1
|
Brill-Weil SG, Kramer PF, Yanez A, Clever FH, Zhang R, Khaliq ZM. Presynaptic GABA A receptors control integration of nicotinic input onto dopaminergic axons in the striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600616. [PMID: 39372741 PMCID: PMC11451734 DOI: 10.1101/2024.06.25.600616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Axons of dopaminergic neurons express gamma-aminobutyric acid type-A receptors (GABAARs) and nicotinic acetylcholine receptors (nAChRs) which are both independently positioned to shape striatal dopamine release. Using electrophysiology and calcium imaging, we investigated how interactions between GABAARs and nAChRs influence dopaminergic axon excitability. Direct axonal recordings showed that benzodiazepine application suppresses subthreshold axonal input from cholinergic interneurons (CINs). In imaging experiments, we used the first temporal derivative of presynaptic calcium signals to distinguish between direct- and nAChR-evoked activity in dopaminergic axons. We found that GABAAR antagonism with gabazine selectively enhanced nAChR-evoked axonal signals. Acetylcholine release was unchanged in gabazine suggesting that GABAARs located on dopaminergic axons, but not CINs, mediated this enhancement. Unexpectedly, we found that a widely used GABAAR antagonist, picrotoxin, inhibits axonal nAChRs and should be used cautiously for striatal circuit analysis. Overall, we demonstrate that GABAARs on dopaminergic axons regulate integration of nicotinic input to shape presynaptic excitability.
Collapse
Affiliation(s)
- Samuel G. Brill-Weil
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Paul F. Kramer
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Anthony Yanez
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Faye H. Clever
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Renshu Zhang
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Zayd M. Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
2
|
Terry AV, Jones K, Bertrand D. Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharmacol Res 2023; 191:106764. [PMID: 37044234 DOI: 10.1016/j.phrs.2023.106764] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that are widely distributed both pre- and post-synaptically in the mammalian brain. By modulating cation flux across cell membranes, neuronal nAChRs regulate neuronal excitability and the release of a variety of neurotransmitters to influence multiple physiologic and behavioral processes including synaptic plasticity, motor function, attention, learning and memory. Abnormalities of neuronal nAChRs have been implicated in the pathophysiology of neurologic disorders including Alzheimer's disease, Parkinson's disease, epilepsy, and Tourette´s syndrome, as well as psychiatric disorders including schizophrenia, depression, and anxiety. The potential role of nAChRs in a particular illness may be indicated by alterations in the expression of nAChRs in relevant brain regions, genetic variability in the genes encoding for nAChR subunit proteins, and/or clinical or preclinical observations where specific ligands showed a therapeutic effect. Over the past 25 years, extensive preclinical and some early clinical evidence suggested that ligands at nAChRs might have therapeutic potential for neurologic and psychiatric disorders. However, to date the only approved indications for nAChR ligands are smoking cessation and the treatment of dry eye disease. It has been argued that progress in nAChR drug discovery has been limited by translational gaps between the preclinical models and the human disease as well as unresolved questions regarding the pharmacological goal (i.e., agonism, antagonism or receptor desensitization) depending on the disease.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912.
| | - Keri Jones
- Educational Innovation Institute, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| |
Collapse
|
3
|
Kramer PF, Brill-Weil SG, Cummins AC, Zhang R, Camacho-Hernandez GA, Newman AH, Eldridge MAG, Averbeck BB, Khaliq ZM. Synaptic-like axo-axonal transmission from striatal cholinergic interneurons onto dopaminergic fibers. Neuron 2022; 110:2949-2960.e4. [PMID: 35931070 PMCID: PMC9509469 DOI: 10.1016/j.neuron.2022.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 12/09/2022]
Abstract
Transmission from striatal cholinergic interneurons (CINs) controls dopamine release through nicotinic acetylcholine receptors (nAChRs) on dopaminergic axons. Anatomical studies suggest that cholinergic terminals signal predominantly through non-synaptic volume transmission. However, the influence of cholinergic transmission on electrical signaling in axons remains unclear. We examined axo-axonal transmission from CINs onto dopaminergic axons using perforated-patch recordings, which revealed rapid spontaneous EPSPs with properties characteristic of fast synapses. Pharmacology showed that axonal EPSPs (axEPSPs) were mediated primarily by high-affinity α6-containing receptors. Remarkably, axEPSPs triggered spontaneous action potentials, suggesting that these axons perform integration to convert synaptic input into spiking, a function associated with somatodendritic compartments. We investigated the cross-species validity of cholinergic axo-axonal transmission by recording dopaminergic axons in macaque putamen and found similar axEPSPs. Thus, we reveal that synaptic-like neurotransmission underlies cholinergic signaling onto dopaminergic axons, supporting the idea that striatal dopamine release can occur independently of somatic firing to provide distinct signaling.
Collapse
Affiliation(s)
- Paul F Kramer
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel G Brill-Weil
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex C Cummins
- Laboratory of Neuropsychology, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renshu Zhang
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gisela A Camacho-Hernandez
- Medicinal Chemistry Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Amy H Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zayd M Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Castillo-Rolón D, Ramírez-Sánchez E, Arenas-López G, Garduño J, Hernández-González O, Mihailescu S, Hernández-López S. Nicotine Increases Spontaneous Glutamate Release in the Rostromedial Tegmental Nucleus. Front Neurosci 2021; 14:604583. [PMID: 33519359 PMCID: PMC7838497 DOI: 10.3389/fnins.2020.604583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/23/2020] [Indexed: 01/26/2023] Open
Abstract
The rostromedial tegmental nucleus (RMTg) is a bilateral structure localized in the brainstem and comprise of mainly GABAergic neurons. One of the main functions of the RMTg is to regulate the activity of dopamine neurons of the mesoaccumbens pathway. Therefore, the RMTg has been proposed as a modulator of the reward system and adaptive behaviors associated to reward learning. The RMTg receives an important glutamatergic input from the lateral habenula. Also, it receives cholinergic inputs from the laterodorsal and pedunculopontine tegmental nuclei. Previously, it was reported that nicotine increases glutamate release, evoked by electric stimulation, in the RMTg nucleus. However, the mechanisms by which nicotine induces this effect were not explored. In the present work, we performed electrophysiological experiments in brainstem slices to study the effect of nicotine on spontaneous excitatory postsynaptic currents recorded from immunocytochemically identified RMTg neurons. Also, we used calcium imaging techniques to explore the effects of nicotine on multiple RMTg neurons simultaneously. We found that nicotine promotes the persistent release of glutamate through the activation of α7 nicotinic acetylcholine receptors present on glutamatergic afferents and by a mechanism involving calcium release from intracellular stores. Through these mechanisms, nicotine increases the excitability and synchronizes the activity of RMTg neurons. Our results suggest that the RMTg nucleus mediates the noxious effects of the nicotine, and it could be a potential therapeutic target against tobacco addiction.
Collapse
Affiliation(s)
- Diego Castillo-Rolón
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Enrique Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gabina Arenas-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Julieta Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Omar Hernández-González
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Stefan Mihailescu
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Salvador Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
5
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
6
|
Anderson KR, Hoffman KM, Miwa JM. Modulation of cholinergic activity through lynx prototoxins: Implications for cognition and anxiety regulation. Neuropharmacology 2020; 174:108071. [PMID: 32298703 PMCID: PMC7785133 DOI: 10.1016/j.neuropharm.2020.108071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, USA.
| |
Collapse
|
7
|
Ma ZG, Jiang N, Huang YB, Ma XK, Brek Eaton J, Gao M, Chang YC, Lukas RJ, Whiteaker P, Neisewander J, Wu J. Cocaine potently blocks neuronal α 3β 4 nicotinic acetylcholine receptors in SH-SY5Y cells. Acta Pharmacol Sin 2020; 41:163-172. [PMID: 31399700 PMCID: PMC7471406 DOI: 10.1038/s41401-019-0276-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/23/2019] [Indexed: 02/05/2023] Open
Abstract
Cocaine is one of the most abused illicit drugs worldwide. It is well known that the dopamine (DA) transporter is its major target; but cocaine also acts on other targets including nicotinic acetylcholine receptors (nAChRs). In this study, we investigated the effects of cocaine on a special subtype of neuronal nAChR, α3β4-nAChR expressed in native SH-SY5Y cells. α3β4-nAChR-mediated currents were recorded using whole-cell recordings. Drugs were applied using a computer-controlled U-tube drug perfusion system. We showed that bath application of nicotine induced inward currents in a concentration-dependent manner with an EC50 value of 20 µM. Pre-treatment with cocaine concentration-dependently inhibited nicotine-induced current with an IC50 of 1.5 μM. Kinetic analysis showed that cocaine accelerated α3β4-nAChR desensitization, which caused a reduction of the amplitude of nicotine-induced currents. Co-application of nicotine and cocaine (1.5 μM) depressed the maximum response on the nicotine concentration-response curve without changing the EC50 value, suggesting a non-competitive mechanism. The cocaine-induced inhibition of nicotine response exhibited both voltage- and use-dependence, suggesting an open-channel blocking mechanism. Furthermore, intracellular application of GDP-βS (via recording electrode) did not affect cocaine-induced inhibition, suggesting that cocaine did not alter receptor internalization. Moreover, intracellular application of cocaine (30 µM) failed to alter the nicotine response. Finally, cocaine (1.5 μM) was unable to inhibit the nicotine-induced inward current in heterologous expressed α6/α3β2β3-nAChRs and α4β2-nAChRs expressed in human SH-EP1 cells. Collectively, our results suggest that cocaine is a potent blocker for native α3β4-nAChRs expressed in SH-SY5Y cells.
Collapse
Affiliation(s)
- Ze-Gang Ma
- Department of Physiology, Institute of Brain Science and Disorders, Medical College of Qingdao University, Qingdao, 266071, China
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Nan Jiang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuan-Bing Huang
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China
| | - Xiao-Kuang Ma
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Department of Physiology, Shantou University Medical College, Shantou, 515004, China
| | - Jason Brek Eaton
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ming Gao
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Yong-Chang Chang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Janet Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| | - Jie Wu
- Department of Physiology, Institute of Brain Science and Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China.
- Department of Physiology, Shantou University Medical College, Shantou, 515004, China.
| |
Collapse
|
8
|
Nunes EJ, Bitner L, Hughley SM, Small KM, Walton SN, Rupprecht LE, Addy NA. Cholinergic Receptor Blockade in the VTA Attenuates Cue-Induced Cocaine-Seeking and Reverses the Anxiogenic Effects of Forced Abstinence. Neuroscience 2019; 413:252-263. [PMID: 31271832 DOI: 10.1016/j.neuroscience.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023]
Abstract
Drug relapse after periods of abstinence is a common feature of substance abuse. Moreover, anxiety and other mood disorders are often co-morbid with substance abuse. Cholinergic receptors in the ventral tegmental area (VTA) are known to mediate drug-seeking and anxiety-related behavior in rodent models. However, it is unclear if overlapping VTA cholinergic mechanisms mediate drug relapse and anxiety-related behaviors associated with drug abstinence. We examined the effects of VTA cholinergic receptor blockade on cue-induced cocaine seeking and anxiety during cocaine abstinence. Male Sprague-Dawley rats were trained to self-administer intravenous cocaine (~0.5 mg/kg/infusion, FR1 schedule) for 10 days, followed by 14 days of forced abstinence. VTA infusion of the non-selective nicotinic acetylcholine receptor antagonist mecamylamine (0, 10, and 30 μg/side) or the non-selective muscarinic receptor antagonist scopolamine (0, 2.4 and 24 μg /side) significantly decreased cue-induced cocaine seeking. In cocaine naïve rats, VTA mecamylamine or scopolamine also led to dose-dependent increases in open arm time in the elevated plus maze (EPM). In contrast, rats that received I.V. cocaine, compared to received I.V. saline rats, displayed an anxiogenic response on day 14 of abstinence as reflected by decreased open arm time in the EPM. Furthermore, low doses of VTA mecamylamine (10 μg /side) or scopolamine (2.4 μg /side), that did not alter EPM behavior in cocaine naive rats, were sufficient to reverse the anxiogenic effects of cocaine abstinence. Together, these data point to an overlapping role of VTA cholinergic mechanisms to regulate relapse and mood disorder-related responses during cocaine abstinence.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Lillian Bitner
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shannon M Hughley
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Keri M Small
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Sofia N Walton
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Laura E Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
9
|
Gao F, Chen D, Ma X, Sudweeks S, Yorgason JT, Gao M, Turner D, Eaton JB, McIntosh JM, Lukas RJ, Whiteaker P, Chang Y, Steffensen SC, Wu J. Alpha6-containing nicotinic acetylcholine receptor is a highly sensitive target of alcohol. Neuropharmacology 2019; 149:45-54. [PMID: 30710570 PMCID: PMC7323585 DOI: 10.1016/j.neuropharm.2019.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/01/2019] [Accepted: 01/17/2019] [Indexed: 02/05/2023]
Abstract
Alcohol use disorder (AUD) is a serious public health problem that results in tremendous social, legal and medical costs to society. Unlike other addictive drugs, there is no specific molecular target for ethanol (EtOH). Here, we report a novel molecular target that mediates EtOH effects at concentrations below those that cause legally-defined inebriation. Using patch-clamp recording of human α6*-nicotinic acetylcholine receptor (α6*-nAChR) function when heterologously expressed in SH-EP1 human epithelial cells, we found that 0.1-5 mM EtOH significantly enhances α6*-nAChR-mediated currents with effects that are dependent on both EtOH and nicotine concentrations. EtOH exposure increased both whole-cell current rising slope and decay constants. This EtOH modulation was selective for α6*-nAChRs since it did not affect α3β4-, α4β2-, or α7-nAChRs. In addition, 5 mM EtOH also increased the frequency and amplitude of dopaminergic neuron transients in mouse brain nucleus accumbens slices, that were blocked by the α6*-nAChR antagonist, α-conotoxin MII, suggesting a role for native α6*-nAChRs in low-dose EtOH effects. Collectively, our data suggest that α6*-nAChRs are sensitive targets mediating low-dose EtOH effects through a positive allosteric mechanism, which provides new insight into mechanisms involved in pharmacologically-relevant alcohol effects contributing to AUD.
