1
|
Hao G, Han S, Xiao Z, Shen J, Zhao Y, Hao Q. Synovial mast cells and osteoarthritis: Current understandings and future perspectives. Heliyon 2024; 10:e41003. [PMID: 39720069 PMCID: PMC11665477 DOI: 10.1016/j.heliyon.2024.e41003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease worldwide that significantly impacts the quality of life of individuals, particularly those in middle-aged and elderly populations. OA was initially considered as non-inflammatory arthritis, but recent studies have identified a substantial number of immune responses in OA, leading to the recognition of inflammation as a key factor in its pathogenesis. An increasing number of studies have found that mast cell (MC) and MC-secreted inflammatory mediators and cytokines are notably increased in the synovial fluid of OA patients, indicating a potential association between MCs and the onset and progression of synovial inflammation. The present review aims to summarize the significance and mechanism of MCs in the pathogenesis of OA. Meanwhile, we also discuss the clinical potential of using MCs as therapeutic target for OA therapy. Modulating the activities of MCs or the mediators of MCs in the synovial fluid inflammatory microenvironment will be promising new options for the treatment of OA.
Collapse
Affiliation(s)
- Guanghui Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shanqian Han
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Qi Hao
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Third People's Hospital of Longmatan District, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases. Int J Mol Sci 2020; 21:ijms21144931. [PMID: 32668590 PMCID: PMC7404046 DOI: 10.3390/ijms21144931] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis that occurs in an aged population. It affects any joints in the body and degenerates the articular cartilage and the subchondral bone. Despite the pathophysiology of OA being different, cartilage resorption is still a symbol of osteoarthritis. Matrix metalloproteinases (MMPs) are important proteolytic enzymes that degrade extra-cellular matrix proteins (ECM) in the body. MMPs contribute to the turnover of cartilage and its break down; their levels have increased in the joint tissues of OA patients. Application of chondroprotective drugs neutralize the activities of MMPs. Natural products derived from herbs and plants developed as traditional medicine have been paid attention to, due to their potential biological effects. The therapeutic value of natural products in OA has increased in reputation due to their clinical impact and insignificant side effects. Several MMPs inhibitor have been used as therapeutic drugs, for a long time. Recently, different types of compounds were reviewed for their biological activities. In this review, we summarize numerous natural products for the development of MMPs inhibitors in arthritic diseases and describe the major signaling targets that were involved for the treatments of these destructive joint diseases.
Collapse
|
3
|
Yu SM, Kim SJ. Simvastatin prevents articular chondrocyte dedifferentiation induced by nitric oxide by inhibiting the expression of matrix metalloproteinases 1 and 13. Exp Biol Med (Maywood) 2019; 243:1165-1172. [PMID: 32459510 DOI: 10.1177/1535370218820650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Dedifferentiation of chondrocytes is the main character of cartilage degradation. Therefore the understanding of chondrocytes dedifferentiation is essential for arthritis therapy. However, the molecular mechanism of cartilage destroy is mostly unknown. In this work we show that simvastatin (SVT) inhibits dedifferentiation by nitric oxide by blocking the expression of matrix metalloproteinases 1 and 13. These effects of SVT on dedifferentiation suggest that SVT may be used as a drug for the cure of arthritis.
Collapse
Affiliation(s)
- Seon-Mi Yu
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Korea
| |
Collapse
|
4
|
Shui YM, Lu SY, Guo X, Liu XL, Fu BQ, Hu P, Qu LL, Liu NN, Li YS, Wang LL, Zhai FF, Ju DD, Liu ZS, Zhou Y, Ren HL. Molecular characterization and differential expression analysis of interleukin 1β from Ovis aries. Microb Pathog 2018; 116:180-188. [DOI: 10.1016/j.micpath.2018.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/28/2017] [Accepted: 01/07/2018] [Indexed: 11/30/2022]
|
5
|
Agere SA, Akhtar N, Watson JM, Ahmed S. RANTES/CCL5 Induces Collagen Degradation by Activating MMP-1 and MMP-13 Expression in Human Rheumatoid Arthritis Synovial Fibroblasts. Front Immunol 2017; 8:1341. [PMID: 29093715 PMCID: PMC5651228 DOI: 10.3389/fimmu.2017.01341] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/03/2017] [Indexed: 12/02/2022] Open
Abstract
Regulated on activation, normal T expressed, and secreted (RANTES)/CC ligand 5 (CCL5) participates in rheumatoid arthritis (RA) pathogenesis by facilitating leukocyte infiltration, however, its other pathological functions are not fully defined in RA. In the present study, we evaluated the effect of RANTES/CCL5 on tissue degrading enzymes matrix metalloproteinase-1 (MMP-1) and MMP-13 expression and its contribution to the progressive joint damage by RA synovial fibroblasts (RASFs). Our results showed that RANTES/CCL5 dose dependently induced MMP-1 and MMP-13 expression in monolayers and three-dimensional (3D) micromass of human RASFs, which correlated with an increase in collagenase activity. This activation by RANTES/CCL5 was observed in RASF, but not in osteoarthritis SFs (OASFs). Evaluation of the signaling events showed that RANTES/CCL5 selectively activated PKCδ, JNK, and ERK proteins to induce MMP expression in human RASFs. Pretreatment with a functional antagonist (Met-RANTES) or heparinase III [an enzyme that selectively digests heparan sulfate proteoglycans (HSPGs)] completely abrogated RANTES/CCL5-induced MMP-1 and MMP-13 expression. Interestingly, the inhibition of RANTES/CCL5 using small-interfering RNA approach reduced the ability of interleukin-1β (IL-1β) to induce MMP-1 and MMP-13 expression, asserting its mediatory role in tissue remodeling. In the inhibitor study, only the selective inhibition of HSPGs or PKCδ, ERK, and JNK markedly inhibited RANTES/CCL5-induced MMP-1 and MMP-13 production. Circular dichroism spectroscopy results demonstrated the degradation of collagen triple-helical structure upon exposure to the conditioned media from RANTES/CCL5 stimulated RASFs, which was reverted by a broad-spectrum MMP inhibitor (GM6001). These findings suggest that RANTES/CCL5 not only upregulates MMP-1 and MMP-13 expression by partly utilizing HSPGs and/or PKCδ-JNK/ERK pathways but also mediates IL-1β-induced MMP-1 and MMP-13 expression.
