1
|
Shalabi S, Belayachi A, Larrivée B. Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol 2024; 15:1284629. [PMID: 38375479 PMCID: PMC10875004 DOI: 10.3389/fimmu.2024.1284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Emerging evidence suggests that nerves within the tumor microenvironment play a crucial role in regulating angiogenesis. Neurotransmitters and neuropeptides released by nerves can interact with nearby blood vessels and tumor cells, influencing their behavior and modulating the angiogenic response. Moreover, nerve-derived signals may activate signaling pathways that enhance the production of pro-angiogenic factors within the tumor microenvironment, further supporting blood vessel growth around tumors. The intricate network of communication between neural constituents and the vascular system accentuates the potential of therapeutically targeting neural-mediated pathways as an innovative strategy to modulate tumor angiogenesis and, consequently, neoplastic proliferation. Hereby, we review studies that evaluate the precise molecular interplay and the potential clinical ramifications of manipulating neural elements for the purpose of anti-angiogenic therapeutics within the scope of cancer treatment.
Collapse
Affiliation(s)
- Sharif Shalabi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Ali Belayachi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Montréal, QC, Canada
- Ophthalmology, Université de Montréal, boul. Édouard-Montpetit, Montréal, QC, Canada
| |
Collapse
|
2
|
Esteban F, Ramos-García P, Muñoz M, González-Moles MÁ. Substance P and Neurokinin 1 Receptor in Chronic Inflammation and Cancer of the Head and Neck: A Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010375. [PMID: 35010633 PMCID: PMC8751191 DOI: 10.3390/ijerph19010375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 05/09/2023]
Abstract
Head and neck cancer is a growing worldwide public health problem, accounting for approximately 1,500,000 new cases and 500,000 deaths annually. Substance P (SP) is a peptide of the tachykinin family, which has roles related to a large number of physiological mechanisms in humans. The implications of SP in carcinogenesis have recently been reported through the stimulation of the neurokinin 1 receptor (NK1R), or directly, through the effects derived from the constitutive activation of NK1R. Consequently, SP/NK1R seems to play relevant roles in cancer, upregulating cell proliferation, cell migration and chronic inflammation, among other oncogenic actions. Furthermore, there is growing evidence pointing to a central role for SP in tumour progression, singularly so in laryngeal and oral squamous cell carcinomas. The current narrative review of the literature focuses on the relationship between the SP/NK1R system and chronic inflammation and cancer in the head-and-neck region. We described a role for SP/NK1R in the transition from chronic inflammation of the head and neck mucosa, to preneoplastic and neoplastic transformation and progression.
Collapse
Affiliation(s)
- Francisco Esteban
- Department of Otolaryngology, Hospital Universitario Virgen del Rocío, University of Sevilla, 41004 Sevilla, Spain;
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Correspondence:
| | - Miguel Muñoz
- Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Sevilla, Spain;
| | - Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
| |
Collapse
|
3
|
Lasagni Vitar RM, Bonelli F, Rama P, Ferrari G. Immunity and pain in the eye: focus on the ocular surface. Clin Exp Immunol 2021; 207:149-163. [PMID: 35020868 PMCID: PMC8982975 DOI: 10.1093/cei/uxab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
Most ocular diseases are associated with pain. While pain has been generally considered a mere (deleterious) additional symptom, it is now emerging that it is a key modulator of innate/adaptive immunity. Because the cornea receives the highest nerve density of the entire body, it is an ideal site to demonstrate interactions between pain and the immune response. Indeed, most neuropeptides involved in pain generation are also potent regulators of innate and adaptive leukocyte physiology. On the other hand, most inflammatory cells can modulate the generation of ocular pain through release of specific mediators (cytokines, chemokines, growth factors, and lipid mediators). This review will discuss the reciprocal role(s) of ocular surface (and specifically: corneal) pain on the immune response of the eye. Finally, we will discuss the clinical implications of such reciprocal interactions in the context of highly prevalent corneal diseases.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Bonelli
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy,Correspondence: Giulio Ferrari, Cornea and Ocular Surface Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy. E-mail:
| |
Collapse
|
4
|
Lasagni Vitar RM, Rama P, Ferrari G. The two-faced effects of nerves and neuropeptides in corneal diseases. Prog Retin Eye Res 2021; 86:100974. [PMID: 34098111 DOI: 10.1016/j.preteyeres.2021.100974] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Corneal nerves are instrumental to maintain cornea integrity through regulation of key physiological functions such as tear secretion, blink reflex, and neuropeptide turnover. Corneal nerve injury/stimulation can follow many insults including mechanical/chemical trauma, infections and surgeries. Nerve disruption initiates a process named neurogenic inflammation which leads to edema, pain, and recruitment and activation of leukocytes. Interestingly, leukocyte influx in the cornea can further damage nerves by releasing inflammatory mediators-including neuropeptides. The clinical outcome of neuroinflammation can be beneficial or detrimental to corneal integrity. On one side, it ensures prompt wound healing and prevents infections. On the other, prolonged and/or deranged neuroinflammation can permanently disrupt corneal integrity and impair vision. The cornea is an ideal site to study peripheral neuroinflammation and neurogenic inflammation since it receives the highest density of sensory nerves of the entire body. We will review the corneal nerve anatomy and neurochemistry, discuss the beneficial and detrimental effects of neurogenic inflammation in corneal wound healing, inflammatory processes, and pain. We will also examine the emerging remote impact of corneal nerve disruption on the trigeminal ganglion and the brain, highlighting the key role of neuropeptide Substance P. Finally, we will discuss the clinical relevance of such neuroinflammatory network in the context of severe and highly prevalent ocular diseases, including potential treatments.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
5
|
Significance of the Overexpression of Substance P and Its Receptor NK-1R in Head and Neck Carcinogenesis: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13061349. [PMID: 33802704 PMCID: PMC8002440 DOI: 10.3390/cancers13061349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The objective of our study has been, through a systematic review and meta-analysis, to increase the scientific evidence on the implications of SP and its receptor NK-1R in head and neck carcinogenesis. We searched studies published before May-2020 without date and publication language restrictions (PubMed, Embase, Web of Science, Scopus). We evaluated the quality of the studies included (QUIPS tool). We performed heterogeneity, sensitivity, small-study effects, and subgroup analyses. A total 16 studies and 1308 cases met inclusion criteria. Qualitative evaluation demonstrated that not all studies were performed with the same scientific rigor, finding the greatest risk of bias in the study confounding and prognostic factors measurement domains. Quantitative evaluation showed a greater SP/NK-1R overexpression in malignant head and neck lesions compared to benign lesions (p = 0.02), and that expression was observed in malignant salivary gland pathology. Likewise, we found a higher overexpression of NK-1R compared to SP (p = 0.02). In conclusion, the results of this systematic review and meta-analysis show evidence that the upregulation of SP and NK-1R are oncogenic events involved in head and neck carcinogenesis, probably acting in the early stages of malignization. In addition, there is evidence of a greater relevance of the upregulation of the NK-1R receptor compared to SP, which highlights the interest in deepening the development of targeted therapies on the receptor. Future studies assessing the relationships between SP/NK-1R among subjects with head and neck tumors could consider the recommendations given in this systematic review and meta-analysis to improve and standardize future research.
Collapse
|
6
|
Zhao Z, Ma J, Wang Y, Xu Z, Zhao L, Zhao J, Hong G, Liu T. Antimicrobial Photodynamic Therapy Combined With Antibiotic in the Treatment of Rats With Third-Degree Burns. Front Microbiol 2021; 12:622410. [PMID: 33717010 PMCID: PMC7943878 DOI: 10.3389/fmicb.2021.622410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/06/2021] [Indexed: 12/02/2022] Open
Abstract
Cationic porphyrin conjugate, protoporphyrin IX-methyl ethylenediamine derivative (PPIX-MED) has a potent photosensitive antibacterial effect on clinically isolated bacteria, including methicillin-resistant Staphylococcus aureus, (MRSA), Escherichia coli, and Pseudomonas aeruginosa. This study investigated (i) the PPIX-MED-mediated antimicrobial photodynamic effect on these three species in vitro and (ii) the effect of antimicrobial photodynamic therapy (aPDT) combined with the use of an antibiotic on the healing in vivo of third-degree burns of rats with the wounds infected by these bacterial species. PPIX-MED exerted a potent inhibitory effect on the growth of the three bacterial species by producing reactive oxygen species when photoactivated. PPIX-MED-mediated antimicrobial photodynamic therapy (PPIX-MED-aPDT) had high bacterial photoinactivation ability in vitro, with a minimum inhibitory concentration of 15.6 μM PPIX-MED against each of the three types of bacteria and minimum bactericidal concentrations of 31.25 μM against MRSA and E. coli and 62.5 μM against P. aeruginosa. In rats with third-degree burns infected by a mixture of these bacteria, the bactericidal efficiency of PPIX-MED–aPDT-combined-with-antibiotic treatment was higher than that of antibiotic or aPDT treatment alone. This was confirmed by analysis of viable bacterial counts in wound tissue and blood. Enzyme-linked immunosorbent assay revealed that aPDT-combined-with-antibiotic treatment resulted in an obvious reduction in tumor necrosis factor-alpha and interleukin-6 levels compared with the no-treatment control group and the other treatment groups. Immunohistochemistry revealed that the expression of basic fibroblast growth factor and CD31 (a marker of neovascularization), expressed in burn wound tissue was higher in the aPDT-combined-with-antibiotic treatment group than in the other groups. PPIX-MED–aPDT has a promising bactericidal effect both in vitro and in vivo, and PPIX-MED–aPDT-combined-with-antibiotic treatment enhanced the healing of infected third-degree burns in rats.
Collapse
Affiliation(s)
- Zhanjuan Zhao
- College of Basic Medicine, Hebei University, Baoding, China.,Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jinduo Ma
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Yiyi Wang
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Zehua Xu
- College of Public Health, Hebei University, Baoding, China
| | - Lu Zhao
- Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Jianxi Zhao
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
7
|
Moreira A, Lawson D, Onyekuru L, Dziemidowicz K, Angkawinitwong U, Costa PF, Radacsi N, Williams GR. Protein encapsulation by electrospinning and electrospraying. J Control Release 2020; 329:1172-1197. [PMID: 33127450 DOI: 10.1016/j.jconrel.2020.10.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
Given the increasing interest in the use of peptide- and protein-based agents in therapeutic strategies, it is fundamental to develop delivery systems capable of preserving the biological activity of these molecules upon administration, and which can provide tuneable release profiles. Electrohydrodynamic (EHD) techniques, encompassing electrospinning and electrospraying, allow the generation of fibres and particles with high surface area-to-volume ratios, versatile architectures, and highly controllable release profiles. This review is focused on exploring the potential of different EHD methods (including blend, emulsion, and co-/multi-axial electrospinning and electrospraying) for the development of peptide and protein delivery systems. An overview of the principles of each technique is first presented, followed by a survey of the literature on the encapsulation of enzymes, growth factors, antibodies, hormones, and vaccine antigens using EHD approaches. The possibility for localised delivery using stimuli-responsive systems is also explored. Finally, the advantages and challenges with each EHD method are summarised, and the necessary steps for clinical translation and scaled-up production of electrospun and electrosprayed protein delivery systems are discussed.