Collapse
Affiliation(s)
- Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 51504, China; Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Dejie Chen
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA; Department of Neurology, Yunfu People's Hospital, Yunfu, Guangdong, 527300, China
| | - Xiaokuang Ma
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 51504, China; Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Sterling Sudweeks
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Jordan T Yorgason
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, 84602, USA
| | - Ming Gao
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Dharshaun Turner
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Jason Brek Eaton
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA 84108, USA
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, 84602, USA
| | - Jie Wu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 51504, China; Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA; Department of Neurology, Yunfu People's Hospital, Yunfu, Guangdong, 527300, China.
| |
Collapse
|
10
|
Miwa JM, Anderson KR, Hoffman KM. Lynx Prototoxins: Roles of Endogenous Mammalian Neurotoxin-Like Proteins in Modulating Nicotinic Acetylcholine Receptor Function to Influence Complex Biological Processes. Front Pharmacol 2019; 10:343. [PMID: 31114495 PMCID: PMC6502960 DOI: 10.3389/fphar.2019.00343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
The cholinergic system modulates many biological functions, due to the widespread distribution of cholinergic neuronal terminals, and the diffuse release of its neurotransmitter, acetylcholine. Several layers of regulation help to refine and control the scope of this excitatory neurotransmitter system. One such regulatory mechanism is imparted through endogenous toxin-like proteins, prototoxins, which largely control the function of nicotinic receptors of the cholinergic system. Prototoxins and neurotoxins share the distinct three finger toxin fold, highly effective as a receptor binding protein, and the former are expressed in the mammalian brain, immune system, epithelium, etc. Prototoxins and elapid snake neurotoxins appear to be related through gene duplication and divergence from a common ancestral gene. Protein modulators can provide a graded response of the cholinergic system, and within the brain, stabilize neural circuitry through direct interaction with nicotinic receptors. Understanding the roles of each prototoxin (e.g., lynx1, lynx2/lypd1, PSCA, SLURP1, SLURP2, Lypd6, lypd6b, lypdg6e, PATE-M, PATE-B, etc.), their binding specificity and unique expression profile, has the potential to uncover many fascinating cholinergic-dependent mechanisms in the brain. Each family member can provide a spatially restricted level of control over nAChR function based on its expression in the brain. Due to the difficulty in the pharmacological targeting of nicotinic receptors in the brain as a result of widespread expression patterns and similarities in receptor sequences, unique interfaces between prototoxin and nicotinic receptor could provide more specific targeting than nicotinic receptors alone. As such, this family is intriguing from a long-term therapeutic perspective.
Collapse
Affiliation(s)
- Julie M Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Kristin R Anderson
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Katie M Hoffman
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
11
|
Ma Z, Gao F, Larsen B, Gao M, Luo Z, Chen D, Ma X, Qiu S, Zhou Y, Xie J, Xi ZX, Wu J. Mechanisms of cannabinoid CB 2 receptor-mediated reduction of dopamine neuronal excitability in mouse ventral tegmental area. EBioMedicine 2019; 42:225-237. [PMID: 30952618 PMCID: PMC6491419 DOI: 10.1016/j.ebiom.2019.03.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/24/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We have recently reported that activation of cannabinoid type 2 receptors (CB2Rs) reduces dopamine (DA) neuron excitability in mouse ventral tegmental area (VTA). Here, we elucidate the underlying mechanisms. METHODS Patch-clamp recordings were performed in mouse VTA slices and dissociated single VTA DA neurons. FINDINGS Using cell-attached recording in VTA slices, bath-application of CB2R agonists (JWH133 or five other CB2R agonists) significantly reduced VTA DA neuron action potential (AP) firing rate. Under the patch-clamp whole-cell recording model, JWH133 (10 μM) mildly reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) but not miniature inhibitory postsynaptic currents (mIPSCs). JWH133 also did not alter evoked EPSCs or IPSCs. In freshly dissociated VTA DA neurons, JWH133 reduced AP firing rate, delayed AP initiation and enhanced AP after-hyperpolarization. In voltage-clamp recordings, JWH133 (1 μM) enhanced M-type K+ currents and this effect was absent in CB2-/- mice and abolished by co-administration of a selective CB2R antagonist (10 μM, AM630). CB2R-mediated inhibition in VTA DA neuron firing can be mimicked by M-current opener (10 μM retigabine) and blocked by M-current blocker (30 μM XE991). In addition, enhancement of neuronal cAMP by forskolin (10 μM) reduced M-current and increased DA neuron firing rate. Finally, pharmacological block of synaptic transmission by NBQX (10 μM), D-APV (50 μM) and picrotoxin (100 μM) in VTA slices failed to prevent CB2R-mediated inhibition, while intracellular infusion of guanosine 5'-O-2-thiodiphosphate (600 μM, GDP-β-S) through recording electrode to block postsynaptic G-protein function prevented JWH133-induced reduction in AP firing. INTERPRETATION Our results suggest that CB2Rs modulate VTA DA neuron excitability mainly through an intrinsic mechanism, including a CB2R-mediated reduction of intracellular cAMP, and in turn enhancement of M-type K+ currents. FUND: This research was supported by the Barrow Neuroscience Foundation, the BNI-BMS Seed Fund, and CNSF (81771437).
Collapse
Affiliation(s)
- Zegang Ma
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 210854, China; Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Brett Larsen
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Ming Gao
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Zhihua Luo
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 210854, China
| | - Dejie Chen
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurology, Yunfu People's Hospital, Yunfu, Guangdong 527300, China
| | - Xiaokuang Ma
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 210854, China; Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Yu Zhou
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Jie Wu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 210854, China; Department of Neurology, Yunfu People's Hospital, Yunfu, Guangdong 527300, China.
| |
Collapse
|
12
|
Steffensen SC, Shin SI, Nelson AC, Pistorius SS, Williams SB, Woodward TJ, Park HJ, Friend L, Gao M, Gao F, Taylor DH, Foster Olive M, Edwards JG, Sudweeks SN, Buhlman LM, Michael McIntosh J, Wu J. α6 subunit-containing nicotinic receptors mediate low-dose ethanol effects on ventral tegmental area neurons and ethanol reward. Addict Biol 2018; 23:1079-1093. [PMID: 28901722 DOI: 10.1111/adb.12559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/02/2023]
Abstract
Dopamine (DA) neuron excitability is regulated by inhibitory GABAergic synaptic transmission and modulated by nicotinic acetylcholine receptors (nAChRs). The aim of this study was to evaluate the role of α6 subunit-containing nAChRs (α6*-nAChRs) in acute ethanol effects on ventral tegmental area (VTA) GABA and DA neurons. α6*-nAChRs were visualized on GABA terminals on VTA GABA neurons, and α6*-nAChR transcripts were expressed in most DA neurons, but only a minority of VTA GABA neurons from GAD67 GFP mice. Low concentrations of ethanol (1-10 mM) enhanced GABAA receptor (GABAA R)-mediated spontaneous and evoked inhibition with blockade by selective α6*-nAChR antagonist α-conotoxins (α-Ctxs) and lowered sensitivity in α6 knock-out (KO) mice. Ethanol suppression of VTA GABA neuron firing rate in wild-type mice in vivo was significantly reduced in α6 KO mice. Ethanol (5-100 mM) had no effect on optically evoked GABAA R-mediated inhibition of DA neurons, and ethanol enhancement of VTA DA neuron firing rate at high concentrations was not affected by α-Ctxs. Ethanol conditioned place preference was reduced in α6 KO mice compared with wild-type controls. Taken together, these studies indicate that relatively low concentrations of ethanol act through α6*-nAChRs on GABA terminals to enhance GABA release onto VTA GABA neurons, in turn to reduce GABA neuron firing, which may lead to VTA DA neuron disinhibition, suggesting a possible mechanism of action of alcohol and nicotine co-abuse.
Collapse
Affiliation(s)
- Scott C. Steffensen
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Samuel I. Shin
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Ashley C. Nelson
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | | | | | - Taylor J. Woodward
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Hyun Jung Park
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Lindsey Friend
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix AZ USA
| | - Fenfei Gao
- Department of Neurobiology, Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix AZ USA
| | | | - M. Foster Olive
- School of Psychology; Arizona State University; Tempe AZ USA
| | - Jeffrey G. Edwards
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Sterling N. Sudweeks
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Lori M. Buhlman
- Biomedical Sciences Program; Midwestern University; Glendale AZ USA
| | - J. Michael McIntosh
- Departments of Psychiatry and Biology; University of Utah; Salt Lake City UT USA
| | - Jie Wu
- Department of Neurobiology, Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix AZ USA
| |
Collapse
|
13
|
Capó-Vélez CM, Delgado-Vélez M, Báez-Pagán CA, Lasalde-Dominicci JA. Nicotinic Acetylcholine Receptors in HIV: Possible Roles During HAND and Inflammation. Cell Mol Neurobiol 2018; 38:1335-1348. [PMID: 30008143 PMCID: PMC6133022 DOI: 10.1007/s10571-018-0603-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
Infection with the human immunodeficiency virus (HIV) remains a threat to global health. Since its discovery, many efforts have been directed at understanding the mechanisms and consequences of infection. Although there have been substantial advances since the advent of antiretroviral therapy, there are still complications that significantly compromise the health of infected patients, particularly, chronic inflammation and HIV-associated neurocognitive disorders (HAND). In this review, a new perspective is addressed in the field of HIV, where the alpha7 nicotinic acetylcholine receptor (α7-nAChR) is the protagonist. We comprehensively discuss the available evidence implicating α7-nAChRs in the context of HIV and provide possible explanations about its role in HAND and inflammation in both the central nervous system and the periphery.
Collapse
Affiliation(s)
- Coral M Capó-Vélez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA.,Molecular Sciences Research Center, San Juan, PR, 00926, USA
| | - Manuel Delgado-Vélez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA.,Molecular Sciences Research Center, San Juan, PR, 00926, USA
| | - Carlos A Báez-Pagán
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA.,Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, PO Box 23323, San Juan, PR, 00931, USA
| | - José A Lasalde-Dominicci
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA. .,Molecular Sciences Research Center, San Juan, PR, 00926, USA.
| |
Collapse
|
14
|
Zhang HY, Gao M, Shen H, Bi GH, Yang HJ, Liu QR, Wu J, Gardner EL, Bonci A, Xi ZX. Expression of functional cannabinoid CB 2 receptor in VTA dopamine neurons in rats. Addict Biol 2017; 22:752-765. [PMID: 26833913 DOI: 10.1111/adb.12367] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/23/2015] [Accepted: 12/11/2015] [Indexed: 12/23/2022]
Abstract
We have recently reported the expression of functional cannabinoid CB2 receptors (CB2 Rs) in midbrain dopamine (DA) neurons in mice. However, little is known whether CB2 Rs are similarly expressed in rat brain because significant species differences in CB2 R structures and expression are found. In situ hybridization and immunohistochemical assays detected CB2 gene and receptors in DA neurons of the ventral tegmental area (VTA), which was up-regulated in cocaine self-administration rats. Electrophysiological studies demonstrated that activation of CB2 Rs by JWH133 inhibited VTA DA neuronal firing in single dissociated neurons. Systemic administration of JWH133 failed to alter, while local administration of JWH133 into the nucleus accumbens inhibited cocaine-enhanced extracellular DA and i.v. cocaine self-administration. This effect was blocked by AM630, a selective CB2 R antagonist. These data suggest that CB2 Rs are expressed in VTA DA neurons and functionally modulate DA neuronal activities and cocaine self-administration behavior in rats.
