1
|
The Cardioprotective Effect of Corosolic Acid in the Diabetic Rats: A Possible Mechanism of the PPAR-γ Pathway. Molecules 2023; 28:molecules28030929. [PMID: 36770602 PMCID: PMC9919720 DOI: 10.3390/molecules28030929] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The study was conducted to determine whether corosolic acid could protect the myocardium of diabetic rats from damage caused by isoproterenol (ISO) and, if so, how peroxisome proliferator-activated receptor gamma (PPAR-γ) activation might contribute into this protection. Diabetes in the rats was induced by streptozotocin (STZ), and it was divided into four groups: the diabetic control group, diabetic rats treated with corosolic acid, diabetic rats treated with GW9662, and diabetic rats treated with corosolic acid plus GW9662. The study was carried out for 28 days. The diabetic control and ISO control groups showed a decrease in mean arterial pressure (MAP) and diastolic arterial pressure (DAP) and an increase in systolic arterial pressure (SAP). The rat myocardium was activated by corosolic acid treatment, which elevated PPAR-γ expression. A histopathological analysis showed a significant reduction in myocardial damage by reducing myonecrosis and edema. It was found that myocardial levels of CK-MB and LDH levels were significantly increased after treatment with corosolic acid. By decreasing lipid peroxidation and increasing endogenous antioxidant levels, corosolic acid therapy showed a significant improvement over the ISO diabetic group. In conclusion, our results prove that corosolic acid can ameliorate ISO-induced acute myocardial injury in rats. Based on these results, corosolic acid seems to be a viable new target for the treatment of cardiovascular diseases and other diseases of a similar nature.
Collapse
|
2
|
Hidden Cardiotoxicity of Rofecoxib Can be Revealed in Experimental Models of Ischemia/Reperfusion. Cells 2020; 9:cells9030551. [PMID: 32111102 PMCID: PMC7140447 DOI: 10.3390/cells9030551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiac adverse effects are among the leading causes of the discontinuation of clinical trials and the withdrawal of drugs from the market. The novel concept of ‘hidden cardiotoxicity’ is defined as cardiotoxicity of a drug that manifests in the diseased (e.g., ischemic/reperfused), but not in the healthy heart or as a drug-induced deterioration of cardiac stress adaptation (e.g., ischemic conditioning). Here, we aimed to test if the cardiotoxicity of a selective COX-2 inhibitor rofecoxib that was revealed during its clinical use, i.e., increased occurrence of proarrhythmic and thrombotic events, could have been revealed in early phases of drug development by using preclinical models of ischemia/reperfusion (I/R) injury. Rats that were treated with rofecoxib or vehicle for four weeks were subjected to 30 min. coronary artery occlusion and 120 min. reperfusion with or without cardioprotection that is induced by ischemic preconditioning (IPC). Rofecoxib increased overall the arrhythmias including ventricular fibrillation (VF) during I/R. The proarrhythmic effect of rofecoxib during I/R was not observed in the IPC group. Rofecoxib prolonged the action potential duration (APD) in isolated papillary muscles, which was not seen in the simulated IPC group. Interestingly, while showing hidden cardiotoxicity manifested as a proarrhythmic effect during I/R, rofecoxib decreased the infarct size and increased the survival of adult rat cardiac myocytes that were subjected to simulated I/R injury. This is the first demonstration that rofecoxib increased acute mortality due to its proarrhythmic effect via increased APD during I/R. Rofecoxib did not interfere with the cardiprotective effect of IPC; moreover, IPC was able to protect against rofecoxib-induced hidden cardiotoxicity. These results show that cardiac safety testing with simple preclinical models of I/R injury uncovers hidden cardiotoxicity of rofecoxib and might reveal the hidden cardiotoxicity of other drugs.
Collapse
|
3
|
Riess ML, Elorbany R, Weihrauch D, Stowe DF, Camara AK. PPARγ-Independent Side Effects of Thiazolidinediones on Mitochondrial Redox State in Rat Isolated Hearts. Cells 2020; 9:cells9010252. [PMID: 31968546 PMCID: PMC7017211 DOI: 10.3390/cells9010252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
The effect of anti-diabetic thiazolidinediones (TZDs) on contributing to heart failure and cardiac ischemia/reperfusion (IR) injury is controversial. In this study we investigated the effect of select TZDs on myocardial and mitochondrial function in Brown Norway rat isolated hearts. In a first set of experiments, the TZD rosiglitazone was given acutely before global myocardial IR, and pre- and post-IR function and infarct size were assessed. In a second set of experiments, different concentrations of rosiglitazone and pioglitazone were administered in the presence or absence of the specific PPARγ antagonist GW9662, and their effects on the mitochondrial redox state were measured by online NADH and FAD autofluorescence. The administration of rosiglitazone did not significantly affect myocardial function except for transiently increasing coronary flow, but it increased IR injury compared to the control hearts. Both TZDs resulted in dose-dependent, reversible increases in mitochondrial oxidation which was not attenuated by GW9662. Taken together, these data suggest that TZDs cause excessive mitochondrial uncoupling by a PPARγ-independent mechanism. Acute rosiglitazone administration before IR was associated with enhanced cardiac injury. If translated clinically, susceptible patients on PPARγ agonists may experience enhanced myocardial IR injury by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthias L. Riess
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-(615)-936-0277; Fax: +1-(615)-343-3916
| | - Reem Elorbany
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA;
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
| | - David F. Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, USA
| | - Amadou K.S. Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation. Cell Mol Neurobiol 2017; 38:121-132. [PMID: 28975471 DOI: 10.1007/s10571-017-0554-5] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) has been implicated in the pathology of numerous diseases involving diabetes, stroke, cancer, or obesity. It is expressed in diverse cell types, including vessels, immune and glial cells, and neurons. PPARγ plays crucial roles in the regulation of cellular differentiation, lipid metabolism, or glucose homeostasis. PPARγ ligands also exert effects on attenuating degenerative processes in the brain, as well as in peripheral systems, and it has been associated with the control of anti-inflammatory mechanisms, oxidative stress, neuronal death, neurogenesis, differentiation, and angiogenesis. This review will highlight key advances in the understanding of the PPARγ-related mechanisms responsible for neuroprotection after brain injuries, both ischemia and traumatic brain injury, and it will also cover the natural and synthetic agonist for PPARγ, angiotensin receptor blockers, and PPARγ antagonists, used in experimental and clinical research. A better understanding of the pleiotropic mechanisms and applications of these drugs to improve the recovery and to repair the acute and chronic induced neuroinflammation after brain injuries will pave the way for more effective therapeutic strategies after brain deficits.
Collapse
|
5
|
The Protective Effect of Apigenin on Myocardial Injury in Diabetic Rats mediating Activation of the PPAR-γ Pathway. Int J Mol Sci 2017; 18:ijms18040756. [PMID: 28375162 PMCID: PMC5412341 DOI: 10.3390/ijms18040756] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022] Open
Abstract
We substantiated the role of peroxisome proliferator-activated receptor-γ (PPAR-γ) activation in the protective effect of apigenin against the myocardial infarction (MI) in diabetic rats. Diabetes was induced by intraperitoneal administration of a single dose of streptozotocin (55 mg/kg). The study groups included diabetic rats receiving vehicle, apigenin (75 mg/kg/day, orally), GW9662 (1 mg/kg/day, intraperitoneally), and a combination of apigenin and GW9662 for 14 days. The MI was induced in all the study groups except the diabetic control group by subcutaneous injection of 100 mg/kg/day of isoproterenol on the two terminal days. The diabetes and isoproterenol-induced MI was evident as a reduction in the maximal positive and negative rate of developed left ventricular pressure and an increase in the left ventricular end-diastolic pressure. The activities of creatine kinase on myocardial bundle (CK-MB) and lactate dehydrogenase (LDH) were also reduced. Apigenin treatment prevented the hemodynamic perturbations, restored the left ventricular function and reinstated a balanced redox status. It protected rats against an MI by attenuating myonecrosis, edema, cell death, and oxidative stress. GW9662, a PPAR-γ antagonist reversed the myocardial protection conferred by apigenin. Further, an increase in the PPAR-γ expression in the myocardium of the rats receiving apigenin reinforces the role of PPAR-γ pathway activation in the cardioprotective effects of apigenin.