Collapse
Affiliation(s)
- Solomon A Agere
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, United States
| | - Nahid Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, United States
| | - Jeffery M Watson
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA, United States
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, United States.,Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
6
|
Nash KM, Ahmed S. Nanomedicine in the ROS-mediated pathophysiology: Applications and clinical advances. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2033-40. [PMID: 26255114 DOI: 10.1016/j.nano.2015.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/23/2015] [Accepted: 07/02/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Reactive oxygen species (ROS) are important in regulating normal cell physiological functions, but when produced in excess lead to the augmented pathogenesis of various diseases. Among these, ischemia reperfusion injury, Alzheimer's disease and rheumatoid arthritis are particularly important. Since ROS can be counteracted by a variety of antioxidants, natural and synthetic antioxidants have been developed. However, due to the ubiquitous production of ROS in living systems, poor in vivo efficiency of these agents and lack of target specificity, the current clinical modalities to treat oxidative stress damage are limited. Advances in the developing field of nanomedicine have yielded nanoparticles that can prolong antioxidant activity, and target specificity of these agents. This article reviews recent advances in antioxidant nanoparticles and their applications to manage oxidative stress-mediated diseases. FROM THE CLINICAL EDITOR Production of reactive oxygen species (ROS) is a purely physiological process in many disease conditions. However, excessive and uncontrolled production will lead to oxidative stress and further tissue damage. Advances in nanomedicine have provided many novel strategies to try to combat and counteract ROS. In this review article, the authors comprehensively highlighted the current status and future developments in using nanotechnology for providing novel therapeutic options in this field.
Collapse
Affiliation(s)
- Kevin M Nash
- Department of Pharmacology, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA.
| |
Collapse
|
7
|
Miao C, Ren Y, Chen M, Wang Z, Wang T. Microcystin-LR promotes migration and invasion of colorectal cancer through matrix metalloproteinase-13 up-regulation. Mol Carcinog 2015; 55:514-24. [PMID: 25789966 DOI: 10.1002/mc.22298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 01/02/2015] [Accepted: 01/14/2015] [Indexed: 01/05/2023]
Abstract
Microcystin-LR (MC-LR) is an environmental toxin from blooms of cyanobacteria and it has been shown to be one of the environmental carcinogens for the progression of colorectal carcinoma. However, there is no direct evidence that MC-LR can induce colorectal cancer migration and invasion. In the present study, 0.04 or 40 µg/kg/d (human tolerable daily intake value of MC-LR) MC-LR treatment was observed to induce Matrix Metalloproteinase-13 (MMP-13) expression in tumor tissues and local invasion in DLD-1 xenograft model. The results are consistent with those of cell test showing that MC-LR treatment enhanced migration and invasion of DLD-1, HT-29, and SW480 cells and are also correlated with the increased mRNA and protein levels of MMP-13 by Quantitative real-time PCR, Luciferase assay, and Western blot assay respectively in DLD-1 cells and HT-29 cells after MC-LR exposure. In addition, MMP-13 siRNA inhibited MC-LR induced migration and invasion enhancement and MMP-13 over-expression in DLD-1 cells and HT-29 cells. This is the first paper confirming MC-LR-induced MMP-13 expression can promote colorectal cancer invasion and migration. Further investigation revealed that phosphorylation of AKT increased in MC-LR-treated cells, and the phosphatidylinositol 3-kinase/Akt. (PI3-K/AKT) inhibitor LY294002 effectively abolished MC-LR-enhanced migration and invasion and MMP-13 expression. Therefore, based on these observations, we concluded that the activation of PI3K/AKT by MC-LR results in MMP-13 expression, leading to the migration and invasion of DLD-1 cells and HT-29 cells. The study provides a mechanistic insight into the promoting colorectal cancer functions of MC-LR.
Collapse
Affiliation(s)
- Chen Miao
- Department of Cell Biology, School of Basic MedicalSciences, Nanjing MedicalUniversity, Nanjing, China
| | - Yan Ren
- Department of Cell Biology, School of Basic MedicalSciences, Nanjing MedicalUniversity, Nanjing, China
| | - Meng Chen
- Department of laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Zhen Wang
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Cell Biology, School of Basic MedicalSciences, Nanjing MedicalUniversity, Nanjing, China
| |
Collapse
|
8
|
Zhang Y, Pizzute T, Pei M. Anti-inflammatory strategies in cartilage repair. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:655-68. [PMID: 24846478 DOI: 10.1089/ten.teb.2014.0014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cartilage defects are normally concomitant with posttraumatic inflammation and pose a major challenge in cartilage repair. Due to the avascular nature of cartilage and its inability to surmount an inflammatory response, the cartilage is easily attacked by proinflammatory factors and oxidative stress; if left untreated, osteoarthritis may develop. Suppression of inflammation has always been a crux for cartilage repair. Pharmacological drugs have been successfully applied in cartilage repair; however, they cannot optimally work alone. This review article will summarize current pharmacological drugs and their application in cartilage repair. The development of extracellular matrix-based scaffolds and preconditioned tissue-specific stem cells will be emphasized because both of these tissue engineering components could contribute to an enhanced ability not only for cartilage regeneration but also for anti-inflammation. These strategies could be combined to boost cartilage repair under inflammatory conditions.
Collapse
Affiliation(s)
- Ying Zhang
- 1 Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University , Morgantown, West Virginia
| | | | | |
Collapse
|
9
|
Chang CH, Hsu YM, Chen YC, Lin FH, Sadhasivam S, Loo ST, Savitha S. Anti-inflammatory effects of hydrophilic and lipophilic statins with hyaluronic acid against LPS-induced inflammation in porcine articular chondrocytes. J Orthop Res 2014; 32:557-65. [PMID: 24302463 DOI: 10.1002/jor.22536] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/14/2013] [Indexed: 02/04/2023]
Abstract
The objective of the study is to understand the therapeutic effects of lipophilic (simvastatin) and hydrophilic statins (pravastatin) combined with/without hyaluronic acid for osteoarthritis by an in vitro LPS-induced inflammatory model of articular chondrocytes. HA in combination with different doses of simvastatin or pravastatin were used. Beside cytotoxicity, the influence of statins on NO production, pro-inflammatory cytokine, inflammatory mediators, and NF-κB p50 protein were analyzed. Finally, TUNEL assay was performed to detect DNA strand breakage. Two statins were less able to lower NF-κB activity when they were administrated along without HA. The gene expression demonstrates that simvastatin and pravastatin had the ability to decrease pro-inflammatory and inflammatory mediator levels. High dose simvastatin with or without HA down regulated inflammatory cytokines, but resulted in higher cytotoxicity. TUNEL assay confirms the regulatory effect of statins with or without HA over the apoptosis of chondrocytes, especially in hydrophilic statins. The significant down-regulation of inflammatory mediators suggests that intra-articular injection of HA in combination with statins might feasibly slow the progress of osteoarthritis. Administration of simvastatin or pravastatin with hyaluronic acid may produce beneficial effects for OA treatment, but with better results when hydrophilic statin was used.