Collapse
Affiliation(s)
- Hai-Ying Zhang
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
- Synaptic Plasticity Section; National Institute on Drug Abuse, Intramural Research Program; Baltimore MD 21224 USA
| | - Ming Gao
- Divisions of Neurology and Neurobiology; Barrow Neurological Institute, St. Joseph's Hospital and Medical Center; Phoenix AZ 85013 USA
| | - Hui Shen
- Synaptic Plasticity Section; National Institute on Drug Abuse, Intramural Research Program; Baltimore MD 21224 USA
| | - Guo-Hua Bi
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| | - Hong-Ju Yang
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| | - Qing-Rong Liu
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| | - Jie Wu
- Divisions of Neurology and Neurobiology; Barrow Neurological Institute, St. Joseph's Hospital and Medical Center; Phoenix AZ 85013 USA
| | - Eliot L. Gardner
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| | - Antonello Bonci
- Synaptic Plasticity Section; National Institute on Drug Abuse, Intramural Research Program; Baltimore MD 21224 USA
- Solomon H. Snyder Neuroscience Institute; Johns Hopkins University School of Medicine; Baltimore MD 21205 USA
- Department of Psychiatry; Johns Hopkins University School of Medicine; Baltimore MD 21205 USA
| | - Zheng-Xiong Xi
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| |
Collapse
|
15
|
Deflorio C, Blanchard S, Carisì MC, Bohl D, Maskos U. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons. FASEB J 2016; 31:828-839. [PMID: 27856558 DOI: 10.1096/fj.201600932r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/31/2016] [Indexed: 11/11/2022]
Abstract
Tobacco smoking is a public health problem, with ∼5 million deaths per year, representing a heavy burden for many countries. No effective therapeutic strategies are currently available for nicotine addiction, and it is therefore crucial to understand the etiological and pathophysiological factors contributing to this addiction. The neuronal α5 nicotinic acetylcholine receptor (nAChR) subunit is critically involved in nicotine dependence. In particular, the human polymorphism α5D398N corresponds to the strongest correlation with nicotine dependence risk found to date in occidental populations, according to meta-analysis of genome-wide association studies. To understand the specific contribution of this subunit in the context of nicotine addiction, an efficient screening system for native human nAChRs is needed. We have differentiated human induced pluripotent stem (iPS) cells into midbrain dopaminergic (DA) neurons and obtained a comprehensive characterization of these neurons by quantitative RT-PCR. The functional properties of nAChRs expressed in these human DA neurons, with or without the polymorphism in the α5 subunit, were studied with the patch-clamp electrophysiological technique. Our results in human DA neurons carrying the polymorphism in the α5 subunit showed an increase in EC50, indicating that, in the presence of the polymorphism, more nicotine or acetylcholine chloride is necessary to obtain the same effect. This human cell culturing system can now be used in drug discovery approaches to screen for compounds that interact specifically with human native and polymorphic nAChRs.-Deflorio, C., Blanchard, S., Carisì, M. C., Bohl, D., Maskos, U. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons.
Collapse
Affiliation(s)
- Cristina Deflorio
- Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, Institut Pasteur, Paris, France
| | - Stéphane Blanchard
- Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, Institut Pasteur, Paris, France
| | - Maria Carla Carisì
- Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, Institut Pasteur, Paris, France
| | - Delphine Bohl
- Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, Institut Pasteur, Paris, France.,Institut du Cerveau et de la Moelle Epinière, INSERM Unité 1127, CNRS, UMR 7225, Université Pierre et Marie Curie, Paris, France
| | - Uwe Maskos
- Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, Institut Pasteur, Paris, France; .,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 3731, Institut Pasteur, Paris, France; and
| |
Collapse
|
16
|
Zhong C, Talmage DA, Role LW. Live Imaging of Nicotine Induced Calcium Signaling and Neurotransmitter Release Along Ventral Hippocampal Axons. J Vis Exp 2015:e52730. [PMID: 26132461 DOI: 10.3791/52730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Sustained enhancement of axonal signaling and increased neurotransmitter release by the activation of pre-synaptic nicotinic acetylcholine receptors (nAChRs) is an important mechanism for neuromodulation by acetylcholine (ACh). The difficulty with access to probing the signaling mechanisms within intact axons and at nerve terminals both in vitro and in vivo has limited progress in the study of the pre-synaptic components of synaptic plasticity. Here we introduce a gene-chimeric preparation of ventral hippocampal (vHipp)-accumbens (nAcc) circuit in vitro that allows direct live imaging to analyze both the pre- and post-synaptic components of transmission while selectively varying the genetic profile of the pre- vs post-synaptic neurons. We demonstrate that projections from vHipp microslices, as pre-synaptic axonal input, form multiple, reliable glutamatergic synapses with post-synaptic targets, the dispersed neurons from nAcc. The pre-synaptic localization of various subtypes of nAChRs are detected and the pre-synaptic nicotinic signaling mediated synaptic transmission are monitored by concurrent electrophysiological recording and live cell imaging. This preparation also provides an informative approach to study the pre- and post-synaptic mechanisms of glutamatergic synaptic plasticity in vitro.
Collapse
Affiliation(s)
- Chongbo Zhong
- Department of Neurobiology and Behavior, Stony Brook University;
| | - David A Talmage
- Department of Pharmacological Science, Stony Brook University
| | - Lorna W Role
- Department of Neurobiology and Behavior, Stony Brook University
| |
Collapse
|
17
|
Shen J, Wu J. Nicotinic Cholinergic Mechanisms in Alzheimer's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:275-92. [PMID: 26472533 DOI: 10.1016/bs.irn.2015.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by increased accumulation of Aβ and degeneration of cholinergic signaling between basal forebrain and hippocampus. Nicotinic acetylcholine receptors (nAChRs) are important mediators of cholinergic signaling in modulation of learning and memory function. Accumulating lines of evidence indicate that a nAChR subtype, α7 receptor (α7-nAChR), plays an important role in modulations of excitatory neurotransmitter release, improvement of learning and memory ability, and enhancement of cognitive function. Importantly, the expression and function of α7-nAChRs is altered in the brain of AD animal models and AD patients, suggesting that this nAChR subtype participates in AD pathogenesis and may serve as a novel therapeutic target for AD treatment. However, the mechanisms underlying the role of α7-nAChRs in AD pathogenesis are very complex, and either neuroprotective effects or neurotoxic effects may occur through the α7-nAChRs. These effects depend on the levels of α7-nAChR expression and function, disease stages, or the use of α7-nAChR agonists, antagonists, or allosteric modulators. In this chapter, we summarize recent progresses in the roles of α7-nAChRs played in AD pathogenesis and therapy.
Collapse
Affiliation(s)
- Jianxin Shen
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jie Wu
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong, China; Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix Arizona, USA.
| |
Collapse
|
18
|
Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, Gardner EL, Wu J, Xi ZX. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci U S A 2014; 111:E5007-15. [PMID: 25368177 PMCID: PMC4246322 DOI: 10.1073/pnas.1413210111] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cannabinoid CB2 receptors (CB2Rs) have been recently reported to modulate brain dopamine (DA)-related behaviors; however, the cellular mechanisms underlying these actions are unclear. Here we report that CB2Rs are expressed in ventral tegmental area (VTA) DA neurons and functionally modulate DA neuronal excitability and DA-related behavior. In situ hybridization and immunohistochemical assays detected CB2 mRNA and CB2R immunostaining in VTA DA neurons. Electrophysiological studies demonstrated that activation of CB2Rs by JWH133 or other CB2R agonists inhibited VTA DA neuronal firing in vivo and ex vivo, whereas microinjections of JWH133 into the VTA inhibited cocaine self-administration. Importantly, all of the above findings observed in WT or CB1(-/-) mice are blocked by CB2R antagonist and absent in CB2(-/-) mice. These data suggest that CB2R-mediated reduction of VTA DA neuronal activity may underlie JWH133's modulation of DA-regulated behaviors.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Appetitive Behavior/drug effects
- Appetitive Behavior/physiology
- Cannabinoids/administration & dosage
- Cannabinoids/pharmacology
- Cocaine/administration & dosage
- Cocaine-Related Disorders/physiopathology
- Dopamine/physiology
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/physiology
- Feeding Behavior/drug effects
- Indoles/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microinjections
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neuroglia/metabolism
- RNA, Messenger/analysis
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/deficiency
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/physiology
- Reward
- Self Administration
- Spleen/cytology
- Spleen/metabolism
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/physiology
Collapse
Affiliation(s)
- Hai-Ying Zhang
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Ming Gao
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013
| | - Qing-Rong Liu
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Guo-Hua Bi
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Xia Li
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Hong-Ju Yang
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Eliot L Gardner
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Jie Wu
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013; Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004; and Department of Physiology, Shantou University Medical College, Shantou, Guangdong 210854, China
| | - Zheng-Xiong Xi
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224;
| |
Collapse
|
19
|
Maex R, Grinevich VP, Grinevich V, Budygin E, Bencherif M, Gutkin B. Understanding the role α7 nicotinic receptors play in dopamine efflux in nucleus accumbens. ACS Chem Neurosci 2014; 5:1032-40. [PMID: 25147933 PMCID: PMC4198061 DOI: 10.1021/cn500126t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
Neuronal nicotinic acetylcholine
receptors (NNRs) of the α7
subtype have been shown to contribute to the release of dopamine in
the nucleus accumbens. The site of action and the underlying mechanism,
however, are unclear. Here we applied a circuit modeling approach,
supported by electrochemical in vivo recordings, to clarify this issue.
Modeling revealed two potential mechanisms for the drop in accumbal
dopamine efflux evoked by the selective α7 partial agonist TC-7020.
TC-7020 could desensitize α7 NNRs located predominantly on dopamine
neurons or glutamatergic afferents to them or, alternatively, activate
α7 NNRs located on the glutamatergic afferents to GABAergic
interneurons in the ventral tegmental area. Only the model based on
desensitization, however, was able to explain the neutralizing effect
of coapplied PNU-120596, a positive allosteric modulator. According
to our results, the most likely sites of action are the preterminal
α7 NNRs controlling glutamate release from cortical afferents
to the nucleus accumbens. These findings offer a rationale for the
further investigation of α7 NNR agonists as therapy for diseases
associated with enhanced mesolimbic dopaminergic tone, such as schizophrenia
and addiction.
Collapse
Affiliation(s)
- Reinoud Maex
- Department
of Cognitive Sciences, École Normale Supérieure, Paris 75005, France
| | - Vladimir P. Grinevich
- Targacept Inc., Winston-Salem, North Carolina 27101, United States
- Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Valentina Grinevich
- Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Evgeny Budygin
- Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
- St. Petersburg State University, St. Petersburg 199034, Russia
| | | | - Boris Gutkin
- Department
of Cognitive Sciences, École Normale Supérieure, Paris 75005, France
- Center
for Cognition and Decision Making, National Research University Higher School of Economics, Moscow 101000, Russia
| |
Collapse
|
20
|
Kaur K, Kaushal S, Chopra SC. Varenicline for smoking cessation: A review of the literature. Curr Ther Res Clin Exp 2014; 70:35-54. [PMID: 24692831 DOI: 10.1016/j.curtheres.2009.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Smoking is the leading preventable risk to human health. Various agents have been used to promote smoking cessation, but none has had long-term efficacy. Varenicline, a new nicotinic ligand based on the structure of cytosine, was approved by the US Food amd Drug Administration for use as a smoking cessation aid. OBJECTIVES The aims of this review were to provide an overview on the mechanism of action and preclinical and clinical data of the new drug, varenicline, and to discuss the current and future impact of varenicline as a treatment for smoking cessation. METHODS MEDLINE, BIOSIS, and Google scholar databases were searched (March 1, 2007-July 1, 2008) using the terms varenicline, smoking cessation, and nicotinic receptors. Full-text articles in English were selected for reference, and articles presenting the mechanism of action, pharmacokinetics, and data from preclinical and clinical trials were included. RESULTS The initial literature search yielded 70 papers. A total of 20 articles fulfilled the inclusion criteria. Varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, inhibits dopaminergic activation produced by smoking and decreases the craving and withdrawal syndrome that accompanies cessation attempts. In Phase III clinical trials, the carbon monoxide-confirmed 4-week continuous abstinence rates were significantly higher with varenicline than with buproprion sustained release or placebo for weeks 9 through 12. Varenicline has been found to be well tolerated, with nausea being the most commonly reported (28.1%) adverse event. CONCLUSIONS Varenicline is the first drug for smoking cessation that has been found to have significant effectiveness in long-term relapse prevention (up to 52 weeks). Varenicline, with its unique profile of agonist and antagonist properties, increased cessation rates (both short- and long-term) compared with both placebo and bupropion sustained release.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Department of Pharmacology, Old Dayanand Medical College and Hospital, Ludhiana, India
| | - Sandeep Kaushal
- Department of Pharmacology, Old Dayanand Medical College and Hospital, Ludhiana, India
| | - Sarvesh C Chopra
- Department of Pharmacology, Old Dayanand Medical College and Hospital, Ludhiana, India
| |
Collapse
|
21
|
Mowrey DD, Liu Q, Bondarenko V, Chen Q, Seyoum E, Xu Y, Wu J, Tang P. Insights into distinct modulation of α7 and α7β2 nicotinic acetylcholine receptors by the volatile anesthetic isoflurane. J Biol Chem 2013; 288:35793-800. [PMID: 24194515 PMCID: PMC3861630 DOI: 10.1074/jbc.m113.508333] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/16/2013] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9'). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.