Collapse
Affiliation(s)
| | - Dan Lawson
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| | - Lesley Onyekuru
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
8
|
Muñoz M, Coveñas R. Glioma and Neurokinin-1 Receptor Antagonists: A New Therapeutic Approach. Anticancer Agents Med Chem 2019; 19:92-100. [PMID: 29692265 DOI: 10.2174/1871520618666180420165401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND In adults, the most lethal and frequent primary brain tumor is glioblastoma. Despite multimodal aggressive therapies, the median survival time after diagnosis is around 15 months. In part, this is due to the blood-brain barrier that restricts common treatments (e.g., chemotherapy). Unfortunately, glioma recurs in 90% of patients. New therapeutic strategies against glioma are urgently required. Substance P (SP), through the neurokinin (NK)-1 receptor, controls cancer cell proliferation by activating c-myc, mitogenactivated protein kinases, activator protein 1 and extracellular signal-regulated kinases 1 and 2. Glioma cells overexpress NK-1 receptors when compared with normal cells. The NK-1 receptor/SP system regulates the proliferation/migration of glioma cells and stimulates angiogenesis, triggering inflammation which contributes to glioma progression. In glioma cells, SP favors glycogen breakdown, essential for glycolysis. By contrast, in glioma, NK-1 receptor antagonists block the proliferation of tumor cells and the breakdown of glycogen and also promote the death (apoptosis) of these cells. These antagonists also inhibit angiogenesis and exert antimetastatic and anti-inflammatory actions. OBJECTIVE This review updates the involvement of the NK-1 receptor/SP system in the development of glioma and the potential clinical application of NK-1 receptor antagonists as antiglioma agents. CONCLUSION The NK-1 receptor plays a crucial role in glioma and NK-1 receptor antagonists could be used as anti-glioma drugs.
Collapse
Affiliation(s)
- Miguel Muñoz
- Virgen del Rocío University Hospital, Research Laboratory on Neuropeptides (IBIS), Seville, Spain
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic, Systems (Lab. 14), University of Salamanca, Salamanca, Spain
| |
Collapse
|
9
|
Varricchi G, Pecoraro A, Loffredo S, Poto R, Rivellese F, Genovese A, Marone G, Spadaro G. Heterogeneity of Human Mast Cells With Respect to MRGPRX2 Receptor Expression and Function. Front Cell Neurosci 2019; 13:299. [PMID: 31333418 PMCID: PMC6616107 DOI: 10.3389/fncel.2019.00299] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Mast cells and their mediators play a role in the control of homeostasis and in the pathogenesis of several disorders. The concept of rodent mast cell heterogeneity, initially established in the mid-1960s has been extended in humans. Human mast cells isolated and purified from different anatomic sites can be activated via aggregation of cell surface high affinity IgE receptors (FcεRI) by antigens, superantigens, anti-IgE, and anti-FcεRI. MAS-related G protein-coupled receptor-X2 (MRGPRX2) is expressed at high level in human skin mast cells (MCs) (HSMCs), synovial MCs (HSyMCs), but not in lung MCs (HLMCs). MRGPX2 can be activated by neuropeptide substance P, several opioids, cationic drugs, and 48/80. Substance P (5 × 10−7 M – 5 × 10−6 M) induced histamine and tryptase release from HSMCs and to a lesser extent from HSyMCs, but not from HLMCs and human cardiac MCs (HHMCs). Morphine (10−5 M – 3 × 10−4 M) selectively induced histamine and tryptase release from HSMCs, but not from HLMCs and HHMCs. SP and morphine were incomplete secretagogues because they did not induce the de novo synthesis of arachidonic acid metabolites from human mast cells. In the same experiments anti-IgE (3 μg/ml) induced the release of histamine and tryptase and the de novo synthesis of prostaglandin D2 (PGD2) from HLMCs, HHMCs, HSyMCs, and HSMCs. By contrast, anti-IgE induced the production of leukotriene C4 (LTC4) from HLMCs, HHMCs, HSyMCs, but not from HSMCs. These results are compatible with the heterogeneous expression and function of MRGPRX2 receptor on primary human mast cells isolated from different anatomic sites.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Felice Rivellese
- Center for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Arturo Genovese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Ashraf S, Radhi M, Gowler P, Burston JJ, Gandhi RD, Thorn GJ, Piccinini AM, Walsh DA, Chapman V, de Moor CH. The polyadenylation inhibitor cordycepin reduces pain, inflammation and joint pathology in rodent models of osteoarthritis. Sci Rep 2019; 9:4696. [PMID: 30886197 PMCID: PMC6423048 DOI: 10.1038/s41598-019-41140-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/15/2019] [Indexed: 01/23/2023] Open
Abstract
Clinically, osteoarthritis (OA) pain is significantly associated with synovial inflammation. Identification of the mechanisms driving inflammation could reveal new targets to relieve this prevalent pain state. Herein, a role of polyadenylation in OA synovial samples was investigated, and the potential of the polyadenylation inhibitor cordycepin (3’ deoxyadenosine) to inhibit inflammation as well as to reduce pain and structural OA progression were studied. Joint tissues from people with OA with high or low grade inflammation and non-arthritic post-mortem controls were analysed for the polyadenylation factor CPSF4 and inflammatory markers. Effects of cordycepin on pain behavior and joint pathology were studied in models of OA (intra-articular injection of monosodium iodoacetate in rats and surgical destabilisation of the medial meniscus in mice). Human monocyte-derived macrophages and a mouse macrophage cell line were used to determine effects of cordycepin on nuclear localisation of the inflammatory transcription factor NFĸB and polyadenylation factors (WDR33 and CPSF4). CPSF4 and NFκB expression were increased in synovia from OA patients with high grade inflammation. Cordycepin reduced pain behaviour, synovial inflammation and joint pathology in both OA models. Stimulation of macrophages induced nuclear localisation of NFĸB and polyadenylation factors, effects inhibited by cordycepin. Knockdown of polyadenylation factors also prevented nuclear localisation of NFĸB. The increased expression of polyadenylation factors in OA synovia indicates a new target for analgesia treatments. This is supported by the finding that polyadenylation factors are required for inflammation in macrophages and by the fact that the polyadenylation inhibitor cordycepin attenuates pain and pathology in models of OA.
Collapse
Affiliation(s)
- Sadaf Ashraf
- School of Pharmacy, University of Nottingham, Nottingham, UK.,Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
| | - Masar Radhi
- School of Pharmacy, University of Nottingham, Nottingham, UK.,Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
| | - Peter Gowler
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
| | - James J Burston
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
| | - Raj D Gandhi
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Graeme J Thorn
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - David A Walsh
- School of Medicine, University of Nottingham, Nottingham, UK.,Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Victoria Chapman
- School of Life Sciences, University of Nottingham, Nottingham, UK. .,Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK. .,NIHR Nottingham Biomedical Research Centre, Nottingham, UK.
| | - Cornelia H de Moor
- School of Pharmacy, University of Nottingham, Nottingham, UK. .,Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
11
|
Nowosielski Y, Haas G, Seifarth C, Wohlfarter W, Tasan R, Verius M, Troger J, Bechrakis N. The involvement of NK1 and Y2 receptor in the development of laser-induced CNVs in C57Bl/6N mice. Exp Eye Res 2018; 177:87-95. [PMID: 30076797 DOI: 10.1016/j.exer.2018.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/05/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE to explore whether the NK1 and Y2 receptors are involved in the pathogenesis of laser-induced CNV (choroidal neovascularization) in C57Bl/6N mice. METHODS CNV was induced by laser damage of Bruch's membrane and the CNV volume was determined by OCT and/or flatmount preparation. First, the development of the CNV volume over time was evaluated. Second, the CNV development in NK1- and Y2 KO mice was analyzed. Third, the effect on the development as well as the regression of CNV by intravitreal injections of the NK1 antagonist SR140333 and the Y2 antagonist BIIEO246 separately and each in combination with Eylea®, was investigated. Furthermore, flatmount CNV volume measurements were correlated to volumes obtained by the in vivo OCT technique. RESULTS CNV volume peak was observed at day 4 after laser treatment. Compared to wild type mice, NK1 and Y2 KO mice showed significantly smaller CNV volumes. Eylea® and the Y2 antagonist significantly reduced the volume of the developing CNV. In contrast to Eylea® there was no effect of either antagonist on the regression of CNV, additionally no additive effect upon combined Eylea®/antagonist treatment was observed. There was a strong positive correlation between CNV volumes obtained by OCT and flatmount. CONCLUSION NK1 and Y2 receptors mediate the development of laser-induced CNVs in mice. They seem to play an important role at the developmental stage of CNVs, whereas VEGF via VEGF receptor may be an important mediator throughout the CNV existence. In vivo OCT correlates with flatmount CNV volume, representing a useful tool for in vivo evaluations of CNV over time.
Collapse
Affiliation(s)
- Yvonne Nowosielski
- Department of Ophthalmology and Optometry, Medical University of Innsbruck, Anichstraße 35, Austria.
| | - Gertrud Haas
- Department of Ophthalmology and Optometry, Medical University of Innsbruck, Anichstraße 35, Austria
| | - Christof Seifarth
- Department of Ophthalmology and Optometry, Medical University of Innsbruck, Anichstraße 35, Austria
| | - Werner Wohlfarter
- Department of Ophthalmology and Optometry, Medical University of Innsbruck, Anichstraße 35, Austria
| | - Ramon Tasan
- Department of Pharmacology, Medical University of Innsbruck, Peter Mayr Straße 1a, Austria
| | - Michael Verius
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Josef Troger
- Department of Ophthalmology and Optometry, Medical University of Innsbruck, Anichstraße 35, Austria
| | - Nikolaos Bechrakis
- Department of Ophthalmology, Essen University Hospital, Hufelandstraße 55, 45147, Essen, Germany
| |
Collapse
|
12
|
Occurrence of substance P and neurokinin receptors during the early phase of spinal fusion. Mol Med Rep 2018; 17:6691-6696. [PMID: 29512791 DOI: 10.3892/mmr.2018.8701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/02/2018] [Indexed: 11/05/2022] Open
Abstract
Spinal fusion is widely used for patients with spinal disorders; however, patients often suffer from back pain following fusion surgery. Substance P (SP) acts as a pain neurotransmitter via the sensory nerve afferent fibres up to the spinal cord, and is involved in the conduction and modulation of pain. The use of specific SP neurokinin receptor (NKR) antagonists may decrease postoperative pain. In the present study, the effects of alterations in the quantity of SP and NKRs in the early spinal fusion process were investigated. The results of the present study revealed that SP and NKRs began to appear 1 week post‑surgery in fibrous tissues. The abundance of SP and NKRs peaked at 3 weeks post‑surgery; the majority of SP and NKRs were distributed around the allograft and the new microvessels. In conclusion, SP and NKRs are involved in early spinal fusion, a finding that may facilitate the development of novel strategies to promote spinal fusion from a neurogenesis perspective.
