1
|
LeVine DN, Goggs R, Kohn B, Mackin AJ, Kidd L, Garden OA, Brooks MB, Eldermire ERB, Abrams‐Ogg A, Appleman EH, Archer TM, Bianco D, Blois SL, Brainard BM, Callan MB, Fellman CL, Haines JM, Hale AS, Huang AA, Lucy JM, O'Marra SK, Rozanski EA, Thomason JM, Walton JE, Wilson HE. ACVIM consensus statement on the treatment of immune thrombocytopenia in dogs and cats. J Vet Intern Med 2024; 38:1982-2007. [PMID: 38779941 PMCID: PMC11256181 DOI: 10.1111/jvim.17079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
Management of immune thrombocytopenia (ITP) in dogs and cats is evolving, but there are no evidence-based guidelines to assist clinicians with treatment decisions. Likewise, the overall goals for treatment of ITP have not been established. Immunosuppressive doses of glucocorticoids are the first line treatment, but optimal treatment regimens beyond glucocorticoids remain uncertain. Additional options include secondary immunosuppressive drugs such as azathioprine, modified cyclosporine, and mycophenolate mofetil, usually selected based on clinician preference. Vincristine, human IV immunoglobulin (hIVIg), and transfusion of platelet or red blood cell-containing products are often used in more severe cases. Splenectomy and thrombopoietin receptor agonists are usually reserved for refractory cases, but when and in which patient these modalities should be employed is under debate. To develop evidence-based guidelines for individualized treatment of ITP patients, we asked 20 Population Intervention Comparison Outcome (PICO) format questions. These were addressed by 17 evidence evaluators using a literature pool of 288 articles identified by a structured search strategy. Evidence evaluators, using panel-designed templates and data extraction tools, summarized evidence and created guideline recommendations. These were integrated by treatment domain chairs and then refined by iterative Delphi survey review to reach consensus on the final guidelines. In addition, 19 non-PICO questions covering scenarios in which evidence was lacking or of low quality were answered by expert opinion using iterative Delphi surveys with panelist integration and refinement. Commentary was solicited from multiple relevant professional organizations before finalizing the consensus. The rigorous consensus process identified few comparative treatment studies, highlighting many areas of ITP treatment requiring additional studies. This statement is a companion manuscript to the ACVIM Consensus Statement on the Diagnosis of Immune Thrombocytopenia in Dogs and Cats.
Collapse
Affiliation(s)
- Dana N. LeVine
- Department of Clinical Sciences, College of Veterinary MedicineAuburn UniversityAuburnAlabamaUSA
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Barbara Kohn
- Small Animal Clinic, School of Veterinary MedicineFreie Universität BerlinBerlinGermany
| | - Andrew J. Mackin
- Department of Clinical Sciences, College of Veterinary MedicineMississippi State UniversityMississippi StateMississippiUSA
| | - Linda Kidd
- Linda Kidd Veterinary Internal Medicine ConsultingCarlsbadCaliforniaUSA
| | - Oliver A. Garden
- School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Marjory B. Brooks
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Erin R. B. Eldermire
- Flower‐Sprecher Veterinary Library, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Anthony Abrams‐Ogg
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | | | | | - Domenico Bianco
- College of Veterinary MedicineWestern University of Health SciencesPomonaCaliforniaUSA
| | - Shauna L. Blois
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Benjamin M. Brainard
- Department of Small Animal Medicine and Surgery, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Mary Beth Callan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Claire L. Fellman
- Department of Clinical Sciences, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachusettsUSA
| | - Jillian M. Haines
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineWashington State UniversityPullmanWashingtonUSA
| | | | | | | | - Shana K. O'Marra
- Northwest Veterinary Critical Care ServicesVancouverWashingtonUSA
| | - Elizabeth A. Rozanski
- Department of Clinical Sciences, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachusettsUSA
| | - John M. Thomason
- Department of Clinical Sciences, College of Veterinary MedicineMississippi State UniversityMississippi StateMississippiUSA
| | - Jenny E. Walton
- Veterinary Apheresis Service UKWashingtonTyne and WearUnited Kingdom
| | - Helen E. Wilson
- Langford VetsUniversity of BristolLangfordSomersetUnited Kingdom
| |
Collapse
|
2
|
Glucocorticoids, Cyclosporine, Azathioprine, Chlorambucil, and Mycophenolate in Dogs and Cats. Vet Clin North Am Small Anim Pract 2022; 52:797-817. [DOI: 10.1016/j.cvsm.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Lautz LS, Jeddi MZ, Girolami F, Nebbia C, Dorne JLCM. Metabolism and pharmacokinetics of pharmaceuticals in cats (Felix sylvestris catus) and implications for the risk assessment of feed additives and contaminants. Toxicol Lett 2020; 338:114-127. [PMID: 33253781 DOI: 10.1016/j.toxlet.2020.11.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/25/2023]
Abstract
In animal health risk assessment, hazard characterisation of feed additives has been often using the default uncertainty factor (UF) of 100 to translate a no-observed-adverse-effect level in test species (rat, mouse, dog, rabbit) to a 'safe' level of chronic exposure in farm and companion animal species. Historically, both 10-fold factors have been further divided to include chemical-specific data in both dimensions when available. For cats (Felis Sylvestris catus), an extra default UF of 5 is applied due to the species' deficiency in particularly glucuronidation and glycine conjugation. This paper aims to assess the scientific basis and validity of the UF for inter-species differences in kinetics (4.0) and the extra UF applied for cats through a comparison of kinetic parameters between rats and cats for 30 substrates of phase I and phase II metabolism. When the parent compound undergoes glucuronidation the default factor of 4.0 is exceeded, with exceptions for zidovudine and S-carprofen. Compounds that were mainly renally excreted did not exceed the 4.0-fold default. Mixed results were obtained for chemicals which are metabolised by CYP3A in rats. When chemicals were administered intravenously the 4.0-fold default was not exceeded with the exception of clomipramine, lidocaine and alfentanil. The differences seen after oral administration might be due to differences in first-pass metabolism and bioavailability. Further work is needed to further characterise phase I, phase II enzymes and transporters in cats to support the development of databases and in silico models to support hazard characterisation of chemicals particularly for feed additives.