Collapse
Affiliation(s)
- David D. Mowrey
- From the Departments of Anesthesiology
- Computational and Systems Biology, and
| | - Qiang Liu
- the Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | | | | | | | - Yan Xu
- From the Departments of Anesthesiology
- Structural Biology
- Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| | - Jie Wu
- the Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | - Pei Tang
- From the Departments of Anesthesiology
- Computational and Systems Biology, and
- Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| |
Collapse
|
22
|
Garzón M, Duffy AM, Chan J, Lynch MK, Mackie K, Pickel VM. Dopamine D₂ and acetylcholine α7 nicotinic receptors have subcellular distributions favoring mediation of convergent signaling in the mouse ventral tegmental area. Neuroscience 2013; 252:126-43. [PMID: 23954803 DOI: 10.1016/j.neuroscience.2013.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
Abstract
Alpha7 nicotinic acetylcholine receptors (α7nAChRs) mediate nicotine-induced burst-firing of dopamine neurons in the ventral tegmental area (VTA), a limbic brain region critically involved in reward and in dopamine D2 receptor (D2R)-related cortical dysfunctions associated with psychosis. The known presence of α7nAChRs and Gi-coupled D2Rs in dopamine neurons of the VTA suggests that these receptors are targeted to at least some of the same neurons in this brain region. To test this hypothesis, we used electron microscopic immunolabeling of antisera against peptide sequences of α7nACh and D2 receptors in the mouse VTA. Dual D2R and α7nAChR labeling was seen in many of the same somata (co-localization over 97%) and dendrites (co-localization over 49%), where immunoreactivity for each of the receptors was localized to endomembranes as well as to non-synaptic or synaptic plasma membranes often near excitatory-type synapses. In comparison with somata and dendrites, many more small axons and axon terminals were separately labeled for each of the receptors. Thus, single-labeled axon terminals were predominant for both α7nAChR (57.9%) and D2R (89.0%). The majority of the immunolabeled axonal profiles contained D2R-immunoreactivity (81.6%) and formed either symmetric or asymmetric synapses consistent with involvement in the release of both inhibitory and excitatory transmitters. Of 160 D2R-labeled terminals, 81.2% were presynaptic to dendrites that expressed α7nAChR alone or together with the D2R. Numerous glial processes inclusive of those enveloping either excitatory- or inhibitory-type synapses also contained single labeling for D2R (n=152) and α7nAChR (n=561). These results suggest that classic antipsychotic drugs, all of which block the D2R, may facilitate α7nAChR-mediated burst-firing by elimination of D2R-dependent inhibition in neurons expressing both receptors as well as by indirect pre-synaptic and glial mechanisms.
Collapse
Affiliation(s)
- M Garzón
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA; Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina UAM, Madrid 28029, Spain; Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Paseo de la Castellana 261, Madrid 28046, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Wen D, Peng C, Ou-yang GX, Henderson Z, Li XL, Lu CB. Effects of nicotine stimulation on spikes, theta frequency oscillations, and spike-theta oscillation relationship in rat medial septum diagonal band Broca slices. Acta Pharmacol Sin 2013; 34:464-72. [PMID: 23474704 DOI: 10.1038/aps.2012.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM Spiking activities and neuronal network oscillations in the theta frequency range have been found in many cortical areas during information processing. The aim of this study is to determine whether nicotinic acetylcholine receptors (nAChRs) mediate neuronal network activity in rat medial septum diagonal band Broca (MSDB) slices. METHODS Extracellular field potentials were recorded in the slices using an Axoprobe 1A amplifier. Data analysis was performed off-line. Spike sorting and local field potential (LFP) analyses were performed using Spike2 software. The role of spiking activity in the generation of LFP oscillations in the slices was determined by analyzing the phase-time relationship between the spikes and LFP oscillations. Circular statistic analysis based on the Rayleigh test was used to determine the significance of phase relationships between the spikes and LFP oscillations. The timing relationship was examined by quantifying the spike-field coherence (SFC). RESULTS Application of nicotine (250 nmol/L) induced prominent LFP oscillations in the theta frequency band and both small- and large-amplitude population spiking activity in the slices. These spikes were phase-locked to theta oscillations at specific phases. The Rayleigh test showed a statistically significant relationship in phase-locking between the spikes and theta oscillations. Larger changes in the SFC were observed for large-amplitude spikes, indicating an accurate timing relationship between this type of spike and LFP oscillations. The nicotine-induced spiking activity (large-amplitude population spikes) was suppressed by the nAChR antagonist dihydro-β-erythroidine (0.3 μmol/L). CONCLUSION The results demonstrate that large-amplitude spikes are phase-locked to theta oscillations and have a high spike-timing accuracy, which are likely a main contributor to the theta oscillations generated in MSDB during nicotine receptor activation.
Collapse
|
24
|
Liu Q, Huang Y, Shen J, Steffensen S, Wu J. Functional α7β2 nicotinic acetylcholine receptors expressed in hippocampal interneurons exhibit high sensitivity to pathological level of amyloid β peptides. BMC Neurosci 2012; 13:155. [PMID: 23272676 PMCID: PMC3573893 DOI: 10.1186/1471-2202-13-155] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/18/2012] [Indexed: 11/10/2022] Open
Abstract
Background β-amyloid (Aβ) accumulation is described as a hallmark of Alzheimer’s disease (AD). Aβ perturbs a number of synaptic components including nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are abundantly expressed in the hippocampus and found on GABAergic interneurons. We have previously demonstrated the existence of a novel, heteromeric α7β2-nAChR in basal forebrain cholinergic neurons that exhibits high sensitivity to acute Aβ exposure. To extend our previous work, we evaluated the expression and pharmacology of α7β2-nAChRs in hippocampal interneurons and their sensitivity to Aβ. Results GABAergic interneurons in the CA1 subregion of the hippocampus expressed functional α7β2-nAChRs, which were characterized by relatively slow whole-cell current kinetics, pharmacological sensitivity to dihydro-β-erythroidine (DHβE), a nAChR β2* subunit selective blocker, and α7 and β2 subunit interaction using immunoprecipitation assay. In addition, α7β2-nAChRs were sensitive to 1 nM oligomeric Aβ. Similar effects were observed in identified hippocampal interneurons prepared from GFP-GAD mice. Conclusion These findings suggest that Aβ modulation of cholinergic signaling in hippocampal GABAergic interneurons via α7β2-nAChRs could be an early and critical event in Aβ-induced functional abnormalities of hippocampal function, which may be relevant to learning and memory deficits in AD.
Collapse
Affiliation(s)
- Qiang Liu
- Divisions of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, USA
| | | | | | | | | |
Collapse
|
25
|
Hone AJ, Scadden M, Gajewiak J, Christensen S, Lindstrom J, McIntosh JM. α-Conotoxin PeIA[S9H,V10A,E14N] potently and selectively blocks α6β2β3 versus α6β4 nicotinic acetylcholine receptors. Mol Pharmacol 2012; 82:972-82. [PMID: 22914547 DOI: 10.1124/mol.112.080853] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) containing α6 and β2 subunits modulate dopamine release in the basal ganglia and are therapeutically relevant targets for treatment of neurological and psychiatric disorders including Parkinson's disease and nicotine dependence. However, the expression profile of β2 and β4 subunits overlap in a variety of tissues including locus ceruleus, retina, hippocampus, dorsal root ganglia, and adrenal chromaffin cells. Ligands that bind α6β2 nAChRs also potently bind the closely related α6β4 subtype. To distinguish between these two subtypes, we synthesized novel analogs of a recently described α-conotoxin, PeIA. PeIA is a peptide antagonist that blocks several nAChR subtypes, including α6/α3β2β3 and α6/α3β4 nAChRs, with low nanomolar potency. We systematically mutated PeIA and evaluated the resulting analogs for enhanced potency and/or selectivity for α6/α3β2β3 nAChRs expressed in Xenopus oocytes (α6/α3 is a subunit chimera that contains the N-terminal ligand-binding domain of the α6 subunit). On the basis of these results, second-generation analogs were then synthesized. The final analog, PeIA[S9H,V10A,E14N], potently blocked acetylcholine-gated currents mediated by α6/α3β2β3 and α6/α3β4 nAChRs with IC(50) values of 223 pM and 65 nM, respectively, yielding a >290-fold separation between the two subtypes. Kinetic studies of ligand binding to α6/α3β2β3 nAChRs yielded a k(off) of 0.096 ± 0.001 min(-1) and a k(on) of 0.23 ± 0.019 min(-1) M(-9). The synthesis of PeIA[S9H,V10A,E14N] demonstrates that ligands can be developed to discriminate between α6β2 and α6β4 nAChRs.
Collapse
Affiliation(s)
- Arik J Hone
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|
26
|
Oliveira EE, Schleicher S, Büschges A, Schmidt J, Kloppenburg P, Salgado VL. Desensitization of nicotinic acetylcholine receptors in central nervous system neurons of the stick insect (Carausius morosus) by imidacloprid and sulfoximine insecticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:872-80. [PMID: 21878389 DOI: 10.1016/j.ibmb.2011.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/09/2011] [Accepted: 08/09/2011] [Indexed: 05/24/2023]
Abstract
Imidacloprid, sulfoxaflor and two experimental sulfoximine insecticides caused generally depressive symptoms in stick insects, characterized by stillness and weakness, while also variably inducing postural changes such as persistent ovipositor opening, leg flexion or extension and abdomen bending that could indicate excitation of certain neural circuits. We examined the same compounds on nicotinic acetylcholine receptors in stick insect neurons, which have previously been shown to desensitize in the presence of ACh. Brief U-tube application of 10(-4) M solutions of insecticides for 1 s evoked currents that were much smaller than ACh-evoked currents, and depressed subsequent ACh-evoked currents for several minutes, indicating that the compounds are low-efficacy partial agonists that potently desensitize the receptors. Much lower concentrations of insecticides applied in the bath for longer periods did not activate currents, but inhibited ACh-evoked currents via desensitization of the receptors. Previously described fast- and slowly-desensitizing nACh currents, I(ACh1) and I(ACh2) respectively, were each found to consist of two components with differing sensitivities to the insecticides. Imidacloprid applied in the bath desensitized high-sensitivity components, I(ACh1H) and I(ACh2H) with IC(50)s of 0.18 and 0.13 pM, respectively. It desensitized the low-sensitivity slowly desensitizing component, I(ACh2L), with an IC(50) of 2.6 nM, while a component of the fast-desensitizing current, I(ACh1L), was least sensitive, with an IC(50) of 81 nM I(ACh1L) appeared to be insensitive to the three sulfoximines tested, whereas all three sulfoximines potently desensitized I(ACh1H) and both slowly desensitizing components, with IC(50)s between 2 and 7 nM. We conclude that selective desensitization of certain nAChR subtypes can account for the insecticidal actions of imidacloprid and sulfoximines in stick insects.
