1
|
Reiners JJ, Mathieu PA, Gargano M, George I, Shen Y, Callaghan JF, Borch RF, Mattingly RR. Synergistic Suppression of NF1 Malignant Peripheral Nerve Sheath Tumor Cell Growth in Culture and Orthotopic Xenografts by Combinational Treatment with Statin and Prodrug Farnesyltransferase Inhibitor PAMAM G4 Dendrimers. Cancers (Basel) 2023; 16:89. [PMID: 38201517 PMCID: PMC10778372 DOI: 10.3390/cancers16010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a disorder in which RAS is constitutively activated due to the loss of the Ras-GTPase-activating activity of neurofibromin. RAS must be prenylated (i.e., farnesylated or geranylgeranylated) to traffic and function properly. Previous studies showed that the anti-growth properties of farnesyl monophosphate prodrug farnesyltransferase inhibitors (FTIs) on human NF1 malignant peripheral nerve sheath tumor (MPNST) cells are potentiated by co-treatment with lovastatin. Unfortunately, such prodrug FTIs have poor aqueous solubility. In this study, we synthesized a series of prodrug FTI polyamidoamine generation 4 (PAMAM G4) dendrimers that compete with farnesyl pyrophosphate for farnesyltransferase (Ftase) and assessed their effects on human NF1 MPNST S462TY cells. The prodrug 3-tert-butylfarnesyl monophosphate FTI-dendrimer (i.e., IG 2) exhibited improved aqueous solubility. Concentrations of IG 2 and lovastatin (as low as 0.1 μM) having little to no effect when used singularly synergistically suppressed cell proliferation, colony formation, and induced N-RAS, RAP1A, and RAB5A deprenylation when used in combination. Combinational treatment had no additive or synergistic effects on the proliferation/viability of immortalized normal rat Schwann cells, primary rat hepatocytes, or normal human mammary epithelial MCF10A cells. Combinational, but not singular, in vivo treatment markedly suppressed the growth of S462TY xenografts established in the sciatic nerves of immune-deficient mice. Hence, prodrug farnesyl monophosphate FTIs can be rendered water-soluble by conjugation to PAMAM G4 dendrimers and exhibit potent anti-tumor activity when combined with clinically achievable statin concentrations.
Collapse
Affiliation(s)
- John J. Reiners
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (J.J.R.J.); (P.A.M.); (M.G.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Patricia A. Mathieu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (J.J.R.J.); (P.A.M.); (M.G.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mary Gargano
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (J.J.R.J.); (P.A.M.); (M.G.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Irene George
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (I.G.); (R.F.B.)
- Currently College of Arts and Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Yimin Shen
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA;
| | - John F. Callaghan
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA;
| | - Richard F. Borch
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (I.G.); (R.F.B.)
| | - Raymond R. Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
2
|
Black LE, Longo JF, Anderson JC, Carroll SL. Inhibition of Erb-B2 Receptor Tyrosine Kinase 3 and Associated Regulatory Pathways Potently Impairs Malignant Peripheral Nerve Sheath Tumor Proliferation and Survival. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1298-1318. [PMID: 37328102 PMCID: PMC10477957 DOI: 10.1016/j.ajpath.2023.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, currently untreatable Schwann cell-derived neoplasms with hyperactive mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. To identify potential therapeutic targets, previous studies used genome-scale shRNA screens that implicated the neuregulin-1 receptor erb-B2 receptor tyrosine kinase 3 (erbB3) in MPNST proliferation and/or survival. The current study shows that erbB3 is commonly expressed in MPNSTs and MPNST cell lines and that erbB3 knockdown inhibits MPNST proliferation and survival. Kinomic and microarray analyses of Schwann and MPNST cells implicate Src- and erbB3-mediated calmodulin-regulated signaling as key pathways. Consistent with this, inhibition of upstream (canertinib, sapitinib, saracatinib, and calmodulin) and parallel (AZD1208) signaling pathways involving mitogen-activated protein kinase and mammalian target of rapamycin reduced MPNST proliferation and survival. ErbB inhibitors (canertinib and sapitinib) or erbB3 knockdown in combination with Src (saracatinib), calmodulin [trifluoperazine (TFP)], or proviral integration site of Moloney murine leukemia kinase (AZD1208) inhibition even more effectively reduces proliferation and survival. Drug inhibition enhances an unstudied calmodulin-dependent protein kinase IIα phosphorylation site in an Src-dependent manner. The Src family kinase inhibitor saracatinib reduces both basal and TFP-induced erbB3 and calmodulin-dependent protein kinase IIα phosphorylation. Src inhibition (saracatinib), like erbB3 knockdown, prevents these phosphorylation events; and when combined with TFP, it even more effectively reduces proliferation and survival compared with monotherapy. These findings implicate erbB3, calmodulin, proviral integration site of Moloney murine leukemia kinases, and Src family members as important therapeutic targets in MPNSTs and demonstrate that combinatorial therapies targeting critical MPNST signaling pathways are more effective.
Collapse
Affiliation(s)
- Laurel E Black
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jody F Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
3
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
4
|
Mrowczynski OD, Payne RA, Bourcier AJ, Mau CY, Slagle-Webb B, Shenoy G, Madhankumar AB, Abramson SB, Wolfe D, Harbaugh KS, Rizk EB, Connor JR. Targeting IL-13Rα2 for effective treatment of malignant peripheral nerve sheath tumors in mouse models. J Neurosurg 2019; 131:1369-1379. [PMID: 30544352 DOI: 10.3171/2018.7.jns18284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/16/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas that harbor a high potential for metastasis and have a devastating prognosis. Combination chemoradiation aids in tumor control and decreases tumor recurrence but causes deleterious side effects and does not extend long-term survival. An effective treatment with limited toxicity and enhanced efficacy is critical for patients suffering from MPNSTs. METHODS The authors recently identified that interleukin-13 receptor alpha 2 (IL-13Rα2) is overexpressed on MPNSTs and could serve as a precision-based target for delivery of chemotherapeutic agents. In the work reported here, a recombinant fusion molecule consisting of a mutant human IL-13 targeting moiety and a point mutant variant of Pseudomonas exotoxin A (IL-13.E13 K-PE4E) was utilized to treat MPNST in vitro in cell culture and in an in vivo murine model. RESULTS IL-13.E13 K-PE4E had a potent cytotoxic effect on MPNST cells in vitro. Furthermore, intratumoral administration of IL-13.E13 K-PE4E to orthotopically implanted MPNSTs decreased tumor burden 6-fold and 11-fold in late-stage and early-stage MPNST models, respectively. IL-13.E13 K-PE4E treatment also increased survival by 23 days in the early-stage MPNST model. CONCLUSIONS The current MPNST treatment paradigm consists of 3 prongs: surgery, chemotherapy, and radiation, none of which, either singly or in combination, are curative or extend survival to a clinically meaningful degree. The results presented here provide the possibility of intratumoral therapy with a potent and highly tumor-specific cytotoxin as a fourth treatment prong with the potential to yield improved outcomes in patients with MPNSTs.
Collapse
Affiliation(s)
- Oliver D Mrowczynski
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - Russell A Payne
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - Alexandre J Bourcier
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - Christine Y Mau
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - Becky Slagle-Webb
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - Ganesh Shenoy
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | | | - Stephan B Abramson
- 2Targepeutics, Inc., Hershey, Pennsylvania; and
- 3LifeSci Partners, LLC, Vancouver, Washington
| | | | - Kimberly S Harbaugh
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - Elias B Rizk
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - James R Connor
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| |
Collapse
|
5
|
Recent Advances in the Diagnosis and Pathogenesis of Neurofibromatosis Type 1 (NF1)-associated Peripheral Nervous System Neoplasms. Adv Anat Pathol 2018; 25:353-368. [PMID: 29762158 DOI: 10.1097/pap.0000000000000197] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The diagnosis of a neurofibroma or a malignant peripheral nerve sheath tumor (MPNST) often raises the question of whether the patient has the genetic disorder neurofibromatosis type 1 (NF1) as well as how this will impact the patient's outcome, what their risk is for developing additional neoplasms and whether treatment options differ for NF1-associated and sporadic peripheral nerve sheath tumors. Establishing a diagnosis of NF1 is challenging as this disorder has numerous neoplastic and non-neoplastic manifestations which are variably present in individual patients. Further, other genetic diseases affecting the Ras signaling cascade (RASopathies) mimic many of the clinical features of NF1. Here, we review the clinical manifestations of NF1 and compare and contrast them with those of the RASopathies. We also consider current approaches to genetic testing for germline NF1 mutations. We then focus on NF1-associated neurofibromas, considering first the complicated clinical behavior and pathology of these neoplasms and then discussing our current understanding of the genomic abnormalities that drive their pathogenesis, including the mutations encountered in atypical neurofibromas. As several neurofibroma subtypes are capable of undergoing malignant transformation to become MPNSTs, we compare and contrast patient outcomes in sporadic, NF1-associated and radiation-induced MPNSTs, and review the challenging pathology of these lesions. The mutations involved in neurofibroma-MPNST progression, including the recent identification of mutations affecting epigenetic regulators, are then considered. Finally, we explore how our current understanding of neurofibroma and MPNST pathogenesis is informing the design of new therapies for these neoplasms.