Collapse
|
6
|
Barlaka E, Galatou E, Mellidis K, Ravingerova T, Lazou A. Role of Pleiotropic Properties of Peroxisome Proliferator-Activated Receptors in the Heart: Focus on the Nonmetabolic Effects in Cardiac Protection. Cardiovasc Ther 2016; 34:37-48. [DOI: 10.1111/1755-5922.12166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Eleftheria Barlaka
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Eleftheria Galatou
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Kyriakos Mellidis
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Tanya Ravingerova
- Institute for Heart Research; Slovak Academy of Sciences; Bratislava Slovak Republic
| | - Antigone Lazou
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
7
|
Nader ND, Asgeri M, Davari-Farid S, Pourafkari L, Ahmadpour F, Porhomayon J, Javadzadeghan H, Negargar S, Knight PR. The Effect of Lipopolysaccharide on Ischemic-Reperfusion Injury of Heart: A Double Hit Model of Myocardial Ischemia and Endotoxemia. J Cardiovasc Thorac Res 2015; 7:81-6. [PMID: 26430494 PMCID: PMC4586603 DOI: 10.15171/jcvtr.2015.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Myocardial ischemia may coincide and interact with sepsis and inflammation. Our objective was to examine the effects of bacterial endotoxin on myocardial functions and cell injury during acute ischemia.
Methods: Rabbits were pretreated with incremental doses of E. Coli lipopolysaccharide (LPS) or normal saline. Myocardial ischemia was induced by 50-minute occlusion of left anterior descending artery. S-TNFaR was additionally used to block the effects LPS.
Results: Ventricular contractility as it was measured by dp/dt during systole decreased from 2445± 1298 to 1422 ± 944 mm Hg/s, P = .019. Isovolumetric relaxation time as an index of diastolic function was prolonged from 50±18 ms to 102± 64 ms following ischemia. Pretreatment with low concentrations of LPS (<1 μg) had no effect on dp/dt, while at higher concentrations it suppressed both contractility and prolonged IVRT. Cell injury as measured by cardiac troponin I level increased to 15.1± 3.2 ng/dL following ischemia and continued to rise with higher doses of LPS. While blocking TNFa did not improve the myocardial contractility after ischemia, it eliminated additional deleterious effects of LPS.
Conclusion: Lower doses of LPS had no deleterious effect on myocardial function, whereas higher doses of this endotoxin cause cardiac dysfunction and increased extent of injury.
Collapse
Affiliation(s)
- Nader D Nader
- Department of Anesthesiology, University at Buffalo, Buffalo, NY, USA
| | - Mehrdad Asgeri
- Private Practicing Gastroenterologist, Cleveland Area, OH, USA
| | - Sina Davari-Farid
- Department of Anesthesiology, University at Buffalo, Buffalo, NY, USA
| | - Leili Pourafkari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jahan Porhomayon
- Department of Anesthesiology, University at Buffalo, Buffalo, NY, USA
| | - Hassan Javadzadeghan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohrab Negargar
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paul R Knight
- Department of Anesthesiology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
8
|
Sordi R, Chiazza F, Patel NSA, Doyle RA, Collino M, Thiemermann C. 'Preconditioning' with low dose lipopolysaccharide aggravates the organ injury / dysfunction caused by hemorrhagic shock in rats. PLoS One 2015; 10:e0122096. [PMID: 25830444 PMCID: PMC4382161 DOI: 10.1371/journal.pone.0122096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/17/2015] [Indexed: 01/08/2023] Open
Abstract
Methods Male rats were ‘pretreated’ with phosphate-buffered saline (PBS; i.p.) or LPS (1 mg/kg; i.p.) 24 h prior to HS. Mean arterial pressure (MAP) was maintained at 30 ± 2 mmHg for 90 min or until 25% of the shed blood had to be re-injected to sustain MAP. This was followed by resuscitation with the remaining shed blood. Four hours after resuscitation, parameters of organ dysfunction and systemic inflammation were assessed. Results HS resulted in renal dysfunction, and liver and muscular injury. At a first glance, LPS preconditioning attenuated organ dysfunction. However, we discovered that HS-rats that had been preconditioned with LPS (a) were not able to sustain a MAP at 30 mmHg for more than 50 min and (b) the volume of blood withdrawn in these animals was significantly less than in the PBS-control group. This effect was associated with an enhanced formation of the nitric oxide (NO) derived from inducible NO synthase (iNOS). Thus, a further control group in which all animals were resuscitated after 50 min of hemorrhage was performed. Then, LPS preconditioning aggravated both circulatory failure and organ dysfunction. Most notably, HS-rats pretreated with LPS exhibited a dramatic increase in NF-κB activation and pro-inflammatory cytokines. Conclusion In conclusion, LPS preconditioning predisposed animals to an earlier vascular decompensation, which may be mediated by an excess of NO production secondary to induction of iNOS and activation of NF-κB. Moreover, LPS preconditioning increased the formation of pro-inflammatory cytokines, which is likely to have contributed to the observed aggravation of organ injury/dysfunction caused by HS.
Collapse
Affiliation(s)
- Regina Sordi
- The William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
- Capes Foundation, Ministry of Education of Brazil, Brasilia/DF, Brazil
| | - Fausto Chiazza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Nimesh S. A. Patel
- The William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rachel A. Doyle
- The William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Christoph Thiemermann
- The William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Agrawal YO, Sharma PK, Shrivastava B, Arya DS, Goyal SN. Hesperidin blunts streptozotocin-isoproternol induced myocardial toxicity in rats by altering of PPAR-γ receptor. Chem Biol Interact 2014; 219:211-20. [DOI: 10.1016/j.cbi.2014.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/03/2014] [Accepted: 06/11/2014] [Indexed: 01/14/2023]
|
10
|
Fishbein-Kaminietsky M, Gafni M, Sarne Y. Ultralow doses of cannabinoid drugs protect the mouse brain from inflammation-induced cognitive damage. J Neurosci Res 2014; 92:1669-77. [DOI: 10.1002/jnr.23452] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/15/2014] [Accepted: 06/16/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Miriam Fishbein-Kaminietsky
- The Adelson Center for the Biology of Addictive Diseases and The Mauerberger Chair in Neuropharmacology; Sackler Faculty of Medicine, Tel-Aviv University; Tel-Aviv Israel
| | - Mikhal Gafni
- The Adelson Center for the Biology of Addictive Diseases and The Mauerberger Chair in Neuropharmacology; Sackler Faculty of Medicine, Tel-Aviv University; Tel-Aviv Israel
| | - Yosef Sarne
- The Adelson Center for the Biology of Addictive Diseases and The Mauerberger Chair in Neuropharmacology; Sackler Faculty of Medicine, Tel-Aviv University; Tel-Aviv Israel
| |
Collapse
|
11
|
Jagadeesh G, Balakumar P, Stockbridge N. How well do aliskiren's purported mechanisms track its effects on cardiovascular and renal disorders? Cell Signal 2012; 24:1583-91. [DOI: 10.1016/j.cellsig.2012.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/04/2012] [Indexed: 01/27/2023]
|
12
|
Chen T, Jin X, Crawford BH, Cheng H, Saafir TB, Wagner MB, Yuan Z, Ding G. Cardioprotection from oxidative stress in the newborn heart by activation of PPARγ is mediated by catalase. Free Radic Biol Med 2012; 53:208-15. [PMID: 22609424 DOI: 10.1016/j.freeradbiomed.2012.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/03/2012] [Accepted: 05/11/2012] [Indexed: 12/20/2022]
Abstract
Regulation of catalase (CAT) by peroxisome proliferator-activated receptor-γ (PPARγ) was investigated to determine if PPARγ activation provides cardioprotection from oxidative stress caused by hydrogen peroxide (H(2)O(2)) in an age-dependent manner. Left ventricular developed pressure (LVDP) was measured in Langendorff perfused newborn or adult rabbit hearts, exposed to 200μM H(2)O(2), with perfusion of rosiglitazone (RGZ) or pioglitazone (PGZ), PPARγ agonists. We found: (1) H(2)O(2) significantly decreased sarcomere shortening in newborn ventricular cells but not in adult cells. Lactate dehydrogenase (LDH) release occurred earlier in newborn than in adult heart, which may be due, in part, to the lower expression of CAT in newborn heart. (2) RGZ increased CAT mRNA and protein as well as activity in newborn but not in adult heart. GW9662 (PPARγ blocker) eliminated the increased CAT mRNA by RGZ. (3) In newborn heart, RGZ and PGZ treatment inhibited release of LDH in response to H(2)O(2) compared to H(2)O(2) alone. GW9662 decreased this inhibition. (4) LVDP was significantly higher in both RGZ+H(2)O(2) and PGZ+H(2)O(2) groups than in the H(2)O(2) group. Block of PPARγ abolished this effect. In contrast, there was no effect of RGZ in adult. (5) The cardioprotective effects of RGZ were abolished by inhibition of CAT. In conclusion, PPARγ activation is cardioprotective to H(2)O(2)-induced stress in the newborn heart by upregulation of catalase. These data suggest that PPARγ activation may be an effective therapy for the young cardiac patient.