Collapse
Affiliation(s)
- Chih-Hung Chang
- Division of Orthopaedics, Department of Surgery, Far Eastern Memorial Hospital, No. 21, Nan-Ya South Road, Sec. 2 Pan-Chia Dict., New Taipei City, Taiwan; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan; Department of Orthopaedics Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
10
|
Li N, Liu N, Zhou J, Tang L, Ding B, Duan Y, Jin Y. Inflammatory environment induces gingival tissue-specific mesenchymal stem cells to differentiate towards a pro-fibrotic phenotype. Biol Cell 2013; 105:261-75. [DOI: 10.1111/boc.201200064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/14/2013] [Indexed: 12/28/2022]
|
11
|
Lee HS, Park SY, Park Y, Bae SH, Suh HJ. Yeast hydrolysate protects cartilage via stimulation of type II collagen synthesis and suppression of MMP-13 production. Phytother Res 2012; 27:1414-8. [PMID: 23070893 DOI: 10.1002/ptr.4857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/21/2012] [Accepted: 09/17/2012] [Indexed: 11/06/2022]
Abstract
Type II collagen (COL II) is one of the primary components of hyaline cartilage and plays a key role in maintaining chondrocyte function. COL II is the principal target of destruction, and matrix metalloproteases (MMPs) have a major role in arthritis. In the present study, we investigated the chondroctye protection effects of specific fraction of yeast hydrolysate ((10-30 kDa molecular weight peptides). The mRNA expression of COL II was significantly increased in the YH-treated group compared to the control at concentrations above 50 µg/ml, respectively. The 200 µg/ml YH-treated group (3.43 ± 0.23 µg/ml) showed significantly reduced glycosaminoglycan (GAG) degradation relative to that in the interleukin-1β (IL-1β)-treated control group (4.72 ± 0.05 µg/ml). In the YH-treated group, MMP-13 level was significantly decreased in a dose-dependent manner compared to the IL-1β-treated group without YH treatment. However, MMP-1 and MMP-3 level were not different from that of control. Under the same conditions, we also examined mRNA levels of COL II. The mRNA expression of COL II was significantly higher in the YH-treated group than in the IL-1β-treated control group at concentrations above 100 µg/ml. In conclusion, YH stimulated COL II synthesis and significantly inhibited MMP-13 and GAG degradation caused by IL-1β treatment.
Collapse
Affiliation(s)
- Hyun-Sun Lee
- Department of Food and Nutrition, Korea University, Seoul 136-703, Korea
| | | | | | | | | |
Collapse
|
12
|
Martel-Pelletier J, Wildi LM, Pelletier JP. Future therapeutics for osteoarthritis. Bone 2012; 51:297-311. [PMID: 22037003 DOI: 10.1016/j.bone.2011.10.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/07/2011] [Indexed: 11/26/2022]
Abstract
Osteoarthritis (OA) is a disease of the joints that affects several million individuals worldwide. This disease, which involves mainly the diarthrodial joints, is chronic and develops slowly over decades, making it very difficult to precisely identify the different etiological and risk factors that influence its onset. At present, most therapies for OA are symptomatic. This review will focus on new OA therapeutics in development that are directed toward pain relief as well as others with the potential to reduce or stop the progression of the disease (DMOADs). This article is part of a Special Issue entitled "Osteoarthritis".
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada.
| | | | | |
Collapse
|
13
|
Jotanovic Z, Mihelic R, Sestan B, Dembic Z. Role of Interleukin-1 Inhibitors in Osteoarthritis. Drugs Aging 2012; 29:343-58. [DOI: 10.2165/11599350-000000000-00000] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Zhai Z, Gomez-Mejiba SE, Zhu H, Lupu F, Ramirez DC. The spin trap 5,5-dimethyl-1-pyrroline N-oxide inhibits lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Life Sci 2012; 90:432-9. [PMID: 22285597 DOI: 10.1016/j.lfs.2011.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 11/22/2011] [Accepted: 12/22/2011] [Indexed: 12/24/2022]
Abstract
AIM Exposure of macrophages to lipopolysaccharide (LPS) induces oxidative and inflammatory stresses, which cause cell damage. Antioxidant and anti-inflammatory properties have been attributed to the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), commonly used in free radical analysis, but these aspects of DMPO have been little explored. In this study, we sought to establish the anti-inflammatory activity of DMPO, presumably by removing free radicals which otherwise help activate inflammatory response and damage cells. MAIN METHODS RAW 264.7 macrophages were treated with LPS and/or DMPO for different time points, cell damage, production of inflammatory mediators, inducible nitric oxide synthase (iNOS) expression, NF-κB p65 activation, phosphorylation of MAPKs and Akt, and intracellular reactive oxygen species (ROS) were determined. KEY FINDINGS After cells were treated with LPS and/or DMPO for 24 h, DMPO reduced the LPS-induced inflammatory response as indicated by downregulated iNOS expression and production of inflammatory mediators. Accordingly, DMPO protected cells from LPS-induced cytotoxicity. In order to understand the mechanistic basis of these DMPO effects, the NF-κB p65 activation and the phosphorylation of MAPKs and Akt were examined. We found, by assaying cells treated with LPS and/or DMPO for 15-60 min, that DMPO inhibited the phosphorylation of MAPKs, Akt, and IκBα, and reduced the NF-κB p65 translocation. Furthermore, we demonstrated that DMPO inhibited LPS-induced ROS production. SIGNIFICANCE DMPO showed the anti-inflammatory activity and attenuated LPS-induced cell damage, most likely by reducing ROS production and thus preventing the subsequent inflammatory activation and damage.
Collapse
Affiliation(s)
- Zili Zhai
- Experimental Therapeutics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
15
|
Goldring MB, Otero M, Plumb DA, Dragomir C, Favero M, El Hachem K, Hashimoto K, Roach HI, Olivotto E, Borzì RM, Marcu KB, Marcu KB. Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater 2011; 21:202-20. [PMID: 21351054 PMCID: PMC3937960 DOI: 10.22203/ecm.v021a16] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human cartilage is a complex tissue of matrix proteins that vary in amount and orientation from superficial to deep layers and from loaded to unloaded zones. A major challenge to efforts to repair cartilage by stem cell-based and other tissue engineering strategies is the inability of the resident chondrocytes to lay down new matrix with the same structural and resilient properties that it had upon its original formation. This is particularly true of the collagen network, which is susceptible to cleavage once proteoglycans are depleted. Thus, a thorough understanding of the similarities and particularly the marked differences in mechanisms of cartilage remodeling during development, osteoarthritis, and aging may lead to more effective strategies for preventing cartilage damage and promoting repair. To identify and characterize effectors or regulators of cartilage remodeling in these processes, we are using culture models of primary human and mouse chondrocytes and cell lines and mouse genetic models to manipulate gene expression programs leading to matrix remodeling and subsequent chondrocyte hypertrophic differentiation, pivotal processes which both go astray in OA disease. Matrix metalloproteinases (MMP)-13, the major type II collagen-degrading collagenase, is regulated by stress-, inflammation-, and differentiation-induced signals that not only contribute to irreversible joint damage (progression) in OA, but importantly, also to the initiation/onset phase, wherein chondrocytes in articular cartilage leave their natural growth- and differentiation-arrested state. Our work points to common mediators of these processes in human OA cartilage and in early through late stages of OA in surgical and genetic mouse models.
