1
|
De Giorgi R, Rizzo Pesci N, Rosso G, Maina G, Cowen PJ, Harmer CJ. The pharmacological bases for repurposing statins in depression: a review of mechanistic studies. Transl Psychiatry 2023; 13:253. [PMID: 37438361 PMCID: PMC10338465 DOI: 10.1038/s41398-023-02533-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
Statins are commonly prescribed medications widely investigated for their potential actions on the brain and mental health. Pre-clinical and clinical evidence suggests that statins may play a role in the treatment of depressive disorders, but only the latter has been systematically assessed. Thus, the physiopathological mechanisms underlying statins' putative antidepressant or depressogenic effects have not been established. This review aims to gather available evidence from mechanistic studies to strengthen the pharmacological basis for repurposing statins in depression. We used a broad, well-validated search strategy over three major databases (Pubmed/MEDLINE, Embase, PsychINFO) to retrieve any mechanistic study investigating statins' effects on depression. The systematic search yielded 8068 records, which were narrowed down to 77 relevant papers. The selected studies (some dealing with more than one bodily system) described several neuropsychopharmacological (44 studies), endocrine-metabolic (17 studies), cardiovascular (6 studies) and immunological (15 studies) mechanisms potentially contributing to the effects of statins on mood. Numerous articles highlighted the beneficial effect of statins on depression, particularly through positive actions on serotonergic neurotransmission, neurogenesis and neuroplasticity, hypothalamic-pituitary axis regulation and modulation of inflammation. The role of other mechanisms, especially the association between statins, lipid metabolism and worsening of depressive symptoms, appears more controversial. Overall, most mechanistic evidence supports an antidepressant activity for statins, likely mediated by a variety of intertwined processes involving several bodily systems. Further research in this area can benefit from measuring relevant biomarkers to inform the selection of patients most likely to respond to statins' antidepressant effects while also improving our understanding of the physiopathological basis of depression.
Collapse
Affiliation(s)
- Riccardo De Giorgi
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom.
| | - Nicola Rizzo Pesci
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Gianluca Rosso
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Giuseppe Maina
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Philip J Cowen
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
| | - Catherine J Harmer
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
| |
Collapse
|
2
|
Gradinaru D, Ungurianu A, Margina D, Moreno-Villanueva M, Bürkle A. Procaine-The Controversial Geroprotector Candidate: New Insights Regarding Its Molecular and Cellular Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3617042. [PMID: 34373764 PMCID: PMC8349289 DOI: 10.1155/2021/3617042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
Since its discovery in 1905 and its employment in everyday medical practice as a local anesthetic, to its highly controversial endorsement as an "anti-aging" molecule in the sixties and seventies, procaine is part of the history of medicine and gerontoprophylaxis. Procaine can be considered a "veteran" drug due to its long-time use in clinical practice, but is also a molecule which continues to incite interest, revealing new biological and pharmacological effects within novel experimental approaches. Therefore, this review is aimed at exploring and systematizing recent data on the biochemical, cellular, and molecular mechanisms involved in the antioxidant and potential geroprotective effects of procaine, focusing on the following aspects: (1) the research state-of-the-art, through an objective examination of scientific literature within the last 30 years, describing the positive, as well as the negative reports; (2) the experimental data supporting the beneficial effects of procaine in preventing or alleviating age-related pathology; and (3) the multifactorial pathways procaine impacts oxidative stress, inflammation, atherogenesis, cerebral age-related pathology, DNA damage, and methylation. According to reviewed data, procaine displayed antioxidant and cytoprotective actions in experimental models of myocardial ischemia/reperfusion injury, lipoprotein oxidation, endothelial-dependent vasorelaxation, inflammation, sepsis, intoxication, ionizing irradiation, cancer, and neurodegeneration. This analysis painted a complex pharmacological profile of procaine: a molecule that has not yet fully expressed its therapeutic potential in the treatment and prevention of aging-associated diseases. The numerous recent reports found demonstrate the rising interest in researching the multiple actions of procaine regulating key processes involved in cellular senescence. Its beneficial effects on cell/tissue functions and metabolism could designate procaine as a valuable candidate for the well-established Geroprotectors database.
