457-69. [PMID: 12773766 DOI: 10.1093/toxsci/kfg129] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Coexposure to a noninjurious dose of bacterial lipopolysaccharide (LPS; 7.4 x 106 EU/kg) and a nontoxic dose of the food-borne toxin monocrotaline (MCT; 100 mg/kg) leads to synergistic hepatotoxicity in Sprague-Dawley rats. Inflammatory factors, such as Kupffer cells (KCs), tumor necrosis factor-alpha (TNF)-alpha, and neutrophils (polymorphonuclear leukocytes; PMNs), are critical to the pathogenesis. Inasmuch as activation of the coagulation system and sinusoidal endothelial cell (SEC) injury precede hepatic parenchymal cell (HPC) injury, and since fibrin deposition occurs within liver lesions, the coagulation system might be a critical component of injury. In this study, this hypothesis is tested, and the interdependence of the coagulation system and inflammatory factors is explored. Administration of the anticoagulants heparin or warfarin to MCT/LPS-cotreated animals attenuated HPC and SEC injury. Morphometric analysis revealed that anticoagulant treatment significantly reduced the area of centrilobular and midzonal lesions. Heparin treatment also reduced fibrin deposition in these regions. Furthermore, anticoagulant treatment decreased hepatic PMN accumulation but did not affect plasma TNF-alpha concentration. Neither KC inactivation nor TNF-alpha depletion prevented activation of the coagulation system. PMN depletion, however, prevented coagulation system activation, suggesting that PMNs are needed for this response. These results provide evidence that the coagulation system and its interplay with PMNs are important in the pathogenesis of MCT/LPS-induced liver injury.
Collapse
Affiliation(s)
- Steven B Yee
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center and Institute for Environmental Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|