Collapse
|
13
|
Fu GF, Tian SM, Cha XJ, Huang HJ, Lou JH, Wei Y, Xia CD, Li YL, Niu XH. Topically administered rhGM-CSF affects PPARβ expression in the stasis zone. Exp Ther Med 2017; 14:4825-4830. [PMID: 29201186 PMCID: PMC5704314 DOI: 10.3892/etm.2017.5146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/11/2017] [Indexed: 11/06/2022] Open
Abstract
Using a rat comb thermal damage model, we investigated the effects of topically administered recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) on peroxisome proliferator-activated receptor PPARβ expression. We created bilateral comb scald models on the backs of fifty Sprague-Dawley rats. The left sides of the backs served as the experimental group and the right sides served as the control group. The experimental group received topically applied rhGM-CSF hydrogel and the control group did not. The survival situations of the stasis zones were compared between the experimental and control groups on the 1st, 3rd, 7th, 14th and 21st post-burn days. Tissues from the surviving stasis zones of both groups were collected at different time-points. Reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting were used to detect the PPARβ mRNA and protein expression levels. Immunohistochemical methods were applied to detect the localization of PPARβ protein expression. The results showed that, first, the tissue viability numbers for the stasis zones of the experimental group were significantly increased compared with those of the control group. Second, RT-PCR revealed that the PPARβ mRNA expression first increased and then gradually declined in both groups. At all time-points, the expression level in the experimental group was increased compared with that in the control group and the highest expression levels were observed in both groups on the 3rd post-burn day. Third, western blot analysis revealed that the PPARβ protein expression in both groups increased after thermal damage and then gradually decreased. PPARβ protein expression in the experimental group was greater than that in the control group, and the highest expression quantities in both groups were observed on the 3rd post-burn day. In conclusion, rhGM-CSF hydrogel effectively promotes the expression of PPARβ, and the hydrogel had a specific protective effect for the stasis zone.
Collapse
Affiliation(s)
- Gen-Feng Fu
- Department of Burn and Plastic Surgery, Taihe Hospital, Changsha, Hunan 410005, P.R. China
| | - She-Min Tian
- Department of Burns, The First People's Hospital of Zhengzhou City, Zhengzhou, Henan 450004, P.R. China
| | - Xin-Jian Cha
- Department of Burns, The First People's Hospital of Zhengzhou City, Zhengzhou, Henan 450004, P.R. China
| | - Hong-Jun Huang
- Department of Burns, The First People's Hospital of Zhengzhou City, Zhengzhou, Henan 450004, P.R. China
| | - Ji-He Lou
- Department of Burns, The First People's Hospital of Zhengzhou City, Zhengzhou, Henan 450004, P.R. China
| | - Ying Wei
- Department of Burns, The First People's Hospital of Zhengzhou City, Zhengzhou, Henan 450004, P.R. China
| | - Cheng-De Xia
- Department of Burns, The First People's Hospital of Zhengzhou City, Zhengzhou, Henan 450004, P.R. China
| | - Yong-Lin Li
- Department of Burns, The First People's Hospital of Zhengzhou City, Zhengzhou, Henan 450004, P.R. China
| | - Xi-Hua Niu
- Department of Burns, The First People's Hospital of Zhengzhou City, Zhengzhou, Henan 450004, P.R. China
| |
Collapse
|
14
|
Okamura Y, Mishima S, Kashiwakura JI, Sasaki-Sakamoto T, Toyoshima S, Kuroda K, Saito S, Tokuhashi Y, Okayama Y. The dual regulation of substance P-mediated inflammation via human synovial mast cells in rheumatoid arthritis. Allergol Int 2017; 66S:S9-S20. [PMID: 28366675 DOI: 10.1016/j.alit.2017.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neural pathways are thought to be directly involved in the pathogenesis of rheumatoid arthritis (RA). Although synovial mast cells (MCs) are activated by substance P (SP), the role of MCs in neural pathways in RA remains unknown. The aims of this study were to investigate 1) whether tachykinins are produced by synovial MCs and whether production differs in RA and osteoarthritis (OA) patients, and 2) what is the responsible receptor for SP in synovial MCs. METHODS Synovial tissues were obtained from patients with RA or OA undergoing joint replacement surgery. Cultured synovium-derived MCs were generated by culturing dispersed synovial cells with stem cell factor. SP expression was investigated using immunofluorescence and enzyme immunoassays. Mas-related gene X2 (MrgX2) expression was reduced in human MCs using a lentiviral shRNA silencing technique. RESULTS SP expression was localized around the cell membrane in 41% (median) of the MCs in synovium from RA but in only 7% of that from OA, suggesting the activation of MCs. Synovial MCs expressed tachykinin (TAC) 1 mRNA, the expression of which was upregulated by the aggregation of FcɛRI or the addition of aggregated IgG. However, the released SP appeared to be rapidly degraded by MC chymase. Synovial MCs were activated with SP through MrgX2 to release histamine without producing proinflammatory cytokines. CONCLUSIONS Activated synovial MCs may rapidly degrade SP, which may downregulate the SP-mediated activation of synoviocytes in RA. On the other hand, SP activates MCs to induce inflammatory mediators, suggesting the dual regulation of SP-mediated inflammation by MCs in RA.
Collapse
|
15
|
Kim SH, Kim JE, Kim SH, Jung Y. Substance P/dexamethasone-encapsulated PLGA scaffold fabricated using supercritical fluid process for calvarial bone regeneration. J Tissue Eng Regen Med 2017; 11:3469-3480. [PMID: 28568973 DOI: 10.1002/term.2260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/20/2016] [Accepted: 07/03/2016] [Indexed: 12/31/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) scaffolds encapsulated with substance P (SP) and dexamethasone (Dex) by the supercritical CO2 foaming method were fabricated to treat calvarial bone. We compared the release profiles of SP and Dex according to the incorporation methods using encapsulation or dipping. Ninety percent of the SP or Dex molecules in the scaffolds prepared by the encapsulating method were released by day 14 or day 6, respectively. In vivo real-time assays for human mesenchymal stem cell (hMSC) tracking were performed to confirm the MSC recruitment abilities of the scaffolds. The results showed that the optical intensity of the SP-encapsulated group was 2.59 times higher than that of the phosphate-buffered saline group and 1.3 times higher than that of the SP-dipping group. Furthermore, we compared the angiogenesis activity of the scaffolds. In the SP-encapsulated group, 72.9 ± 2.6% of the vessels showed matured features by 1 week, and it increased to 82.0 ± 4.6% after 4 weeks. We implanted the scaffolds into rat calvarial defects. After 24 weeks, SP- and Dex-encapsulated scaffolds showed 67.1% and 26.2% higher bone formation than those of the Dex-encapsulated group and SP-encapsulated group, respectively, and they formed 36.1% more bone volume compared with the SP- and Dex-dipped scaffolds. Consequently, the results of this study suggest that SP- and Dex-encapsulated scaffolds made by the supercritical CO2 foaming method could be a good treatment modality to treat critical bone defects without cell transplantation by recruiting autologous stem cells and forming new bone tissues. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Su Hee Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea.,Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Ji Eun Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea.,Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Soo Hyun Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea.,Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea.,Department of Biomedical Engineering, University of Science and Technology (UST), Seoul, 136-791, Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea.,Department of Biomedical Engineering, University of Science and Technology (UST), Seoul, 136-791, Korea
| |
Collapse
|
16
|
Pavo N, Lukovic D, Zlabinger K, Zimba A, Lorant D, Goliasch G, Winkler J, Pils D, Auer K, Jan Ankersmit H, Giricz Z, Baranyai T, Sárközy M, Jakab A, Garamvölgyi R, Emmert MY, Hoerstrup SP, Hausenloy DJ, Ferdinandy P, Maurer G, Gyöngyösi M. Sequential activation of different pathway networks in ischemia-affected and non-affected myocardium, inducing intrinsic remote conditioning to prevent left ventricular remodeling. Sci Rep 2017; 7:43958. [PMID: 28266659 PMCID: PMC5339807 DOI: 10.1038/srep43958] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/31/2017] [Indexed: 12/27/2022] Open
Abstract
We have analyzed the pathway networks of ischemia-affected and remote myocardial areas after repetitive ischemia/reperfusion (r-I/R) injury without ensuing myocardial infarction (MI) to elaborate a spatial- and chronologic model of cardioprotective gene networks to prevent left ventricular (LV) adverse remodeling. Domestic pigs underwent three cycles of 10/10 min r-I/R by percutaneous intracoronary balloon inflation/deflation in the mid left anterior descending artery, without consecutive MI. Sham interventions (n = 8) served as controls. Hearts were explanted at 5 h (n = 6) and 24 h (n = 6), and transcriptomic profiling of the distal (ischemia-affected) and proximal (non-affected) anterior myocardial regions were analyzed by next generation sequencing (NGS) and post-processing with signaling pathway impact and pathway network analyses. In ischemic region, r-I/R induced early activation of Ca-, adipocytokine and insulin signaling pathways with key regulator STAT3, which was also upregulated in the remote areas together with clusterin (CLU) and TNF-alpha. During the late phase of cardioprotection, antigen immunomodulatory pathways were activated with upregulation of STAT1 and CASP3 and downregulation of neprilysin in both zones, suggesting r-I/R induced intrinsic remote conditioning. The temporo-spatially differently activated pathways revealed a global myocardial response, and neprilysin and the STAT family as key regulators of intrinsic remote conditioning for prevention of adverse remodeling.
Collapse
Affiliation(s)
- Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Abelina Zimba
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - David Lorant
- Department of Anaesthesiology, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johannes Winkler
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Department of Surgery, Medical University of Vienna, Vienna, Austria.,CeMSIIS - Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Katharina Auer
- Department of Obstretrics and Gynecology - Molecular Oncology Group, Medical University of Vienna, Vienna, Austria
| | | | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tamas Baranyai
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - András Jakab
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rita Garamvölgyi
- Institute of Diagnostic Imaging and Radiation Oncology, University of Kaposvar, Kaposvar, Hungary
| | - Maximilian Y Emmert
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Simon P Hoerstrup
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Gerald Maurer
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Ahmed AS, Li J, Abdul AMD, Ahmed M, Östenson CG, Salo PT, Hewitt C, Hart DA, Ackermann PW. Compromised Neurotrophic and Angiogenic Regenerative Capability during Tendon Healing in a Rat Model of Type-II Diabetes. PLoS One 2017; 12:e0170748. [PMID: 28122008 PMCID: PMC5266316 DOI: 10.1371/journal.pone.0170748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolic diseases such as diabetes mellitus type-II (DM-II) may increase the risk of suffering painful connective tissue disorders and tendon ruptures. The pathomechanisms, however, by which diabetes adversely affects connective tissue matrix metabolism and regeneration, still need better definition. Our aim was to study the effect of DM-II on expressional changes of neuro- and angiotrophic mediators and receptors in intact and healing Achilles tendon. The right Achilles tendon was transected in 5 male DM-II Goto-Kakizaki (GK) and 4 age-matched Wistar control rats. The left Achilles tendons were left intact. At week 2 post-injury, NGF, BDNF, TSP, and receptors TrkA, TrkB and Nk1 gene expression was studied by quantitative RT-PCR (qRT-PCR) and their protein distribution by immunohistochemistry in intact and injured tendons. The expression of tendon-related markers, Scleraxis (SCX) and Tenomodulin (TNMD), was evaluated by qRT-PCR in intact and injured tendons. Injured tendons of diabetic GK rats exhibited significantly down-regulated Ngf and Tsp1 mRNA and corresponding protein levels, and down-regulated Trka gene expression compared to injured Wistar controls. Intact tendons of DM-II GK rats displayed reduced mRNA levels for Ngf, Tsp1 and Trkb compared to corresponding intact non-diabetic tendons. Up-regulated Scx and Tnmd gene expression was observed in injured tendons of normal and diabetic GK rats compared to intact Wistar controls. However, these molecules were not up-regulated in injured DM-II GK rats compared to their corresponding controls. Our results suggest that DM-II has detrimental effects on neuro- and angiotrophic pathways, and such effects may reflect the compromised repair seen in diabetic Achilles tendon. Thus, novel approaches for regeneration of injured, including tendinopathic, and surgically repaired diabetic tendons may include therapeutic molecular modulation of neurotrophic pathways such as NGF and its receptors.