Collapse
|
6
|
Shah S, Brock EJ, Ji K, Mattingly RR. Ras and Rap1: A tale of two GTPases. Semin Cancer Biol 2018; 54:29-39. [PMID: 29621614 DOI: 10.1016/j.semcancer.2018.03.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Ras oncoproteins play pivotal roles in both the development and maintenance of many tumor types. Unfortunately, these proteins are difficult to directly target using traditional pharmacological strategies, in part due to their lack of obvious binding pockets or allosteric sites. This obstacle has driven a considerable amount of research into pursuing alternative ways to effectively inhibit Ras, examples of which include inducing mislocalization to prevent Ras maturation and inactivating downstream proteins in Ras-driven signaling pathways. Ras proteins are archetypes of a superfamily of small GTPases that play specific roles in the regulation of many cellular processes, including vesicle trafficking, nuclear transport, cytoskeletal rearrangement, and cell cycle progression. Several other superfamily members have also been linked to the control of normal and cancer cell growth and survival. For example, Rap1 has high sequence similarity to Ras, has overlapping binding partners, and has been demonstrated to both oppose and mimic Ras-driven cancer phenotypes. Rap1 plays an important role in cell adhesion and integrin function in a variety of cell types. Mechanistically, Ras and Rap1 cooperate to initiate and sustain ERK signaling, which is activated in many malignancies and is the target of successful therapeutics. Here we review the role activated Rap1 in ERK signaling and other downstream pathways to promote invasion and cell migration and metastasis in various cancer types.
Collapse
Affiliation(s)
- Seema Shah
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ethan J Brock
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Raymond R Mattingly
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
7
|
Ahsan S, Ge Y, Tainsky MA. Combinatorial therapeutic targeting of BMP2 and MEK-ERK pathways in NF1-associated malignant peripheral nerve sheath tumors. Oncotarget 2018; 7:57171-57185. [PMID: 27494873 PMCID: PMC5302981 DOI: 10.18632/oncotarget.11036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022] Open
Abstract
The clinical management of malignant peripheral nerve sheath tumors (MPNSTs) is challenging not only due to its aggressive and invasive nature, but also limited therapeutic options. Using gene expression profiling, our lab identified BMP2-SMAD1/5/8 pathway as a potential therapeutic target for treating MPNSTs. In this study, we explored the therapeutic impact of targeting BMP2-SMAD1/5/8 pathway in conjunction with RAS-MEK-ERK signaling, which is constitutively activated in MPNSTs. Our results indicated that single agent treatment with LDN-193189, a BMP2 Type I receptor inhibitor, did not affect the growth and survival of MPNST cells at biochemically relevant inhibitory concentrations. However, addition of a MEK1/2 inhibitor, selumetinib, to LDN-193189-treated cells resulted in significant inhibition of cell growth and induction of cell death. LDN-193189 at biochemically effective concentrations significantly inhibited motility and invasiveness of MPNST cells, and these effects were enhanced by the addition of selumetinib. Overall, our results advocate for a combinatorial therapeutic approach for MPNSTs that not only targets the growth and survival via inhibition of MEK1/2, but also its malignant spread by suppressing the activation of BMP2-SMAD1/5/8 pathway. Importantly, these studies were conducted in low-passage patient-derived MPNST cells, allowing for an investigation of the effects of the proposed drug treatments in a biologically-relevant context.
Collapse
Affiliation(s)
- Sidra Ahsan
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael A Tainsky
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Kraniak JM, Chalasani A, Wallace MR, Mattingly RR. Development of 3D culture models of plexiform neurofibroma and initial application for phenotypic characterization and drug screening. Exp Neurol 2018; 299:289-298. [PMID: 29055717 PMCID: PMC6863155 DOI: 10.1016/j.expneurol.2017.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Abstract
Plexiform neurofibromas (PNs), which may be present at birth in up to half of children with type 1 neurofibromatosis (NF1), can cause serious loss of function, such as quadriparesis, and can undergo malignant transformation. Surgery is the first line treatment although the invasive nature of these tumors often prevents complete resection. Recent clinical trials have shown promising success for some drugs, notably selumetinib, an inhibitor of MAP kinase kinase (MEK). We have developed three-dimensional (3D) cell culture models of immortalized cells from NF1 PNs and of control Schwann cells (SCs) that we believe mimic more closely the in vivo condition than conventional two-dimensional (2D) cell culture. Our goal is to facilitate pre-clinical identification of potential targeted therapeutics for these tumors. Three drugs, selumetinib (a MEK inhibitor), picropodophyllin (an IGF-1R inhibitor) and LDN-193189 (a BMP2 inhibitor) were tested with dose-response design in both 2D and 3D cultures for their abilities to block net cell growth. Cell lines grown in 3D conditions showed varying degrees of resistance to the inhibitory actions of all three drugs. For example, control SCs became resistant to growth inhibition by selumetinib in 3D culture. LDN-193189 was the most effective drug in 3D cultures, with only slightly reduced potency compared to the 2D cultures. Characterization of these models also demonstrated increased proteolysis of collagen IV in the matrix by the PN driver cells as compared to wild-type SCs. The proteolytic capacity of the PN cells in the model may be a clinically significant property that can be used for testing the ability of drugs to inhibit their invasive phenotype.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Benzimidazoles/pharmacology
- Bone Morphogenetic Protein 2/antagonists & inhibitors
- Cell Culture Techniques
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor/methods
- Genes, Neurofibromatosis 1
- Genes, Reporter
- Humans
- Luminescent Proteins/analysis
- Luminescent Proteins/genetics
- MAP Kinase Kinase 1/antagonists & inhibitors
- Molecular Targeted Therapy
- Neurofibroma, Plexiform/drug therapy
- Neurofibroma, Plexiform/genetics
- Neurofibroma, Plexiform/pathology
- Neurofibromatosis 1/pathology
- Phenotype
- Podophyllotoxin/analogs & derivatives
- Podophyllotoxin/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Receptor, IGF Type 1/antagonists & inhibitors
- Schwann Cells/cytology
- Transduction, Genetic
- Tumor Cells, Cultured
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Janice M Kraniak
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Anita Chalasani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Margaret R Wallace
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA; University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA.
| | - Raymond R Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
9
|
Kim A, Pratilas CA. The promise of signal transduction in genetically driven sarcomas of the nerve. Exp Neurol 2017; 299:317-325. [PMID: 28859862 DOI: 10.1016/j.expneurol.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome. Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas arising from peripheral nerve sheaths, and the most commonly lethal feature associated with NF1. The hallmark of NF1 and NF1-related MPNST is the loss of neurofibromin expression. Loss of neurofibromin is considered a tumor-promoting event, and leads to constitutive activation of RAS and its downstream effectors. However, RAS activation alone is not sufficient for MPNST formation, and additional tumor suppressors and signaling pathways have been implicated in tumorigenesis of MPNST. Taking advantage of the rapid development of novel therapeutics targeting key molecular pathways across all cancer types, the best-in-class modulators of these pathways can be assessed in pre-clinical models and translated into clinical trials for patients with MPNST. Here, we describe the genetic changes and molecular pathways that drive MPNST formation and highlight the promise of signal transduction to identify therapies that may treat these tumors more effectively.
Collapse
Affiliation(s)
- AeRang Kim
- Children's National Medical Center, Washington, D.C., United States
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States.
| |
Collapse
|
10
|
Liu P, Zhang Z, Wang Q, Guo R, Mei W. Lithium Chloride Facilitates Autophagy Following Spinal Cord Injury via ERK-dependent Pathway. Neurotox Res 2017; 32:535-543. [PMID: 28593525 DOI: 10.1007/s12640-017-9758-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is one major cause of death and results in long-term disability even in the most productive periods of human lives with few efficacious drugs. Autophagy is a potential therapeutic target for SCI. In the present study, we examined the role of lithium in functional recovery in the rat model of SCI and explored the related mechanism. Locomotion tests were employed to assess the functional recovery after SCI, Western blotting and RT-PCT to determine the level of p-ERK and LC3-II as well as p62, immunofluorescence imaging to localize LC3 and p62. Here, we found that both the expression of LC3-II and p62 were increased after SCI. However, lithium chloride enhanced the level of LC3-II while abrogated the abundance of p62. Furthermore, lithium treatment facilitated ERK activation in vivo, and inhibition of MEK/ERK signaling pathway suppressed lithium-evoked autophagy flux. Taken together, our results illustrated that lithium facilitated functional recovery by enhancing autophagy flux.