Collapse
Affiliation(s)
- Tao Chen
- Emory-Children's Center for Cardiovascular Biology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zeng Y, Xie K, Dong H, Zhang H, Wang F, Li Y, Xiong L. Hyperbaric oxygen preconditioning protects cortical neurons against oxygen-glucose deprivation injury: role of peroxisome proliferator-activated receptor-gamma. Brain Res 2012; 1452:140-50. [PMID: 22444276 DOI: 10.1016/j.brainres.2012.02.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 02/20/2012] [Accepted: 02/25/2012] [Indexed: 12/25/2022]
Abstract
Ischemic stroke is one of the leading causes of mortality and disability worldwide. Our previous studies have shown that hyperbaric oxygen (HBO) preconditioning can afford significant neuroprotection against cerebral ischemia-reperfusion (I/R) injury in rats. However, it is still unknown whether HBO preconditioning can directly protect primary cultured cortical neurons against oxygen-glucose deprivation (OGD). Peroxisome proliferator-activated receptor-gamma (PPAR γ) plays a central role in the regulation of apoptosis, oxidative stress and inflammation as well as affords significant neuroprotection against cerebral I/R injury. 15-deoxy-∆(12,14)-prostaglandin J(2) (15d-PGJ(2)) is an endogenous ligand with a high affinity for PPAR γ. Recently, some studies demonstrate that activation of PPAR γ mediates lipopolysaccharide and anesthetic preconditioning. In the present study, we firstly found that OGD exposure caused the significant damage of cultured cortical neurons evaluated by cell viability, lactate dehydrogenase (LDH) release and caspase-3 activity, which were significantly ameliorated by HBO preconditioning. Furthermore, HBO preconditioning significantly increased the levels of PPAR γ mRNA and protein, PPAR γ DNA binding activity, 15d-PGJ(2) and antioxidant enzymatic activities in primary cultured cortical neurons with OGD exposure. Moreover, PPAR γ antagonist GW9662 dose-dependently abolished the protection of HBO preconditioning in OGD-exposed neurons. GW9662 blocked the increase of PPAR γ DNA binding activity and antioxidant enzymatic activities, but did not influence the 15d-PGJ(2) level in OGD-exposed neurons with HBO preconditioning. However, the cyclooxygenase (COX)-2 inhibitor NS-398 blocked the production of 15d-PGJ(2) in OGD-exposed neurons with HBO preconditioning. In addition, 15d-PGJ(2) preconditioning could also protect cultured neurons against OGD injury. These results demonstrate that HBO preconditioning has directly beneficial effects on ODG-exposed cortical neurons by the activation of PPAR γ subsequent to the production of 15d-PGJ(2), which in turn increases the downstream antioxidant enzymatic activities.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Barry SP, Ounzain S, McCormick J, Scarabelli TM, Chen-Scarabelli C, Saravolatz LII, Faggian G, Mazzucco A, Suzuki H, Thiemermann C, Knight RA, Latchman DS, Stephanou A. Enhanced IL-17 signalling following myocardial ischaemia/reperfusion injury. Int J Cardiol 2011; 163:326-334. [PMID: 22030025 PMCID: PMC3581775 DOI: 10.1016/j.ijcard.2011.08.849] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 12/31/2022]
Abstract
Background IL-17A and IL-17F are pro-inflammatory cytokines which induce the expression of several cytokines, chemokines and matrix metalloproteinases (MMPs) in target cells. IL-17 cytokines have recently attracted huge interest due to their pathogenic role in diseases such as arthritis and inflammatory bowel disease although a role for IL-17 cytokines in myocardial infarction (MI) has not previously been described. Methods In vivo MI was performed by coronary artery occlusion in the absence or presence of a neutralizing IL-17 antibody for blocking IL-17 actions in vivo. IL-17 signaling was also assessed in isolated primary cardiomyocytes by Western blot, mRNA expression and immunostaining. Results Expression of IL-17A, IL-17F and the IL-17 receptor (IL-17RA) were all increased following MI. Expression of several IL-17 target genes, including Cxcl1, Cxcl2, IL-1β, iNOS and IL-6 was also upregulated following MI. In addition, IL-17A promoted the expression of Cxcl1 and IL-6 in isolated cardiomyocytes in a MAPK and PI(3)K-dependent manner. IL-17A and ischaemia/reperfusion (I/R) injury were found to have an additive effect on Cxcl1 expression, suggesting that IL-17 may enhance myocardial neutrophil recruitment during MI. Moreover, protein levels of both IL-17R and IL-17A were enhanced following in vivo MI. Finally, blocking IL-17 signaling in vivo reduced the levels of apoptotic cell death markers following in vivo MI. Conclusions These data imply that the expression of IL-17 cytokines and their receptor are elevated during myocardial I/R injury and may play a fundamental role in post infarct inflammatory and apoptotic responses.
Collapse
Affiliation(s)
- Seán P Barry
- Institute of Molecular Medicine, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Samir Ounzain
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - James McCormick
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Tiziano M Scarabelli
- Center for Heart and Vessel Preclinical Studies, St. John Hospital and Medical Center, Wayne State University School of Medicine, 22201 Moross Road, Detroit, USA
| | - Carol Chen-Scarabelli
- Center for Heart and Vessel Preclinical Studies, St. John Hospital and Medical Center, Wayne State University School of Medicine, 22201 Moross Road, Detroit, USA
| | - Louis I I Saravolatz
- Center for Heart and Vessel Preclinical Studies, St. John Hospital and Medical Center, Wayne State University School of Medicine, 22201 Moross Road, Detroit, USA
| | - Giuseppe Faggian
- Division of Cardiac Surgery, University of Verona, Verona, Italy
| | | | - Hisanori Suzuki
- Sezione di Chimica Biologica, Dipartimento di Scienze Morfologico-Biomediche, Università di Verona, Strada Le Grazie, 8, I-37134 Verona, Italy
| | - Christoph Thiemermann
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, St Bartholomew's and The Royal London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Richard A Knight
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - David S Latchman
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Anastasis Stephanou
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
15
|
Harding P, Murray DB. The contribution of prostaglandins versus prostacyclin in ventricular remodeling during heart failure. Life Sci 2011; 89:671-6. [PMID: 21855554 DOI: 10.1016/j.lfs.2011.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 12/20/2022]
Abstract
Although the role of Cox-2 in the heart's response to physiologic stress remains controversial (i.e. expression in myocytes versus other resident myocardial cells) the ever expanding role of prostanoids in multiple models of heart failure cannot be denied. Due to the fact that prostanoids are metabolized rather quickly (half life of seconds to minutes) it is believed these signaling mediators act in a paracrine fashion at the site of production. Evidence to date is quite convincing that these bioactive lipid derivatives are involved in physiologic homeostatic regulation as well as beneficial and maladaptive ventricular remodeling in heart failure. Thus, this review will assess the direct contribution of each PG on remodeling in the left ventricle (e.g. hypertrophy, functional effects, and fibrosis).