Collapse
Affiliation(s)
- Eugênio E Oliveira
- Institute for Zoology, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Richards CI, Srinivasan R, Xiao C, Mackey EDW, Miwa JM, Lester HA. Trafficking of alpha4* nicotinic receptors revealed by superecliptic phluorin: effects of a beta4 amyotrophic lateral sclerosis-associated mutation and chronic exposure to nicotine. J Biol Chem 2011; 286:31241-9. [PMID: 21768117 PMCID: PMC3173132 DOI: 10.1074/jbc.m111.256024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/13/2011] [Indexed: 12/12/2022] Open
Abstract
We employed a pH-sensitive GFP analog, superecliptic phluorin, to observe aspects of nicotinic acetylcholine receptor (nAChR) trafficking to the plasma membrane (PM) in cultured mouse cortical neurons. The experiments exploit differences in the pH among endoplasmic reticulum (ER), trafficking vesicles, and the extracellular solution. The data confirm that few α4β4 nAChRs, but many α4β2 nAChRs, remain in neutral intracellular compartments, mostly the ER. We observed fusion events between nAChR-containing vesicles and PM; these could be quantified in the dendritic processes. We also studied the β4R348C polymorphism, linked to amyotrophic lateral sclerosis (ALS). This mutation depressed fusion rates of α4β4 receptor-containing vesicles with the PM by ∼2-fold, with only a small decrease in the number of nAChRs per vesicle. The mutation also decreased the number of ER exit sites, showing that the reduced receptor insertion results from a change at an early stage in trafficking. We confirm the previous report that the mutation leads to reduced agonist-induced currents; in the cortical neurons studied, the reduction amounts to 2-3-fold. Therefore, the reduced agonist-induced currents are caused by the reduced number of α4β4-containing vesicles reaching the membrane. Chronic nicotine exposure (0.2 μM) did not alter the PM insertion frequency or trafficking behavior of α4β4-laden vesicles. In contrast, chronic nicotine substantially increased the number of α4β2-containing vesicle fusions at the PM; this stage in α4β2 nAChR up-regulation is presumably downstream from increased ER exit. Superecliptic phluorin provides a tool to monitor trafficking dynamics of nAChRs in disease and addiction.
Collapse
Affiliation(s)
- Christopher I. Richards
- From the Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Rahul Srinivasan
- From the Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Cheng Xiao
- From the Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Elisha D. W. Mackey
- From the Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Julie M. Miwa
- From the Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Henry A. Lester
- From the Division of Biology, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
28
|
Wu J, Lukas RJ. Naturally-expressed nicotinic acetylcholine receptor subtypes. Biochem Pharmacol 2011; 82:800-7. [PMID: 21787755 DOI: 10.1016/j.bcp.2011.07.067] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 12/31/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) warrant attention, as they play many critical roles in brain and body function and have been implicated in a number of neurological and psychiatric disorders, including nicotine dependence. nAChRs are composed as diverse subtypes containing specific combinations of genetically-distinct subunits and that have different functional properties, distributions, and pharmacological profiles. There had been confidence that the rules that define ranges of assembly partners for specific subunits were well-established, especially for the more prominent nAChR subtypes. However, we review here some newer findings indicating that nAChRs having largely the same, major subunits exist as isoforms with unexpectedly different properties. Moreover, we also summarize our own studies indicating that novel nAChR subtypes exist and/or have distributions not heretofore described. Importantly, the nAChRs that exist as new isoforms or subtypes or have interesting distributions require alteration in thinking about their roles in health and disease.
Collapse
Affiliation(s)
- Jie Wu
- Division of Neurology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, United States.
| | | |
Collapse
|
29
|
Yang K, Buhlman L, Khan GM, Nichols RA, Jin G, McIntosh JM, Whiteaker P, Lukas RJ, Wu J. Functional nicotinic acetylcholine receptors containing α6 subunits are on GABAergic neuronal boutons adherent to ventral tegmental area dopamine neurons. J Neurosci 2011; 31:2537-48. [PMID: 21325521 PMCID: PMC3081713 DOI: 10.1523/jneurosci.3003-10.2011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 11/30/2010] [Accepted: 12/13/2010] [Indexed: 01/30/2023] Open
Abstract
Diverse nicotinic acetylcholine receptor (nAChR) subtypes containing different subunit combinations can be placed on nerve terminals or soma/dendrites in the ventral tegmental area (VTA). nAChR α6 subunit message is abundant in the VTA, but α6*-nAChR cellular localization, function, pharmacology, and roles in cholinergic modulation of dopaminergic (DA) neurons within the VTA are not well understood. Here, we report evidence for α6β2*-nAChR expression on GABA neuronal boutons terminating on VTA DA neurons. α-Conotoxin (α-Ctx) MII labeling coupled with immunocytochemical staining localizes putative α6*-nAChRs to presynaptic GABAergic boutons on acutely dissociated, rat VTA DA neurons. Functionally, acetylcholine (ACh) induces increases in the frequency of bicuculline-, picrotoxin-, and 4-aminopyridine-sensitive miniature IPSCs (mIPSCs) mediated by GABA(A) receptors. These increases are abolished by α6*-nAChR-selective α-Ctx MII or α-Ctx PIA (1 nm) but not by α7 (10 nm methyllycaconitine) or α4* (1 μm dihydro-β-erythroidine)-nAChR-selective antagonists. ACh also fails to increase mIPSC frequency in VTA DA neurons prepared from nAChR β2 knock-out mice. Moreover, ACh induces an α-Ctx PIA-sensitive elevation in intraterminal Ca(2+) in synaptosomes prepared from the rat VTA. Subchronic exposure to 500 nm nicotine reduces ACh-induced GABA release onto the VTA DA neurons, as does 10 d of systemic nicotine exposure. Collectively, these results indicate that α6β2*-nAChRs are located on presynaptic GABAergic boutons within the VTA and modulate GABA release onto DA neurons. These presynaptic α6β2*-nAChRs likely play important roles in nicotinic modulation of DA neuronal activity.
Collapse
Affiliation(s)
- Kechun Yang
- Divisions of Neurology and
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, and
| | - Lori Buhlman
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Ghous M. Khan
- Department of Physiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Robert A. Nichols
- Department of Physiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Guozhang Jin
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, and
| | - J. Michael McIntosh
- Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah 84112
| | - Paul Whiteaker
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Ronald J. Lukas
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Jie Wu
- Divisions of Neurology and
| |
Collapse
|
30
|
Jin Y, Yang K, Wang H, Wu J. Exposure of nicotine to ventral tegmental area slices induces glutamatergic synaptic plasticity on dopamine neurons. Synapse 2010; 65:332-8. [PMID: 20730803 DOI: 10.1002/syn.20850] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 07/22/2010] [Indexed: 11/09/2022]
Abstract
Nicotine promotes glutamatergic synaptic plasticity in dopaminergic (DA) neurons in the ventral tegmental area (VTA), which is thought to be an important mechanism underlying nicotine reward. However, it is unclear whether exposure of nicotine alone to VTA slice is sufficient to increase glutamatergic synaptic strength on DA neurons and which nicotinic acetylcholine receptor (nAChR) subtype mediates this effect. Here, we report that the incubation of rat VTA slices with 500 nM nicotine induces glutamatergic synaptic plasticity in DA neurons. We measure the ratio of AMPA and NMDA receptor-mediated currents (AMPA/NMDA) and compare these ratios between nicotine-treated and -untreated slices. Our results demonstrate that the incubation of VTA slices with 500 nM nicotine for 1 h (but not for 10 min) significantly increases the AMPA/NMDA ratio when compared with controls. Preincubation with 10 nM of the α7-nAChR antagonist, methyllycaconitine (MLA) but not 1 μM α4-containing nAChR antagonist, dihydro-β-erythroidine (DHβE) prevents nicotinic effect, suggesting that α7-nAChRs are mainly mediated this nicotinic effect. This finding is further supported by the disappearance of this nicotinic effect in nAChR α7 knockout (KO) mice. Furthermore, nicotine reduced paired-pulse ratio (PPR) of evoked excitatory postsynaptic potential (eEPSP) in the VTA slices prepared from wild-type (WT) mice but not α7 KO mice. Collectively, these findings suggest that exposure of smoking-relevant concentrations of nicotine to VTA slices is sufficient to increase glutamatergic synaptic strength on DA neurons and that α7-nAChRs likely mediate this nicotinic effect through increasing presynaptic release of glutamate.
Collapse
Affiliation(s)
- Yu Jin
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | |
Collapse
|
31
|
Wu C, Yang K, Liu Q, Wakui M, Jin GZ, Zhen X, Wu J. Tetrahydroberberine blocks ATP-sensitive potassium channels in dopamine neurons acutely-dissociated from rat substantia nigra pars compacta. Neuropharmacology 2010; 59:567-72. [PMID: 20804776 DOI: 10.1016/j.neuropharm.2010.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/20/2010] [Accepted: 08/20/2010] [Indexed: 11/19/2022]
Abstract
Tetrahydroberberine (THB) exhibits neuroprotective effects but its targets and underlying mechanisms are largely unknown. Emerging evidence indicates that ATP-sensitive potassium (K(ATP)) channels in the substantia nigra pars compacta (SNc) promote Parkinson disease (PD) pathogenesis, thus blocking K(ATP) channels may protect neurons against neuronal degeneration. In the present study, we tested a hypothesis that THB blocks K(ATP) channels in dopaminergic (DA) neurons acutely dissociated from rat SNc. Using perforated patch-clamp recording in current-clamp mode, the functional K(ATP) channels can be opened by persistent perfusion of rotenone, an inhibitor of complex I of the mitochondrial respiratory chain. Bath-application of THB reversibly blocks opened K(ATP) channels in a concentration-dependent manner, which is comparable to a classical K(ATP) channel blocker, Tol. Compared to THB analogs, l-stepholidine (l-SPD) or l-tetrahydropalmatine (l-THP), THB exhibits more profound blockade in K(ATP) channels. In addition, exposure of THB alone to the recorded neuron increases action potential firing, and THB also restores rotenone-induced membrane hyperpolarization in the presence of dopamine D2 receptor antagonist (sulpiride), suggesting that THB exhibits an excitatory effect on SNc DA neurons through the block of K(ATP) channels. Collectively, the blockade of neuronal K(ATP) channels by THB in SNc DA neurons is a novel pharmacological mechanism of THB, which may contribute to its neuroprotective effects in PD.
Collapse
Affiliation(s)
- Chen Wu
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Oliveira EE, Pippow A, Salgado VL, Büschges A, Schmidt J, Kloppenburg P. Cholinergic Currents in Leg Motoneurons of Carausius morosus. J Neurophysiol 2010; 103:2770-82. [DOI: 10.1152/jn.00963.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used patch-clamp recordings and fast optical Ca2+ imaging to characterize an acetylcholine-induced current ( IACh) in leg motoneurons of the stick insect Carausius morosus. Our long-term goal is to better understand the synaptic and integrative properties of the leg sensory-motor system, which has served extremely successfully as a model to study basic principles of walking and locomotion on the network level. The experiments were performed under biophysically controlled conditions on freshly dissociated leg motoneurons to avoid secondary effects from the network. To allow for unequivocal identification, the leg motoneurons were backfilled with a fluorescent label through the main leg nerve prior to cell dissociation. In 87% of the motoneurons, IACh consisted of a fast-desensitizing ( IACh1) and a slow-desensitizing component ( IACh2), both of which were concentration dependent, with EC50 values of 3.7 × 10−5 and 2.0 × 10−5 M, respectively. Ca2+ imaging revealed that a considerable portion of IACh (∼18%) is carried by Ca2+, suggesting that IACh, besides mediating fast synaptic transmission, could also induce Ca2+-dependent processes. Using specific nicotinic and muscarinic acetylcholine receptor ligands, we showed that IACh was exclusively mediated by nicotinic acetylcholine receptors. Distinct concentration–response relations of IACh1 and IACh2 for these ligands indicated that they are mediated by different types of nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Eugênio E. Oliveira
- Institute for Zoology, Biocenter, and
- Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; and
| | - Andreas Pippow
- Institute for Zoology, Biocenter, and
- Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; and
| | - Vincent L. Salgado
- BASF Agricultural Products, BASF Corporation, Research Triangle Park, North Carolina
| | | | | | - Peter Kloppenburg
- Institute for Zoology, Biocenter, and
- Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; and
| |
Collapse
|
33
|
Subtype-selective nicotinic agonists enhance olfactory working memory in normal rats: a novel use of the odour span task. Neurosci Lett 2010; 471:114-8. [PMID: 20083163 DOI: 10.1016/j.neulet.2010.01.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/02/2010] [Accepted: 01/06/2010] [Indexed: 11/22/2022]
Abstract
Nicotinic agonists have been shown to enhance performance in cognitive tasks based on attention and memory. The aim of this study was to use a test of olfactory working memory; the odour span task (OST) in rodents, to investigate the effects of subtype-specific nicotinic agonists on working memory in normal rats. Rats were trained in a non-matching to sample (NMTS) rule and then the full OST, which involved identifying a novel odour from an increasing number of presented odours. Male hooded Lister rats were treated with nicotine, selective nicotinic agonists or vehicle (saline). In order to validate the task, muscarinic and nicotinic receptor antagonists were also examined. Nicotine at both 0.05 and 0.1mg/kg significantly increased mean span length in the OST. The selective alpha 4 beta 2 nicotinic receptor agonist metanicotine (0.1mg/kg s.c.) and the selective alpha 7 nicotinic receptor agonist (R)-N-(1-azabicyclo[2.2.2]oct-3-yl)(5-(2-pyridyl)thiophene-2-carboxamide) (compound A, 10mg/kg i.p.) also improved performance. In contrast, mecamylamine and scopolamine significantly decreased mean span length. These findings suggest a role for the activation of both alpha 4 beta 2 and alpha 7 subtypes of neuronal nicotinic receptor in mediating enhancements of olfactory working memory capacity in normal, non-compromised rats. These nicotinic receptor subtypes may therefore prove to be useful targets for the development of novel treatments for neuropsychiatric disorders that involve cognitive dysfunction.