Collapse
Affiliation(s)
- Mary B. Goldring
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA,Address for correspondence: Mary B. Goldring, 535 East 70th Street, Caspary Research Building, 5th Floor, New York, NY 10021. USA,
| | - Miguel Otero
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Darren A. Plumb
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Cecilia Dragomir
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Marta Favero
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Karim El Hachem
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Ko Hashimoto
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | | | - Eleonora Olivotto
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituti Ortopedia Rizzoli, 40136 Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituti Ortopedia Rizzoli, 40136 Bologna, Italy
| | - Kenneth B. Marcu
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituti Ortopedia Rizzoli, 40136 Bologna, Italy,Biochemistry and Cell Biology Dept., Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | | |
Collapse
|
16
|
Li CH, Cheng YW, Liao PL, Yang YT, Kang JJ. Chloramphenicol causes mitochondrial stress, decreases ATP biosynthesis, induces matrix metalloproteinase-13 expression, and solid-tumor cell invasion. Toxicol Sci 2010; 116:140-50. [PMID: 20338993 PMCID: PMC2886854 DOI: 10.1093/toxsci/kfq085] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Overuse and abuse of antibiotics can increase the risk of cancer. Chloramphenicol can inhibit both bacterial and mitochondrial protein synthesis, causing mitochondrial stress and decreased ATP biosynthesis. Chloramphenicol can accelerate cancer progression; however, the underlying mechanisms of chloramphenicol in carcinogenesis and cancer progression are still unclear. We found that chloramphenicol can induce matrix metalloproteinase (MMP)-13 expression and increase MMP-13 protein in conditioned medium, resulting in an increase in cancer cell invasion. Chloramphenicol also activated c-Jun N-terminal kinases (JNK) and phosphatidylinositol 3-kinase (PI-3K)/Akt signaling, leading to c-Jun protein phosphorylation. The activated c-Jun protein has been proven to activate binding to the MMP-13 promoter and also upregulate the amount of MMP-13. Both the SP 600125 (JNK inhibitor) and LY 294002 (PI-3K/Akt inhibitor) can inhibit chloramphenicol-induced c-Jun phosphorylation, MMP-13 expression, and cell invasion. Overexpression of the dominant-negative JNK and PI-3K p85 subunit also negate chloramphenicol-induced responses. Other antibiotics that cause mitochondrial stress and a decrease in ATP biosynthesis also induce MMP-13 expression. These findings suggest that chloramphenicol-induced PI-3K/Akt, JNK phosphorylation, and activator protein 1 activation might function as a novel mitochondrial stress signal that result in an increase of MMP-13 expression and MMP-13-associated cancer cell invasion. The findings of this study confirms that chloramphenicol, and other 70S ribosomal inhibitors, should be administered with caution, especially during cancer therapy.
Collapse
Affiliation(s)
- Ching-Hao Li
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Sutton S, Clutterbuck A, Harris P, Gent T, Freeman S, Foster N, Barrett-Jolley R, Mobasheri A. The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet J 2009; 179:10-24. [PMID: 17911037 DOI: 10.1016/j.tvjl.2007.08.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 08/08/2007] [Accepted: 08/10/2007] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is one of the most common and disabling chronic joint disorders affecting horses, dogs and humans. Synovial inflammation or synovitis is a frequently observed phenomenon in osteoarthritic joints and contributes to the pathogenesis of OA through formation of various catabolic and pro-inflammatory mediators altering the balance of cartilage matrix degradation and repair. Catabolic mediators produced by the inflamed synovium include pro-inflammatory cytokines, nitric oxide, prostaglandin E(2) and several neuropeptides, which further contribute to the pathogenesis of OA by increasing cartilage degradation. Recent studies suggest that substance P, corticotropin-releasing factor, urocortin and vasoactive intestinal peptide may also be involved in OA development, but the precise role of these neuropeptides in the pathogenesis of OA is not known. Since increased production of matrix metalloproteinases by the synovium is stimulated by pro-inflammatory cytokines, future anti-inflammatory therapies should focus on the synovium as a means of controlling subsequent inflammatory damage.
Collapse
Affiliation(s)
- Saski Sutton
- Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool L69 7ZJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis 2008; 67 Suppl 3:iii75-82. [PMID: 19022820 PMCID: PMC3939701 DOI: 10.1136/ard.2008.098764] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In osteoarthritis (OA), adult articular chondrocytes undergo phenotypic modulation in response to alterations in the environment owing to mechanical injury and inflammation. These processes not only stimulate the production of enzymes that degrade the cartilage matrix but also inhibit repair. With the use of in vitro and in vivo models, new genes, not known previously to act in cartilage, have been identified and their roles in chondrocyte differentiation during development and in dysregulated chondrocyte function in OA have been examined. These new genes include growth arrest and DNA damage (GADD)45beta and the epithelial-specific ETS (ESE)-1 transcription factor, induced by bone morphogenetic protein (BMP)-2 and inflammatory cytokines, respectively. Both genes are induced by NF-kappaB, suppress COL2A1 and upregulate matrix meatalloproteinase-13 (MMP-13) expression. These genes have also been examined in mouse models of OA, in which discoidin domain receptor 2 is associated with MMP-13-mediated remodelling, in order to understand their roles in physiological cartilage homoeostasis and joint disease.
Collapse
Affiliation(s)
- M B Goldring
- Hospital for Special Surgery, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
19
|
Scotto d'Abusco A, Calamia V, Cicione C, Grigolo B, Politi L, Scandurra R. Glucosamine affects intracellular signalling through inhibition of mitogen-activated protein kinase phosphorylation in human chondrocytes. Arthritis Res Ther 2008; 9:R104. [PMID: 17925024 PMCID: PMC2212570 DOI: 10.1186/ar2307] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 09/17/2007] [Accepted: 10/09/2007] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to determine the effects of glucosamine on matrix metalloprotease (MMP) production, on mitogen-activated protein kinase (MAPK) phosphorylation, and on activator protein (AP)-1 transcription factor activation in human chondrocytes. The human immortalized cell line lbpva55 and healthy human chondrocytes (obtained from healthy donors) were subjected to challenge with 10 ng/ml IL-1β after pretreatment with 2.5 or 10 mmol/l glucosamine. MMP mRNA expression levels were evaluated using quantitative real-time PCR, and MMP protein production levels were evaluated in the culture supernatant using ELISA. MAPK phosphorylation was evaluated using Western blotting. AP-1 transcription factor activation was evaluated by measuring AP-1 DNA-binding activity. After IL-1β stimulation, levels of MMP-1, MMP-3 and MMP-13 production were markedly increased. Treatment with 2.5 and 10 mmol/l glucosamine reduced expression of these metalloproteases. MMP expression is regulated by transcription factors such as the AP-1 complex, which is activated by phosphorylated MAPKs. IL-1β stimulated phosphorylation of c-jun amino-terminal kinase, p38 MAPK and extracellular signal-regulated kinase-1/2. Glucosamine inhibited c-jun amino-terminal kinase and p38 phosphorylation, and consequently c-jun binding activity. These findings demonstrate, for the first time, that glucosamine inhibits IL-1β-stimulated MMP production in human chondrocytes by affecting MAPK phosphorylation.