Collapse
Affiliation(s)
- Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | | |
Collapse
|
16
|
Goyal SN, Bharti S, Bhatia J, Nag TC, Ray R, Arya DS. Telmisartan, a dual ARB/partial PPAR-γ agonist, protects myocardium from ischaemic reperfusion injury in experimental diabetes. Diabetes Obes Metab 2011; 13:533-41. [PMID: 21320264 DOI: 10.1111/j.1463-1326.2011.01377.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Apart from its angiotensin receptor blocker (ARB) activity, telmisartan is also a partial agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ). Therefore, we assessed whether telmisartan treatment attenuates myocardial ischaemia/reperfusion (I/R) injury in diabetic rats through PPAR-γ pathway. METHODS Diabetic rats were randomized to receive vehicle (sham and I/R), telmisartan (10 mg/kg/day, orally), PPAR-γ antagonist GW9662 (1 mg/kg/day, intraperitoneally) or both for 14 days. On 15th day, excluding sham group, left anterior descending coronary artery occlusion was performed for 45 min followed by 1 h of reperfusion. Haemodynamic, biochemical, histopathological, ultrastructural, immunohistochemical (Bax and Bcl-2 protein), TUNEL positivity, infarct size and western blot studies were performed. RESULTS Telmisartan treatment significantly improved cardiac function by normalizing mean arterial pressure, left ventricular pressure (±LVdP/dt(max) , a marker of myocardial contraction and relaxation), by decreasing left ventricular end-diastolic pressure (a marker of preload, 3.7 ± 0.41 vs. 7.3 ± 0.89, p < 0.001) and percent infarct area (37.52 ± 5.83 vs. 46.27 ± 3.20, p < 0.01) as compared to diabetic I/R group. Interestingly, GW9662 worsens the I/R injury (percent infarct area, 54.38 ± 6.48 vs. 46.27 ± 3.20, p < 0.01), whereas telmisartan with GW9662 (percent infarct area, 41.16 ± 8.23 vs. 46.27 ± 3.20, p < 0.05) showed lesser significant results as compared to telmisartan alone. Additionally, telmisartan significantly ameliorates activities of endogenous antioxidants, creatine kinase-MB isoenzyme, lactate dehydrogenase and prevented the increase of tumour necrosis factor-alpha and malondialdehyde in myocardium. Furthermore, telmisartan also decreased Bax expression (4.45 ± 1.24% vs. 10.25 ± 0.96%, p < 0.01), number of TUNEL-positive cells (6.2 ± 0.98% vs. 13.0 ± 1.6, p < 0.01), inflammation, myonecrosis and increased Bcl-2 expression (5.45 ± 0.15% vs. 1.24 ± 0.3%, p < 0.01). On the other hand, GW9662 treatment alone increased the Bax expression, TUNEL positivity and decreased Bcl-2 expression. Telmisartan protective effects were partially attenuated by a co-administration with GW9662. Western blot analysis showed that telmisartan treatment enhanced PPAR-γ expression, whereas GW9662 decreased it in myocardium. CONCLUSIONS In addition to the class effect of ARBs, telmisartan has a beneficial effect in I/R injury in diabetic rats in part because of activation of PPAR-γ.
Collapse
Affiliation(s)
- S N Goyal
- Cardiovascular Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
17
|
Casillas-Ramírez A, Alfany-Fernández I, Massip-Salcedo M, Juan ME, Planas JM, Serafín A, Pallàs M, Rimola A, Rodés J, Peralta C. Retinol-binding protein 4 and peroxisome proliferator-activated receptor-γ in steatotic liver transplantation. J Pharmacol Exp Ther 2011; 338:143-53. [PMID: 21487070 DOI: 10.1124/jpet.110.177691] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Numerous steatotic livers are discarded for transplantation because of their poor tolerance of ischemia-reperfusion (I/R). The injurious effects of retinol-binding protein 4 (RBP4) in various pathologies are well documented. RBP4 levels are reduced by peroxisome proliferator-activated receptor-γ (PPARγ) agonists. Strategies aimed at increasing PPARγ protect steatotic livers under warm ischemia. Ischemic preconditioning (PC) based on brief periods of I/R protects steatotic liver grafts against I/R injury, but the responsible mechanism is poorly understood. We examined the roles of RBP4 and PPARγ in I/R injury associated with steatotic liver transplantation and the benefits of PC in such situations. We report that RBP4 and PPARγ expression levels in nonsteatotic livers were similar to those found in the sham group. However, reduced RBP4 and increased PPARγ levels were observed in steatotic livers. Treatment with either RBP4 or a PPARγ antagonist was effective only in steatotic livers. PC, which increased RBP4 levels, and RBP4 treatment both reduced PPARγ levels and hepatic injury in steatotic livers. When PPARγ was activated, neither RBP4 treatment nor PC (despite RBP4 induction) protected steatotic livers. In conclusion, steatotic liver grafts are more predisposed to down-regulate RBP4 and overexpress PPARγ. RBP4 treatment and PC, through RBP4 induction, reduced PPARγ levels in steatotic liver grafts, thus protecting them from the PPARγ detrimental effects.
Collapse
|
18
|
van Bilsen M, van Nieuwenhoven FA. PPARs as therapeutic targets in cardiovascular disease. Expert Opin Ther Targets 2011; 14:1029-45. [PMID: 20854178 DOI: 10.1517/14728222.2010.512917] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE OF THE FIELD The role of peroxisome proliferator-activated receptors PPARα, PPARδ and PPARγ in cardiovascular disease is receiving widespread attention. As ligand-activated nuclear receptors, they play a role in regulation of lipid and glucose metabolism. This feature of the PPARs has been successfully exploited to treat systemic metabolic diseases, like hyperlipidemia and type-2 diabetes. Indirectly, their lipid lowering effect also leads to a reduction of the risk for cardiovascular diseases, primarily atherosclerosis. AREAS COVERED IN THIS REVIEW The pleiotropic effects of each of the PPAR isotypes on vascular and cardiac disease are discussed, with special emphasis on the molecular mechanism of action and on preclinical observations. The mechanism underlying the beneficial effect of PPARs is not confined to whole body metabolism, but also includes modulation of other vital processes, such as inflammation and cell fate (proliferation, differentiation, apoptosis). WHAT THE READER WILL GAIN A large body of preclinical studies indicates that, in addition to their effect on atherogenesis, PPAR ligands also impact on ischemic heart disease and the development of cardiac failure. It remains to be established to what extent these intriguing observations can be translated into clinical practice. TAKE HOME MESSAGE The versatile mechanism of action extends the potential therapeutic profile of the PPARs enormously. Conversely, this versatility makes it harder to attain a specific therapeutic effect, without increasing the risk of undesirable side effects. The future challenge will be to design PPAR-based therapeutic strategies that minimize the detrimental side effects.