Collapse
MESH Headings
- Achilles Tendon/injuries
- Achilles Tendon/metabolism
- Achilles Tendon/physiopathology
- Animals
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Gene Expression
- Male
- Neovascularization, Physiologic/physiology
- Nerve Growth Factor/genetics
- Nerve Growth Factor/metabolism
- Rats
- Rats, Wistar
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/metabolism
- Substance P/genetics
- Substance P/metabolism
- Tendon Injuries/metabolism
- Tendon Injuries/physiopathology
- Wound Healing/physiology
Collapse
Affiliation(s)
- Aisha S. Ahmed
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Jian Li
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Alim M. D. Abdul
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Mahmood Ahmed
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Family and Community Medicine (CeFAM), Huddinge, Sweden
| | - Claes-Göran Östenson
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Paul T. Salo
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Carolyn Hewitt
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - David A. Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Paul W. Ackermann
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
18
|
Ashraf S, Bouhana KS, Pheneger J, Andrews SW, Walsh DA. Selective inhibition of tropomyosin-receptor-kinase A (TrkA) reduces pain and joint damage in two rat models of inflammatory arthritis. Arthritis Res Ther 2016; 18:97. [PMID: 27145816 PMCID: PMC4857260 DOI: 10.1186/s13075-016-0996-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/12/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inflammation is an essential component of arthritis pain. Nerve growth factor (NGF) plays a key role in acute and chronic pain states especially those associated with inflammation. NGF acts through tropomyosin-receptor-kinase A (TrkA). NGF blockade has reduced arthritis pain in clinical trials. We explored the mechanisms within the joint which may contribute to the analgesic effects of NGF by selectively inhibiting TrkA in carrageenan-induced or collagen-induced joint pain behaviour. The goal of the current study was to elucidate whether inflammation is central to the efficacy for NGF blockade. METHODS Rats were injected in their left knees with 2 % carrageenan or saline. Collagen-induced arthritis (CIA) was induced by intradermal injections of a mixture of bovine type II collagen (0.2 mg) and incomplete Freund's adjuvant (0.2 mg). Oral doses (30 mg/kg) of AR786 or vehicle control were given twice daily after arthritis induction. Ibuprofen-treated (35 mg/kg, orally, once daily) rats with CIA were used as positive analgesic controls. Pain behaviour was measured as hind-limb weight-bearing asymmetry and hind-paw withdrawal thresholds to von Frey hair stimulation (carrageenan synovitis), or withdrawal to joint compression using a Randall Selitto device (CIA). Inflammation was measured as increased knee joint diameter and by histopathological analysis. RESULTS Intra-articular injections of carrageenan or induction of CIA was each associated with pain behaviour and synovial inflammation. Systemic administration of the TrkA inhibitor AR786 reduced carrageenan-induced or CIA-induced pain behaviour to control values, and inhibited joint swelling and histological evidence of synovial inflammation and joint damage. CONCLUSIONS By using two models of varying inflammation we demonstrate for the first time that selective inhibition of TrkA may reduce carrageenan-induced or CIA-induced pain behaviour in rats, in part through potentially inhibiting synovial inflammation, although direct effects on sensory nerves are also likely. Our observations suggest that inflammatory arthritis causes pain and the presence of inflammation is fundamental to the beneficial effects (reduction in pain and pathology) of NGF blockade. Further research should determine whether TrkA inhibition may ameliorate human inflammatory arthritis.
Collapse
Affiliation(s)
- Sadaf Ashraf
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK.
| | | | | | | | - David A Walsh
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
19
|
Wang X, Hu R, Liang J, Li Z, Sun W, Pan X. 5-HT7 Receptors Are Not Involved in Neuropeptide Release in Primary Cultured Rat Trigeminal Ganglion Neurons. J Mol Neurosci 2016; 59:251-9. [PMID: 26892478 DOI: 10.1007/s12031-016-0727-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/26/2016] [Indexed: 12/20/2022]
Abstract
Migraine is a common but complex neurological disorder. Its precise mechanisms are not fully understood. Increasing indirect evidence indicates that 5-HT7 receptors may be involved; however, their role remains unknown. Our previous in vivo study showed that selective blockade of 5-HT7 receptors caused decreased serum levels of calcitonin gene-related peptide (CGRP) in the external jugular vein following electrical stimulation of the trigeminal ganglion (TG) in an animal model of migraine. In the present study, we used an in vitro model of cultured TG cells to further investigate whether 5-HT7 receptors are directly responsible for the release of CGRP and substance P from TG neurons. We stimulated rat primary cultured TG neurons with capsaicin or potassium chloride (KCl) to mimic neurogenic inflammation, resulting in release of CGRP and substance P. 5-HT7 receptors were abundantly expressed in TG neurons. Greater than 93 % of 5-HT7 receptor-positive neurons co-expressed CGRP and 56 % co-expressed substance P. Both the capsaicin- and KCl-induced release of CGRP and substance P were unaffected by pretreatment of cultured TG cells with the selective 5-HT7 receptor agonist AS19 and antagonist SB269970. This study demonstrates for the first time that 5-HT7 receptors are abundantly co-expressed with CGRP and substance P in rat primary TG neurons and suggests that they are not responsible for the release of CGRP and substance P from cultured TG neurons evoked by capsaicin or KCl.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Neurology, Guangzhou First People's Hospital, Affiliated to Guangzhou Medical University, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Rong Hu
- Department of Neurology, Guangzhou First People's Hospital, Affiliated to Guangzhou Medical University, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Jianbo Liang
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ze Li
- Department of Neurology, Guangzhou First People's Hospital, Affiliated to Guangzhou Medical University, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Weiwen Sun
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang Dong Road, Guangzhou, 510260, China
| | - Xiaoping Pan
- Department of Neurology, Guangzhou First People's Hospital, Affiliated to Guangzhou Medical University, No. 1 Panfu Road, Guangzhou, 510180, China.
| |
Collapse
|
20
|
Abstract
Diabetes mellitus (DM) is a metabolic disorder resulting from defective insulin production and characterized by chronic hyperglycemia. DM affects around 170 million people worldwide and its incidence is increasing globally. DM can cause a wide range of musculoskeletal disorders such as painful tendinopathies, tendon contracture, tendon rupture, and rotator cuff tear.In patients with diabetes neuropathy, diminished peripheral blood flow and decreased local angiogenesis are reported which probably are results of abnormalities in the production of collagen production, inflammatory mediators, angiogenic and growth factors and also contribute to lack of healing in damaged tissue. Abnormal or delayed wound healing is one of the main complications of both type-I and type-II DM.
Collapse
|
21
|
Walsh DA, Mapp PI, Kelly S. Calcitonin gene-related peptide in the joint: contributions to pain and inflammation. Br J Clin Pharmacol 2015; 80:965-78. [PMID: 25923821 DOI: 10.1111/bcp.12669] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/31/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
Arthritis is the commonest cause of disabling chronic pain, and both osteoarthritis (OA) and rheumatoid arthritis (RA) remain major burdens on both individuals and society. Peripheral release of calcitonin gene-related peptide (CGRP) contributes to the vasodilation of acute neurogenic inflammation. Contributions of CGRP to the pain and inflammation of chronic arthritis, however, are only recently being elucidated. Animal models of arthritis are revealing the molecular and pathophysiological events that accompany and lead to progression of both arthritis and pain. Peripheral actions of CGRP in the joint might contribute to both inflammation and joint afferent sensitization. CGRP and its specific receptors are expressed in joint afferents and up-regulated following arthritis induction. Peripheral CGRP release results in activation of synovial vascular cells, through which acute vasodilatation is followed by endothelial cell proliferation and angiogenesis, key features of chronic inflammation. Local administration of CGRP to the knee also increases mechanosensitivity of joint afferents, mimicking peripheral sensitization seen in arthritic joints. Increased mechanosensitivity in OA knees and pain behaviour can be reduced by peripherally acting CGRP receptor antagonists. Effects of CGRP pathway blockade on arthritic joint afferents, but not in normal joints, suggest contributions to sensitization rather than normal joint nociception. CGRP therefore might make key contributions to the transition from normal to persistent synovitis, and the progression from nociception to sensitization. Targeting CGRP or its receptors within joint tissues to prevent these undesirable transitions during early arthritis, or suppress them in established disease, might prevent persistent inflammation and relieve arthritis pain.
Collapse
Affiliation(s)
- David A Walsh
- Professor of Rheumatology, Director Arthritis Research UK Pain Centre University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB
| | - Paul I Mapp
- Research Fellow, Arthritis UK Pain Centre, University of Nottingham, NG5 1PB
| | - Sara Kelly
- Assistant Professor in Neuroscience, School of Biosciences, University of Nottingham, Sutton Bonnington Campus, Nr Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
22
|
L-type calcium channel blockers and substance P induce angiogenesis of cortical vessels associated with beta-amyloid plaques in an Alzheimer mouse model. Neurobiol Aging 2014; 36:1333-41. [PMID: 25619662 PMCID: PMC4347662 DOI: 10.1016/j.neurobiolaging.2014.12.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 12/05/2014] [Accepted: 12/24/2014] [Indexed: 12/02/2022]
Abstract
It is well established that L-type calcium channels (LTCCs) are expressed in astroglia. However, their functional role is still speculative, especially under pathologic conditions. We recently showed that the α1 subunit-like immunoreactivity of the CaV1.2 channel is strongly expressed in reactive astrocytes around beta-amyloid plaques in 11-month-old Alzheimer transgenic (tg) mice with the amyloid precursor protein London and Swedish mutations. The aim of the present study was to examine the cellular expression of all LTCC subunits around beta-amyloid plaques by in situ hybridization using 35S-labeled oligonucleotides. Our data show that messenger RNAs (mRNAs) of the LTCC CaV1.2 α1 subunit as well as all auxiliary β and α2δ subunits, except α2δ-4, were expressed in the hippocampus of age-matched wild-type mice. It was unexpected to see, that cells directly located in the plaque core in the cortex expressed mRNAs for CaV1.2 α1, β2, β4, and α2δ-1, whereas no expression was detected in the halo. Furthermore, cells in the plaque core also expressed preprotachykinin-A mRNA, the precursor for substance P. By means of confocal microscopy, we demonstrated that collagen-IV-stained brain vessels in the cortex were associated with the plaque core and were immunoreactive for substance P. In cortical organotypic brain slices of adult Alzheimer mice, we could demonstrate that LTCC blockers increased angiogenesis, which was further potentiated by substance P. In conclusion, our data show that brain vessels associated with beta-amyloid plaques express substance P and an LTCC and may play a role in angiogenesis.