Collapse
|
34
|
Leonard BW, Mastroeni D, Grover A, Liu Q, Yang K, Gao M, Wu J, Pootrakul D, van den Berge SA, Hol EM, Rogers J. Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease. J Comp Neurol 2009; 515:269-94. [PMID: 19425077 PMCID: PMC2757160 DOI: 10.1002/cne.22040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In mice and in young adult humans, the subventricular zone (SVZ) contains multipotent, dividing astrocytes, some of which, when cultured, produce neurospheres that differentiate into neurons and glia. It is unknown whether the SVZ of very old humans has this capacity. Here, we report that neural stem/progenitor cells can also be cultured from rapid autopsy samples of SVZ from elderly human subjects, including patients with age-related neurologic disorders. Histological sections of SVZ from these cases showed a glial fibrillary acidic protein (GFAP)-positive ribbon of astrocytes similar to the astrocyte ribbon in human periventricular white matter biopsies that is reported to be a rich source of neural progenitors. Cultures of the SVZ contained 1) neurospheres with a core of Musashi-1-, nestin-, and nucleostemin-immunopositive cells as well as more differentiated GFAP-positive astrocytes; 2) SMI-311-, MAP2a/b-, and beta-tubulin(III)-positive neurons; and 3) galactocerebroside-positive oligodendrocytes. Neurospheres continued to generate differentiated progeny for months after primary culturing, in some cases nearly 2 years postinitial plating. Patch clamp studies of differentiated SVZ cells expressing neuron-specific antigens revealed voltage-dependent, tetrodotoxin-sensitive, inward Na+ currents and voltage-dependent, delayed, slowly inactivating K+ currents, electrophysiologic characteristics of neurons. A subpopulation of these cells also exhibited responses consistent with the kinetics and pharmacology of the h-current. However, although these cells displayed some aspects of neuronal function, they remained immature, insofar as they did not fire action potentials. These studies suggest that human neural progenitor activity may remain viable throughout much of the life span, even in the face of severe neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew Grover
- Sun Health Research Institute, Sun City, AZ 85351, U.S.A
| | - Qiang Liu
- Barrow Neurological Institute, Phoenix, AZ 85013, U.S.A
| | - Kechun Yang
- Barrow Neurological Institute, Phoenix, AZ 85013, U.S.A
| | - Ming Gao
- Barrow Neurological Institute, Phoenix, AZ 85013, U.S.A
| | - Jie Wu
- Barrow Neurological Institute, Phoenix, AZ 85013, U.S.A
| | | | - Simone A. van den Berge
- Netherlands Institute for Neuroscience, an institute of the NetherlandsRoyal Academy of Arts and Sciences, Meibergdreef 47, 1105 BAAmsterdam, The Netherlands
| | - Elly M. Hol
- Netherlands Institute for Neuroscience, an institute of the NetherlandsRoyal Academy of Arts and Sciences, Meibergdreef 47, 1105 BAAmsterdam, The Netherlands
| | - Joseph Rogers
- Sun Health Research Institute, Sun City, AZ 85351, U.S.A
| |
Collapse
|
35
|
Saccone NL, Saccone SF, Hinrichs AL, Stitzel JA, Duan W, Pergadia ML, Agrawal A, Breslau N, Grucza RA, Hatsukami D, Johnson EO, Madden PAF, Swan GE, Wang JC, Goate AM, Rice JP, Bierut LJ. Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:453-66. [PMID: 19259974 PMCID: PMC2693307 DOI: 10.1002/ajmg.b.30828] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tobacco smoking continues to be a leading cause of preventable death. Recent research has underscored the important role of specific cholinergic nicotinic receptor subunit (CHRN) genes in risk for nicotine dependence and smoking. To detect and characterize the influence of genetic variation on vulnerability to nicotine dependence, we analyzed 226 SNPs covering the complete family of 16 CHRN genes, which encode the nicotinic acetylcholine receptor (nAChR) subunits, in a sample of 1,050 nicotine-dependent cases and 879 non-dependent controls of European descent. This expanded SNP coverage has extended and refined the findings of our previous large-scale genome-wide association and candidate gene study. After correcting for the multiple tests across this gene family, we found significant association for two distinct loci in the CHRNA5-CHRNA3-CHRNB4 gene cluster, one locus in the CHRNB3-CHRNA6 gene cluster, and a fourth, novel locus in the CHRND-CHRNG gene cluster. The two distinct loci in CHRNA5-CHRNA3-CHRNB4 are represented by the non-synonymous SNP rs16969968 in CHRNA5 and by rs578776 in CHRNA3, respectively, and joint analyses show that the associations at these two SNPs are statistically independent. Nominally significant single-SNP association was detected in CHRNA4 and CHRNB1. In summary, this is the most comprehensive study of the CHRN genes for involvement with nicotine dependence to date. Our analysis reveals significant evidence for at least four distinct loci in the nicotinic receptor subunit genes that each influence the transition from smoking to nicotine dependence and may inform the development of improved smoking cessation treatments and prevention initiatives.
Collapse
Affiliation(s)
- Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mechanism-based medication development for the treatment of nicotine dependence. Acta Pharmacol Sin 2009; 30:723-39. [PMID: 19434058 DOI: 10.1038/aps.2009.46] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tobacco use is a global problem with serious health consequences. Though some treatment options exist, there remains a great need for new effective pharmacotherapies to aid smokers in maintaining long-term abstinence. In the present article, we first discuss the neural mechanisms underlying nicotine reward, and then review various mechanism-based pharmacological agents for the treatment of nicotine dependence. An oversimplified hypothesis of addiction to tobacco is that nicotine is the major addictive component of tobacco. Nicotine binds to alpha4beta2 and alpha7 nicotinic acetylcholine receptors (nAChRs) located on dopaminergic, glutamatergic and GABAergic neurons in the mesolimbic dopamine (DA) system, which causes an increase in extracellular DA in the nucleus accumbens (NAc). That increase in DA reinforces tobacco use, particularly during the acquisition phase. Enhanced glutamate transmission to DA neurons in the ventral tegmental area appears to play an important role in this process. In addition, chronic nicotine treatment increases endocannabinoid levels in the mesolimbic DA system, which indirectly modulates NAc DA release and nicotine reward. Accordingly, pharmacological agents that target brain acetylcholine, DA, glutamate, GABA, or endocannabonoid signaling systems have been proposed to interrupt nicotine action. Furthermore, pharmacokinetic strategies that alter plasma nicotine availability, metabolism and clearance also significantly alter nicotine's action in the brain. Progress using these pharmacodynamic and pharmacokinetic agents is reviewed. For drugs in each category, we discuss the mechanistic rationale for their potential anti-nicotine efficacy, major findings in preclinical and clinical studies, and future research directions.
Collapse
|
37
|
Spiller K, Xi ZX, Li X, Ashby CR, Callahan PM, Tehim A, Gardner EL. Varenicline attenuates nicotine-enhanced brain-stimulation reward by activation of alpha4beta2 nicotinic receptors in rats. Neuropharmacology 2009; 57:60-6. [PMID: 19393252 DOI: 10.1016/j.neuropharm.2009.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/13/2009] [Accepted: 04/15/2009] [Indexed: 11/29/2022]
Abstract
Varenicline, a partial alpha4beta2 and full alpha7 nicotinic receptor agonist, has been shown to inhibit nicotine self-administration and nicotine-induced increases in extracellular dopamine in the nucleus accumbens. In the present study, we investigated whether varenicline inhibits nicotine-enhanced electrical brain-stimulation reward (BSR), and if so, which receptor subtypes are involved. Systemic administration of nicotine (0.25-1.0 mg/kg, i.p.) or varenicline (0.03-3 mg/kg, i.p.) produced biphasic effects, with low doses producing enhancement (e.g., decreased BSR threshold), and high doses inhibiting BSR. Pretreatment with low dose (0.03-1.0 mg/kg) varenicline dose-dependently attenuated nicotine (0.25 or 0.5 mg/kg)-enhanced BSR. The BSR-enhancing effect produced by varenicline was blocked by mecamylamine (a high affinity nicotinic receptor antagonist) or dihydro-beta-erythroidine (a relatively selective nicotinic alpha4-containing receptor antagonist), but not methyllycaconitine (a selective alpha7 receptor antagonist), suggesting an effect mediated by activation of alpha4beta2 receptors. This suggestion is supported by findings that the alpha4beta2 receptor agonist SIB-1765F produced a dose-dependent enhancement of BSR, while pretreatment with SIB-1765F attenuated nicotine (0.5 mg/kg)-enhanced BSR. In contrast, the selective alpha7 receptor agonist ARR-17779, altered neither BSR itself nor nicotine-enhanced BSR, at any dose tested. These findings suggest that: 1) varenicline inhibits nicotine-enhanced BSR, supporting its use as a smoking cessation aid; and 2) varenicline-enhanced BSR by itself and varenicline's anti-nicotine effects are mediated by activation of alpha4beta2, but not alpha7, receptors.
Collapse
Affiliation(s)
- Krista Spiller
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Zheng C, Wang MY, Liu Q, Wakui M, Whiteaker P, Lukas RJ, Wu J. U18666A, a cholesterol-inhibition agent, modulates human neuronal nicotinic acetylcholine receptors heterologously expressed in SH-EP1 cell line. J Neurochem 2009; 108:1526-38. [PMID: 19183258 DOI: 10.1111/j.1471-4159.2009.05903.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we evaluate the effects of (3beta)-3-[2-(diethylamino)ethoxy]androst-5-en-17-one dihydrochloride (U18666A), a cholesterol synthesis/transporter inhibitor, on selected human neuronal nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the SH-EP1 cell line using whole-cell patch-clamp recordings. The results indicate that with 2-min pretreatment, U18666A inhibited different nAChR subtypes with a rank-order of potency (IC(50) of whole-cell peak current): alpha4beta2 (8.0 +/- 3.0 nM) > alpha3beta2 (1.7 +/- 0.4 microM) > alpha4beta4 (26 +/- 7.2 microM) > alpha7 (> 100 microM), suggesting this compound is more selective to alpha4beta2-nAChRs. Thus, the pharmacological profiles and mechanisms of U18666A acting on alpha4beta2-nAChRs were investigated in detail. U18666A suppresses both peak and steady state components of whole-cell currents mediated by human alpha4beta2-nAChRs in response to nicotine. In nicotine-induced concentration-response curves, U18666A reduces nicotine-induced current at maximally effective agonist concentrations without influencing nicotine's EC(50) value, suggesting a non-competitive inhibition. U18666A-induced inhibition of nAChR function is concentration-, voltage-, and use-dependent, suggesting an open channel block. Taken into consideration of approximately 10 000-fold enhancement of the potency of U18666A after 2-min pre-treatment, this compound also likely inhibits alpha4beta2-nAChRs through a close channel block. In addition, the U18666A-induced inhibition in alpha4beta2-nAChRs is not mediated by either increased receptor endocytosis or altered cell cholesterol. These data indicate that U18666A is a potent antagonist of alpha4beta2-nAChRs and may be useful as a tool in the functional characterization and pharmacological profiling of nAChRs, as well as a potential candidate for smoking cessation.