Collapse
Affiliation(s)
- Peilin Liu
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Zijuan Zhang
- Experimental Teaching Center, School of Basic Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qingde Wang
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Rundong Guo
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Wei Mei
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, China.
| |
Collapse
|
11
|
Novel members of quinoline compound family enhance insulin secretion in RIN-5AH beta cells and in rat pancreatic islet microtissue. Sci Rep 2017; 7:44073. [PMID: 28272433 PMCID: PMC5341024 DOI: 10.1038/srep44073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/31/2017] [Indexed: 11/08/2022] Open
Abstract
According to clinical data, some tyrosine kinase inhibitors (TKIs) possess antidiabetic effects. Several proposed mechanisms were assigned to them, however their mode of action is not clear. Our hypothesis was that they directly stimulate insulin release in beta cells. In our screening approach we demonstrated that some commercially available TKIs and many novel synthesized analogues were able to induce insulin secretion in RIN-5AH beta cells. Our aim was to find efficient, more selective and less toxic compounds. Out of several hits, we chose members from a compound family with quinoline core structure for further investigation. Here we present the studies done with these novel compounds and reveal structure activity relationships and mechanism of action. One of the most potent compounds (compound 9) lost its affinity to kinases, but efficiently increased calcium influx. In the presence of calcium channel inhibitors, the insulinotropic effect was attenuated or completely abrogated. While the quinoline TKI, bosutinib substantially inhibited tyrosine phosphorylation, compound 9 had no such effect. Molecular docking studies further supported our data. We confirmed that some TKIs possess antidiabetic effects, moreover, we present a novel compound family developed from the TKI, bosutinib and optimized for the modulation of insulin secretion.
Collapse
|
12
|
Brock EJ, Ji K, Reiners JJ, Mattingly RR. How to Target Activated Ras Proteins: Direct Inhibition vs. Induced Mislocalization. Mini Rev Med Chem 2016; 16:358-69. [PMID: 26423696 DOI: 10.2174/1389557515666151001154002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/03/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
Oncogenic Ras proteins are a driving force in a significant set of human cancers and wildtype, unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet to be achieved. Significant efforts and resources have been committed to inhibiting Ras, but these energies have so far made little impact in the clinic. Direct attempts to target activated Ras proteins have faced many obstacles, including the fundamental nature of the gain-of-function oncogenic activity being produced by a loss-of-function at the biochemical level. Nevertheless, there has been very promising recent pre-clinical progress. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mislocalization. While these efforts to indirectly target Ras through inhibition of farnesyl transferase (FTase) were rationally designed, this strategy suffered from insufficient attention to the distinctions between the isoforms of Ras. This led to subsequent failures in large-scale clinical trials targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these setbacks, efforts to indirectly target activated Ras through inducing its mislocalization have persisted. It is plausible that FTase inhibitors may still have some utility in the clinic, perhaps in combination with statins or other agents. Alternative approaches for inducing mislocalization of Ras through disruption of its palmitoylation cycle or interaction with chaperone proteins are in early stages of development.
Collapse
Affiliation(s)
| | | | | | - Raymond R Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Ave, Detroit MI, USA.
| |
Collapse
|
13
|
Mohri D, Ijichi H, Miyabayashi K, Takahashi R, Kudo Y, Sasaki T, Asaoka Y, Tanaka Y, Ikenoue T, Tateishi K, Tada M, Isayama H, Koike K. A potent therapeutics for gallbladder cancer by combinatorial inhibition of the MAPK and mTOR signaling networks. J Gastroenterol 2016; 51:711-21. [PMID: 26614007 DOI: 10.1007/s00535-015-1145-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/06/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gallbladder cancer (GBC) is the most common type of cancer with the worst prognosis among the bile duct cancers. There still remains a clear need for effective mechanism-based novel therapeutic approaches. A crosstalk between mitogen-activated protein kinase (MAPK) and the mammalian target of Rapamycin (mTOR) signaling pathways has been reported in several cancers. We hypothesized that targeting both pathways in combination will be a potent therapeutic for GBC. METHODS Expression of phospho-ERK and phospho-S6rp protein were evaluated by immunostaining in surgically resected GBC specimens (n = 30). GBC cell lines and a xenograft model were treated with CI-1040, an inhibitor of MEK (mitogen-activated protein kinase kinase) and RAD001, an inhibitor of mTOR, alone or in combination, and then, we examined the cell proliferation and tumor growth, cell cycle status, and apoptosis. RESULTS Analysis of human GBC tissues demonstrated that MAPK and mTOR signaling pathways were frequently coordinately dysregulated in one third of them. The combination therapy inhibited both signaling pathways and subsequently inhibited human GBC cell proliferation in vitro and xenograft tumor growth in vivo. Compared to the single treatment, the combination therapy significantly induced cell cycle arrest and apoptosis with decreased cyclin D1 expression. CONCLUSIONS The double blockade of MAPK and mTOR signaling pathways inhibits the signal crosstalk and shows anti-tumor activity, which can be a potent therapeutic for GBC, especially for the patients with hyperactivated signaling of both pathways.
Collapse
Affiliation(s)
- Dai Mohri
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Koji Miyabayashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Ryota Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yotaro Kudo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Takashi Sasaki
- Division of Gastroenterology, Cancer Institute Hospital, 3-8-31 Ariake, Koutou-Ku, Tokyo, 135-8550, Japan
| | - Yoshinari Asaoka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yasuo Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Institute of Medical Sciences, University of Tokyo, 4-6-1 Shiroganedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Minoru Tada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hiroyuki Isayama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
14
|
Sec6/8 regulates Bcl-2 and Mcl-1, but not Bcl-xl, in malignant peripheral nerve sheath tumor cells. Apoptosis 2016; 21:594-608. [DOI: 10.1007/s10495-016-1230-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Bakker AC, La Rosa S, Sherman LS, Knight P, Lee H, Pancza P, Nievo M. Neurofibromatosis as a gateway to better treatment for a variety of malignancies. Prog Neurobiol 2016; 152:149-165. [PMID: 26854064 DOI: 10.1016/j.pneurobio.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/23/2022]
Abstract
The neurofibromatoses (NF) are a group of rare genetic disorders that can affect all races equally at an incidence from 1:3000 (NF1) to a log unit lower for NF2 and schwannomatosis. Since the research community is reporting an increasing number of malignant cancers that carry mutations in the NF genes, the general interest of both the research and pharma community is increasing and the authors saw an opportunity to present a novel, fresh approach to drug discovery in NF. The aim of the paper is to challenge the current drug discovery approach to NF, whereby existing targeted therapies that are either in the clinic or on the market for other disease indications are repurposed for NF. We offer a suggestion for an alternative drug discovery approach. In the new approach, selective and tolerable targeted therapies would be developed for NF and later expanded to patients with more complex diseases such as malignant cancer in which the NF downstream pathways are deregulated. The Children's Tumor Foundation, together with some other major NF funders, is playing a key role in funding critical initiatives that will accelerate the development of better targeted therapies for NF patients, while these novel, innovative treatments could potentially be beneficial to molecularly characterized cancer patients in which NF mutations have been identified.
Collapse
Affiliation(s)
- Annette C Bakker
- Children's Tumor Foundation, 120, Wall Street, 16th Floor, New York 10005, United States
| | - Salvatore La Rosa
- Children's Tumor Foundation, 120, Wall Street, 16th Floor, New York 10005, United States
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, United States
| | - Pamela Knight
- Children's Tumor Foundation, 120, Wall Street, 16th Floor, New York 10005, United States
| | - Hyerim Lee
- Children's Tumor Foundation, 120, Wall Street, 16th Floor, New York 10005, United States
| | - Patrice Pancza
- Children's Tumor Foundation, 120, Wall Street, 16th Floor, New York 10005, United States
| | - Marco Nievo
- Children's Tumor Foundation, 120, Wall Street, 16th Floor, New York 10005, United States.
| |
Collapse
|
16
|
Classic Ras Proteins Promote Proliferation and Survival via Distinct Phosphoproteome Alterations in Neurofibromin-Null Malignant Peripheral Nerve Sheath Tumor Cells. J Neuropathol Exp Neurol 2015; 74:568-86. [PMID: 25946318 DOI: 10.1097/nen.0000000000000201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neurofibromin, the tumor suppressor encoded by the neurofibromatosis type 1 (NF1) gene, potentially suppresses the activation of H-Ras, N-Ras, and K-Ras. However, it is not known whether these classic Ras proteins are hyperactivated in NF1-null nerve sheath tumors, how they contribute to tumorigenesis, and what signaling pathways mediate their effects. Here we show that H-Ras, N-Ras, and K-Ras are coexpressed with their activators (guanine nucleotide exchange factors) in neurofibromin-null malignant peripheral nerve sheath tumor (MPNST) cells, and that all 3 Ras proteins are activated. Dominant negative (DN) H-Ras, a pan-inhibitor of the classic Ras family, inhibited MPNST proliferation and survival, but not migration. However, NF1-null MPNST cells were variably dependent on individual Ras proteins. In some lines, ablation of H-Ras, N-Ras, and/or K-Ras inhibited mitogenesis. In others, ablation of a single Ras protein had no effect on proliferation; in these lines, ablation of a single Ras protein resulted in compensatory increases in the activation and/or expression of other Ras proteins. Using mass spectrometry-based phosphoproteomics, we identified 7 signaling networks affecting morphology, proliferation, and survival that are regulated by DN H-Ras. Thus, neurofibromin loss activates multiple classic Ras proteins that promote proliferation and survival by regulating several distinct signaling cascades.