Collapse
Affiliation(s)
- Daniela Gradinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, RO-020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, RO-020956 Bucharest, Romania
| | - Denisa Margina
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, RO-020956 Bucharest, Romania
| | - Maria Moreno-Villanueva
- Department of Sport Science, Human Performance Research Centre, University of Konstanz, D-78457 Konstanz, Germany
- Department of Biology, Molecular Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, Molecular Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
3
|
Regulation of connexins genes expression contributes to reestablishes tissue homeostasis in a renovascular hypertension model. Heliyon 2020; 6:e05406. [PMID: 33163681 PMCID: PMC7609588 DOI: 10.1016/j.heliyon.2020.e05406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Connexins (Cx) are essential for cardiovascular regulation and maintenance of cardio-renal response involving the natriuretic peptide family. Changes in the expression of connexins promote intercellular communication dysfunction and may induce hypertension, atherosclerosis, and several other vascular diseases. This study analyzed the expression of the genes involved in the renin-angiotensin system (RAS) and the relation of the connexins gene expression with the renovascular hypertension 2K1C in different tissues. The insertion of a silver clip induced renovascular hypertension 2K1C into the left renal artery. Biochemical measurements were made using commercial kits. Gene expression was evaluated in the liver, heart, and kidneys by RT-PCR. The genes investigated were LDLr, Hmgcr, Agt, Ren, Ace, Agtr1a, Anp, Bnp, Npr1, Cx26, Cx32, Cx37, Cx40 and Cx43. All genes involved in the RAS presented increased transcriptional levels in the 2K1C group, except hepatic Agt. The natriuretic peptides (Anp; Bnp) and the receptor genes (Npr1) appeared to increase in the heart, however, Npr1 decreased in the kidneys. In hepatic tissue, hypertension promoted increased expression of Cx32, Cx37, and Cx40 genes however, Cx26 and Cx43 genes were not influenced. Expression was upregulated for Cx37 and Cx43 in cardiac tissue in the 2K1C group, but Cx40 did not demonstrate any difference between groups. The stenotic kidney showed an upregulated expression for Cx37 vs Sham and contralateral kidney, although Cx40 and Cx43 were downregulated. Hypertension did not modify the transcriptional expression of Cx26 and Cx32. Therefore, this study indicated that RAS and cardiac response were regulated transcriptionally by renovascular hypertension 2K1C. Moreover, the results of connexin gene expression demonstrated differential transcriptional regulation in different tissues studied and suggest a relationship between cardiac and renal physiological changes as an adaptive mechanism to the hypertensive state.
Collapse
|
4
|
Cocci P, Mosconi G, Palermo FA. Partial cloning, tissue distribution and effects of epigallocatechin gallate on hepatic 3-hydroxy-3-methylglutaryl-CoA reductase mRNA transcripts in goldfish (Carassius auratus). Gene 2014; 545:220-5. [PMID: 24835314 DOI: 10.1016/j.gene.2014.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/29/2014] [Accepted: 05/13/2014] [Indexed: 11/17/2022]
Abstract
Epigallocatechin gallate (EGCG), the major active component of the green tea, has recently been found to inhibit 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCoAR) activity in vitro and to modulate lipogenesis in vivo. In this study we have evaluated the effects of short-term in vivo exposure to EGCG (6 μg g(-1) BW or 9 μg g(-1) BW) on hepatic HMGCoAR gene expression of goldfish (Carassius auratus). We initially characterized a partial sequence of goldfish HMGCoAR suggesting that the obtained fragment shares high similarity (>92%) with other fish HMGCoAR sequences. Further, the HMGCoAR transcript was detected in all goldfish tissues (except muscle) but primarily in liver, brain and gonads; on the contrary, low expression levels were found in intestine, heart, gill, and kidney. Both EGCG doses significantly decreased hepatic HMGCoAR mRNA levels 180 min post-injection. HMGCoAR was also significantly down-regulated at 90 min after injection in fish treated with the highest dose of EGCG. Our results demonstrate that hepatic HMGCoAR gene expression is acutely responsive to short-term EGCG exposure in goldfish. This finding suggests a potential role of EGCG in transcriptional regulation of the rate-limiting enzyme in cholesterol synthesis.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy.