Collapse
Affiliation(s)
- Marc van Bilsen
- Maastricht University, Cardiovascular Research Institute Maastricht, Department of Physiology, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
19
|
Lotz C, Lange M, Redel A, Stumpner J, Schmidt J, Tischer-Zeitz T, Roewer N, Kehl F. Peroxisome-proliferator-activated receptor γ mediates the second window of anaesthetic-induced preconditioning. Exp Physiol 2010; 96:317-24. [PMID: 21123361 DOI: 10.1113/expphysiol.2010.055590] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The second window of anaesthetic-induced preconditioning (APC) is afforded by the interplay of multiple signalling pathways, whereas a similar protective response is mediated by peroxisome-proliferator-activated receptor γ (PPARγ) agonists. However, a possible role of this nuclear receptor during APC has not been studied to date. We investigated the hypothesis that the second window of APC is mediated by the activation of PPARγ. New Zealand White rabbits (n = 48) were subjected to 30 min of coronary artery occlusion followed by 3 h of reperfusion. The animals received desflurane (1.0 minimal alveolar concentration), the PPARγ antagonist GW9662, as well as the combined application of both, respectively, 24 h prior to coronary artery occlusion. Infarct size was determined gravimetrically; tissue levels of 15-deoxy-(12,14)-prostaglandin J(2) (15d-PGJ(2)) and nitrite/nitrate (NO(x)), as well as PPAR DNA binding were measured using specific assays. Data are presented as means ± s.e.m. Desflurane led to a reduced myocardial infarct size (41.7 ± 2.5 versus 61.8 ± 2.8%, P < 0.05), accompanied by significantly increased PPAR DNA binding (289.9 ± 33 versus 102.9 ± 18 relative light units, P < 0.05), as well as elevated tissue levels of 15d-PGJ(2) (224.4 ± 10.2 versus 116.9 ± 14.2 pg ml(-1), P < 0.05) and NO(x) (14.9 ± 0.7 versus 5.4 ± 0.7 μm, P < 0.05). Pharmacological inhibition of PPARγ abolished these protective effects, resetting the infarct size (56.5 ± 2.9%), as well as PPAR DNA-binding activity (91.2 ± 31 relative light units) and NO(x) tissue levels (5.9 ± 0.9 μm) back to control levels. Desflurane governs a second window of APC by increasing the production of 15d-PGJ(2), subsequently activating PPARγ, resulting in a diminished myocardial infarct size by increasing the downstream availability of NO.
Collapse
Affiliation(s)
- Christopher Lotz
- Department of Anesthesiology, Bayerische Julius-Maximilians-Universitt, Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mishra PK, Tyagi N, Sen U, Joshua IG, Tyagi SC. Synergism in hyperhomocysteinemia and diabetes: role of PPAR gamma and tempol. Cardiovasc Diabetol 2010; 9:49. [PMID: 20828387 PMCID: PMC2944245 DOI: 10.1186/1475-2840-9-49] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 09/09/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hyperhomocysteinemia (HHcy) and hyperglycemia cause diabetic cardiomyopathy by inducing oxidative stress and attenuating peroxisome proliferator- activated receptor (PPAR) gamma. However, their synergistic contribution is not clear. METHODS Diabetic Akita (Ins2+/-) and hyperhomocysteinemic cystathionine beta synthase mutant (CBS+/-) were used for M-mode echocardiography at the age of four and twenty four weeks. The cardiac rings from WT, Akita and hybrid (Ins2+/-/CBS+/-) of Akita and CBS+/- were treated with different doses of acetylcholine (an endothelial dependent vasodilator). High performance liquid chromatography (HPLC) was performed for determining plasma homocysteine (Hcy) level in the above groups. Akita was treated with ciglitazone (CZ) - a PPAR gamma agonist and tempol-an anti-oxidant, separately and their effects on cardiac remodeling were assessed. RESULTS At twenty four week, Akita mice were hyperglycemic and HHcy. They have increased end diastolic diameter (EDD). In their heart PPAR gamma, tissue inhibitor of metalloproteinase-4 (TIMP-4) and anti-oxidant thioredoxin were attenuated whereas matrix metalloproteinase (MMP)-9, TIMP-3 and NADPH oxidase 4 (NOX4) were induced. Interestingly, they showed synergism between HHcy and hyperglycemia for endothelial-myocyte (E-M) uncoupling. Additionally, treatment with CZ alleviated MMP-9 activity and fibrosis, and improved EDD. On the other hand, treatment with tempol reversed cardiac remodeling in part by restoring the expressions of TIMP-3,-4, thioredoxin and MMP-9. CONCLUSIONS Endogenous homocysteine exacerbates diabetic cardiomyopathy by attenuating PPAR gamma and inducing E-M uncoupling leading to diastolic dysfunction. PPAR gamma agonist and tempol mitigates oxidative stress and ameliorates diastolic dysfunction in diabetes.
Collapse
Affiliation(s)
- Paras K Mishra
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky-40202, USA
| | - Neetu Tyagi
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky-40202, USA
| | - Utpal Sen
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky-40202, USA
| | - Irving G Joshua
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky-40202, USA
| | - Suresh C Tyagi
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky-40202, USA
| |
Collapse
|
21
|
Chan SL, Chapman AC, Sweet JG, Gokina NI, Cipolla MJ. Effect of PPARγ inhibition during pregnancy on posterior cerebral artery function and structure. Front Physiol 2010; 1:130. [PMID: 21423372 PMCID: PMC3059960 DOI: 10.3389/fphys.2010.00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 08/09/2010] [Indexed: 12/28/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ), a ligand-activated transcription factor, has protective roles in the cerebral circulation and is highly activated during pregnancy. Thus, we hypothesized that PPARγ is involved in the adaptation of cerebral vasculature to pregnancy. Non-pregnant (NP) and late-pregnant (LP) rats were treated with a specific PPARγ inhibitor GW9662 (10 ]mg/kg/day, in food) or vehicle for 10 days and vascular function and structural remodeling were determined in isolated and pressurized posterior cerebral arteries (PCA). Expression of PPARγ and angiotensin type 1 receptor (AT1R) in cerebral (pial) vessels was determined by real-time RT-PCR. PPARγ inhibition decreased blood pressure and increased blood glucose in NP rats, but not in LP rats. PPARγ inhibition reduced dilation to acetylcholine and sodium nitroprusside in PCA from NP (p < 0.05 vs. LP-GW), but not LP rats. PPARγ inhibition tended to increase basal tone and myogenic activity in PCA from NP rats, but not LP rats. Structurally, PPARγ inhibition increased wall thickness in PCA from both NP and LP rats (p < 0.05), but increased distensibility only in PCA from NP rats. Pregnancy decreased expression of PPARγ and AT1R (p < 0.05) in cerebral arteries that was not affected by GW9662 treatment. These results suggest that PPARγ inhibition had significant effects on the function and structure of PCA in the NP state, but appeared to have less influence during pregnancy. Down-regulation of PPARγ and AT1R in cerebral arteries may be responsible for the lack of effect of PPARγ in cerebral vasculature and may be part of the vascular adaptation to pregnancy.