Collapse
Affiliation(s)
- L S Lautz
- Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - M Z Jeddi
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno, 1A, 43126 Parma, Italy
| | - F Girolami
- University of Torino, Department of Veterinary Sciences, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - C Nebbia
- University of Torino, Department of Veterinary Sciences, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - J L C M Dorne
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno, 1A, 43126 Parma, Italy.
| |
Collapse
|
4
|
Lawrence J, Cameron D, Argyle D. Species differences in tumour responses to cancer chemotherapy. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0233. [PMID: 26056373 DOI: 10.1098/rstb.2014.0233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite advances in chemotherapy, radiotherapy and targeted drug development, cancer remains a disease of high morbidity and mortality. The treatment of human cancer patients with chemotherapy has become commonplace and accepted over the past 100 years. In recent years, and with a similar incidence of cancer to people, the use of cancer chemotherapy drugs in veterinary patients such as the dog has also become accepted clinical practice. The poor predictability of tumour responses to cancer chemotherapy drugs in rodent models means that the standard drug development pathway is costly, both in terms of money and time, leading to many drugs failing in Phase I and II clinical trials. This has led to the suggestion that naturally occurring cancers in pet dogs may offer an alternative model system to inform rational drug development in human oncology. In this review, we will explore the species variation in tumour responses to conventional chemotherapy and highlight our understanding of the differences in pharmacodynamics, pharmacokinetics and pharmacogenomics between humans and dogs. Finally, we explore the potential hurdles that need to be overcome to gain the greatest value from comparative oncology studies.
Collapse
Affiliation(s)
- Jessica Lawrence
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - David Cameron
- University of Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh EH4 2LF, UK
| | - David Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush EH25 9RG, UK
| |
Collapse
|
5
|
Zhang L, Hatzakis E, Nichols RG, Hao R, Correll J, Smith PB, Chiaro CR, Perdew GH, Patterson AD. Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8067-77. [PMID: 26023891 PMCID: PMC4890155 DOI: 10.1021/acs.est.5b01389] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) was assessed using global (1)H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolite profiling of extracts obtained from serum and liver. (1)H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography coupled with mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA, and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure.
Collapse
Affiliation(s)
- Limin Zhang
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Emmanuel Hatzakis
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Robert G. Nichols
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ruixin Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jared Correll
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Philip B. Smith
- Metabolomics Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Christopher R. Chiaro
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Gary H. Perdew
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Andrew D. Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
6
|
Feline drug metabolism and disposition: pharmacokinetic evidence for species differences and molecular mechanisms. Vet Clin North Am Small Anim Pract 2014; 43:1039-54. [PMID: 23890237 DOI: 10.1016/j.cvsm.2013.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although it is widely appreciated that cats respond differently to certain drugs compared with other companion animal species, the causes of these differences are poorly understood. This article evaluates published evidence for altered drug effects in cats, focusing on pharmacokinetic differences between cats, dogs, and humans, and the molecular mechanisms underlying these differences. More work is needed to better understand drug metabolism and disposition differences in cats, thereby enabling more rational prescribing of existing medications, and the development of safer drugs for this species.
Collapse
|
7
|
Abstract
Treatment of immune-mediated disease in dogs and cats continues to evolve as new therapies are introduced or adapted from human medicine. Glucocorticoids remain the first-line therapy for many of the immune-mediated or inflammatory diseases of cats and dogs. The focus of this article is to provide an update on some of the common immunosuppressive therapies used in small animal veterinary medicine. The goals of therapy are to induce disease remission through the inhibition of inflammation and the modulation of lymphocyte function.