| |
Collapse
|
5
|
|
6
|
Sonawane PJ, Sahu BS, Sasi BK, Geedi P, Lenka G, Mahapatra NR. Functional promoter polymorphisms govern differential expression of HMG-CoA reductase gene in mouse models of essential hypertension. PLoS One 2011; 6:e16661. [PMID: 21304971 PMCID: PMC3031630 DOI: 10.1371/journal.pone.0016661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 01/10/2011] [Indexed: 11/18/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A [HMG-CoA] reductase gene (Hmgcr) is a susceptibility gene for essential hypertension. Sequencing of the Hmgcr locus in genetically hypertensive BPH (blood pressure high), genetically hypotensive BPL (blood pressure low) and genetically normotensive BPN (blood pressure normal) mice yielded a number of single nucleotide polymorphisms (SNPs). BPH/BPL/BPN Hmgcr promoter-luciferase reporter constructs were generated and transfected into liver HepG2, ovarian CHO, kidney HEK-293 and neuronal N2A cells for functional characterization of the promoter SNPs. The BPH-Hmgcr promoter showed significantly less activity than the BPL-Hmgcr promoter under basal as well as nicotine/cholesterol-treated conditions. This finding was consistent with lower endogenous Hmgcr expression in liver and lower plasma cholesterol in BPH mice. Transfection experiments using 5′-promoter deletion constructs (strategically made to assess the functional significance of each promoter SNP) and computational analysis predicted lower binding affinities of transcription factors c-Fos, n-Myc and Max with the BPH-promoter as compared to the BPL-promoter. Corroboratively, the BPH promoter-luciferase reporter construct co-transfected with expression plasmids of these transcription factors displayed less pronounced augmentation of luciferase activity than the BPL construct, particularly at lower amounts of transcription factor plasmids. Electrophoretic mobility shift assays also showed diminished interactions of the BPH promoter with HepG2 nuclear proteins. Taken together, this study provides mechanistic basis for the differential Hmgcr expression in these mouse models of human essential hypertension and have implications for better understanding the role of this gene in regulation of blood pressure.
Collapse
Affiliation(s)
- Parshuram J. Sonawane
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Bhavani S. Sahu
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Binu K. Sasi
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Parimala Geedi
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Govinda Lenka
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Nitish R. Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
- * E-mail:
| |
Collapse
|
7
|
Xu J, Lecanu L, Tan M, Greeson J, Papadopoulos V. Identification of a benzamide derivative that inhibits stress-induced adrenal corticosteroid synthesis. Molecules 2009; 14:3392-410. [PMID: 19783933 PMCID: PMC6254727 DOI: 10.3390/molecules14093392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 08/14/2009] [Accepted: 09/01/2009] [Indexed: 11/30/2022] Open
Abstract
Elevated serum glucocorticoid levels contribute to the progression of many diseases, including depression, Alzheimer’s disease, hypertension, and acquired immunodeficiency syndrome. Here we show that the benzamide derivative N-[2-(4-cyclopropanecarbonyl-3-methyl-piperazin-1-yl)-1-(tert-butyl-1H-indol-3-yl-methyl)-2-oxo-ethyl]-4-nitrobenzamide (SP-10) inhibits dibutyryl cyclic AMP (dbcAMP)-induced corticosteroid synthesis in a dose-dependent manner in Y-1 adrenal cortical mouse tumor cells, without affecting basal steroid synthesis and reduced stress-induced corticosterone increases in rats without affecting the physiological levels of the steroid in blood. SP-10 did not affect cholesterol transport and metabolism by the mitochondria but was unexpectedly found to increase 3-hydroxy-3-methylglutaryl-coenzyme A, low density lipoprotein receptor, and scavenger receptor class B type I (SR-BI) expression. However, it also markedly reduced dbcAMP-induced NBD-cholesterol uptake, suggesting that this is a compensatory mechanism aimed at maintaining cholesterol levels. SP-10 also induced a redistribution of filamentous (F-) and monomeric (G-) actin, leading to decreased actin levels in the submembrane cytoskeleton suggesting that SP-10-induced changes in actin distribution might prevent the formation of microvilli– cellular structures required for SR-BI-mediated cholesterol uptake in adrenal cells.
Collapse
Affiliation(s)
- Jing Xu
- Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; E-mails: (J.X.); (M.T.)
| | - Laurent Lecanu
- Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; E-mails: (J.X.); (M.T.)
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, H3G 1A4, Canada; E-mail: (L.L.)
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Matthew Tan
- Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; E-mails: (J.X.); (M.T.)
| | - Janet Greeson
- Samaritan Pharmaceuticals, Las Vegas, NV 89109, USA; E-mail: (J.G.)
| | - Vassilios Papadopoulos
- Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; E-mails: (J.X.); (M.T.)
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, H3G 1A4, Canada; E-mail: (L.L.)