Collapse
Affiliation(s)
- Siu-Lung Chan
- Department of Neurology, University of Vermont Burlington, VT, USA
| | | | | | | | | |
Collapse
|
22
|
Barry SP, Lawrence KM, McCormick J, Soond SM, Hubank M, Eaton S, Sivarajah A, Scarabelli TM, Knight RA, Thiemermann C, Latchman DS, Townsend PA, Stephanou A. New targets of urocortin-mediated cardioprotection. J Mol Endocrinol 2010; 45:69-85. [PMID: 20501665 PMCID: PMC3069736 DOI: 10.1677/jme-09-0148] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The urocortin (UCN) hormones UCN1 and UCN2 have been shown previously to confer significant protection against myocardial ischaemia/reperfusion (I/R) injury; however, the molecular mechanisms underlying their action are poorly understood. To further define the transcriptional effect of UCNs that underpins their cardioprotective activity, a microarray analysis was carried out using an in vivo rat coronary occlusion model of I/R injury. Infusion of UCN1 or UCN2 before the onset of reperfusion resulted in the differential regulation of 66 and 141 genes respectively, the majority of which have not been described previously. Functional analysis demonstrated that UCN-regulated genes are involved in a wide range of biological responses, including cell death (e.g. X-linked inhibitor of apoptosis protein), oxidative stress (e.g. nuclear factor erythroid derived 2-related factor 1/nuclear factor erythroid derived 2-like 1) and metabolism (e.g. Prkaa2/AMPK). In addition, both UCN1 and UCN2 were found to modulate the expression of a host of genes involved in G-protein-coupled receptor (GPCR) signalling including Rac2, Gnb1, Dab2ip (AIP1), Ralgds, Rnd3, Rap1a and PKA, thereby revealing previously unrecognised signalling intermediates downstream of CRH receptors. Moreover, several of these GPCR-related genes have been shown previously to be involved in mitogen-activated protein kinase (MAPK) activation, suggesting a link between CRH receptors and induction of MAPKs. In addition, we have shown that both UCN1 and UCN2 significantly reduce free radical damage following myocardial infarction, and comparison of the UCN gene signatures with that of the anti-oxidant tempol revealed a significant overlap. These data uncover novel gene expression changes induced by UCNs, which will serve as a platform to further understand their mechanism of action in normal physiology and cardioprotection.
Collapse
Affiliation(s)
- Seán P Barry
- Medical Molecular Biology Unit, Institute of Child Health, University College London, London, WC1N 1EH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Goyal S, Arora S, Bhatt TK, Das P, Sharma A, Kumari S, Arya DS. Modulation of PPAR-γ by telmisartan protects the heart against myocardial infarction in experimental diabetes. Chem Biol Interact 2010; 185:271-80. [DOI: 10.1016/j.cbi.2010.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 12/20/2022]
|
24
|
Parecoxib inhibits apoptosis in acute myocardial infarction due to permanent coronary ligation but not due to ischemia-reperfusion. J Cardiovasc Pharmacol 2009; 53:495-8. [PMID: 19455055 DOI: 10.1097/fjc.0b013e3181a7b5b6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Myocardial ischemia induces cyclooxygenase 2 (COX-2) expression. We evaluated the effects of parecoxib, a COX-2 inhibitor, in 2 different mouse models of myocardial ischemia: permanent left coronary artery ligation (PI) and transient ligation (30 minutes ischemia) followed by reperfusion (I/R). METHODS Forty adult male Institute of Cancer Research mice underwent PI (n = 24) or I/R (n = 16), followed by randomization to parecoxib (0.75 mg/kg intraperitoneal daily) or normal saline for 7 days. RESULTS Parecoxib significantly reduced apoptosis [0.8% vs. 3.4% (saline), P < 0.001] and 7-day mortality [0% vs. 57% (saline), P = 0.040] in the PI group but showed no benefit in the I/R group. Parecoxib-treated mice also exhibited greater fractional shortening in the PI group [22% vs. 14% (saline), P = 0.045) but not in the I/R group. Parecoxib did not affect infarct size in either group. CONCLUSIONS COX-2 may play a pivotal role in mediating apoptosis in the ischemic peri-infarct myocardium that is not reperfused after infarct.
Collapse
|
25
|
Robinson E, Grieve DJ. Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacol Ther 2009; 122:246-63. [PMID: 19318113 DOI: 10.1016/j.pharmthera.2009.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 01/12/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.
Collapse
Affiliation(s)
- Emma Robinson
- Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 3rd Floor, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL UK
| | | |
Collapse
|
26
|
Schober P, Oprea G, Mersmann J, Nebert A, Zacharowski K, Zacharowski PA. Lipoteichoic acid induces delayed myocardial protection in isolated rat hearts: A comparison with endotoxin. Resuscitation 2008; 79:311-5. [DOI: 10.1016/j.resuscitation.2008.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
|
27
|
Inhibition of angiotensin II action protects rat steatotic livers against ischemia-reperfusion injury. Crit Care Med 2008; 36:1256-66. [PMID: 18379253 DOI: 10.1097/ccm.0b013e31816a023c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We examined whether pharmacologic strategies blocking angiotensin II actions protect steatotic livers against ischemia-reperfusion (I/R) injury. The effects of ischemic preconditioning (PC) on angiotensin II were also evaluated. DESIGN Randomized and controlled animal study. SETTING Experimental laboratory. SUBJECTS Zucker rats. INTERVENTIONS The following experimental groups were studied: I/R, ischemia-reperfusion + angiotensin-converting enzyme inhibitor (I/R+ACE inhibitor), ischemia-reperfusion + angiotensin II type I receptor antagonist (I/R+AT1R antagonist), ischemia-reperfusion + angiotensin II type II receptor antagonist (I/R+AT2R antagonist), and PC (5 mins of ischemia + 10 mins of reperfusion before I/R). In some of these groups, the action of bradykinin (BK) and/or peroxisome-proliferator-activated receptor-gamma (PPARgamma) was altered pharmacologically. MEASUREMENTS AND MAIN RESULTS I/R+ACE inhibitor, I/R+AT1R antagonist, and I/R+AT2R antagonist reduced hepatic injury in steatotic livers compared with the I/R group. PC reduced angiotensin II generation and hepatic injury in steatotic livers in comparison to I/R group. Our results revealed that I/R+ACE inhibitor, I/R+AT1R antagonist, I/R+AT2R antagonist, and PC increased BK compared with the I/R group. In addition, the effects of PC on BK and hepatic injury were abolished when angiotensin II was administered. Furthermore, administration of BK receptor antagonists to the I/R+ACE inhibitor, I/R+AT1R antagonist, I/R+AT2R antagonist, and PC groups resulted in hepatic injury similar to the I/R group, indicating that the benefits of ACE inhibitor, AT1R antagonist, AT2R antagonist, and PC were abolished when the action of BK was inhibited. Experiments aimed at investigating why BK was protective in steatotic livers indicated that BK acts as a positive regulator of PPARgamma. If PPARgamma action was inhibited, BK did not protect steatotic livers against hepatic injury. CONCLUSIONS Pharmacologic blockers of angiotensin II action (ACE inhibitors, AT1R antagonists, and AT2R antagonists) and PC, which reduced angiotensin II generation, increased BK generation in steatotic livers after I/R. This in turn increased PPARgamma and protected this type of liver against I/R injury.
Collapse
|
28
|
Smeets PJH, Planavila A, van der Vusse GJ, van Bilsen M. Peroxisome proliferator-activated receptors and inflammation: take it to heart. Acta Physiol (Oxf) 2007; 191:171-88. [PMID: 17935522 DOI: 10.1111/j.1748-1716.2007.01752.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors acting as key regulators of lipid metabolism as well as modulators of inflammation. The role of PPARalpha and PPARgamma in cardiac ischaemia-reperfusion injury, infarct healing and hypertrophy is the subject of intense research. Due to the later development of PPARdelta-specific ligands, the role of this PPAR isoform in cardiac disease remains to be established. Although many studies point to salutatory effects of PPAR ligands in cardiac disease, the exact molecular mechanism is still largely unsolved. Both the metabolic (via transactivation) and the more recently discovered anti-inflammatory (via transrepression) effects of PPARs are likely to play a role. In this review the reported, and sometimes contradictory, effects of PPAR ligands on ischaemia-reperfusion, infarct healing and cardiac hypertrophy are critically evaluated. In particular the role of inflammation in these disease processes, the ability of PPARs to interfere with pro-inflammatory processes, and the mechanisms of transrepression are discussed. Currently, the significance of PPARs as therapeutic targets in cardiovascular disease is receiving widespread attention. Accordingly, detailed understanding of the mechanisms controlling the activity of these nuclear hormone receptors is essential.