Collapse
|
23
|
Hao L, Zou Z, Tian H, Zhang Y, Song C, Zhou H, Liu L. Novel roles of perivascular nerves on neovascularization. Neurol Sci 2014; 36:353-60. [DOI: 10.1007/s10072-014-2016-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/18/2014] [Indexed: 12/20/2022]
|
24
|
Nalla A, Ringholm L, Søstrup B, Højrup P, Thim L, Levery SB, Vakhrushev SY, Billestrup N, Mathiesen ER, Damm P, Nielsen JH. Implications for the offspring of circulating factors involved in beta cell adaptation in pregnancy. Acta Obstet Gynecol Scand 2014; 93:1181-9. [DOI: 10.1111/aogs.12505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/10/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Amarnadh Nalla
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- The Danish Diabetes Academy; Odense University Hospital; Odense Denmark
- Centre for Fetal Programming; Copenhagen Denmark
| | - Lene Ringholm
- Centre for Pregnant Women with Diabetes; Rigshospitalet; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Endocrinology; Rigshospitalet; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Brigitte Søstrup
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Centre for Fetal Programming; Copenhagen Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense Denmark
| | - Lars Thim
- Protein Engineering; Novo Nordisk A/S; Bagsvaerd Denmark
| | - Steven B. Levery
- Department of Cellular and Molecular Medicine; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Sergey Y. Vakhrushev
- Department of Cellular and Molecular Medicine; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Nils Billestrup
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Elisabeth R. Mathiesen
- Centre for Pregnant Women with Diabetes; Rigshospitalet; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Endocrinology; Rigshospitalet; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Peter Damm
- Centre for Pregnant Women with Diabetes; Rigshospitalet; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Obstetrics; Rigshospitalet; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jens H. Nielsen
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Centre for Fetal Programming; Copenhagen Denmark
| |
Collapse
|
25
|
Zhou Y, Zuo D, Wang M, Zhang Y, Yu M, Yang J, Yao Z. Effect of truncated neurokinin-1 receptor expression changes on the interaction between human breast cancer and bone marrow-derived mesenchymal stem cells. Genes Cells 2014; 19:676-91. [PMID: 25130457 DOI: 10.1111/gtc.12168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 06/16/2014] [Indexed: 12/22/2022]
Abstract
Previous studies in breast cancer cell lines showed that truncated neurokinin receptor-1 (NK1R-Tr) was able to promote malignant transformation of breast cells, and NK1R-Tr may contribute to tumor progression and promote distant metastasis in human breast cancer. A co-culture model of breast cancer and bone marrow-derived human mesenchymal stem (HMSC-bm) cells showed that HMSC-bm inhibited the growth of breast cancer cells and entered the bone marrow at early stages. Down-regulation of NK1R-Tr may be a key factor in maintaining the quiescent phenotype of breast cancer cells among bone marrow stroma. Stromal-derived factor (SDF)-1α expression was negatively correlated with NK1R-Tr expression in breast cancer cells. Secretion of SDF-1α by HMSC-bm may maintain the quiescent phenotype of breast cancer cells among bone marrow stroma by down-regulating NK1R-Tr expression. Transforming growth factor (TGF)-β1 expression was positively associated with NK1R-Tr expression in breast cancer cells. In a co-culture system, MDA-MB-231-TGF-β1I (TGF-β genes were suppressed using specific shRNA) cells were able to attach to HMSC-bm quickly, indicating that TGF-β1 was also a key factor for maintaining the quiescent phenotype of breast cancer cells in bone marrow stroma. However, the detailed mechanism still remained unclear and could involve other molecules, in addition to NK1R-Tr.
Collapse
Affiliation(s)
- Yunli Zhou
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Muñoz M, González-Ortega A, Salinas-Martín MV, Carranza A, Garcia-Recio S, Almendro V, Coveñas R. The neurokinin-1 receptor antagonist aprepitant is a promising candidate for the treatment of breast cancer. Int J Oncol 2014; 45:1658-72. [PMID: 25175857 DOI: 10.3892/ijo.2014.2565] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/30/2014] [Indexed: 11/06/2022] Open
Abstract
The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in the development of cancer. No in-depth studies of the involvement of this system in breast cancer (BC) have been carried out, and the action exerted by the drug aprepitant on BC cells is currently unknown. We show the involvement of this system in human BC cell lines: i) these cells express mRNA for the NK-1 receptor; ii) they overexpress NK-1 receptors; iii) the NK-1 receptor is involved in their viability; iv) SP induces their proliferation; v) NK-1 receptor antagonists block SP-induced mitogen stimulation of these cells; vi) the specific antitumor action of such antagonists on these cells occurs through the NK-1 receptor; and vii) BC cell death is due to apoptosis. We also found NK-1 receptors and SP in all human BC samples studied. The NK-1 receptor may be a promising target in the treatment of BC and NK-1 receptor antagonists could be candidates as a new antitumor drug in the treatment of BC.
Collapse
Affiliation(s)
- Miguel Muñoz
- Virgen del Rocío University Hospital, Research Laboratory on Neuropeptides, Sevilla, Spain
| | - Ana González-Ortega
- Virgen del Rocío University Hospital, Research Laboratory on Neuropeptides, Sevilla, Spain
| | | | - Andrés Carranza
- Virgen del Rocío University Hospital, Research Laboratory on Neuropeptides, Sevilla, Spain
| | - Susana Garcia-Recio
- Department of Medical Oncology, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Vanessa Almendro
- Department of Medical Oncology, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Salamanca, Spain
| |
Collapse
|
27
|
Ackermann PW, Hart DA. Influence of Comorbidities: Neuropathy, Vasculopathy, and Diabetes on Healing Response Quality. Adv Wound Care (New Rochelle) 2013; 2:410-421. [PMID: 24688829 DOI: 10.1089/wound.2012.0437] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 12/13/2022] Open
Abstract
SIGNIFICANCE Prolonged and nonhealing connective tissue injuries are often seen associated with common diseases, such as metabolic disorders, obesity, hypertension, arteriosclerosis, neuropathy, and diabetes mellitus and these influences result in considerable burden on society via the health care system, the economy, and quality of life for patients. RECENT ADVANCES Emerging findings have established important new links in our understanding of effective connective tissue healing. Thereby, the function of the nervous system, vascular supply, and metabolic state of the patient can be directly linked to the quality of the connective tissue healing process. CRITICAL ISSUES As some of these conditions are also more common in individuals as they age, and aging can also impact healing effectiveness, such complications will have an emerging significant impact as the demographics of many societies change with expanding percentages of the populations >60-65 years of age. FUTURE DIRECTIONS Comorbidities have to be early identified in patients with acute wounds or planned surgery. Necessary interactions between physicians with different subspecialties have to be initiated to optimize wound healing potentials.
Collapse
Affiliation(s)
- Paul W. Ackermann
- Section of Orthopedics, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Solna, Sweden
| | - David A. Hart
- Department of Surgery, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| |
Collapse
|
28
|
Roles of full-length and truncated neurokinin-1 receptors on tumor progression and distant metastasis in human breast cancer. Breast Cancer Res Treat 2013; 140:49-61. [DOI: 10.1007/s10549-013-2599-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/06/2013] [Indexed: 12/15/2022]
|
29
|
Muñoz M, González-Ortega A, Rosso M, Robles-Frias MJ, Carranza A, Salinas-Martín MV, Coveñas R. The substance P/neurokinin-1 receptor system in lung cancer: focus on the antitumor action of neurokinin-1 receptor antagonists. Peptides 2012; 38:318-25. [PMID: 23026680 DOI: 10.1016/j.peptides.2012.09.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 09/20/2012] [Accepted: 09/20/2012] [Indexed: 01/21/2023]
Abstract
The last decades have seen no significant progress in extending the survival of lung cancer patients and there is an urgent need to improve current therapies. The substance P (SP)/neurokinin-1 receptor (NK-1R) system plays an important role in the development of cancer: SP and NK-1R antagonists respectively induce cell proliferation and inhibition in human cancer cell lines. No study of the involvement of this system in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cells has been carried out in depth. Here, we demonstrate the involvement of the SP/NK-1R system in human H-69 (SCLC) and COR-L23 (NSCLC) cell lines: (1) they express isoforms of the NK-1R and mRNA for the NK-1R; (2) they overexpress the tachykinin 1 gene; (3) the NK-1R is involved in their viability; (4) SP induces their proliferation; (5) NK-1R antagonists (Aprepitant (Emend), L-733,060, L-732,138) inhibit the growth of both cell lines in a concentration-dependent manner; (6) the specific antitumor action of these antagonists against such cells occurs through the NK-1R; and (7) lung cancer cell death is due to apoptosis. We also demonstrate the presence of NK-1Rs and SP in all the human SCLC and NSCLC samples studied. Our findings indicate that the NK-1R may be a promising new target in the treatment of lung cancer and that NK-1R antagonists could be new candidate antitumor drugs in the treatment of SCLC and NSCLC.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla, Spain.
| | | | | | | | | | | | | |
Collapse
|
30
|
Mapp PI, McWilliams DF, Turley MJ, Hargin E, Walsh DA. A role for the sensory neuropeptide calcitonin gene-related peptide in endothelial cell proliferation in vivo. Br J Pharmacol 2012; 166:1261-71. [PMID: 22233274 DOI: 10.1111/j.1476-5381.2012.01848.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE We have tested the hypothesis that calcitonin gene-related peptide (CGRP) is a mediator of capsaicin-induced angiogenesis in vivo. EXPERIMENTAL APPROACH In a series of experiments, the knee joints of rats were injected with CGRP, capsaicin or vehicle control. Groups of animals (n=6) were treated with the CGRP receptor antagonist BIBN4096BS and/or the NK₁ receptor antagonist SR140333. Endothelium, proliferating endothelial cell nuclei and macrophages were identified 24 h later in the synovium by immunohistochemistry and quantified by image analysis. mRNA for the receptors for CGRP and adrenomedullin were sought in normal and inflamed rat and human synovia using RT-PCR. KEY RESULTS Intra-articular CGRP injection increased the endothelial cell proliferation index, whereas macrophage infiltration and knee joint diameters were similar to saline-injected controls. CGRP-induced endothelial cell proliferation was dose-dependently inhibited by BIBN4096BS. mRNA for adrenomedullin and the CGRP receptor subunits were detected in normal and inflamed human and rat synovia. In capsaicin-induced synovitis, the increased endothelial cell proliferation index was partially blocked by administration of NK₁ or CGRP antagonists individually and was reduced to the level of saline controls by coadministration of both receptor antagonists. CONCLUSIONS AND IMPLICATIONS These data support the hypothesis that CGRP stimulates angiogenesis in vivo directly by activating CGRP receptors. Capsaicin-induced endothelial cell proliferation was completely blocked by coadministration of CGRP and NK₁ receptor antagonists, indicating that both CGRP and substance P may contribute to angiogenesis in this model of synovitis.