Collapse
Affiliation(s)
- Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Yoon SW, Chun JS, Sung MH, Kim JY, Poo H. alpha-MSH inhibits TNF-alpha-induced matrix metalloproteinase-13 expression by modulating p38 kinase and nuclear factor kappaB signaling in human chondrosarcoma HTB-94 cells. Osteoarthritis Cartilage 2008; 16:115-24. [PMID: 17683952 DOI: 10.1016/j.joca.2007.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 05/26/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Proinflammatory cytokine-induced expression of matrix metalloproteinases (MMPs) is a major cause of arthritic cartilage destruction. The neuropeptide, alpha-melanocyte-stimulating hormone (alpha-MSH), has been detected in the synovial fluid of arthritis patients, where it is thought to play an anti-inflammatory role. Here, we examined whether alpha-MSH acts via downregulation of MMP expression, and sought to elucidate the intracellular signal pathways underlying this effect. DESIGN Human chondrosarcoma cell line, HTB-94 (SW1353) was pretreated with or without alpha-MSH and then treated with tumor necrosis factor-alpha (TNF-alpha). The effect of alpha-MSH on TNF-alpha-induced MMP-13 expression and mitogen-activated protein kinases' (MAPKs) activation were determined by reverse transcriptase-polymerase chain reaction and Western blot analysis. Additionally, the intracellular signaling of alpha-MSH was investigated using the inhibitors of MAPK and nuclear factor kappaB (NF-kappaB) and plasmids encoding dominant negative (dn) forms of inhibitor kappaB kinase-alpha (IKKalpha) and inhibitor kappaB kinase-beta (IKKbeta). RESULTS We found that alpha-MSH pretreatment inhibited TNF-alpha-induced MMP-13 expression and p38 kinase phosphorylation in HTB-94 human chondrosarcoma cells. TNF-alpha-induced MMP-13 expression was not suppressed by extracellular signal-regulated kinase (ERK) inhibitors (PD98059 and U0126) or a c-jun terminal kinase (JNK) inhibitor (SP600125), but was inhibited by inhibitors of p38 kinase (SB203580) and NF-kappaB (SN-50 peptide) and dnIKKalpha and dnIKKbeta. CONCLUSIONS Our results suggest that alpha-MSH regulates TNF-alpha-induced MMP-13 expression by decreasing p38 kinase phosphorylation and subsequent NF-kappaB activation in human chondrocytes and may be an effective inhibitor of MMP-13-mediated collagen degradation, providing new potential opportunities for the development of anti-arthritis therapeutics.
Collapse
Affiliation(s)
- S W Yoon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea
| | | | | | | | | |
Collapse
|
21
|
Colla S, Zhan F, Xiong W, Wu X, Xu H, Stephens O, Yaccoby S, Epstein J, Barlogie B, Shaughnessy JD. The oxidative stress response regulates DKK1 expression through the JNK signaling cascade in multiple myeloma plasma cells. Blood 2007; 109:4470-7. [PMID: 17255354 PMCID: PMC1885505 DOI: 10.1182/blood-2006-11-056747] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 12/22/2006] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) plasma cells, but not those from healthy donors and patients with monoclonal gammopathy of undetermined significance or other plasma cell dyscrasias involving the bone marrow, express the Wnt-signaling antagonist DKK1. We previously reported that secretion of DKK1 by MM cells likely contributes to osteolytic lesions in this disease by inhibiting Wnt signaling, which is essential for osteoblast differentiation and survival. The mechanisms responsible for activation and regulation of DKK1 expression in MM are not known. Herein, we could trace DKK1 expression changes in MM cells to perturbations in the JNK signaling cascade, which is differentially modulated through oxidative stress and interactions between MM cells with osteoclasts in vitro. Despite its role as a tumor suppressor and mediator of apoptosis in other cell types including osteoblasts, our data suggest that DKK1, a stress-responsive gene in MM, does not mediate apoptotic signaling, is not activated by TP53, and its forced overexpression could not inhibit cell growth or sensitize MM cells to apoptosis following treatment with thalidomide or lenalidomide. We conclude that specific strategies to modulate persistent activation of the JNK pathway may be beneficial in preventing disease progression and treating myeloma-associated bone disease by inhibiting DKK1 expression.
Collapse
Affiliation(s)
- Simona Colla
- Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics at the Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Goldring MB. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheumatol 2006; 20:1003-25. [PMID: 16980220 DOI: 10.1016/j.berh.2006.06.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) is a joint disease that involves degeneration of articular cartilage, limited intraarticular inflammation manifested by synovitis and changes in the subchondral bone. The aetiology of OA is largely unknown, but since it may involve multiple factors, including mechanical, biochemical and genetic factors, it has been difficult to identify unique targets for therapy. Chondrocytes, which are the unique cellular component of adult articular cartilage, are capable of responding to structural changes in the surrounding cartilage matrix. Since the initial stages of OA involve increased cell proliferation and synthesis of matrix proteins, proteinases and cytokines in the cartilage, laboratory investigations have focused on the chondrocyte as a target for therapeutic intervention. The capacity of the adult articular chondrocyte to regenerate the normal cartilage matrix architecture is limited, however, and the damage becomes irreversible unless the destructive process is interrupted. Current pharmacological interventions that address chronic pain are insufficient and no proven disease-modifying therapy is available. Identification of methods for early diagnosis is of key importance, since therapeutic interventions aimed at blocking or reversing structural damage will be more effective when there is the possibility of preserving normal homeostasis. At later stages, cartilage tissue engineering with or without gene therapy with anabolic factors will also require therapy to inhibit inflammation and block damage to newly repaired cartilage. This review will focus on experimental approaches currently under study that may lead to elucidation of effective strategies for therapy in OA, with emphasis on mediators that affect the function of chondrocytes and interactions with surrounding tissues.