Collapse
Affiliation(s)
- Katrina R Viviano
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
8
|
Abstract
Pharmacogenomics is the study of the impact of genetic variation on drug effects, with the ultimate goal of achieving "personalised medicine". Since the completion of the Human Genome Project, great strides have been made towards the goal of personalised dosing of drugs in people, as exemplified by the development of gene-guided dosing of the anticoagulant drug, warfarin. Although the pharmacogenomics of domestic animals is still at an early stage of development, there is great potential for advances in the coming years as the direct result of complete genome sequences currently being derived for many of the species of significance to veterinary and comparative medicine. This sequence information is being used to discover sequence variants in candidate genes associated with altered drug response, as well as to develop whole genome high density single nucleotide polymorphism arrays for genotype-phenotype linkage analysis. This review summarises the current state of veterinary pharmacogenomics research, including drug response variability phenotypes with either known genetic aetiology or strong circumstantial evidence for genetic involvement. Polymorphisms and rarer gene variants affecting drug disposition (pharmacokinetics) and drug effect (pharmacodynamics) are discussed. In addition to providing the veterinary clinician with useful information for the practise of therapeutics, it is envisaged that the increasing knowledge base will also provide a resource for individuals involved in veterinary and comparative biomedical research.
Collapse
Affiliation(s)
- Carrie M Mosher
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
9
|
Salavaggione OE, Wang L, Wiepert M, Yee VC, Weinshilboum RM. Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics. Pharmacogenet Genomics 2006; 15:801-15. [PMID: 16220112 DOI: 10.1097/01.fpc.0000174788.69991.6b] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thiopurine S-methyltransferase (TPMT) catalyses the S-methylation of thiopurine drugs. Genetic polymorphisms for TPMT are a major factor responsible for large individual variations in thiopurine toxicity and therapeutic effect. The present study investigated the functional effects of human TPMT variant alleles that alter the encoded amino acid sequence of the enzyme, TPMT*2, *3A, *3B, *3C and *5 to *13. After expression in COS-1 cells and correction for transfection efficiency, allozymes encoded by these alleles displayed levels of activity that varied from virtually undetectable (*3A,*3B and *5) to 98% (*7) of that observed for the wild-type allele. Although some allozymes had significant elevations in apparent Km values for 6-mercaptopurine and S-adenosyl-L-methionine (i.e. the two cosubstrates for the reaction), the level of enzyme protein was the major factor responsible for variation in activity. Quantitative Western blot analysis demonstrated that the level of enzyme protein correlated closely with level of activity for all allozymes except TPMT*5. Furthermore, protein levels correlated with rates of TPMT degradation. TPMT amino acid sequences were then determined for 16 non-human mammalian species and those sequences (plus seven reported previously, including two nonmammalian vertebrate species) were used to determine amino acid sequence conservation. Most human TPMT variant allozymes had alterations of residues that were highly conserved during vertebrate evolution. Finally, a human TPMT homology structural model was created on the basis of a Pseudomonas structure (the only TPMT structure solved to this time), and the model was used to infer the functional consequences of variant allozyme amino acid sequence alterations. These studies indicate that a common mechanism responsible for alterations in the activity of variant TPMT allozymes involves alteration in the level of enzyme protein due, at least in part, to accelerated degradation.
Collapse
Affiliation(s)
- Oreste E Salavaggione
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine-Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
10
|
Scheuermann TH, Keeler C, Hodsdon ME. Consequences of Binding an S-Adenosylmethionine Analogue on the Structure and Dynamics of the Thiopurine Methyltransferase Protein Backbone. Biochemistry 2004; 43:12198-209. [PMID: 15379558 DOI: 10.1021/bi0492556] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In humans, the enzyme thiopurine methyltransferase (TPMT) metabolizes 6-thiopurine (6-TP) medications, commonly used for immune suppression and for the treatment of hematopoietic malignancies. Genetic polymorphisms in the TPMT protein sequence accelerate intracellular degradation of the enzyme through an ubiquitylation and proteasomal-dependent pathway. Research has led to the hypothesis that these polymorphisms destabilize the native structure of TPMT, resulting in the formation of misfolded or partially unfolded states, which are subsequently recognized for intracellular degradation. Addition of the cosubstrate, S-adenosylmethionine (SAM), prevents degradation of the TPMT polymorphs in experimental assays, presumably by stabilizing the native structure. Using a bacterial orthologue of TPMT from Pseudomonas syringae, we have used NMR spectroscopy to describe the consequences of binding sinefungin, a SAM analogue, on the structure and dynamics of the TPMT protein backbone. NMR chemical shift mapping experiments localize sinefungin to a highly conserved site in classical methyltransferases. Distal chemical shift changes involving the presumed active site cover imply indirect conformational changes induced by sinefungin, which may play a role in substrate recognition or the catalytic mechanism. Analysis of protein backbone dynamics based on NMR relaxation reveals a combination of complementary effects. Whereas the peripheral, inserted structural elements of the TPMT topology are conformationally stabilized by the presence of sinefungin, a consistent increase in backbone mobility is observed for the central, conserved structural elements. The potential implications for the structural and dynamic effects of binding sinefungin for the catalytic mechanism of the enzyme and the stabilization of the degradation-susceptible TPMT polymorphs are discussed.
Collapse
Affiliation(s)
- Thomas H Scheuermann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|