Collapse
Affiliation(s)
- Paul I Mapp
- Arthritis Research UK Pain Centre, University of Nottingham, City Hospital, Nottingham, UK.
| | | | | | | | | |
Collapse
|
31
|
Schmid E, Nogalo M, Bechrakis NE, Fischer-Colbrie R, Tasan R, Sperk G, Theurl M, Beer AGE, Kirchmair R, Herzog H, Troger J. Secretoneurin, substance P and neuropeptide Y in the oxygen-induced retinopathy in C57Bl/6N mice. Peptides 2012; 37:252-7. [PMID: 22884536 DOI: 10.1016/j.peptides.2012.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
Abstract
In this study, we investigated whether the proangiogenic neuropeptides secretoneurin (SN), substance P (SP), and neuropeptide Y (NPY) contribute to the development of abnormal neovascularization in the oxygen-induced retinopathy (OIR) model in mice. By exposing litters of C57Bl/6N mice to 75% oxygen from postnatal day 7 (P7) until postnatal day 11 (P11) and then returning them to normoxic conditions, retinal ischemia and subsequent neovascularization on the retinal surface were induced. Retinae were dissected on P9, P11, P12-P14, P16 and P20, and the concentrations of SN, SP, NPY and VEGF determined by radioimmunoassay or ELISA. The levels of SN and SP increased in controls from P9 until P16 and from P9 until P14, respectively, whereas the levels of NPY were high at P9 and decreased thereafter until P20, suggesting that NPY may participate in the development of the retina. However, dipeptidyl peptidase IV (DPPIV) and the NPY-Y2 receptor were not detectable in the immature retina indicating that NPY is not involved in the physiological vascularization in the retina. Compared to controls, OIR had no effect on the levels of SN, whereas levels of both SP and NPY slightly decreased during hyperoxia. Normalization of the levels of SP, and to a more pronounced extent of NPY, was significantly delayed during relative hypoxia. This clearly indicates that these three neuropeptides are not involved in the pathogenesis of neovascularization in OIR. Moreover, since there were no differences in the expression of two vessel markers in the retina of NPY knockout mice versus controls at P14, NPY is also not involved in the delayed development of the intermediate and deep vascular plexus in the retina in this animal model.
Collapse
Affiliation(s)
- Eduard Schmid
- Department of Ophthalmology and Optometry, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
During osteoarthritis (OA), angiogenesis is increased in the synovium, osteophytes and menisci and leads to ossification in osteophytes and the deep layers of articular cartilage. Angiogenic and antiangiogenic factors might both be upregulated in the osteoarthritic joint; however, vascular growth predominates, and the articular cartilage loses its resistance to vascularization. In addition, blood vessel growth is increased at--and disrupts--the osteochondral junction. Angiogenesis in this location is dependent on the creation of channels from subchondral bone spaces into noncalcified articular cartilage. Inflammation drives synovial angiogenesis through macrophage activation. Blood vessel and nerve growth are linked by common pathways that involve the release of proangiogenic factors, such as vascular endothelial growth factor, β-nerve growth factor and neuropeptides. Proangiogenic factors might also stimulate nerve growth, and molecules produced by vascular cells could both stimulate and guide nerve growth. As sensory nerves grow along new blood vessels in osteoarthritic joints, they eventually penetrate noncalcified articular cartilage, osteophytes and the inner regions of menisci. Angiogenesis could, therefore, contribute to structural damage and pain in OA and provide potential targets for new treatments.
Collapse
|
33
|
Ma JL, Zhu YH, Zhang L, Zhuge ZY, Liu PQ, Yan XD, Gao HS, Wang JF. Serum concentration and mRNA expression in milk somatic cells of toll-like receptor 2, toll-like receptor 4, and cytokines in dairy cows following intramammary inoculation with Escherichia coli. J Dairy Sci 2012; 94:5903-12. [PMID: 22118081 DOI: 10.3168/jds.2011-4167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 08/27/2011] [Indexed: 01/01/2023]
Abstract
The objective of the current study was to investigate the toll-like receptors (TLR), including the soluble forms sTLR2 and sTLR4, involved in innate immune responses of dairy cows to experimentally induced Escherichia coli mastitis. Six clinically healthy Holstein dairy cows received an intramammary inoculation of E. coli O111:K58 between 63 and 83 d postpartum. Concentrations of sTLR2 and sTLR4, the proinflammatory cytokines IL-6 and tumor necrosis factor-α (TNF-α), and acute phase proteins serum amyloid A (SAA) and haptoglobin (Hp) in blood were measured by ELISA. Furthermore, 10mL of milk was collected from challenged quarters immediately before inoculation and at 6, 12, 24, 48, and 72 h after inoculation, and mRNA expression of selected genes, including TLR2, TLR4, IL-1β, IL-6, TNF-α, and IL-8, was quantified by real-time PCR. Escherichia coli intramammary infection elicited a decrease in the circulating levels of leukocytes. Rectal temperature was elevated at 6h postinoculation (PI). Similarly, the serum concentrations of TNF-α, IL-6, and SAA increased at 6h PI. However, serum concentrations of sTLR2, sTLR4, and Hp did not differ after challenge. The mRNA expression of TLR2, IL-1β, and IL-8 in milk somatic cells increased at 12h PI, whereas a decreased IL-6 mRNA expression was detected from 6 to 48 h PI. In conclusion, we found that TLR2 mRNA expression increased in milk somatic cells collected from infected quarters of cows challenged with E. coli, whereas the concentrations of sTLR2 and sTLR4 remained unchanged after challenge. Thus, sTLR2 and sTLR4 may protect the host by sequestrating pathogen-associated molecular patterns during E. coli mastitis.
Collapse
Affiliation(s)
- J L Ma
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yoshida A, Morihara T, Matsuda KI, Sakamoto H, Arai Y, Kida Y, Kawata M, Kubo T. Immunohistochemical analysis of the effects of estrogen on intraarticular neurogenic inflammation in a rat anterior cruciate ligament transection model of osteoarthritis. Connect Tissue Res 2011; 53:197-206. [PMID: 22141435 DOI: 10.3109/03008207.2011.628059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Synovitis is considered as one of the factors associated with the pathogenesis of osteoarthritis (OA). There is currently a significant amount of research linking estrogen deficiencies with the development of OA in estrogen-deficient women, including postmenopausal women; however, the exact etiology remains unclear. Various neuropeptides, such as substance P (SP) and calcitonin gene-related peptide (CGRP), have been shown to contribute to synovitis in OA joints, and the influence of estrogen on the expressions of SP and CGRP in the synovium of OA joints has been noted. After ovariectomy (OVX) followed by estradiol (E2) replacement, 24 female rats were divided into three groups: OVX group, OVX + E2 replacement group (E2 group), and a sham group. All rats underwent transection of the anterior cruciate ligament at the same time. After 30 days, the histological findings of knee joints by hematoxylin-eosin staining and immunofluorescence staining of protein gene product 9.5 (pan-neuronal marker), SP, and CGRP were compared among experimental groups. The degree of synovitis in the OVX group was higher than in the E2 and sham groups. No significant differences in the density of protein gene product 9.5-immunoreactive nerve fibers were observed among the three experimental groups, but the density of SP- or CGRP-immunoreactive nerve fibers in the OVX group was significantly higher than in the E2 and sham groups. These findings suggest that estrogen partly regulates intraarticular neurogenic inflammation in OA joints by modulating the expressions of neuropeptides in the synovium.
Collapse
Affiliation(s)
- Atsuhiko Yoshida
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ashraf S, Mapp PI, Walsh DA. Contributions of angiogenesis to inflammation, joint damage, and pain in a rat model of osteoarthritis. ACTA ACUST UNITED AC 2011; 63:2700-10. [PMID: 21538326 DOI: 10.1002/art.30422] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine the contributions of angiogenesis to inflammation, joint damage, and pain behavior in a rat meniscal transection model of osteoarthritis (OA). METHODS OA was induced in male Lewis rats (n=8 per group) by meniscal transection. Animals were orally dosed with dexamethasone (0.1 mg/kg/day), indomethacin (2 mg/kg/day), or the specific angiogenesis inhibitor PPI-2458 (5 mg/kg every other day). Controls consisted of naive and vehicle-treated rats. Synovial inflammation was measured as the macrophage fractional area (expressed as the percentage), thickness of the synovial lining, and joint swelling. Synovial angiogenesis was measured using the endothelial cell proliferation index and vascular density. Channels positive for vessels at the osteochondral junction were assessed (osteochondral angiogenesis). Medial tibial plateaus were assessed for chondropathy, osteophytosis, and channels crossing the osteochondral junction. Pain behavior was measured as weight-bearing asymmetry. RESULTS Dexamethasone and indomethacin each reduced pain behavior, synovial inflammation, and synovial angiogenesis 35 days after meniscal transection. Dexamethasone reduced, but indomethacin had no significant effect on, the total joint damage score. PPI-2458 treatment reduced synovial and osteochondral angiogenesis, synovial inflammation, joint damage, and pain behavior. CONCLUSION Our findings indicate that synovial inflammation and joint damage are closely associated with pain behavior in the meniscal transection model of OA. Inhibition of angiogenesis may reduce pain behavior both by reducing synovitis and by preventing structural change. Targeting angiogenesis could therefore prove useful in reducing pain and structural damage in OA.