Collapse
Affiliation(s)
- Mary B Goldring
- Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Cortial D, Gouttenoire J, Rousseau CF, Ronzière MC, Piccardi N, Msika P, Herbage D, Mallein-Gerin F, Freyria AM. Activation by IL-1 of bovine articular chondrocytes in culture within a 3D collagen-based scaffold. An in vitro model to address the effect of compounds with therapeutic potential in osteoarthritis. Osteoarthritis Cartilage 2006; 14:631-40. [PMID: 16527498 DOI: 10.1016/j.joca.2006.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 01/13/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the best protocol for the preparation of a tissue-engineered cartilage to investigate the potential anti-arthritic and/or anti-osteoarthritic effects of drugs. METHODS Calf articular chondrocytes, seeded in collagen sponges were grown in culture for up to 1 month. At day 14 cultures received interleukin (IL)-1beta (ranging from 0.1 to 20 ng/ml) for 1 to 3 days. Analyses of gene expression for extracellular matrix proteins, collagen-binding integrins, matrix metalloproteinases (MMPs), aggrecanases, TIMPs, IL-1Ra and Ikappa-Balpha were carried out using real-time polymerase chain reaction (PCR). Metalloproteinase activities were analysed in the culture medium using both zymography and fluorogenic peptide substrates. RESULTS We selected a culture for 15 or 17 days with collagen sponges seeded with 10(7) chondrocytes showing a minimal cell proliferation, a maximal sulphated glycosaminoglycan (sGAG) deposition and a high expression of COL2A1, aggrecan and the alpha10 integrin sub-unit and low expression of COL1A2 and the alpha11 integrin sub-unit. In the presence of 1 ng/ml IL-1beta, we observed at day 15 up-regulations of 450-fold for MMP-1, 60-fold for MMP-13, 54-fold for ADAMTS-4 and MMP-3 and 10-fold for ADAMTS-5 and IL-1Ra. Down-regulations of 2.5-fold for COL2A1 and aggrecan were observed only at day 17. At the protein level a dose-dependent increase of total MMP-1 and MMP-13 was noted with less than 15% in the active form. CONCLUSIONS This in vitro model of chondrocyte culture in three dimensional (3D) seems well adapted to investigate the responses of these cells to inflammatory cytokines and to evaluate the potential anti-inflammatory effects of drugs.
Collapse
Affiliation(s)
- D Cortial
- Institut de Biologie et Chimie des Protéines (IBCP UMR 5086); CNRS; Univ. Lyon 1; IFR 128 BioSciences Lyon-Gerland; 7, passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pelletier JP, Martel-Pelletier J, Raynauld JP. Most recent developments in strategies to reduce the progression of structural changes in osteoarthritis: today and tomorrow. Arthritis Res Ther 2006; 8:206. [PMID: 16569256 PMCID: PMC1526599 DOI: 10.1186/ar1932] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA), the most common of all arthritic conditions, is a social and financial burden to all nations. The most recent research has significantly advanced our understanding of the cause of OA and risk factors associated with it. These findings have provided useful information that has helped in the daily management of patients with OA. Some preventative measures and a number of therapeutic agents and drugs are available, which may help to reduce the progression of OA in certain patients. Moreover, the most recent progress in research has significantly enhanced our knowledge of the factors involved in the development of the disease and of the mechanisms responsible for its progression. This has allowed identification of several new therapeutic targets in a number of pathophysiological pathways. Consequently, the field is opening up to a new era in which drugs and agents that can specifically block important mechanisms responsible for the structural changes that occur in OA can be brought into development and eventually into clinical trials.
Collapse
Affiliation(s)
- Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Centre, Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Centre, Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Jean-Pierre Raynauld
- Osteoarthritis Research Unit, University of Montreal Hospital Centre, Notre-Dame Hospital, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Miller MJS, Mehta K, Kunte S, Raut V, Gala J, Dhumale R, Shukla A, Tupalli H, Parikh H, Bobrowski P, Chaudhary J. Early relief of osteoarthritis symptoms with a natural mineral supplement and a herbomineral combination: a randomized controlled trial [ISRCTN38432711]. J Inflamm (Lond) 2005; 2:11. [PMID: 16242032 PMCID: PMC1276811 DOI: 10.1186/1476-9255-2-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 10/21/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study was designed to determine if a natural mineral supplement, sierrasil, alone and in combination with a cat's claw extract (Uncaria guianensis), vincaria, has therapeutic potential in mild to moderate osteoarthritis of the knee. METHODS Patients (n = 107) with mild to moderate osteoarthritis of the knee were randomly assigned to one of 4 groups; high dose sierrasil (3 g/day), low dose sierrasil (2 g/day), low dose sierrasil (2 g/day) + cat's claw extract (100 mg/day) or placebo, administered for 8 weeks. Treatment was double blinded. Primary efficacy variables were WOMAC scores (A, B, C and total). Visual analog score (VAS) for pain, consumption of rescue medication (paracetamol), and tolerability were secondary variables. Safety measures included vital signs and laboratory-based assays. RESULTS Ninety-one of the 107 patients successfully completed the protocol. All four groups showed improvement in WOMAC and VAS scores after 8 weeks (p < 0.001), in all 3 groups receiving sierrasil the magnitude of benefits were greater vs. placebo (WOMAC Total 38-43% vs. 27%) but this was not statistically significant. In reference to baseline values sierrasil treated groups had a considerably faster onset of benefits. Placebo-treated individuals failed to show significant benefits at 4 weeks (11% reduction in total WOMAC). In contrast, after 1 or 2 weeks of therapy all the sierrasil groups displayed significant reductions in WOMAC scores (p < 0.05) and at week 4 displayed a 38-43% improvement. VAS was significantly improved at 4 weeks in all groups (p < 0.001) but was significantly greater in all sierrasil groups compared to placebo (p < 0.05). Rescue medication use was 28-23% lower in the herbomineral combination and high dose sierrasil groups although not statistically different from placebo (P = 0.101 and P = 0.193, respectively). Tolerability was good for all groups, no serious adverse events were noted and safety parameters remained unchanged. CONCLUSION The natural mineral supplement, sierrasil alone and in combination with a cat's claw extract, improved joint health and function within 1-2 weeks of treatment but significant benefits over placebo were not sustained, possibly due to rescue medication masking. Sierrasil may offer an alternative therapy in subjects with joint pain and dysfunction.