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Author to whom correspondence should be addressed; E-mail: ; Tel.: +514 934 1934 ext. 44580; Fax: +514 934 8439
| |
Collapse
|
8
|
Strizki J. Targeting HIV attachment and entry for therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:93-120. [PMID: 18086410 DOI: 10.1016/s1054-3589(07)56004-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Julie Strizki
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| |
Collapse
|
9
|
Abstract
The need for new classes of antiretroviral drugs has become apparent because of increasing concern about the long-term toxic effects of existing drugs, the need to combat HIV-1 variants that are resistant to treatment, and the frequency of treatment change in drug-experienced patients. Currently, most regimens are combinations of inhibitors of two viral enzymes--reverse transcriptase and protease. Nevertheless, several steps in the HIV replication cycle are potential targets for intervention. These steps can be divided into entry steps, in which viral envelope glycoproteins and their receptors are involved, and postentry steps, involving viral accessory gene products and the cellular proteins with which they interact. New treatment options target viral entry into the cell. These treatments include the HIV fusion inhibitor enfuvirtide, and new HIV coreceptor antagonists in advanced stages of clinical development or in different stages of preclinical development. Here, we review the development of new HIV entry inhibitors, their performance in clinical trials, and their possible role in anti-HIV therapy.
Collapse
Affiliation(s)
- José A Esté
- Retrovirology Laboratory IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | | |
Collapse
|
10
|
Harvey PW, Everett DJ, Springall CJ. Adrenal toxicology: a strategy for assessment of functional toxicity to the adrenal cortex and steroidogenesis. J Appl Toxicol 2007; 27:103-15. [PMID: 17265431 DOI: 10.1002/jat.1221] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The adrenal is the most common toxicological target organ in the endocrine system in vivo and yet it is neglected in regulatory endocrine disruption screening and testing. There has been a recent marked increase in interest in adrenal toxicity, but there are no standardised approaches for assessment. Consequently, a strategy is proposed to evaluate adrenocortical toxicity. Human adrenal conditions are reviewed and adrenocortical suppression, known to have been iatrogenically induced leading to Addisonian crisis and death, is identified as the toxicological hazard of most concern. The consequences of inhibition of key steroidogenic enzymes and the possible toxicological modulation of other adrenal conditions are also highlighted. The proposed strategy involves an in vivo rodent adrenal competency test based on ACTH challenge to specifically examine adrenocortical suppression. The H295R human adrenocortical carcinoma cell line is also proposed to identify molecular targets, and is useful for measuring steroids, enzymes or gene expression. Hypothalamo-pituitary-adrenal endocrinology relevant to rodent and human toxicology is reviewed (with an emphasis on multi-endocrine axis effects on the adrenal and also how the adrenal affects a variety of other hormones) and the endocrinology of the H295R cell line is also described. Chemicals known to induce adrenocortical toxicity are reviewed and over 60 examples of compounds and their confirmed steroidogenic targets are presented, with much of this work published very recently using H295R cell systems. In proposing a strategy for adrenocortical toxicity assessment, the outlined techniques will provide hazard assessment data but it will be regulatory agencies that must consider the significance of such data in risk extrapolation models. The cases of etomindate and aminoglutethimide induced adrenal suppression are clearly documented examples of iatrogenic adrenal toxicity in humans. Environmentally, sentinel species, such as fish, have also shown evidence of adrenal endocrine disruption attributed to exposure to chemicals. The extent of human sub-clinical adrenal effects from environmental chemical exposures is unknown, and the extent to which environmental chemicals may act as a contributory factor to human adrenal conditions following chronic low-level exposures will remain unknown unless purposefully studied.
Collapse
Affiliation(s)
- Philip W Harvey
- Covance Laboratories UK Ltd, Toxicology Department, Otley Road, Harrogate, North Yorkshire, UK HG3 1PY.