Collapse
|
17
|
Tsigelny IF, Kouznetsova VL, Jiang P, Pingle SC, Kesari S. Hierarchical control of coherent gene clusters defines the molecular mechanisms of glioblastoma. MOLECULAR BIOSYSTEMS 2015; 11:1012-28. [PMID: 25648506 DOI: 10.1039/c5mb00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glioblastoma is a highly-aggressive and rapidly-lethal tumor characterized by resistance to therapy. Although data on multiple genes, proteins, and pathways are available, the key challenge is deciphering this information and identifying central molecular targets. Therapeutically targeting individual molecules is often unsuccessful due to the presence of compensatory and redundant pathways, and crosstalk. A systems biology approach that involves a hierarchical gene group networks analysis can delineate the coherent functions of different disease mediators. Here, we report an integrative networks-based analysis to identify a system of coherent gene modules in primary and secondary glioblastoma. Our study revealed a hierarchical transcriptional control of genes in these modules. We elucidated those modules responsible for conversion of the glioma-associated microglia/macrophages into glioma-supportive, immunosuppressive cells. Further, we identified clusters comprising mediators of angiogenesis, proliferation, and cell death for both primary and secondary glioblastomas. Data obtained for these clusters point to a possible role of transcription regulators that function as the gene modules mediators in glioblastoma pathogenesis. We elucidated a set of possible transcription regulators that can be targeted to affect the selected gene clusters at specific levels for glioblastoma. Our innovative approach to construct informative disease models may hold the key to successful management of complex diseases including glioblastoma and other cancers.
Collapse
Affiliation(s)
- Igor F Tsigelny
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., MSC 0752, La Jolla, CA 92093-0752, USA.
| | | | | | | | | |
Collapse
|
18
|
Zhao Z, Wu H, Wang L, Liu Y, Knapp S, Liu Q, Gray NS. Exploration of type II binding mode: A privileged approach for kinase inhibitor focused drug discovery? ACS Chem Biol 2014; 9:1230-41. [PMID: 24730530 PMCID: PMC4068218 DOI: 10.1021/cb500129t] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The ATP site of kinases displays
remarkable conformational flexibility
when accommodating chemically diverse small molecule inhibitors. The
so-called activation segment, whose conformation controls catalytic
activity and access to the substrate binding pocket, can undergo a
large conformational change with the active state assuming a ‘DFG-in’
and an inactive state assuming a ‘DFG-out’ conformation.
Compounds that preferentially bind to the DFG-out conformation are
typically called ‘type II’ inhibitors in contrast to ‘type
I’ inhibitors that bind to the DFG-in conformation. This review
surveys the large number of type II inhibitors that have been developed
and provides an analysis of their crystallographically determined
binding modes. Using a small library of type II inhibitors, we demonstrate
that more than 200 kinases can be targeted, suggesting that type II
inhibitors may not be intrinsically more selective than type I inhibitors.
Collapse
Affiliation(s)
- Zheng Zhao
- High
Magnetic Field Laboratory, Chinese Academy of Sciences, P.O. Box 1110, Hefei, Anhui 230031, P. R. China
| | - Hong Wu
- High
Magnetic Field Laboratory, Chinese Academy of Sciences, P.O. Box 1110, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230036, P. R. China
| | - Li Wang
- High
Magnetic Field Laboratory, Chinese Academy of Sciences, P.O. Box 1110, Hefei, Anhui 230031, P. R. China
| | - Yi Liu
- Wellspring
Biosciences LLC, 3210
Merryfield Row, San Diego, California 92121, United States
| | - Stefan Knapp
- Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Target
Discovery Institute, University of Oxford, NDM Research Building, Roosevelt
Drive, Oxford OX3 7LD, United Kingdom
| | - Qingsong Liu
- High
Magnetic Field Laboratory, Chinese Academy of Sciences, P.O. Box 1110, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230036, P. R. China
| | - Nathanael S. Gray
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachussetts 02115, United States
| |
Collapse
|
19
|
Trp53 haploinsufficiency modifies EGFR-driven peripheral nerve sheath tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2082-98. [PMID: 24832557 DOI: 10.1016/j.ajpath.2014.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 03/11/2014] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are genetically diverse, aggressive sarcomas that occur sporadically or in association with neurofibromatosis type 1 syndrome. Reduced TP53 gene expression and amplification/overexpression of the epidermal growth factor receptor (EGFR) gene occur in MPNST formation. We focused on determining the cooperativity between reduced TP53 expression and EGFR overexpression for Schwann cell transformation in vitro (immortalized human Schwann cells) and MPNST formation in vivo (transgenic mice). Human gene copy number alteration data, microarray expression data, and TMA analysis indicate that TP53 haploinsufficiency and increased EGFR expression co-occur in human MPNST samples. Concurrent modulation of EGFR and TP53 expression in HSC1λ cells significantly increased proliferation and anchorage-independent growth in vitro. Transgenic mice heterozygous for a Trp53-null allele and overexpressing EGFR in Schwann cells had a significant increase in neurofibroma and grade 3 PNST (MPNST) formation compared with single transgenic controls. Histological analysis of tumors identified a significant increase in pAkt expression in grade 3 PNSTs compared with neurofibromas. Array comparative genome hybridization analysis of grade 3 PNSTs identified recurrent focal regions of chromosomal gains with significant enrichment in genes involved in extracellular signal-regulated kinase 5 signaling. Collectively, altered p53 expression cooperates with overexpression of EGFR in Schwann cells to enhance in vitro oncogenic properties and tumorigenesis and progression in vivo.
Collapse
|
20
|
Farid M, Demicco EG, Garcia R, Ahn L, Merola PR, Cioffi A, Maki RG. Malignant peripheral nerve sheath tumors. Oncologist 2014; 19:193-201. [PMID: 24470531 PMCID: PMC3926794 DOI: 10.1634/theoncologist.2013-0328] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/16/2013] [Indexed: 12/12/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are uncommon, biologically aggressive soft tissue sarcomas of neural origin that pose tremendous challenges to effective therapy. In 50% of cases, they occur in the context of neurofibromatosis type I, characterized by loss of function mutations to the tumor suppressor neurofibromin; the remainder arise sporadically or following radiation therapy. Prognosis is generally poor, with high rates of relapse following multimodality therapy in early disease, low response rates to cytotoxic chemotherapy in advanced disease, and propensity for rapid disease progression and high mortality. The last few years have seen an explosion in data surrounding the potential molecular drivers and targets for therapy above and beyond neurofibromin loss. These data span multiple nodes at various levels of cellular control, including major signal transduction pathways, angiogenesis, apoptosis, mitosis, and epigenetics. These include classical cancer-driving genetic aberrations such as TP53 and phosphatase and tensin homolog (PTEN) loss of function, and upregulation of mitogen-activated protein kinase (MAPK) and (mechanistic) target of rapamycin (TOR) pathways, as well as less ubiquitous molecular abnormalities involving inhibitors of apoptosis proteins, aurora kinases, and the Wingless/int (Wnt) signaling pathway. We review the current understanding of MPNST biology, current best practices of management, and recent research developments in this disease, with a view to informing future advancements in patient care.
Collapse
Affiliation(s)
- Mohamad Farid
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Activated Ras as a Therapeutic Target: Constraints on Directly Targeting Ras Isoforms and Wild-Type versus Mutated Proteins. ISRN ONCOLOGY 2013; 2013:536529. [PMID: 24294527 PMCID: PMC3833460 DOI: 10.1155/2013/536529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022]
Abstract
The ability to selectively and directly target activated Ras would provide immense utility for treatment of the numerous cancers that are driven by oncogenic Ras mutations. Patients with disorders driven by overactivated wild-type Ras proteins, such as type 1 neurofibromatosis, might also benefit from progress made in that context. Activated Ras is an extremely challenging direct drug target due to the inherent difficulties in disrupting the protein:protein interactions that underlie its activation and function. Major investments have been made to target Ras through indirect routes. Inhibition of farnesyl transferase to block Ras maturation has failed in large clinical trials. Likely reasons for this disappointing outcome include the significant and underappreciated differences in the isoforms of Ras. It is still plausible that inhibition of farnesyl transferase will prove effective for disease that is driven by activated H-Ras. The principal current focus of drugs entering clinic trial is inhibition of pathways downstream of activated Ras, for example, trametinib, a first-in-class MEK inhibitor. The complexity of signaling that is driven by activated Ras indicates that effective inhibition of oncogenic transduction through this approach will be difficult, with resistance being likely to emerge through switch to parallel pathways. Durable disease responses will probably require combinatorial block of several downstream targets.