Collapse
Affiliation(s)
- Chao Zheng
- Division of Neurology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Liu Q, Huang Y, Xue F, Simard A, DeChon J, Li G, Zhang J, Lucero L, Wang M, Sierks M, Hu G, Chang Y, Lukas RJ, Wu J. A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides. J Neurosci 2009; 29:918-29. [PMID: 19176801 PMCID: PMC2857410 DOI: 10.1523/jneurosci.3952-08.2009] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/02/2008] [Accepted: 12/16/2008] [Indexed: 11/21/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) containing alpha7 subunits are thought to assemble as homomers. alpha7-nAChR function has been implicated in learning and memory, and alterations of alpha7-nAChR have been found in patients with Alzheimer's disease (AD). Here we report findings consistent with a novel, naturally occurring nAChR subtype in rodent, basal forebrain cholinergic neurons. In these cells, alpha7 subunits are coexpressed, colocalize, and coassemble with beta2 subunit(s). Compared with homomeric alpha7-nAChRs from ventral tegmental area neurons, functional, presumably heteromeric alpha7beta2-nAChRs on cholinergic neurons freshly dissociated from medial septum/diagonal band (MS/DB) exhibit relatively slow kinetics of whole-cell current responses to nicotinic agonists and are more sensitive to the beta2 subunit-containing nAChR-selective antagonist, dihydro-beta-erythroidine (DHbetaE). Interestingly, presumed, heteromeric alpha7beta2-nAChRs are highly sensitive to functional inhibition by pathologically relevant concentrations of oligomeric, but not monomeric or fibrillar, forms of amyloid beta(1-42) (Abeta(1-42)). Slow whole-cell current kinetics, sensitivity to DHbetaE, and specific antagonism by oligomeric Abeta(1-42) also are characteristics of heteromeric alpha7beta2-nAChRs, but not of homomeric alpha7-nAChRs, heterologously expressed in Xenopus oocytes. Moreover, choline-induced currents have faster kinetics and less sensitivity to Abeta when elicited from MS/DB neurons derived from nAChR beta2 subunit knock-out mice rather than from wild-type mice. The presence of novel, functional, heteromeric alpha7beta2-nAChRs on basal forebrain cholinergic neurons and their high sensitivity to blockade by low concentrations of oligomeric Abeta(1-42) suggests possible mechanisms for deficits in cholinergic signaling that could occur early in the etiopathogenesis of AD and might be targeted by disease therapies.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Acetylcholine/pharmacology
- Amyloid beta-Peptides/pharmacology
- Animals
- Animals, Newborn
- Cells, Cultured
- Choline O-Acetyltransferase/metabolism
- Cholinergic Agents/pharmacology
- Dose-Response Relationship, Drug
- Immunoprecipitation/methods
- Membrane Potentials/drug effects
- Membrane Potentials/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/drug effects
- Neurons/metabolism
- Oocytes
- Patch-Clamp Techniques/methods
- Peptide Fragments/pharmacology
- Prosencephalon/cytology
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Rats
- Rats, Wistar
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/deficiency
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Xenopus laevis
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
| | - Yao Huang
- Department of Obstetrics and Gynecology, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85004
| | - Fenqin Xue
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Alain Simard
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | | | | | - Jianliang Zhang
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Linda Lucero
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Min Wang
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85281, and
| | - Michael Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85281, and
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yongchang Chang
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Ronald J. Lukas
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Jie Wu
- Divisions of Neurology and
| |
Collapse
|
40
|
Alburges ME, Frankel PS, Hoonakker AJ, Hanson GR. Responses of limbic and extrapyramidal substance P systems to nicotine treatment. Psychopharmacology (Berl) 2009; 201:517-27. [PMID: 18773198 PMCID: PMC2678878 DOI: 10.1007/s00213-008-1316-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Neuropeptides are linked to the psychopathology of stimulants of abuse, principally through dopamine mechanisms. Substance P (SP) is one of these neuropeptides and is associated with both limbic and extrapyramidal dopaminergic pathways and likely contributes to the pharmacology of these stimulants. The effects of nicotine on these dopamine systems have also been extensively studied; however, its effects on the associated SP pathways have received little attention. OBJECTIVES In the present study, we elucidated the effects of nicotine treatment on limbic and extrapyramidal SP systems by measuring changes in associated SP tissue concentrations. MATERIALS AND METHODS Male Sprague-Dawley rats received (+/-)nicotine 4.0 mg/kg/day (0.8 mg/kg, intraperitoneally; five injections at 2-h intervals) in the presence or absence of selective dopamine D1 and D2 receptor antagonists or a nonselective nicotinic acetylcholine receptor antagonist. RESULTS The nicotine treatment significantly but temporarily decreased substance P-like immunoreactivity (SPLI) content in the ventral tegmental area (VTA) and substantia nigra 12-18 h after drug exposure. The nicotine-mediated changes in SPLI were selectively blocked by pretreatment with mecamylamine as well as a dopamine D1, D2, or both receptor antagonists. Other brain areas that also selectively demonstrated nicotine-related declines in SPLI content included prefrontal cortex, the nucleus accumbens shell, and the very posterior caudate. CONCLUSIONS These findings indicate that some limbic and basal ganglia SP systems are significantly affected by exposure to nicotine through processes mediated by nicotinic and dopaminergic receptors, suggesting a role for SP pathways in nicotine's limbic and extrapyramidal effects.
Collapse
Affiliation(s)
- Mario E Alburges
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Room 201, Salt Lake City, UT, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
The discovery that mammalian brain expresses the mRNAs for nine different nicotinic cholinergic receptor subunits (alpha2-alpha7, beta2-beta4) that form functional receptors when expressed in Xenopus laevis oocytes suggests that many different types of nicotinic cholinergic receptors (nAChRs) might be expressed in the mammalian brain., Using an historical approach, this chapter reviews some of the progress made in identifying the nAChR subtypes that seem to play a vital role in modulating dopaminergic function. nAChR subtypes that are expressed in dopamine neurons, as well as neurons that interact with dopamine neurons (glutamatergic, GABAergic), serve as the focus of this review. Subjects that are highlighted include the discovery of a low affinity alpha4beta2* nAChR, the identity of recently characterized alpha6* nAChRs, and the finding that these alpha6* receptors have the highest affinity for receptor activation of any of the native receptors that have been characterized to date. Topics that have been ignored in other recent reviews of this area, such as the discovery and potential importance of alternative transcripts, are presented along with a discussion of their potential importance.
Collapse
|
42
|
Yang K, Hu J, Lucero L, Liu Q, Zheng C, Zhen X, Jin G, Lukas RJ, Wu J. Distinctive nicotinic acetylcholine receptor functional phenotypes of rat ventral tegmental area dopaminergic neurons. J Physiol 2008; 587:345-61. [PMID: 19047205 DOI: 10.1113/jphysiol.2008.162743] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Dopaminergic (DAergic) neuronal activity in the ventral tegmental area (VTA) is thought to contribute generally to pleasure, reward, and drug reinforcement and has been implicated in nicotine dependence. nAChRs expressed in the VTA exhibit diverse subunit compositions, but the functional and pharmacological properties are largely unknown. Here, using patch-clamp recordings in single DAergic neurons freshly dissociated from rat VTA, we clarified three functional subtypes of nAChRs (termed ID, IID and IIID receptors) based on whole-cell current kinetics and pharmacology. Kinetic analysis demonstrated that comparing to ID, IID receptor-mediated current had faster activation and decay constant and IIID receptor-mediated current had larger current density. Pharmacologically, ID receptor-mediated current was sensitive to the alpha4beta2-nAChR agonist RJR-2403 and antagonist dihydro-beta-erythroidine (DHbetaE); IID receptor-mediated current was sensitive to the selective alpha7-nAChR agonist choline and antagonist methyllycaconitine (MLA); while IIID receptor-mediated current was sensitive to the beta4-containing nAChR agonist cytisine and antagonist mecamylamine (MEC). The agonist concentration-response relationships demonstrated that IID receptor-mediated current exhibited the highest EC(50) value compared to ID and IIID receptors, suggesting a relatively low agonist affinity of type IID receptors. These results suggest that the type ID, IID and IIID nAChR-mediated currents are predominately mediated by activation of alpha4beta2-nAChR, alpha7-nAChR and a novel nAChR subtype(s), respectively. Collectively, these findings indicate that the VTA DAergic neurons express diversity and multiplicity of functional nAChR subtypes. Interestingly, each DAergic neuron predominantly expresses only one particularly functional nAChR subtype, which may have distinct but important roles in regulation of VTA DA neuronal function, DA transmission and nicotine dependence.
Collapse
Affiliation(s)
- Kechun Yang
- Division of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013-4496, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Eells JB, Brown T. Repeated developmental exposure to chlorpyrifos and methyl parathion causes persistent alterations in nicotinic acetylcholine subunit mRNA expression with chlorpyrifos altering dopamine metabolite levels. Neurotoxicol Teratol 2008; 31:98-103. [PMID: 18977431 DOI: 10.1016/j.ntt.2008.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
Organophosphates (OPs), commonly used as insecticides, inhibit acetylcholinesterase, the enzyme responsible for the inactivation of synaptic acetylcholine, which results in elevated acetylcholine neurotransmission. Nigrostriatal dopamine neurons receive substantial cholinergic innervation and express a number of nicotinic acetylcholine receptor subunits. Since epidemiological data have implicated pesticides in the incidence of Parkinson's disease, the current experiment investigated how repeated, developmental exposure to the OPs chlorpyrifos (CPS) or methyl parathion (MPT) affects striatal dopamine levels and dopamine neuron gene expression. Newborn rats were treated daily via oral gavage with corn oil vehicle, CPS, or MPT from postnatal days (PND) 1-21. Rats were sacrificed at PND 22 and 50. Levels of dopamine and its metabolites 3,4 dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured in the striatum and mRNA expression was measured in the substantia nigra. At 22 days of age, CPS and MPT treatment had no effect on dopamine, DOPAC or HVA levels. At 50 days of age, CPS significantly elevated DOPAC levels and elevated dopamine turnover (DOPAC/dopamine) but did not affect dopamine or HVA levels. MPT had no significant effects on any of these parameters. Interestingly, both CPS and MPT treatments caused a significant alteration in the ratio of alpha7 to alpha6 nicotinic acetylcholine receptor (nAChR) subunit expression in the substantia nigra with a non-significant elevation in alpha6 and a reduction in alpha7 at 22 days. At 50 days of age, a significant elevation in alpha6 nAChR subunit was observed in the MPT treated rats. No differences in dopamine neuron transcription factors (Nurr1 or Lmx1b) or neurotransmission genes were observed. These data demonstrate that repeated exposure to OPs during postnatal maturation can have a significant effect on dopamine neurochemistry, primarily by modifying dopamine metabolism, which can persist for up to 1 month (CPS) and alter acetylcholine subunit expression (CPS and MPT).
Collapse
Affiliation(s)
- Jeffrey B Eells
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA.
| | | |
Collapse
|
44
|
Galindo-Charles L, Hernandez-Lopez S, Galarraga E, Tapia D, Bargas J, Garduño J, Frías-Dominguez C, Drucker-Colin R, Mihailescu S. Serotoninergic dorsal raphe neurons possess functional postsynaptic nicotinic acetylcholine receptors. Synapse 2008; 62:601-15. [PMID: 18512214 DOI: 10.1002/syn.20526] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Very few neurons in the telencephalon have been shown to express functional postsynaptic nicotinic acetylcholine receptors (nAChRs), among them, the noradrenergic and dopaminergic neurons. However, there is no evidence for postsynaptic nAChRs on serotonergic neurons. In this study, we asked if functional nAChRs are present in serotonergic (5-HT) and nonserotonergic (non-5-HT) neurons of the dorsal raphe nucleus (DRN). In rat midbrain slices, field stimulation at the tegmental pedunculopontine (PPT) nucleus evoked postsynaptic currents (eEPSCs) with different components in DRN neurons. After blocking the glutamatergic and GABAergic components, the remaining eEPSCs were blocked by mecamylamine and reduced by either the selective alpha7 nAChR antagonist methyllycaconitine (MLA) or the selective alpha4beta2 nAChR antagonist dihydro-beta-eritroidine (DHbetaE). Simultaneous addition of MLA and DHbetaE blocked all eEPSCs. Integrity of the PPT-DRN pathway was assessed by both anterograde biocytin tracing and antidromic stimulation from the DRN. Inward currents evoked by the direct application of acetylcholine (ACh), in the presence of atropine and tetrodotoxin, consisted of two kinetically different currents: one was blocked by MLA and the other by DHbetaE; in both 5-HT and non-5-HT DR neurons. Analysis of spontaneous (sEPSCs) and evoked (eEPSCs) synaptic events led to the conclusion that nAChRs were located at the postsynaptic membrane. The possible implications of these newly described nAChRs in various physiological processes and behavioral events, such as the wake-sleep cycle, are discussed.