Collapse
Affiliation(s)
- P J H Smeets
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
29
|
Di Paola R, Cuzzocrea S. Peroxisome proliferator-activated receptors ligands and ischemia-reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol 2007; 375:157-75. [PMID: 17394034 DOI: 10.1007/s00210-007-0141-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 01/28/2007] [Indexed: 12/19/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to a subfamily of transcription nuclear factors. Three isoforms of PPARs have been identified: alpha, beta/delta and gamma, encoded by different genes and distributed in various tissues. They play important roles in metabolic processes like regulation of glucose and lipid redistribution. They also have anti-atherogenic, anti-inflammatory as well as antihypertensive functions. There is good evidence that ligands of PPARs reduce tissue injury associated with ischemia and reperfusion. The potential utility of PPAR ligands in ischemia and reperfusion will be discussed in this review.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Torre Biologica-Policlinico Universitario, Via C. Valeria-Gazzi, 98100 Messina, Italy
| | | |
Collapse
|
30
|
Patel NSA, Cuzzocrea S, Collino M, Chaterjee PK, Mazzon E, Britti D, Yaqoob MM, Thiemermann C. The role of cycloxygenase-2 in the rodent kidney following ischaemia/reperfusion injury in vivo. Eur J Pharmacol 2007; 562:148-54. [PMID: 17343844 DOI: 10.1016/j.ejphar.2007.01.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/18/2007] [Accepted: 01/24/2007] [Indexed: 11/22/2022]
Abstract
The role of cyclooxygenase-2 (COX-2) in the pathophysiology of renal ischaemia/reperfusion injury is still not fully understood. In order to elucidate the role of COX-2 in ischaemia/reperfusion injury of the kidney, we have evaluated the effects of ischaemia/reperfusion on renal dysfunction and injury in (i) rats treated with either vehicle or the selective COX-2 inhibitor parecoxib, and (ii) wild-type mice or mice in which the gene for COX-2 has been deleted (COX-2 knock-out mice or COX-2(-/-)). Rats were subjected to bilateral renal ischaemia (45 min) and reperfusion (6 h), and received parecoxib (20 mg/kg, i.v.) 30 min prior to ischaemia and 3 h after the commencement of reperfusion. Serum urea, serum creatinine, serum aspartate aminotransferase, creatinine clearance and fractional excretion of sodium were all used as indicators of renal dysfunction and injury. Mice (wild-type and COX-2(-/-)) were subjected to bilateral renal ischaemia (30 min) and reperfusion (24 h) after which renal dysfunction (serum urea and creatinine) and renal injury was assessed by histological analysis. Parecoxib significantly augmented the degree of renal dysfunction and injury caused by ischaemia/reperfusion in the rat. In addition, the degree of renal injury and dysfunction caused by ischaemia/reperfusion was also significantly augmented in COX-2(-/-) mice when compared to their wild-type littermates. These findings support the view that metabolites of COX-2 protect the kidney against ischaemia/reperfusion injury, and (ii) that selective inhibitors of COX-2 may worsen renal dysfunction and injury in conditions associated with renal ischaemia.
Collapse
Affiliation(s)
- Nimesh S A Patel
- Centre for Experimental Medicine and Nephrology and Critical Care, William Harvey Research Institute, St. Bartholomew's and The Royal London School of Medicine and Dentistry, Queen Mary - University of London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Murphey ED, Sherwood ER. Bacterial clearance and mortality are not improved by a combination of IL-10 neutralization and IFN-gamma administration in a murine model of post-CLP immunosuppression. Shock 2006; 26:417-24. [PMID: 16980891 DOI: 10.1097/01.shk.0000226343.70904.4f] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Immunocompromise after a major injury is presumed to be a predisposing factor for sepsis. Mice subjected to sublethal cecal ligation and puncture (CLP) and challenged 5 days later with Pseudomonas aeruginosa had more bacterial growth in lung tissue, lower serum interferon gamma (IFN-gamma) and interleukin (IL) 12,and higher serum IL-10 when compared with sham CLP mice challenged with Pseudomonas. To test the functional significance of these alterations in cytokine production in the immune response to bacteria, we administered IFN-gamma and anti-IL-10 to post-CLP mice before the Pseudomonas challenge. Administration of IFN-gamma and anti-IL-10 did not improve bacterial clearance or mortality in post-CLP mice. In further studies, we administered IFN-gamma to IL-10 knockout mice before a challenge with P. aeruginosa. Our results showed no significant differences in bacterial clearance or mortality in IL-10 knockout mice with or without IFN-gamma treatment compared with wild-type controls. Finally, because most mortality occurred within 2 to 3 days of the Pseudomonas challenge in the aforementioned studies and was likely associated with a marked proinflammatory response, we investigated the effect of IFN-gamma and anti-IL-10 on clearance of Pseudomonas in C3H/HeJ mice, which do not mount an exaggerated proinflammatory response to endotoxin or Gram-negative bacteria. Neither clearance of the Pseudomonas bacteria nor mortality was improved in C3H/HeJ mice receiving anti-IL-10 and IFN-gamma. These results suggest that the suppressed IFN-gamma and IL-12 responses, in combination with an exaggerated IL-10 response to P. aeruginosa challenge after injury, do not correlate with bacterial clearance or survival.
Collapse
Affiliation(s)
- E D Murphey
- Department of Anesthesiology, University of Texas Medical Branch, and Shriners Hospital for Children-Galveston Burns Unit, Galveston, TX 77555-0591, USA.
| | | |
Collapse
|
32
|
Zhang YF, Yang X, Zhang YJ, Sun YL, Zou XL, Kong QY, Dong XQ, Ye XQ, Yu XQ. Peroxisome proliferator-activated receptor-gamma is expressed by rat peritoneal mesothelial cells: its potential role in peritoneal cavity local defense. Am J Nephrol 2006; 26:602-11. [PMID: 17183189 DOI: 10.1159/000098149] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 11/22/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Peritoneal mesothelial cells (PMCs) play an important role in peritoneal inflammatory and immune response. It was reported that the peroxisomal proliferator-activated receptor-gamma (PPARgamma) ligand could effectively reduce inflammatory processes. However, the expression and function of PPARgamma in PMCs has not been reported. This study was to investigate the expression of PPARgamma in rat PMCs and the effect of PPARgamma activation on the production of CD40 and ICAM-1 induced by lipopolysaccharide (LPS). METHODS Rat PMCs (RPMCs) were harvested from the peritoneal cavity of Sprague-Dawley rats and maintained under defined in vitro conditions. The cells were treated separately with LPS, 15d-PGJ(2), and ciglitazone at different time points. The mRNA and protein expression of PPARgamma, CD40 and ICAM-1 were detected by RT-PCR and Western blot, respectively. The intracellular distribution of PPARgamma was detected by immunocytochemistry. RESULTS RPMCs expressed PPARgamma both at the mRNA and protein level. The specific signals for PPARgamma were mainly localized in the nucleus with weak staining in the cytoplasm. Stimulation of RPMCs with LPS resulted in a time-dependent increase in the expression of PPARgamma with the peak of mRNA at 3 h and protein at 12 h. Thereafter the expression of PPARgamma gradually attenuated. The mRNA expressions for CD40, ICAM-1 and protein expression of ICAM-1 were significantly upregulated following stimulation with LPS. Both 15d-PGJ(2) and ciglitazone decreased the expression of CD40 mRNA and ICAM-1 protein. However, ciglitazone was less effective than 15d-PGJ(2). CONCLUSIONS There is constitutive expression of PPARgamma in cultured RPMCs and PPARgamma ligands which strongly inhibit LPS-induced CD40 and ICAM-1 production in RPMCs. It suggested that PPARgamma might play a part in the local defense of the peritoneal cavity by downregulating inflammatory mediators, which may play a potential role in preventing peritoneal fibrosis induced by peritonitis. Further in vivo study is needed to demonstrate the long-term effects.