Collapse
|
22
|
Wang W, Lin W, Hong B, Li X, Zhang M, Zhang L, Lv G. Effect of triptolide on malignant peripheral nerve sheath tumours in vitro and in vivo. J Int Med Res 2013; 40:2284-94. [PMID: 23321185 DOI: 10.1177/030006051204000626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Malignant peripheral nerve sheath tumours (MPNSTs) are invasive, hard-to-treat, soft tissue sarcomas. In this study, in vitro and in vivo effects of triptolide were investigated using human MPNST cell lines. METHODS Cultured STS-26T and ST88-14 cells were treated with 0-100 ng/ml triptolide (for determination of cell proliferation by sulphorhodamine B assay), with 12.5 ng/ml or 25 ng/ml triptolide (for analysis of caspase activity, effects on apoptotic pathway intermediates [by Western blots and flow cytometry], and for measurement of vascular endothelial growth factor [VEGF] and epidermal growth factor receptor [EGFR] levels by enzyme-linked immunosorbent assay). A xenograft model was established by injection of STS-26T cells into nude mice, and the effects of 250 μg/kg triptolide on tumour growth and apoptosis were compared with controls. RESULTS Triptolide significantly inhibited cell proliferation and induced apoptosis in vitro, through activation of caspases, in a dose- and time-dependent manner; VEGF and EGFR levels were suppressed. In vivo, triptolide inhibited the growth of STS-26T xenografts and reduced apoptosis. CONCLUSION Triptolide may have a therapeutic benefit in MPNST treatment.
Collapse
Affiliation(s)
- W Wang
- Department of General Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Olsvik PA, Samuelsen OB, Erdal A, Holmelid B, Lunestad BT. Toxicological assessment of the anti-salmon lice drug diflubenzuron on Atlantic cod Gadus morhua. DISEASES OF AQUATIC ORGANISMS 2013; 105:27-43. [PMID: 23836768 DOI: 10.3354/dao02613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Increasing use of the chitin synthesis inhibitor diflubenzuron against the ectoparasitic salmon louse Lepeophtheirus salmonis in marine aquaculture has raised concerns over its environmental impacts. This study evaluated how diflubenzuron affects Atlantic cod Gadus morhua, a fish species often found near Atlantic salmon Salmo salar farms, focusing on uptake kinetics and hepatic transcriptional responses. Two experiments were conducted, one time-series trial in which the fish were given a daily dose (3 mg kg-1 fish) of diflubenzuron for 14 d followed by a 3 wk depuration period, and one dose-response trial with increasing concentrations (3, 10 and 50 mg kg-1 fish). The highest diflubenzuron concentrations were found in the liver at Day 15. No detectable levels of diflubenzuron were found in liver or muscle 3 wk after the end of the treatment. At the molecular level, small effects of diflubenzuron treatment on gene transcription were observed. In the time-series experiment, the strongest effects were seen at Day 8, with 2 transcripts being upregulated (bclx2 and cpt1a) and 8 transcripts being downregulated (gstp1, gstm1, gstt1, ugt1a, nat2, cat, p53 and slc16a9a). Five transcripts (cyp3a, cpt1a, ptgs2, elovl5 and mapk1) responded significantly to diflubenzuron exposure in the dose-response experiment. This study shows that diflubenzuron can be taken up by Atlantic cod, that it is rapidly cleared from the body and that when present this pharmaceutical causes only small effects on the expression of genes involved in detoxification pathways. Taken together, our data suggest that accumulated diflubenzuron at the levels studied would have a relatively small effect on wild Atlantic cod.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, 5005 Bergen, Norway.
| | | | | | | | | |
Collapse
|
24
|
Sun D, Haddad R, Kraniak JM, Horne SD, Tainsky MA. RAS/MEK-independent gene expression reveals BMP2-related malignant phenotypes in the Nf1-deficient MPNST. Mol Cancer Res 2013; 11:616-27. [PMID: 23423222 DOI: 10.1158/1541-7786.mcr-12-0593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a type of soft tissue sarcoma that occurs in carriers of germline mutations in Nf1 gene as well as sporadically. Neurofibromin, encoded by the Nf1 gene, functions as a GTPase-activating protein (GAP) whose mutation leads to activation of wt-RAS and mitogen-activated protein kinase (MAPK) signaling in neurofibromatosis type I (NF1) patients' tumors. However, therapeutic targeting of RAS and MAPK have had limited success in this disease. In this study, we modulated NRAS, mitogen-activated protein/extracellular signal-regulated kinase (MEK)1/2, and neurofibromin levels in MPNST cells and determined gene expression changes to evaluate the regulation of signaling pathways in MPNST cells. Gene expression changes due to neurofibromin modulation but independent of NRAS and MEK1/2 regulation in MPNST cells indicated bone morphogenetic protein 2 (Bmp2) signaling as a key pathway. The BMP2-SMAD1/5/8 pathway was activated in NF1-associated MPNST cells and inhibition of BMP2 signaling by LDN-193189 or short hairpin RNA (shRNA) to BMP2 decreased the motility and invasion of NF1-associated MPNST cells. The pathway-specific gene changes provide a greater understanding of the complex role of neurofibromin in MPNST pathology and novel targets for drug discovery.
Collapse
Affiliation(s)
- Daochun Sun
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
25
|
Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME, Eaves D, Widemann B, Kim MO, Dombi E, Sabo J, Hardiman Dudley A, Niwa-Kawakita M, Page GP, Giovannini M, Aronow BJ, Cripe TP, Ratner N. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest 2012; 123:340-7. [PMID: 23221341 DOI: 10.1172/jci60578] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 10/23/2012] [Indexed: 01/18/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating the effects of hyperactive Ras in NF1 tumors are unknown. We performed cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs and identified global negative feedback of genes that regulate Ras/Raf/MEK/ERK signaling in both species. Nonetheless, ERK activation was sustained in mouse and human neurofibromas and MPNST. We used a highly selective pharmacological inhibitor of MEK, PD0325901, to test whether sustained Ras/Raf/MEK/ERK signaling contributes to neurofibroma growth in a neurofibromatosis mouse model (Nf1(fl/fl);Dhh-Cre) or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in more than 80% of mice tested. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide a strong rationale for testing MEK inhibitors in NF1 clinical trials.
Collapse
Affiliation(s)
- Walter J Jessen
- Children’s Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, 3333 Burnet Ave., M.L.C. 7013, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Neff BA, Voss SG, Schmitt WR, Driscoll CLW, Link MJ, Beatty CW, Kita H. Inhibition of MEK pathway in vestibular schwannoma cell culture. Laryngoscope 2012; 122:2269-78. [PMID: 22886786 DOI: 10.1002/lary.23472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 04/24/2012] [Accepted: 05/07/2012] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS The purpose of this study was to evaluate the Ras GTPase (Ras) to extracellular signal-regulated kinase (ERK) pathway in vestibular schwannoma (VS) cell cultures and patient excised schwannoma tumors. Mitogen-activated protein kinase kinase (MEK) inhibitor CI-1040 (PD184352) was utilized to evaluate the effect of specific MEK inhibition on benign schwannoma cell culture proliferation and apoptosis. STUDY DESIGN Prospective evaluation of human schwannoma cell lines and tumors. METHODS Western blotting was completed with phospho-antibodies for proteins in the Ras-ERK pathway. Increasing concentrations of CI-1040 were utilized in schwannoma cell cultures to evaluate cell proliferation and apoptosis. Proliferation was measured with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide proliferation assay, and apoptosis was monitored with flow cytometry of annexin V/propidium iodide-stained cells. RESULTS The most consistent Ras-ERK pathway alterations were found in phospho-MEK and ERK. Phospho-MEK was not overexpressed in the schwannoma cell lines, but six out of 10 VS showed significant increases compared to benign Schwann cell controls. Similarly, nine of 10 VS tumors showed increased phospho-ERK expression. CI-1040 showed significantly reduced schwannoma cell proliferation at the 50 and 100 μM (IC(50) 20 μM and 30 μM) concentrations when compared to carrier only controls in two out three schwannoma cell lines. The remaining schwannoma cell line was relatively refractory to the antiproliferative effects of CI-1040 at doses up to 100 μM (IC(50) 58 μM). Cumulative data of four separate schwannoma cell lines demonstrated that apoptosis was increased in treated schwannoma cells at CI-1040 concentrations of 50 and 100 μM at 72 hours. CONCLUSIONS There is overexpression of phosphorylated (activated) proteins in the Ras-ERK pathway in schwannoma cultures and tumors as compared to benign human Schwann cell culture controls. MEK inhibitor, CI-1040, created significantly decreased schwannoma cell proliferation and increased apoptosis in cell culture. These data justify the use of MEK inhibitors in animal treatment studies of VS.