Collapse
Affiliation(s)
- Luis Galindo-Charles
- Department of Physiology, College of Medicine, Universidad Nacional Autónoma de México, México D.F. 04510
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang K, Zheng C, Wu C, Gao M, Liu Q, Yang K, Ellsworth K, Xu L, Wu J. alpha-Chloralose diminishes gamma oscillations in rat hippocampal slices. Neurosci Lett 2008; 441:66-71. [PMID: 18597935 DOI: 10.1016/j.neulet.2008.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 12/01/2022]
Abstract
alpha-Chloralose is an anesthetic characterized by its ability to maintain animals in physiological conditions though immobilized and anesthetized. In addition, alpha-chloralose induces a loss of consciousness with little influence on either pain response or cardiovascular reflexes. The pharmacological mechanisms of alpha-chloralose's actions are poorly understood. In vitro experiments have demonstrated alpha-chloralose enhances GABA(A) receptor function, which may underlie its anesthetic effect. However, how alpha-chloralose affects hippocampal synaptic function and neuronal network synchronization is unknown. In the present study, we performed electrophysiological recordings to examine the effects of alpha-chloralose on synaptic transmission, tetanic stimulation-induced gamma oscillations (30-80 Hz) and neuronal receptor function in rat hippocampal slices and dissociated hippocampal CA1 pyramidal neurons. The results demonstrated that alpha-chloralose (30-100 microM) diminished tetanic stimulation-induced gamma oscillations without affecting single stimulation-induced field potential responses. In single, dissociated hippocampal CA1 pyramidal neurons, alpha-chloralose activated GABA(A) receptors at a high concentration while it potentiated GABA(A) receptor-mediated currents at low concentrations. However, alpha-chloralose did not affect glutamate-, glycine-, or ACh-induced currents. Slice-patch recordings revealed alpha-chloralose enhanced GABAergic leak current and prolonged the decay constant of spontaneous inhibitory postsynaptic currents (sIPSCs). It is concluded that alpha-chloralose suppresses hippocampal gamma oscillations without significantly affecting basic synaptic transmission or ionotropic glutamate, choline and glycine receptor function. Enhancement of GABAergic leak current and prolongation of GABAergic sIPSCs by alpha-chloralose likely underlie its disruption of neuronal network synchronization in the hippocampus.
Collapse
Affiliation(s)
- Kui Wang
- Neurophysiology Laboratory, Division of Neurology, NRC 444, St Joseph's Hospital & Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu Q, Yu KW, Chang YC, Lukas RJ, Wu J. Agonist-induced hump current production in heterologously-expressed human alpha4beta2-nicotinic acetylcholine receptors. Acta Pharmacol Sin 2008; 29:305-19. [PMID: 18298895 DOI: 10.1111/j.1745-7254.2008.00760.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIM To characterize the functional and pharmacological features of agonist-induced hump currents in human alpha4beta2-nicotinic acetylcholine receptors (nAChR). METHODS Whole-cell and outside-out patch recordings were performed using human alpha4beta2-nAChR heterologously expressed in stably-transfected, native nAChR-null subclonal human epithelial 1 (SH-EP1) cells. RT-PCR was used to test the mRNA expression of transfected nAChR. Homology modeling and acetylcholine (ACh) docking were applied to show the possible ACh-binding site in the channel pore. RESULTS The rapid exposure of 10 mmol/L ACh induced an inward current with a decline from peak to steady-state. However, after the removal of ACh, an additional inward current, called phumpq current, reoccurred. The ability of agonists to produce these hump currents cannot be easily explained based on drug size, charge, acute potency, or actions as full or partial agonists. Hump currents were associated with a rebound increase in whole-cell conductance, and they had voltage dependence-like peak currents induced by agonist action. Hump currents blocked by the alpha4beta2-nAChR antagonist dihydro-beta-erythroidine were reduced when alpha4beta2-nAChR were desensitized, and were more pronounced in the absence of external Ca2+. Outside-out single-channel recordings demonstrated that compared to 1 micromol/L nicotine, 100 micromol/L nicotine reduced channel current amplitude, shortened the channel mean open time, and prolonged the channel mean closed time, supporting an agonist-induced open-channel block before hump current production. A docking model also simulated the agonist-binding site in the channel pore. CONCLUSION These results support the hypothesis that hump currents reflect a rapid release of agonists from the alpha4beta2-nAChR channel pore and a rapid recovery from desensitized alpha4beta2-nAChR.
Collapse
Affiliation(s)
- Qiang Liu
- Divisions of Neurology, Barrow Neurological Institute, St Josephos Hospital and Medical Center, Phoenix, Arizona 85013-4496, USA
| | | | | | | | | |
Collapse
|
47
|
Brunzell DH, Picciotto MR. Molecular mechanisms underlying the motivational effects of nicotine. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2008; 55:17-30. [PMID: 19013937 DOI: 10.1007/978-0-387-78748-0_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In addition to the primary rewarding properties of nicotine and the alleviation of withdrawal symptoms, cues associated with smoking are critical contributors to maintenance of smoking behavior. Nicotine-paired cues are also critical for precipitating relapse after smoking cessation. An accumulation of evidence suggests that repeated exposure to tobacco, including the primary psychoactive ingredient, nicotine, changes brain neurochemistry in a way that promotes the control that cues associated with smoking or other rewards have over behavior. This chapter will consider the neurochemical mechanisms underlying these neuroadaptations. Targeting these molecular alterations may provide novel treatments for smoking cessation.
Collapse
Affiliation(s)
- Darlene H Brunzell
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-0613, USA
| | | |
Collapse
|
48
|
Alburges ME, Hoonakker AJ, Hanson GR. Nicotinic and dopamine D2 receptors mediate nicotine-induced changes in ventral tegmental area neurotensin system. Eur J Pharmacol 2007; 573:124-32. [PMID: 17689525 PMCID: PMC2707996 DOI: 10.1016/j.ejphar.2007.06.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 06/14/2007] [Accepted: 06/18/2007] [Indexed: 11/30/2022]
Abstract
Neuropeptides have been implicated in the psychopathology of stimulants of abuse. Neurotensin is a neuropeptide associated with the regulation of the nigrostriatal and mesolimbic dopamine pathways. In addition, the ventral tegmental area, a midbrain region implicated in the rewarding effects of most, if not all, addictive drugs, appears to be a particularly critical target for nicotine action. Because neurotensin has been linked with both mesolimbic and mesocortical dopamine function, we examined the impact of nicotine treatment on central nervous neurotensin systems by measuring changes in neurotensin tissue content because it has been shown that such changes reflect alterations in release and activity of this peptide system. Male Sprague-Dawley rats received multiple administrations of (+/-) nicotine 4.0 mg/kg/day (0.8 mg/kg, i.p.; 5 x 2-h intervals) in the presence or absence of selective dopamine receptor antagonists (dopamine D(1); SCH 23390 or dopamine D(2); eticlopride) or two doses of the non-selective nicotinic acetylcholine receptor antagonist (mecamylamine; 3.0 and 6.0 mg/kg, s.c.). The nicotine treatment significantly decreased neurotensin-like immunoreactivity content in the ventral tegmental area, as well as related regions such as prefrontal cortex, substantia nigra, and anterior striatal region 12-18 h after drug treatment, but not the nucleus accumbens. The nicotine-mediated decrease in the neurotensin-like immunoreactivity of the ventral tegmental area was selectively blocked by a specific dopamine D(2), but not a dopamine D(1), receptor antagonist, while mecamylamine attenuated at the low (3.0 mg/kg) and completely blocked at high (6.0 mg/kg) dose this nicotine effect. These findings with previous studies, suggest that nicotine-mediated dopamine release activates D(2) receptors which in turn increases neurotensin release, turnover and acutely reduces tissue levels in the ventral tegmental area and other limbic and basal ganglia structures.
Collapse
Affiliation(s)
- Mario E Alburges
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA.
| | | | | |
Collapse
|
49
|
Zanetti L, Picciotto MR, Zoli M. Differential effects of nicotinic antagonists perfused into the nucleus accumbens or the ventral tegmental area on cocaine-induced dopamine release in the nucleus accumbens of mice. Psychopharmacology (Berl) 2007; 190:189-99. [PMID: 17061109 DOI: 10.1007/s00213-006-0598-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 09/21/2006] [Indexed: 11/29/2022]
Abstract
RATIONALE The mesolimbic dopamine (DA) system is considered a principal site for nicotine-cocaine interactions. OBJECTIVES AND METHODS The aim of this paper is to study the effects of local perfusions (through the microdialysis cannula) of nicotinic acetylcholine receptor (nAChR) antagonists in the ventral tegmental area (VTA, where mesolimbic DA cell bodies are located) or nucleus accumbens (nAc, where mesolimbic DA nerve terminals project) on cocaine-elicited increase in DA levels in the nAc of mice using intracerebral microdialysis. RESULTS Intra-nAc perfusion of mecamylamine (a nonselective central nicotinic antagonist) or coperfusion of methyllycaconitine (MLA, 10 nM) and dihydro-beta-erythroidine (DHbetaE, 10-100 muM) decreased cocaine-elicited increase in DA perfusate levels. In contrast, intra-nAc perfusion of MLA alone (a relatively selective antagonist of alpha7 subunit-containing nAChRs) increased, while DHbetaE (a relatively selective antagonist of heteromeric nAChR subtypes) did not alter, cocaine-elicited increase in DA perfusate levels. Intra-VTA perfusion of MLA (100 nM) or DHbetaE (100 micro M) significantly increased the cocaine-elicited increase of DA levels in the nAc or VTA, whereas DHbetaE and MLA coperfusion or mecamylamine perfusion had no significant effect. CONCLUSIONS These results show that intra-nAc and intra-VTA perfusion of nAChR antagonists differentially affect cocaine-elicited increase in DA levels in a region and subtype-specific manner. This suggests that multiple cholinergic/nicotinic pathways influence the effects of cocaine on mesolimbic DA neurons in complex, and sometimes opposing, patterns.
Collapse
Affiliation(s)
- Lara Zanetti
- Department of Biomedical Sciences, Section of Physiology, University of Modena and Reggio Emilia, via Campi 287, 41100, Modena, Italy
| | | | | |
Collapse
|
50
|
Smith JW, Mogg A, Tafi E, Peacey E, Pullar IA, Szekeres P, Tricklebank M. Ligands selective for alpha4beta2 but not alpha3beta4 or alpha7 nicotinic receptors generalise to the nicotine discriminative stimulus in the rat. Psychopharmacology (Berl) 2007; 190:157-70. [PMID: 17115136 DOI: 10.1007/s00213-006-0596-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 09/19/2006] [Indexed: 02/06/2023]
Abstract
RATIONALE Nicotine produces behavioural effects that are potentially related to its interaction with diverse nicotinic acetylcholine receptor populations. Evidence from gene deletion studies suggests that the interoceptive stimulus properties of nicotine are mediated by heteromeric high-affinity receptors containing alpha4beta2 subunits. Mice lacking beta2 subunits do not discriminate nicotine (Shoaib et al., Neuropharmacology, 42:530-539, 2002), and nicotine does not elicit dopamine release in these animals (Grady et al., J Neurochem, 76:258-268, 2001). The stimulus properties of nicotine can be detected in rats using a two-lever operant drug discrimination paradigm, allowing them to be classified pharmacologically using ligands with selectivity for receptors containing alpha4beta2, alpha3beta4 or alpha7 subunits. MATERIALS AND METHODS Rats trained to discriminate 0.4 mg/kg nicotine from vehicle were given the nicotinic receptor agonists, cytisine, varenicline, TC2559, ABT-594, A-85380 (all having high affinity but varying selectivity for alpha4beta2-containing receptors), and WO 03/062224 and WO 01/60821A1 (selective for beta4- and alpha7-containing receptors, respectively). In separate studies, WO 03/062224 was used as the training stimulus. RESULTS Nicotine, TC-2559, A-85380 and ABT-594 showed dose-dependent and complete stimulus substitution, whilst WO 03/062224 and WO 01/60821A1 were completely without effect. Cytisine and varenicline showed partial generalisation, consistent with their partial agonist activity at nicotinic receptors eliciting dopamine release in rat striatal slices. After almost 50 training sessions with WO 03/062224, there was no clear evidence that an alpha3beta4 receptor agonist could sustain a discriminable stimulus. CONCLUSION Substitution to the nicotine discriminative stimulus required high-affinity and high intrinsic activity at beta2 but not at beta4- or at alpha7-containing nicotinic receptors.
Collapse
Affiliation(s)
- Janice W Smith
- Eli Lilly & Co Ltd, Lilly Research Centre, Sunninghill Road, Windlesham, Surrey, UK.
| | | | | | | | | | | | | |
Collapse
|