Collapse
Affiliation(s)
- Sadaf Ashraf
- Arthritis Research UK Pain Centre, Department of Academic Rheumatology, University of Nottingham, City Hospital, Nottingham, UK.
| | | | | |
Collapse
|
36
|
Angiogenesis induced by controlled release of neuropeptide substance P. Biomaterials 2010; 31:8617-25. [DOI: 10.1016/j.biomaterials.2010.07.079] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/21/2010] [Indexed: 11/20/2022]
|
37
|
Muñoz M, Rosso M, Robles-Frias MJ, Salinas-Martín MV, Rosso R, González-Ortega A, Coveñas R. The NK-1 receptor is expressed in human melanoma and is involved in the antitumor action of the NK-1 receptor antagonist aprepitant on melanoma cell lines. J Transl Med 2010; 90:1259-69. [PMID: 20458280 DOI: 10.1038/labinvest.2010.92] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Melanoma, the most deadly form of skin cancer, is aggressive and resistant to current therapies. It has been previously reported that the substance P and neurokinin-1 (NK-1) receptor antagonists induce cell proliferation and cell inhibition, respectively, in human melanoma cell lines. Aprepitant is a selective high-affinity antagonist of the human NK-1 receptor. Until now, this drug has been used as an anxiolytic, antidepressant and antiemetic. Moreover, the antitumor action of aprepitant has been previously reported. However, the presence of NK-1 receptors in human melanomas and whether the antitumor action of the NK-1 receptor antagonist aprepitant is exerted on human malignant melanomas have not been previously described. The aims of this study are to show the presence of NK-1 receptors in human malignant melanomas and the antitumoral action of aprepitant against several human melanoma cell lines. Immunoblot analysis was used to determine the presence of NK-1 receptors in human melanoma cell lines, and immunohistochemistry was used to demonstrate NK-1 receptors in human melanoma samples. We performed an in vitro study of the cytotoxicity of the NK-1 receptor antagonist aprepitant on human melanoma cell lines. A coulter counter was used to determine viable cell numbers, followed by application of the tetrazolium compound MTS. The DAPI method was applied to demonstrate apoptosis. We observed that NK-1 receptors were present in all the melanoma samples studied as well as in human melanoma cell lines. We also showed that melanoma cell lines expressed mRNA for the NK-1 receptor. Moreover, after using a knockdown method, we showed that NK-1 receptors are involved in the viability of tumor cells. In this study, we also report that aprepitant, at 10-60 microM concentrations, elicits cell growth inhibition in a concentration-dependent manner in all melanoma cell lines studied, that the specific antitumor action of aprepitant occurs through the NK-1 receptor and that melanoma cell death is due to apoptosis. These findings show for the first time that the NK-1 receptor may be a promising new target and that the NK-1 receptor antagonist aprepitant could be a candidate as a new antitumor drug in the treatment of human melanoma.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla, Spain.
| | | | | | | | | | | | | |
Collapse
|
38
|
Pre-treatment with capsaicin in a rat osteoarthritis model reduces the symptoms of pain and bone damage induced by monosodium iodoacetate. Eur J Pharmacol 2010; 641:108-13. [PMID: 20538089 DOI: 10.1016/j.ejphar.2010.05.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 04/19/2010] [Accepted: 05/23/2010] [Indexed: 11/24/2022]
Abstract
A rat model of osteoarthritis was used to investigate the effect of pre-treatment with capsaicin on the symptoms of osteoarthritis induced by the injection of monosodium iodoacetate. This model mimics both histopathology and symptoms associated of human osteoarthritis. Injection of monosodium iodoacetate, an inhibitor of glycolysis, into the femorotibial joints of rodents promotes loss of articular trabecular bone and invokes pain symptoms similar to those noted in human osteoarthritis. Twenty rats were divided in two groups either receiving placebo or monosodium iodoacetate. Each group was subdivided in two groups either receiving pre-treatment with capsaicin two weeks before monosodium iodoacetate injection or not, resulting in four groups of five rats each. The impact of a single intra-articular administration of capsaicin (0.5%) on the generation of evoked mechanical pain (hind limb weight bearing, automated von Frey monofilament and RotaRod tests) and bone lesions (micro-CT scan radiographic analyses of bone structure) following monosodium iodoacetate-induced osteoarthritis in rats was determined. Evoked mechanical pain as monitored over a period of 4 weeks after monosodium iodoacetate injection was abolished in capsaicin pre-treated animals and pain values are comparable to those of capsaicin controls. Chronic joint pathological changes such as bone erosion and trabecular damage were significantly reduced by pre-treatment with a single administration of capsaicin. Decrease of bone volume was considerably ameliorated and trabecular connectivity was substantially better in capsaicin pre-treated animals. Capsaicin, an agonist activator of the vanilloid nociceptors (TRPV1), appears to be effective in protecting bone from arthritic damage. The present results support the hypothesis that capsaicin-sensitive sensory neurons contribute to bone lesions in the monosodium iodoacetate-induced osteoarthritis rat model.
Collapse
|
39
|
Muñoz M, Rosso M, González-Ortega A, Coveñas R. The NK-1 Receptor Antagonist L-732,138 Induces Apoptosis and Counteracts Substance P-Related Mitogenesis in Human Melanoma Cell Lines. Cancers (Basel) 2010; 2:611-23. [PMID: 24281084 PMCID: PMC3835094 DOI: 10.3390/cancers2020611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/14/2010] [Accepted: 04/19/2010] [Indexed: 01/17/2023] Open
Abstract
It has been recently demonstrated that substance P (SP) and neurokinin-1 (NK-1) receptor antagonists induce cell proliferation and cell inhibition in human melanoma cells, respectively. However, the antitumor action of the NK-1 receptor antagonist L-732,138 on such cells is unknown. The aim of this study was to demonstrate an antitumor action of L-732,138 against three human melanoma cell lines (COLO 858, MEL HO, COLO 679). We found that L-732,138 elicits cell growth inhibition in a concentration dependent manner in the melanoma cells studied. Moreover, L-732,138 blocks SP mitogen stimulation. The specific antitumor action of L-732,138 occurred through the NK-1 receptor and melanoma cell death was by apoptosis. These findings indicate that the NK-1 receptor antagonist L-732,138 could be a new antitumor agent in the treatment of human melanoma.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla, Spain; E-Mails: (M.R.); (A.G.-O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-955012965; Fax: +34-955012921
| | - Marisa Rosso
- Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla, Spain; E-Mails: (M.R.); (A.G.-O.)
| | - Ana González-Ortega
- Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla, Spain; E-Mails: (M.R.); (A.G.-O.)
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Laboratory 14), Salamanca, Spain; E-Mail: (R.C.)
| |
Collapse
|
40
|
Prophylactic proopiomelanocortin expression alleviates capsaicin-induced neurogenic inflammation in rat trachea. Shock 2010; 32:645-50. [PMID: 19333140 DOI: 10.1097/shk.0b013e3181a5aa10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurogenic inflammation frequently causes acute plasma leakage in airways and life-threatening pulmonary edema. However, limited strategies are available to alleviate neurogenic inflammation. Proopiomelanocortin (POMC) is the precursor of anti-inflammatory melanocortins, which have been proposed of therapeutic potential for various inflammatory diseases. The present study aimed to evaluate whether peripheral POMC expression ameliorated capsaicin-induced acute neurogenic inflammation in rat trachea. Prophylactic POMC expression was achieved by intravenous injection of adenovirus encoding POMC (Ad-POMC), which led to POMC expression in livers and elevated plasma adrenocorticotropin levels for approximately 60 days. After gene delivery for 7 days, neurogenic inflammation was induced in rats by capsaicin injection. The extent of capsaicin-evoked plasma leakage in trachea was alleviated in Ad-POMC-treated rats compared with animals of control groups (P < 0.01). Moreover, the number of endothelial gaps in tracheal venules was also significantly decreased in Ad-POMC-treated animals (P < 0.01). Prophylactic POMC expression, however, did not alter the basal substance P (SP) expression or the capsaicin-induced SP elevation in trachea and circulation. Instead, cell cultures studies revealed that POMC overexpression or application of POMC-derived melanocortins potently inhibited the SP-induced migration of endothelial cells (P < 0.01), thereby possibly contributing to the attenuation of endothelial gap formation and plasma leakage. The present study indicates that the anti-inflammatory POMC gene vector or melanocortins may constitute a therapeutic alternative for neurogenic inflammation.
Collapse
|
41
|
Metabolic syndrome: Aggression control mechanisms gone out of control. Med Hypotheses 2010; 74:578-89. [DOI: 10.1016/j.mehy.2009.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/07/2009] [Indexed: 01/13/2023]
|
42
|
El karim IA, Linden GJ, Irwin CR, Lundy FT. Neuropeptides Regulate Expression of Angiogenic Growth Factors in Human Dental Pulp Fibroblasts. J Endod 2009; 35:829-33. [DOI: 10.1016/j.joen.2009.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/18/2009] [Accepted: 03/02/2009] [Indexed: 01/09/2023]
|
43
|
Abstract
Abnormal wound healing is a major complication of both type 1 and type 2 diabetes, with nonhealing foot ulcerations leading in the worst cases to lower-limb amputation. Wound healing requires the integration of complex cellular and molecular events in successive phases of inflammation, cell proliferation, cell migration, angiogenesis and re-epithelialisation. A link between wound healing and the nervous system is clinically apparent as peripheral neuropathy is reported in 30-50% of diabetic patients and is the most common and sensitive predictor of foot ulceration. Indeed, a bidirectional connection between the nervous and the immune systems and its role in wound repair has emerged as one of the focal features of the wound-healing dogma. This review provides a broad overview of the mediators of this connection, which include neuropeptides and cytokines released from nerve fibres, immune cells and cutaneous cells. In-depth understanding of the signalling pathways in the neuroimmune axis in diabetic wound healing is vital to the development of successful wound-healing therapies.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Much has been documented in recent years on the possible involvement of angiogenesis in osteoarthritis. An understanding of the various regulatory mechanisms controlling blood vessel growth in the joint should lead to novel therapeutics, which selectively inhibit undesirable angiogenesis. Here, we summarize recent findings on the roles of angiogenesis in osteoarthritis and place this evidence in the context of previous literature in order to help explain pain and disease progression. RECENT FINDINGS Inflammation and angiogenesis are closely associated in osteoarthritis, modulating functions of chondrocytes, contributing towards abnormal tissue growth and perfusion, ossification and endochondral bone development, leading to radiographic changes observed in the joint. Innervation accompanies vascularization and inflammation, hypoxia and mechanical overload are all thought to contribute in sensitizing these new nerves leading to increased pain. Articular cartilage provides a unique environment in which blood vessel growth is regulated by endogenous angiogenesis inhibitors and matrix constituents, as well as by growth factors produced by chondrocytes, subchondral bone and synovium. MRI and ultrasound enable the in-vivo visualization of abnormal vascularity in synovium and subchondral bone that have not been apparent with conventional radiography. As a result of these new findings, the widely accepted notion that osteoarthritis is primarily a disease of the cartilage is being challenged. SUMMARY Molecular mechanisms and consequences of angiogenesis in osteoarthritis are slowly being elucidated. Studies, both in humans and animal models, support the notion that inhibiting angiogenesis will provide effective therapeutic strategies for treating osteoarthritis. Better techniques that can more precisely visualize the vascular changes of the whole joint can further enhance our understanding of osteoarthritis, and can provide proof of concept and early evidence of efficacy in trials of novel therapeutic interventions.