Collapse
Affiliation(s)
- Mark JS Miller
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA
| | | | | | | | | | | | | | | | | | - Paul Bobrowski
- Santerra Pharmaceuticals, LLC, Raleigh, North Carolina, USA
| | | |
Collapse
|
26
|
Ahmed S, Wang N, Hafeez BB, Cheruvu VK, Haqqi TM. Punica granatum L. extract inhibits IL-1beta-induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-kappaB in human chondrocytes in vitro. J Nutr 2005; 135:2096-102. [PMID: 16140882 PMCID: PMC1315308 DOI: 10.1093/jn/135.9.2096] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interleukin (IL)-1beta induces the expression of matrix metalloproteinases (MMPs) implicated in cartilage resorption and joint degradation in osteoarthritis (OA). Pomegranate fruit extract (PFE) was recently shown to exert anti-inflammatory effects in different disease models. However, no studies have been undertaken to investigate whether PFE constituents protect articular cartilage. In the present studies, OA chondrocytes or cartilage explants were pretreated with PFE and then stimulated with IL-1beta at different time points in vitro. The amounts of proteoglycan released were measured by a colorimetric assay. The expression of MMPs, phosphorylation of the inhibitor of kappaBalpha (IkappaBalpha) and mitogen-activated protein kinases (MAPKs) was determined by Western immunoblotting. Expression of mRNA was quantified by real-time PCR. MAPK enzyme activity was assayed by in vitro kinase assay. Activation of nuclear factor-kappaB (NF-kappaB) was determined by electrophoretic mobility shift assay. PFE inhibited the IL-1beta-induced proteoglycan breakdown in cartilage explants in vitro. At the cellular level, PFE (6.25-25 mg/L) inhibited the IL-1beta-induced expression of MMP-1, -3, and -13 protein in the medium (P < 0.05) and this was associated with the inhibition of mRNA expression. IL-1beta-induced phosphorylation of p38-MAPK, but not that of c-Jun-N-terminal kinase or extracellular regulated kinase, was most susceptible to inhibition by low doses of PFE, and the addition of PFE blocked the activity of p38-MAPK in a kinase activity assay. PFE also inhibited the IL-1beta-induced phosphorylation of IkappaBalpha and the DNA binding activity of the transcription factor NF-kappaB in OA chondrocytes. Taken together, these novel results indicate that PFE or compounds derived from it may inhibit cartilage degradation in OA and may also be a useful nutritive supplement for maintaining joint integrity and function.
Collapse
Affiliation(s)
| | - Naizhen Wang
- Division of Rheumatic Diseases, Department of Medicine and
| | | | - Vinay K. Cheruvu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106
| | - Tariq M. Haqqi
- Division of Rheumatic Diseases, Department of Medicine and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Rossa C, Liu M, Patil C, Kirkwood KL. MKK3/6-p38 MAPK negatively regulates murine MMP-13 gene expression induced by IL-1beta and TNF-alpha in immortalized periodontal ligament fibroblasts. Matrix Biol 2005; 24:478-88. [PMID: 16046111 DOI: 10.1016/j.matbio.2005.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/13/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022]
Abstract
Matrix metalloprotease-13 (MMP-13) or collagenase-3 is involved in a number of pathologic processes such as tumor metastasis and angiogenesis, osteoarthritis, rheumatoid arthritis and periodontal diseases. These conditions are associated with extensive degradation of both connective tissue and bone. This report examines gene regulation mechanisms and signal transduction pathways involved in Mmp-13 expression induced by proinflammatory cytokines in periodontal ligament (PDL) fibroblasts. Mmp-13 mRNA expression was increased 10.7 and 9.5 fold after stimulation with IL-1beta (5 ng/mL) and TNF-alpha (10 ng/mL), respectively. However, inhibition of p38 MAPKinase with SB203580 resulted in significant (p<0.001) induction (23.2 and 18.1 fold, respectively) of Mmp-13 mRNA as assessed by real time PCR. Negative regulation of IL-1beta induced Mmp-13 expression was confirmed by inhibiting p38 MAPK gene expression with siRNA. Transient transfection of dominant negative forms of MKK3 and MKK6 also resulted in increased levels of Mmp-13 mRNA after IL-1beta stimulation. Mmp-13 mRNA expression induced by TNF-alpha was decreased by JNK and ERK inhibition. Western blot and zymogram analysis indicated that Mmp-13 protein expression induced by the proinflammatory cytokines were also upregulated by inhibition of p38 MAPK. Reporter gene experiments using stable cell lines harboring 660-bp sequence of the murine Mmp-13 proximal promoter indicated that transcriptional mechanisms were at least partially involved in this negative regulation of Mmp-13 expression by p38 MAPK and upstream MKK3/6. These results suggest a negative transcriptional regulatory mechanism mediated by p38 MAPK and upstream MKK3/6 on Mmp-13 expression induced by proinflammatory cytokines in PDL fibroblasts.
Collapse
Affiliation(s)
- Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of Sao Paulo (UNESP), Araraquara, SP, Brazil
| | | | | | | |
Collapse
|
28
|
Hassan M, Ghozlan H, Abdel-Kader O. Activation of c-Jun NH2-terminal kinase (JNK) signaling pathway is essential for the stimulation of hepatitis C virus (HCV) non-structural protein 3 (NS3)-mediated cell growth. Virology 2005; 333:324-36. [PMID: 15721365 DOI: 10.1016/j.virol.2005.01.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/14/2004] [Accepted: 01/07/2005] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) non-structural protein 3 (NS3) has been shown to affect cellular functions and is thought to contribute to the development of HCV-related hepatocarcinogenesis. In this study, we delineated part of the mechanisms whereby NS3 protein stimulates cell growth in liver (HepG2) and non-liver (HeLa) cells. The expression of NS3 protein enhanced cell growth, c-jun NH(2)-terminal kinase (JNK) activation, DNA binding activities of the transcription factors AP-1 and ATF-2, and c-jun expression, but not the activation of extracellular signal-regulated kinase (ERK) or p38(MAPK). Whereas co-expression of NS3 with its cofactor NS4A inhibited NS3-mediated cell growth without to influence NS3-mediated JNK activation, or to affect the basal activities of ERK or p38(MAPK). Pre-treatment of NS3 protein-expressing cells with JNK inhibitor, SP600125, abolished activation of AP-1 and ATF-2 and inhibited c-jun expression and induced cell growth, suggesting that JNK activation is essential for the stimulation of NS3-mediated cell growth.