Collapse
Affiliation(s)
- Brian A Neff
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Edward DP, Morales J, Bouhenni RA, Patil J, Edward PR, Cummings TJ, Chaudhry IA, Alkatan H. Congenital ectropion uvea and mechanisms of glaucoma in neurofibromatosis type 1: new insights. Ophthalmology 2012; 119:1485-94. [PMID: 22480745 DOI: 10.1016/j.ophtha.2012.01.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To describe the clinicopathologic features of congenital ectropion uvea associated with glaucoma in neurofibromatosis-1 (NF-1). DESIGN Retrospective case series. PARTICIPANTS AND CONTROLS Five cases of NF-1 associated with glaucoma, from which enucleated eyes were available, and 2 eye bank eyes used as controls. METHODS The clinical features and courses of these patients were reviewed. Formalin-fixed, paraffin-embedded eyes were examined by light and electron microscopy. Immunohistochemistry using antineurofibromin, anti-glial fibrillary acidic protein, and antivimentin was performed in 3 patients. Gene expression of the mitogen-activated protein kinase (MAPK) signaling pathway was examined in corneal endothelial cells in 1 patient. MAIN OUTCOME MEASURES Cause of glaucoma in patients with ectropion uvea and NF-1. RESULTS The age of patients at the time of glaucoma diagnosis ranged from birth to 13 years. Four of the 5 patients had megalocornea and buphthalmos at presentation. Ectropion uvea was noted clinically in 2 patients, but was demonstrated histopathologically in all 5 patients. On histopathologic examination, all patients had varying degrees of angle closure secondary to endothelialization of the anterior chamber angle. Uveal neurofibromas were noted in all patients; anteriorly displaced ciliary processes were noted in 4 of 5 patients who demonstrated ciliary body involvement with neurofibromas. Absence of Schlemm's canal was observed. The endothelial cells lining the closed angle demonstrated positive stain results with the vimentin antibody. Positive antineurofibromin immunolabeling was detected in normal control corneal endothelium, but was absent in corneal endothelium in patients with endothelialization of the angle. Upregulation of genes from the MAPK signaling pathway was demonstrated in the corneal endothelial cells isolated from the NF-1 eyes. CONCLUSIONS Ectropion uvea in NF-1 glaucoma is secondary to endothelialization of the anterior chamber angle and is associated commonly with severe pediatric glaucoma in NF-1 patients. The endothelial cell proliferation may be related to overexpression of the Ras (Rat sarcoma)-MAPK genes in these eyes.
Collapse
Affiliation(s)
- Deepak P Edward
- Department of Ophthalmology, Summa Health System, Akron, Ohio, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wojtkowiak JW, Sane KM, Kleinman M, Sloane BF, Reiners JJ, Mattingly RR. Aborted autophagy and nonapoptotic death induced by farnesyl transferase inhibitor and lovastatin. J Pharmacol Exp Ther 2011; 337:65-74. [PMID: 21228063 DOI: 10.1124/jpet.110.174573] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Exposure of the human malignant peripheral nerve sheath tumor cell lines STS-26T, ST88-14, and NF90-8 to nanomolar concentrations of both lovastatin and farnesyl transferase inhibitor (FTI)-1 but not to either drug alone induced cell death. ST88-14 and NF90-8 cells underwent apoptosis, yet dying STS-26T cells did not. FTI-1 cotreatment induced a strong and sustained autophagic response as indicated by analyses of microtubule-associated protein-1 light chain 3 (LC3)-II accumulation in STS-26T cultures. Extensive colocalization of LC3-positive punctate spots was observed with both lysosome-associated membrane protein (LAMP)-1 and LAMP-2 (markers of late endosomes/lysosomes) in solvent or FTI-1 or lovastatin-treated STS-26T cultures but very little colocalization in lovastatin/FTI-1-cotreated cultures. The absence of colocalization in the cotreatment protocol correlated with loss of LAMP-2 expression. Autophagic flux studies indicated that lovastatin/FTI-1 cotreatment inhibited the completion of the autophagic program. In contrast, rapamycin induced an autophagic response that was associated with cytostasis but maintenance of viability. These studies indicate that cotreatment of STS-26T cells with lovastatin and FTI-1 induces an abortive autophagic program and nonapoptotic cell death.
Collapse
Affiliation(s)
- Jonathan W Wojtkowiak
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kraniak JM, Sun D, Mattingly RR, Reiners JJ, Tainsky MA. The role of neurofibromin in N-Ras mediated AP-1 regulation in malignant peripheral nerve sheath tumors. Mol Cell Biochem 2010; 344:267-76. [PMID: 20680410 DOI: 10.1007/s11010-010-0551-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/23/2010] [Indexed: 11/29/2022]
Abstract
Plexiform neurofibromas commonly found in patients with Neurofibromatosis type I (NF1) have a 5% risk of being transformed into malignant peripheral nerve sheath tumors (MPNST). Germline mutations in the NF1 gene coding for neurofibromin, which is a Ras GTPase activating protein (RasGAP) and a negative regulator of Ras, result in an upregulation of the Ras pathway. We established a direct connection between neurofibromin deficiency and downstream effectors of Ras in cell lines from MPNST patients by demonstrating that knockdown of NF1 expression using siRNA in a NF1 wild type MPNST cell line, STS-26T, activates the Ras/ERK1,2 pathway and increases AP-1 binding and activity. We believe this is the first time the transactivation of AP-1 has been linked directly to neurofibromin deficiency in a disease relevant MPNST cell line. Previously, we have shown that N-Ras is constitutively activated in cell lines derived from independent MPNSTs from NF1 patients. We therefore sought to analyze the role of the N-Ras pathway in deregulating AP-1 transcriptional activity. We show that STS-26T clones conditionally expressing oncogenic N-Ras show increased phosphorylated ERK1,2 and phosphorylated JNK expression concomitant with increased AP-1 activity. MAP kinase pathways (ERK1,2 and JNK) were further examined in ST88-14, a neurofibromin-deficient MPNST cell line. The basal activity of ERK1,2 but not JNK was found to increase AP-1 activity. These experiments further confirmed the link between the loss of neurofibromin and increased activity of Ras/MAP kinase pathways and the activation of downstream transcriptional mechanisms in MPNSTs from NF1 patients.
Collapse
Affiliation(s)
- Janice M Kraniak
- Programs in Molecular Biology and Genetics, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
30
|
Turbyville TJ, Gürsel DB, Tuskan RG, Walrath JC, Lipschultz CA, Lockett SJ, Wiemer DF, Beutler JA, Reilly KM. Schweinfurthin A selectively inhibits proliferation and Rho signaling in glioma and neurofibromatosis type 1 tumor cells in a NF1-GRD-dependent manner. Mol Cancer Ther 2010; 9:1234-43. [PMID: 20442305 PMCID: PMC3268685 DOI: 10.1158/1535-7163.mct-09-0834] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neurofibromatosis type 1 (NF1) is the most common genetic disease affecting the nervous system. Patients typically develop many tumors over their lifetime, leading to increased morbidity and mortality. The NF1 gene, mutated in NF1, is also commonly mutated in sporadic glioblastoma multiforme (GBM). Because both NF1 and GBM are currently incurable, new therapeutic approaches are clearly needed. Natural products represent an opportunity to develop new therapies, as they have been evolutionarily selected to play targeted roles in organisms. Schweinfurthin A is a prenylated stilbene natural product that has previously shown specific inhibitory activity against brain and hematopoietic tumor lines. We show that patient-derived GBM and NF1 malignant peripheral nerve sheath tumor (MPNST) lines, as well as tumor lines derived from the Nf1-/+;Trp53-/+ (NPcis) mouse model of astrocytoma and MPNST are highly sensitive to inhibition by schweinfurthin A and its synthetic analogs. In contrast, primary mouse astrocytes are resistant to the growth inhibitory effects of schweinfurthin A, suggesting that schweinfurthin A may act specifically on tumor cells. Stable transfection of the GTPase-activating protein related domain of Nf1 into Nf1-/-;Trp53-/- astrocytoma cells confers resistance to schweinfurthin A. In addition, the profound effect of schweinfurthin A on dynamic reorganization of the actin cytoskeleton led us to discover that schweinfurthin A inhibits growth factor-stimulated Rho signaling. In summary, we have identified a class of small molecules that specifically inhibit growth of cells from both central and peripheral nervous system tumors and seem to act on NF1-deficient cells through cytoskeletal reorganization correlating to changes in Rho signaling.