| | | | | |
Collapse
|
11
|
Lecanu L, Yao W, Piechot A, Greeson J, Tzalis D, Papadopoulos V. Identification, design, synthesis, and pharmacological activity of (4-ethyl-piperazin-1-yl)-phenylmethanone derivatives with neuroprotective properties against beta-amyloid-induced toxicity. Neuropharmacology 2005; 49:86-96. [PMID: 15992583 DOI: 10.1016/j.neuropharm.2005.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 01/28/2005] [Accepted: 01/31/2005] [Indexed: 11/24/2022]
Abstract
In search of novel therapeutic approaches for Alzheimer's disease (AD), we report herein the identification, design, synthesis, and pharmacological activity of (4-ethyl-piperaz-1-yl)-phenylmethanone derivatives with neuroprotective properties against beta-amyloid-induced toxicity. (4-ethyl-piperaz-1-yl)-phenylmethanone is a common substructure shared by molecules isolated from plants of the Asteraceae genus, traditionally used as restorative of lost or declining mental functions. (4-Ethyl-piperaz-1-yl)-phenylmethanone displayed strong neuroprotective properties against Abeta1-42 and reversed Abeta1-42-induced ATP depletion on neuronal cells, suggesting a mitochondrial site of action. Abeta1-42 has been described to induce a hyperactivity of the glutamate network in neuronal cells. (4-Ethyl-piperaz-1-yl)-phenylmethanone also inhibited the neurotoxic effect that glutamate displayed on PC12 cells, suggesting that the reduction of glutamate-induced neurotoxicity may be one of the mechanisms by which this compound exerts its neuroprotective properties against the deleterious effects of the Abeta1-42. These data suggest that the identified (4-ethyl-piperaz-1-yl)-phenylmethanone chemical entity exerts neuroprotective properties and may serve as a lead compound for the development of novel therapies for AD.
Collapse
Affiliation(s)
- Laurent Lecanu
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lecanu L, Wenguo Y, Xu J, Greeson J, Papadopoulos V. Local anesthetic procaine protects rat pheochromocytoma PC12 cells against beta-amyloid-induced neurotoxicity. Pharmacology 2005; 74:65-78. [PMID: 15687733 DOI: 10.1159/000083705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 12/06/2004] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia occurring in elderly. We report herein the neuroprotective properties of procaine and other anesthetic agents against beta-amyloid-induced neurotoxicity. Procaine displayed strong neuroprotective properties against the amyloid peptide Abeta(1-42) and preserved Abeta(1-42)-induced ATP depletion on rat pheochromocytoma PC12 cells. Procaine also inhibited the neurotoxic effect that glutamate displayed on PC12 cells, suggesting that the reduction of glutamate-induced neurotoxicity may be the mechanism by which these compounds exert their 'antiamyloid' effects. In search of a mechanism of action we observed that procaine is a ligand for the sigma1 receptor, a protein which ligands have been shown to protect mitochondrial function and to exert antidepressant properties. Procaine binds also to muscarinic receptors but the true meaning of this feature needs to be clarified. In conclusion, these data suggest that procaine exerts neuroprotective properties and may serve either as a treatment for AD or as a starting point for the development of novel therapies for AD.
Collapse
Affiliation(s)
- Laurent Lecanu
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | | | |
Collapse
|
13
|
Gornati R, Papis E, Rimoldi S, Chini V, Terova G, Prati M, Saroglia M, Bernardini G. Molecular markers for animal biotechnology: sea bass (Dicentrarchus labrax, L.) HMG-CoA reductase mRNA. Gene 2004; 344:299-305. [PMID: 15656995 DOI: 10.1016/j.gene.2004.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/13/2004] [Accepted: 11/05/2004] [Indexed: 10/26/2022]
Abstract
Modern technologies may improve fish production and quality and, at the same time, reduce environmental impact with benefits on the public perception of the industry. To be economically profitable, these modern technologies request an increase of rearing density that, however, could affect fish welfare. With the aim to search for molecular biomarkers to describe fish welfare, we have recently compared gene expression of sea bass farmed at different population densities by differential display obtaining six bands differentially expressed. In this paper, we have cloned the mRNA corresponding to one of those differentially expressed bands obtaining a 3860-bp sequence with an ORF of 2664 bp. Its virtual translation originated a 887-aa polypeptide that, by comparison with the other sequences available in the public data bases, resulted to be the 3-hydroxil-3-methyl-glutaryl coenzyme A reductase (HMGCR). In sea bass, as for the other species, the N- and C-terminus portions are the most conserved and are linked by an hydrophilic region that appears to be quite variable. Due to its role in the synthesis of cholesterol, HMGCR mRNA could be a good biomarker for detecting fish welfare. For this reason, we also followed, by real-time PCR, its expression after crowding stress comparing it with mRNA levels of HSP 70 and 90: HMGCR mRNA resulted highly expressed in the fishes farmed at 100 kg/m(3).
Collapse
Affiliation(s)
- Rosalba Gornati
- Dipartimento di Biotecnologie e Scienze Molecolari, Università dell'Insubria, 3 Via Dunant, I-21100 Varese, Italy.
| | | | | | | | | | | | | | | |
Collapse
|