Collapse
|
45
|
Koon HW, Zhao D, Xu H, Bowe C, Moss A, Moyer MP, Pothoulakis C. Substance P-mediated expression of the pro-angiogenic factor CCN1 modulates the course of colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:400-10. [PMID: 18599605 DOI: 10.2353/ajpath.2008.080222] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Substance P (SP) regulates important intestinal functions, such as mucosal permeability, motility, chloride secretion, and inflammation via the neurokinin-1 receptor (NK-1R). Previous reports showed that vascularization and expression of angiogenic factors are evident in the colonic mucosa of rats with colitis and patients with inflammatory bowel disease. Here we determined whether SP is associated with angiogenesis. Human NCM460 colonocytes stably transfected with the human NK-1R (NCM460-NK-1R cells) and mice with dextran sodium sulfate-induced colitis were used. We found that expression of the angiogenic factor CCN1 was increased in the colons of patients with Crohn's disease and ulcerative colitis. Mucosal extracts from inflammatory bowel disease patients induced human intestinal microvascular endothelial cell migration that was inhibited by blockade of CCN1 and its receptor integrin alphavbeta3. Both the degree of angiogenesis and CCN1 expression were elevated in the colons of mice with dextran sodium sulfate-induced colitis, which was reduced by treatment with the NK-1R antagonist CJ-12255. SP also increased CCN1 expression in NCM460-NK-1R colonocytes. SP exposure to human intestinal microvascular endothelial cells co-cultured with NCM460-NK-1R cells induced angiogenic activity that was inhibited by CCN1 silencing. In addition, intracolonic overexpression of CCN1 induced angiogenesis in mouse colon. Thus, SP mediates angiogenesis via CCN1 during colitis.
Collapse
Affiliation(s)
- Hon-Wai Koon
- Gastrointestinal Neuropeptide Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Ghilardi C, Chiorino G, Dossi R, Nagy Z, Giavazzi R, Bani M. Identification of novel vascular markers through gene expression profiling of tumor-derived endothelium. BMC Genomics 2008; 9:201. [PMID: 18447899 PMCID: PMC2410137 DOI: 10.1186/1471-2164-9-201] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 04/30/2008] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Targeting tumor angiogenesis and vasculature is a promising strategy for the inhibition of tumor growth and dissemination. Evidence suggests that tumor vasculature expresses unique markers that distinguish it from normal vasculature. Our efforts focused on the molecular characterization of endothelial cells (EC) in the search for selective markers of tumor vasculature that might be helpful for the development of effective therapeutic approaches. RESULTS We investigated by microarray analysis the gene expression profiles of EC purified and cultured from tumor (ovarian carcinoma [HOC-EC]) and normal (human adrenal gland [HA-EC]) tissue specimens. We found distinct transcriptional features characterizing the EC of different origin, and identified 158 transcripts highly expressed by HOC-EC. We analyzed four of these genes, ADAM23, FAP, GPNMB and PRSS3, which were not previously known to be expressed by endothelium. In vitro experiments confirmed the higher expression of the selected genes in tumor-derived endothelium with no expression in tumor cells. In vivo investigation by in situ hybridization established that ADAM23, GPNMB and PRSS3 expression is localized on blood vessels of human cancer specimens. CONCLUSION These findings elucidate some of the molecular features of the tumor endothelium. Comparative transcriptomic analysis allowed us to determine molecular differences of tumor and normal tissue-derived endothelium and to identify novel markers that might be exploited to selectively target tumor vasculature.
Collapse
Affiliation(s)
- Carmen Ghilardi
- Laboratory of Biology and Treatment of Metastases, Mario Negri Institute for Pharmacological Research, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Grimsholm O, Rantapää-Dahlqvist S, Dalén T, Forsgren S. Observations favouring the occurrence of local production and marked effects of bombesin/gastrin-releasing peptide in the synovial tissue of the human knee joint--comparisons with substance P and the NK-1 receptor. Neuropeptides 2008; 42:133-45. [PMID: 18289674 DOI: 10.1016/j.npep.2007.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/05/2007] [Accepted: 12/27/2007] [Indexed: 11/26/2022]
Abstract
We have previously shown that levels of the neuropeptides substance P (SP) and bombesin/gastrin-releasing peptide (BN/GRP) in blood and synovial fluid correlate with levels of pro-inflammatory cytokines in patients with rheumatoid arthritis (RA). It is well-established that SP is present in nerve endings in the synovium whilst the source of BN/GRP in human joints is completely unknown. Nor is it known whether GRP-receptors (GRP-R) are present in human synovial tissue. This study aimed to investigate the expression pattern of SP, BN/GRP and their receptors (NK-1R and GRP-R) in synovial tissue. Synovial tissue specimens from patients with RA or osteoarthritis (OA) were processed for immunohistochemistry, in situ hybridisation and ELISA. The results show the presence of BN/GRP, but not SP, in cells in the synovial tissue at both the protein and mRNA level. We did not find immunoreactive BN/GRP in nerve structures. NK-1R and GRP-R were also expressed at both protein and mRNA levels in cells associated with blood vessels and cells in the interstitial tissue. ELISA analyses revealed both SP and BN/GRP to be present in synovial tissue extracts and that synovial levels of SP were higher in RA patients than those with OA. Our results indicate that BN/GRP is produced by non-neuronal cells in the synovial tissue. Furthermore, both BN/GRP and SP may exert their effects on the synovial tissue through the respective receptors. These results suggest that BN/GRP and SP may modulate inflammation and vascular events, and possibly healing processes in the synovium. Finally, nerves should not be considered as the source of BN/GRP in synovial tissue although this peptide is presumably intimately involved functionally in synovial tissue, a previously unrecognised fact.
Collapse
Affiliation(s)
- O Grimsholm
- Section for Anatomy, Department of Integrative Medical Biology, Umeå University, and Department of Rheumatology, Umeå University Hospital, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
48
|
Porzionato A, Macchi V, Parenti A, De Caro R. Trophic factors in the carotid body. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:1-58. [PMID: 18779056 DOI: 10.1016/s1937-6448(08)01001-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present study is to provide a review of the expression and action of trophic factors in the carotid body. In glomic type I cells, the following factors have been identified: brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, artemin, ciliary neurotrophic factor, insulin-like growth factors-I and -II, basic fibroblast growth factor, epidermal growth factor, transforming growth factor-alpha and -beta1, interleukin-1beta and -6, tumour necrosis factor-alpha, vascular endothelial growth factor, and endothelin-1 (ET-1). Growth factor receptors in the above cells include p75LNGFR, TrkA, TrkB, RET, GDNF family receptors alpha1-3, gp130, IL-6Ralpha, EGFR, FGFR1, IL1-RI, TNF-RI, VEGFR-1 and -2, ETA and ETB receptors, and PDGFR-alpha. Differential local expression of growth factors and corresponding receptors plays a role in pre- and postnatal development of the carotid body. Their local actions contribute toward producing the morphologic and molecular changes associated with chronic hypoxia and/or hypertension, such as cellular hyperplasia, extracellular matrix expansion, changes in channel densities, and neurotransmitter patterns. Neurotrophic factor production is also considered to play a key role in the therapeutic effects of intracerebral carotid body grafts in Parkinson's disease. Future research should also focus on trophic actions on carotid body type I cells by peptide neuromodulators, which are known to be present in the carotid body and to show trophic effects on other cell populations, that is, angiotensin II, adrenomedullin, bombesin, calcitonin, calcitonin gene-related peptide, cholecystokinin, erythropoietin, galanin, opioids, pituitary adenylate cyclase-activating polypeptide, atrial natriuretic peptide, somatostatin, tachykinins, neuropeptide Y, neurotensin, and vasoactive intestinal peptide.
Collapse
Affiliation(s)
- Andrea Porzionato
- Department of Human Anatomy and Physiology, University of Padova, Padova 35127, Italy
| | | | | | | |
Collapse
|
49
|
Shenkar R, Shi C, Check IJ, Lipton HL, Awad IA. Concepts and hypotheses: inflammatory hypothesis in the pathogenesis of cerebral cavernous malformations. Neurosurgery 2007; 61:693-702; discussion 702-3. [PMID: 17986930 DOI: 10.1227/01.neu.0000298897.38979.07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Cerebral cavernous malformations (CCMs) affect more than one million Americans, predisposing them to a lifetime risk of hemorrhagic stroke and epilepsy. A potential role of the immune response in this disease has not been postulated previously but is compelling given the unique antigenic milieu of CCM lesions with sequestered thrombi and a leaky blood-brain barrier and the numerous examples of immune modulation of angiogenesis in other disease states. The objective of this article is to reveal novel observations about apparent immune responses in CCM lesions excised from human patients and to outline the potential pathobiological significance of these observations, specific hypotheses for future research, and potential clinical implications. METHODS We reviewed data from differential gene expression revealing several immunoglobulin and other related genes markedly upregulated within human CCM lesions. Other observations are presented revealing infiltration of antibody-producing B lymphocytes and plasma cells in CCM lesions. We also present recent data demonstrating fivefold enrichment of gamma globulin to albumin ratio in a human lesion compared with serum from the same patient and oligoclonality of IgG in four of five CCM lesions, but not in paired sera from the same patients or in control specimens. RESULTS We describe ongoing research aiming to characterize cellular and humoral components of the immune response in CCMs and initiating investigation into its clonality by isoelectric focusing on the predominant immunoglobulin isotypes isolated from the lesion, in comparison to the patient's serum, and by the distribution of lengths of complementary-determining region 3 of the immunoglobulin heavy chain genes in messenger ribonucleic acid isolated from lesions and from pooled plasma cells and B cells laser captured from CCMs in comparison to peripheral lymphocytes from the blood of the same patients. CONCLUSION Immune response could play a role in or represent a potential marker of CCM lesion proliferation and hemorrhage or could otherwise contribute to lesion phenotype. The ongoing studies will generate preliminary data for future research aimed at comparing the immune response in quiescent versus clinically aggressive CCM lesions. An oligoclonal immune response shown in this research would stimulate future experiments to identify autoimmune or extrinsic antigenic triggers involved in CCM disease.
Collapse
Affiliation(s)
- Robert Shenkar
- Department of Neurological Surgery, Evanston Northwestern Healthcare, Evanston, IL 60201, USA.
| | | | | | | | | |
Collapse
|
50
|
Dai X, Cui SG, Wang T, Liu Q, Song HJ, Wang R. Endogenous opioid peptides, endomorphin-1 and -2 and deltorphin I, stimulate angiogenesis in the CAM assay. Eur J Pharmacol 2007; 579:269-75. [PMID: 17976574 DOI: 10.1016/j.ejphar.2007.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/26/2007] [Accepted: 10/04/2007] [Indexed: 12/01/2022]
Abstract
The opioid peptides modulate extensive bioactivities, including pain, cardiovascular response, development and so on. The effects of endogenous opioid peptides on angiogenesis were evaluated in the chick embryo chorioallantoic membrane (CAM) assay for the first time in the present study. Endomorphin-1, endomorphin-2 and deltorphin I at the dosage of 1, 10, 100 nmol/embryo could stimulate angiogenesis dose-dependently, respectively. Naloxone, the nonselective opioid receptor antagonist, did not influence angiogenesis alone; but it could antagonize the stimulative effects of the opioid peptides on angiogenesis when it was administrated in combination with the opioid peptides. Taken altogether, the results suggested that endogenous opioid peptides (endomorphin-1 and -2 and deltorphin I) stimulated angiogenesis in the CAM assay, and these effects were modulated with the opioid receptors. These data are important for potential future clinical implementation.
Collapse
Affiliation(s)
- Xu Dai
- State Key Laboratory of Chinese Medicine & Molecular Pharmacology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|