Collapse
Affiliation(s)
- Thomas J. Turbyville
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
- Optical Microscopy and Image Analysis Laboratory SAIC-Frederick, NCI-Frederick, Frederick, MD 21702
| | - Demirkan B. Gürsel
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Robert G. Tuskan
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Jessica C. Walrath
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Claudia A. Lipschultz
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Stephen J. Lockett
- Optical Microscopy and Image Analysis Laboratory SAIC-Frederick, NCI-Frederick, Frederick, MD 21702
| | - David F. Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | - John A. Beutler
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Karlyne M. Reilly
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| |
Collapse
|
31
|
Sane KM, Mynderse M, Lalonde DT, Dean IS, Wojtkowiak JW, Fouad F, Borch RF, Reiners JJ, Gibbs RA, Mattingly RR. A novel geranylgeranyl transferase inhibitor in combination with lovastatin inhibits proliferation and induces autophagy in STS-26T MPNST cells. J Pharmacol Exp Ther 2010; 333:23-33. [PMID: 20086055 DOI: 10.1124/jpet.109.160192] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prenylation inhibitors have gained increasing attention as potential therapeutics for cancer. Initial work focused on inhibitors of farnesylation, but more recently geranylgeranyl transferase inhibitors (GGTIs) have begun to be evaluated for their potential antitumor activity in vitro and in vivo. In this study, we have developed a nonpeptidomimetic GGTI, termed GGTI-2Z [(5-nitrofuran-2-yl)methyl-(2Z,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl 4-chlorobutyl(methyl)phosphoramidate], which in combination with lovastatin inhibits geranylgeranyl transferase I (GGTase I) and GGTase II/RabGGTase, without affecting farnesylation. The combination treatment results in a G(0)/G(1) arrest and synergistic inhibition of proliferation of cultured STS-26T malignant peripheral nerve sheath tumor cells. We also show that the antiproliferative activity of drugs in combination occurs in the context of autophagy. The combination treatment also induces autophagy in the MCF10.DCIS model of human breast ductal carcinoma in situ and in 1c1c7 murine hepatoma cells, where it also reduces proliferation. At the same time, there is no detectable toxicity in normal immortalized Schwann cells. These studies establish GGTI-2Z as a novel geranylgeranyl pyrophosphate derivative that may work through a new mechanism involving the induction of autophagy and, in combination with lovastatin, may serve as a valuable paradigm for developing more effective strategies in this class of antitumor therapeutics.
Collapse
Affiliation(s)
- Komal M Sane
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li Q, Chow AB, Mattingly RR. Three-dimensional overlay culture models of human breast cancer reveal a critical sensitivity to mitogen-activated protein kinase kinase inhibitors. J Pharmacol Exp Ther 2009; 332:821-8. [PMID: 19952304 DOI: 10.1124/jpet.109.160390] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tumor cells that are grown in three-dimensional (3D) cell culture exhibit relative resistance to cytotoxic drugs compared with their response in conventional two-dimensional (2D) culture. We studied the effects of targeted agents and doxorubicin on 2D and 3D cultures of human breast cell lines that represent the progression from normal epithelia (modeled by MCF10A cells) through hyperplastic variants to a dysplastic/carcinoma phenotype (MCF10.DCIS cells), variants transformed by expression of activated Ras, and also a basal-subtype breast carcinoma cell line (MDA-MB-231). The results showed the expected relative resistance to the cytotoxic agent doxorubicin in 3D cultures, with greater resistance in normal and hyperplastic cells than in carcinoma models. However, the response to the targeted inhibitors was more complex. Inhibition of mitogen-activated protein kinase kinase (MEK) by either 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) or 2-(2-chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide (CI-1040, PD184352) produced a similar inhibition of the growth of all the MCF10 cell lines in 2D. In 3D culture, the normal and hyperplastic models exhibited some resistance, whereas the carcinoma models became far more sensitive to MEK inhibition. Increased sensitivity to MEK inhibition was also seen in MDA-MB-231 cells grown in 3D compared with 2D. In contrast, inhibition of phosphatidylinositol 3'-kinase activity by wortmannin had no significant effect on the growth of any of the cells in either 2D or 3D. Our conclusion is that 3D culture models may not only model the relative resistance of tumor cells to cytotoxic therapy but also that the 3D approach may better identify the driving oncogenic pathways and critical targeted inhibitors that may be effective treatment approaches.
Collapse
Affiliation(s)
- Quanwen Li
- Wayne State University, Department of Pharmacology, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | | | |
Collapse
|
33
|
Malignant peripheral nerve sheath tumour (MPNST): the clinical implications of cellular signalling pathways. Expert Rev Mol Med 2009; 11:e30. [DOI: 10.1017/s1462399409001227] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Malignant peripheral nerve sheath tumour (MPNST) is a rare malignancy accounting for 3–10% of all soft tissue sarcomas. Most MPNSTs arise in association with peripheral nerves or deep neurofibromas and may originate from neural crest cells, although the specific cell of origin is uncertain. Approximately half of MPNSTs occur in the setting of neurofibromatosis type 1 (NF1), an autosomal dominant disorder with an incidence of approximately one in 3500 persons; the remainder of MPNSTs develop sporadically. In addition to a variety of clinical manifestations, approximately 8–13% of NF1 patients develop MPNSTs, which are the leading cause of NF1-related mortality. Surgical resection is the mainstay of MPNST clinical management. However, because of invasive growth, propensity to metastasise, and limited sensitivity to chemotherapy and radiation, MPNST has a guarded to poor prognosis. Five-year survival rates of only 20–50% indicate an urgent need for improved therapeutic approaches. Recent work in this field has identified several altered intracellular signal transduction cascades and deregulated tyrosine kinase receptors, posing the possibility of personalised, targeted therapeutics. However, expanded knowledge of MPNST molecular pathobiology will be needed to meaningfully apply such approaches for the benefit of afflicted patients.
Collapse
|
34
|
Clinical, Pathological, and Molecular Variables Predictive of Malignant Peripheral Nerve Sheath Tumor Outcome. Ann Surg 2009; 249:1014-22. [DOI: 10.1097/sla.0b013e3181a77e9a] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Henderson YC, Ahn SH, Clayman GL. Inhibition of the growth of papillary thyroid carcinoma cells by CI-1040. ACTA ACUST UNITED AC 2009; 135:347-54. [PMID: 19380355 DOI: 10.1001/archoto.2009.17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC), the most common type of thyroid malignancy, usually possesses mutations, either RET/PTC rearrangement or BRAF mutation. Both mutations can activate the mitogen-activated protein kinase kinase/extracellular signal-related kinase signaling transduction pathway, which results in activation of transcription factors that regulate cellular proliferation, differentiation, and apoptosis. OBJECTIVE To test the effects of CI-1040 (PD184352), a specific MEK1/2 inhibitor, on PTC cells carrying either an RET/PTC1 rearrangement or a BRAF mutation. DESIGN The effects of CI-1040 on PTC cells were evaluated in vitro and in vivo. MAIN OUTCOME MEASURES The effects of CI-1040 on PTC cells were evaluated in vitro using a cell proliferation assay, cell cycle analysis, and immunoblotting. The antitumor effects of CI-1040 in vivo were evaluated in an orthotopic mouse model. RESULTS The concentrations of CI-1040 needed to inhibit 50% cell growth were 0.052microM for PTC cells with a BRAF mutation and 1.1microM for PTC cells with the RET/PTC1 rearrangement. After 3 weeks of oral administration of CI-1040 (300 mg/kg/d) to mice with orthotopic tumor implants of PTC cells, the mean tumor volume of implants bearing the RET/PTC1 rearrangement (n = 5) was reduced 47.5% compared with untreated mice (from 701.9 to 368.5 mm(3)), and the mean volume of implants with a BRAF mutation (n = 8) was reduced 31.3% (from 297.3 to 204.2 mm(3)). CONCLUSIONS CI-1040 inhibits PTC cell growth in vitro and in vivo. Because RET/PTC rearrangements are unique to thyroid carcinomas and a high percentage of PTCs possess either mutation, these findings support the clinical evaluation of CI-1040 for patients with PTC.
Collapse
Affiliation(s)
- Ying C Henderson
- Department of Head and Neck Surgery, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 441, Houston, TX 77030, USA
| | | | | |
Collapse
|
36
|
Restoration of E-cadherin cell-cell junctions requires both expression of E-cadherin and suppression of ERK MAP kinase activation in Ras-transformed breast epithelial cells. Neoplasia 2009; 10:1444-58. [PMID: 19048123 DOI: 10.1593/neo.08968] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/12/2008] [Accepted: 09/19/2008] [Indexed: 12/23/2022] Open
Abstract
E-cadherin is a main component of the cell-cell adhesion junctions that play a principal role in maintaining normal breast epithelial cell morphology. Breast and other cancers that have up-regulated activity of Ras are often found to have down-regulated or mislocalized E-cadherin expression. Disruption of E-cadherin junctions and consequent gain of cell motility contribute to the process known as epithelial-to-mesenchymal transition (EMT). Enforced expression of E-cadherin or inhibition of Ras-signal transduction pathway has been shown to be effective in causing reversion of EMT in several oncogene-transformed and cancer-derived cell lines. In this study, we investigated MCF10A human breast epithelial cells and derivatives that were transformed with either activated H-Ras or N-Ras to test for the reversion of EMT by inhibition of Ras-driven signaling pathways. Our results demonstrated that inhibition of mitogen-activated protein kinase (MAPK) kinase, but not PI3-kinase, Rac, or myosin light chain kinase, was able to completely restore E-cadherin cell-cell junctions and epithelial morphology in cell lines with moderate H-Ras expression. In MCF10A cells transformed by a high-level expression of activated H-Ras or N-Ras, restoration of E-cadherin junction required both the enforced reexpression of E-cadherin and suppression of MAPK kinase. Enforced expression of E-cadherin alone did not induce reversion from the mesenchymal phenotype. Our results suggest that Ras transformation has at least two independent actions to disrupt E-cadherin junctions, with effects to cause both mislocalization of E-cadherin away from the cell surface and profound decrease in the expression of E-cadherin.