Collapse
Affiliation(s)
- Mohamed Hassan
- Institute of Pathology, Faculty of Medicine, University of Duesseldorf, Mooren Str.5, 40225 Duesseldorf, Germany
| | | | | |
Collapse
|
29
|
Yamaguchi A, Tojyo I, Yoshida H, Fujita S. Role of hypoxia and interleukin-1β in gene expressions of matrix metalloproteinases in temporomandibular joint disc cells. Arch Oral Biol 2005; 50:81-7. [PMID: 15598420 DOI: 10.1016/j.archoralbio.2004.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
The aim of this study was to test the hypothesis that hypoxia and interleukin-1 (IL-1)beta played a substantial role in gene expressions of matrix metalloproteinases (MMPs) in temporomandibular joint (TMJ) disc cells. The TMJ disc cells were isolated from rabbit TMJ, and cultured in Dulbecco's modified Eagle's medium (DMEM). The experiment was performed for 24 h in hypoxic (2% O2) and IL-1beta stimulated conditions. To examine the effect of hypoxia and IL-1beta on gene expression of MMPs and tissue inhibitors of metalloproteinase (TIMPs), we performed reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-RCR. The results showed that the combination of hypoxia and IL-1beta caused a significant increase of MMP-1, MMP-3, MMP-9 and MMP-13 mRNA (P < 0.05). Hypoxia caused a significant increase of MMP-2 mRNA (P < 0.05). The combination of hypoxia and IL-1beta caused a significant decrease of TIMP-3 compared to hypoxia (P < 0.05). These findings suggest that hypoxia and IL-1beta may contribute to the degradation or remodelling of the extracellular matrix (ECM) of the disc and may have a role in the pathogenesis of TMJ disorders.
Collapse
Affiliation(s)
- Akihiko Yamaguchi
- Department of Oral and Maxillofacial Surgery, Wakayama Medical University, 811-1, Kimiidera, Wakayama-city 641-8509, Japan.
| | | | | | | |
Collapse
|
30
|
Abstract
Osteoarthritis (OA) is a debilitating, progressive disease of diarthrodial joints associated with the aging process. With the exception of anti-inflammatory corticosteroids and nonsteroidal anti-inflammatory drugs which inhibit cyclo-oxygenase-2, the enzyme responsible for prostaglandin biosynthesis in inflammation, no specific therapy based on fundamental intracellular pathways of chondrocytes and synoviocytes exists for the medical management of OA. At the molecular level, OA is characterized by an imbalance between chondrocyte anabolism and catabolism. Disruption of chondrocyte homeostasis primarily affects the cartilage extracellular matrix (ECM), which is responsible for the biomechanical properties of the tissue. Recent evidence has implicated cytokines, among which interleukin (IL)-1, tumor necrosis factor-alpha, IL-6, and IL-17 seem most involved in the OA process of cartilage destruction. The primary role of these cytokines is to modulate the expression of matrix metalloproteinases and cartilage ECM proteins. Cartilage repair that could restore the functional integrity of the joint is also impaired because chondrocytes in OA cartilage appear unable to respond to insulin-like growth factor-1 or respond abnormally to transforming growth factor-beta. As these growth factors also modulate cytokine expression, they may prove useful in designing strategies for suppressing 'chondrocyte activation'. Although cytokines and growth factors provide a potential therapeutic target for OA, it will be necessary to elucidate the fundamental mechanisms that cytokines employ to cause chondrocyte and synoviocyte dysfunction before 'anti-cytokine' therapy can be employed in the medical management of the disease.
Collapse
Affiliation(s)
- Charles J Malemud
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The pathophysiology of osteoarthritis is the result of an imbalance between anabolic and catabolic pathways. This imbalance is the result of the activation of joint cells by inflammatory mediators, matrix components, and mechanical stress. All these mediators act through specific receptors that transmit the signals to the nucleus to activate the transcription of matrix metalloproteinases and inflammatory genes. Targeting these signaling pathways in osteoarthritis is considered a novel approach to modulate this imbalance. RECENT FINDINGS Although many signaling pathways are necessary for physiologic cell life, it is now well established that a few are more specifically induced in an inflammatory environment. In osteoarthritis, the nuclear factor-kappaB and mitogen-activated protein kinase pathways have been shown to play a predominant role in the expression of metalloproteinases and inflammatory genes and proteins. Also involved in the activation of osteoarthritic cells are other molecules interacting with one or several signaling pathways, such as nitric oxide, peroxisome proliferator-activated receptor-gamma ligands, or C/EBP transcriptional factors. Based on this knowledge, specific inhibitors for some of these signaling pathways have been designed and include p38 mitogen-activated protein kinase or nuclear factor-kappaB inhibitors. Experimental studies evaluating cartilage degradation in arthritis models are promising, although fewer have been done specifically in osteoarthritis models. SUMMARY Targeting signaling pathways in osteoarthritis did not seem feasible a few years ago because of the complexity of the multiple intracellular pathways, mainly physiologic, defined by a high degree of redundancy and cross-talk. However, important advances in the knowledge of chondrocyte and synoviocyte signaling in osteoarthritis have been achieved in recent years and suggest that inhibitors of specific signaling pathways could shortly provide effective treatments for this disease.
Collapse
Affiliation(s)
- Francis Berenbaum
- University Pierre & Marie Curie and Department of Rheumatology, UFR Saint-Antoine, AP-HP, Paris, France.
| |
Collapse
|
32
|
Ahmed S, Wang N, Lalonde M, Goldberg VM, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate (EGCG) differentially inhibits interleukin-1 beta-induced expression of matrix metalloproteinase-1 and -13 in human chondrocytes. J Pharmacol Exp Ther 2004; 308:767-73. [PMID: 14600251 DOI: 10.1124/jpet.103.059220] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interleukin-1beta (IL-1beta)-induced inflammatory response in arthritic joints include the enhanced expression and activity of matrix metalloproteinases (MMPs), and their matrix degrading activity contribute to the irreversible loss of cartilage and may also be associated with sustained chronic inflammation. We have earlier shown that green tea (Camellia sinensis) polyphenol epigallocatechin-3-gallate (EGCG) was non-toxic to human chondrocytes [Singh R, Ahmed S, Islam N, Goldberg VM, and Haqqi TM (2002) Arthritis Rheum 46: 2079-2086] and inhibits the expression of inflammatory mediators in arthritic joints [Haqqi TM, Anthony DD, Gupta S, Ahmed N, Lee MS, Kumar GK, and Mukhtar H (1999) Proc Natl Acad Sci USA 96: 4524-4529]. Here we show that EGCG at micromolar concentrations was highly effective in inhibiting the IL-1beta-induced glycosaminoglycan (GAG) release from human cartilage explants in vitro. EGCG also inhibited the IL-1beta-induced mRNA and protein expression of MMP-1 and MMP-13 in human chondrocytes. Importantly, EGCG showed a differential, dose-dependent inhibitory effect on the expression and activity of MMP-13 and MMP-1. A similar differential dose-dependent inhibition of transcription factors NF-kappaB and AP-1 by EGCG was also noted. These results for the first time demonstrate a differential dose-dependent effect of EGCG on the expression and activity of MMPs and on the activities of transcription factors NF-kappaB and AP-1 and provide insights into the molecular basis of the reported anti-inflammatory effects of EGCG. These results also suggest that EGCG or compounds derived from it may be therapeutically effective inhibitors of IL-1beta-induced production of matrix-degrading enzymes in arthritis.
Collapse
Affiliation(s)
- Salahuddin Ahmed
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4946, USA
| | | | | | | | | |
Collapse
|