Collapse
Affiliation(s)
- Yun Fang Zhang
- Department of Nephrology, 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gardiner SM, March JE, Kemp PA, Bennett T. Effects of nitric oxide synthase inhibition with or without cyclooxygenase-2 inhibition on resting haemodynamics and responses to exendin-4. Br J Pharmacol 2006; 149:802-9. [PMID: 17016494 PMCID: PMC2014661 DOI: 10.1038/sj.bjp.0706931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Interactions between the NO system and the cyclooxygenase systems may be important in cardiovascular regulation. Here we measured the effects of acute cyclooxygenase-2 inhibition (with parecoxib), alone and in combination with NOS inhibition (with NG-nitro-L-arginine methyl ester (L-NAME)), on resting cardiovascular variables and on responses to the glucagon-like peptide 1 agonist, exendin-4, which causes regionally-selective vasoconstriction and vasodilatation. EXPERIMENTAL APPROACH Rats were instrumented with flow probes and intravascular catheters to measure regional haemodynamics in the conscious, freely moving state. L-NAME was administered as a primed infusion 180 min after administration of parecoxib or vehicle, and exendin-4 was given 60 min after the onset of L-NAME infusion. KEY RESULTS Parecoxib had no effect on resting cardiovascular variables or on responses to L-NAME. Exendin-4 caused a pressor response accompanied by tachycardia, mesenteric vasoconstriction and hindquarters vasodilatation. Parecoxib did not affect haemodynamic responses to exendin-4, but L-NAME inhibited its hindquarters vasodilator and tachycardic effects. When combined, L-NAME and parecoxib almost abolished the hindquarters vasodilatation while enhancing the pressor response. CONCLUSIONS AND IMPLICATIONS Cyclooxygenase-2-derived products do not affect basal haemodynamic status in conscious normotensive rats, or influence the NO system acutely. The inhibitory effects of L-NAME on the hindquarters vasodilator and tachycardic effects of exendin-4 are consistent with a previous study that showed those events to be beta-adrenoceptor mediated. The additional effect of parecoxib on responses to exendin-4 in the presence of L-NAME, is consistent with other evidence for enhanced involvement of vasodilator prostanoids when NO production is reduced.
Collapse
Affiliation(s)
- S M Gardiner
- Centre for Integrated Systems Biology & Medicine, School of Biomedical Sciences, University of Nottingham, Nottinghamshire, UK.
| | | | | | | |
Collapse
|
34
|
Thiemermann C. The spice of life: Curcumin reduces the mortality associated with experimental sepsis*. Crit Care Med 2006; 34:2009-11. [PMID: 16801866 DOI: 10.1097/01.ccm.0000224230.63684.06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Collin M, Murch O, Thiemermann C. Peroxisome proliferator-activated receptor-gamma antagonists GW9662 and T0070907 reduce the protective effects of lipopolysaccharide preconditioning against organ failure caused by endotoxemia. Crit Care Med 2006; 34:1131-8. [PMID: 16484917 DOI: 10.1097/01.ccm.0000206472.63040.6d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE There is evidence that a) ligands of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-gamma and b) lipopolysaccharide preconditioning protect the organs against the multiple organ injury and dysfunction caused by endotoxemia. Here we investigate the hypothesis that the protective effects of lipopolysaccharide preconditioning are due to an enhanced formation of endogenous ligands of PPAR-gamma. DESIGN Prospective, randomized study. SETTING University-based research laboratory. SUBJECTS Ninety-nine anesthetized male Wistar rats. INTERVENTIONS Rats were pretreated with low-dose lipopolysaccharide (1 mg/kg intraperitoneally, 24 hrs before induction of endotoxemia) in the absence or presence of the selective PPAR-gamma antagonists GW9662 (1 mg/kg intraperitoneally) or T0070907 (1 mg/kg intraperitoneally) or the selective cyclooxygenase-2 inhibitor parecoxib (20 mg/kg intraperitoneally). At 24 hrs after preconditioning with low-dose lipopolysaccharide, the rats were subjected to acute severe endotoxemia (lipopolysaccharide 6 mg/kg intravenously). MEASUREMENTS AND MAIN RESULTS Lipopolysaccharide preconditioning significantly attenuated the development of renal dysfunction (serum creatinine), hepatocellular injury (serum alanine aminotransferase and aspartate aminotransferase), and circulatory failure (hypotension) as well as the increase in the plasma levels of interleukin-1beta caused by severe endotoxemia. All of these beneficial effects afforded by preconditioning with lipopolysaccharide were attenuated by the specific PPAR-gamma antagonists used. In contrast, the cyclooxygenase-2 inhibitor parecoxib did not affect the beneficial effects afforded by preconditioning with lipopolysaccharide. CONCLUSIONS We propose that endogenous ligands of PPAR-gamma contribute to the protection afforded by lipopolysaccharide preconditioning against the organ injury and dysfunction associated with severe endotoxemia in the rat.
Collapse
Affiliation(s)
- Marika Collin
- Centre for Experimental Medicine, Nephrology and Critical Care, the William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary-University of London, UK
| | | | | |
Collapse
|
36
|
Chatterjee PK. On the road to discovering protective endogenous peroxisome proliferator-activator receptor-γ ligands for endotoxemia: Are we there yet?*. Crit Care Med 2006; 34:1277-9. [PMID: 16550092 DOI: 10.1097/01.ccm.0000208150.40391.d9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Schuligoi R, Grill M, Heinemann A, Peskar BA, Amann R. Sequential induction of prostaglandin E and D synthases in inflammation. Biochem Biophys Res Commun 2005; 335:684-9. [PMID: 16084489 DOI: 10.1016/j.bbrc.2005.07.130] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 07/11/2005] [Indexed: 11/17/2022]
Abstract
Enhanced biosynthesis of prostaglandin (PG)D(2) and subsequent formation of 15-deoxy-Delta(12,14)-PGJ(2) has been suggested to contribute to resolution of inflammation. The primary aim of the present study in mouse heart was, therefore, to determine at the transcriptional level if there is sequential induction of PGE and PGD synthases (S) during inflammation. Expression of interleukin (IL)-1beta in heart was enhanced 4h after systemic inflammation and declined thereafter within 3-5 days to basal levels. In contrast to cyclooxygenase-2 and membrane-bound (m)-PGES-1, which both peaked 4h after endotoxin administration, hematopoietic (H)-PGDS expression was enhanced only >or=48h after endotoxin. The expression of lipocalin-type (L)-PGDS was not significantly influenced. mRNA encoding the putative target of 15-deoxy-Delta(12,14)-PGJ(2), peroxisome proliferator-activated receptor gamma, was enhanced between 4 and 24h after induction of inflammation. Treatment of mice with acetylsalicylic acid or indomethacin at doses effective to cause near-complete inhibition of PGE(2) and PGD(2) biosynthesis in heart ex vivo resulted in enhanced expression of IL-1beta 24h after endotoxin administration. These results provide additional support for the hypothesis of a shift towards PGD(2) biosynthesis during resolution of inflammation.
Collapse
Affiliation(s)
- Rufina Schuligoi
- Institute for Experimental and Clinical Pharmacology, Medical University Graz, A-8010 Graz, Univ.-Platz 4, Austria.
| | | | | | | | | |
Collapse
|