Collapse
|
37
|
Abstract
Neurofibromas are benign tumors of peripheral nerve that occur sporadically or in patients with the autosomal dominant tumor predisposition syndrome neurofibromatosis type 1 (NF1). Multiple neurofibroma subtypes exist which differ in their site of occurrence, their association with NF1, and their tendency to undergo transformation to become malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with NF1. Most NF1 patients carry a constitutional mutation of the NF1 tumor suppressor gene. Neurofibromas develop in these patients when an unknown cell type in the Schwann cell lineage loses its remaining functional NF1 gene and initiates a complex series of interactions with other cell types; these interactions may be influenced by aberrant expression of growth factors and growth factor receptors and the action of modifier genes. Cells within certain neurofibroma subtypes subsequently accumulate additional mutations affecting the p19(ARF)-MDM2-TP53 and p16INK4A-Rb signaling cascades, mutations of other as yet unidentified genes, and amplification of growth factor receptor genes, resulting in their transformation into MPNSTs. These observations have been validated using a variety of transgenic and knockout mouse models that recapitulate neurofibroma and MPNST pathogenesis. A new generation of mouse models is also providing important new insights into the identity of the cell type in the Schwann cell lineage that gives rise to neurofibromas. Our improving understanding of the mechanisms underlying the pathogenesis of neurofibromas and MPNSTs raises intriguing new questions about the origin and pathogenesis of these neoplasms and establishes models for the development of new therapies targeting these neoplasms.
Collapse
Affiliation(s)
- Steven L Carroll
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA.
| | | |
Collapse
|
38
|
Wojtkowiak JW, Gibbs RA, Mattingly RR. Working together: Farnesyl transferase inhibitors and statins block protein prenylation. ACTA ACUST UNITED AC 2009; 1:1-6. [PMID: 20419048 DOI: 10.4255/mcpharmacol.09.01] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Farnesyl transferase inhibitors (FTIs) have so far proved to have limited value as single agents in clinical trials. This PharmSight will focus on the use of a novel group of FTIs that are most effective in vitro when used in combination with the "statin" class of anti-hypercholesterolemic agents, which also block protein prenylation. We recently showed that these novel FTIs in combination with lovastatin reduce Ras prenylation and induce an apoptotic response in malignant peripheral nerve sheath cells. The combination of statins with these new FTIs may produce profound synergistic cytostatic and cytotoxic effects against a variety of tumors and other proliferative disorders. Since statins are well tolerated in the clinic, we suggest that this combination approach should be tested in in vivo models.
Collapse
Affiliation(s)
- Jonathan W Wojtkowiak
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | |
Collapse
|
39
|
Dilworth JT, Wojtkowiak JW, Mathieu P, Tainsky MA, Reiners JJ, Mattingly RR, Hancock CN. Suppression of proliferation of two independent NF1 malignant peripheral nerve sheath tumor cell lines by the pan-ErbB inhibitor CI-1033. Cancer Biol Ther 2008; 7:1938-46. [PMID: 18927496 DOI: 10.4161/cbt.7.12.6942] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is characterized by the abnormal proliferation of neuroectodermal tissues and the development of certain tumors, particularly neurofibromas, which may progress into malignant peripheral nerve sheath tumors (MPNSTs). Effective pharmacological therapy for the treatment of NF1 tumors is currently unavailable and the prognosis for patients with MPNSTs is poor. Loss of neurofibromin correlates with increased expression of the epidermal growth factor receptor (EGFR) and ErbB2 tyrosine kinases and these kinases have been shown to promote NF1 tumor-associated pathologies in vivo. We show here that while NF1 MPNST cells have higher EGFR expression levels and are more sensitive to EGF when compared to a non-NF1 MPNST cell line, the ability of the EGFR inhibitor gefitinib to selectively inhibit NF1 MPNST cell proliferation is marginal. We also show that NF1 MPNST proliferation correlates with activated ErbB2 and can be suppressed by nanomolar concentrations of the pan-ErbB inhibitor CI-1033 (canertinib). Consequently, targeting both EGFR and ErbB2 may prove an effective strategy for suppressing NF1 MPNST tumor growth in vivo.
Collapse
Affiliation(s)
- Joshua T Dilworth
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Johansson G, Mahller YY, Collins MH, Kim MO, Nobukuni T, Perentesis J, Cripe TP, Lane HA, Kozma SC, Thomas G, Ratner N. Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Mol Cancer Ther 2008; 7:1237-45. [PMID: 18483311 DOI: 10.1158/1535-7163.mct-07-2335] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are chemoresistant sarcomas with poor 5-year survival that arise in patients with neurofibromatosis type 1 (NF1) or sporadically. We tested three drugs for single and combinatorial effects on collected MPNST cell lines and in MPNST xenografts. The mammalian target of rapamycin complex 1 inhibitor RAD001 (Everolimus) decreased growth 19% to 60% after 4 days of treatment in NF1 and sporadic-derived MPNST cell lines. Treatment of subcutaneous sporadic MPNST cell xenografts with RAD001 significantly, but transiently, delayed tumor growth, and decreased vessel permeability within xenografts. RAD001 combined with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib caused additional inhibitory effects on growth and apoptosis in vitro, and a small but significant additional inhibitory effect on MPNST growth in vivo that were larger than the effects of RAD001 with doxorubicin. RAD001 plus erlotinib, in vitro and in vivo, reduced phosphorylation of AKT and total AKT levels, possibly accounting for their additive effect. The results support the consideration of RAD001 therapy in NF1 patient and sporadic MPNST. The preclinical tests described allow rapid screening strata for drugs that block MPNST growth, prior to tests in more complex models, and should be useful to identify drugs that synergize with RAD001.
Collapse
Affiliation(s)
- Gunnar Johansson
- Division of Experimental Hematology, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wojtkowiak JW, Fouad F, LaLonde DT, Kleinman MD, Gibbs RA, Reiners JJ, Borch RF, Mattingly RR. Induction of apoptosis in neurofibromatosis type 1 malignant peripheral nerve sheath tumor cell lines by a combination of novel farnesyl transferase inhibitors and lovastatin. J Pharmacol Exp Ther 2008; 326:1-11. [PMID: 18367665 PMCID: PMC3768167 DOI: 10.1124/jpet.107.135830] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that is driven by the loss of neurofibromin (Nf) protein function. Nf contains a Ras-GTPase-activating protein domain, which directly regulates Ras signaling. Numerous clinical manifestations are associated with the loss of Nf and increased Ras activity. Ras proteins must be prenylated to traffic and functionally localize with target membranes. Hence, Ras is a potential therapeutic target for treating NF1. We have tested the efficacy of two novel farnesyl transferase inhibitors (FTIs), 1 and 2, alone or in combination with lovastatin, on two NF1 malignant peripheral nerve sheath tumor (MPNST) cell lines, NF90-8 and ST88-14. Single treatments of 1, 2, or lovastatin had no effect on Ras prenylation or MPNST cell proliferation. However, low micromolar combinations of 1 or 2 with lovastatin (FTI/lovastatin) reduced Ras prenylation in both MPNST cell lines. Furthermore, this FTI/lovastatin combination treatment reduced cell proliferation and induced an apoptotic response as shown by morphological analysis, procaspase-3/-7 activation, loss of mitochondrial membrane potential, and accumulation of cells with sub-G(1) DNA content. Little to no detectable toxicity was observed in normal rat Schwann cells following FTI/lovastatin combination treatment. These data support the hypothesis that combination FTI plus lovastatin therapy may be a potential treatment for NF1 MPNSTs.
Collapse
Affiliation(s)
- Jonathan W Wojtkowiak
- Department of Pharmacology, Wayne State University, 540 East Canfield Ave., Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Roth TM, Ramamurthy P, Ebisu F, Lisak RP, Bealmear BM, Barald KF. A mouse embryonic stem cell model of Schwann cell differentiation for studies of the role of neurofibromatosis type 1 in Schwann cell development and tumor formation. Glia 2007; 55:1123-33. [PMID: 17597122 DOI: 10.1002/glia.20534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The neurofibromatosis Type 1 (NF1) gene functions as a tumor suppressor gene. One known function of neurofibromin, the NF1 protein product, is to accelerate the slow intrinsic GTPase activity of Ras to increase the production of inactive rasGDP, with wide-ranging effects on p21ras pathways. Loss of neurofibromin in the autosomal dominant disorder NF1 is associated with tumors of the peripheral nervous system, particularly neurofibromas, benign lesions in which the major affected cell type is the Schwann cell (SC). NF1 is the most common cancer predisposition syndrome affecting the nervous system. We have developed an in vitro system for differentiating mouse embryonic stem cells (mESC) that are NF1 wild type (+/+), heterozygous (+/-), or null (-/-) into SC-like cells to study the role of NF1 in SC development and tumor formation. These mES-generated SC-like cells, regardless of their NF1 status, express SC markers correlated with their stage of maturation, including myelin proteins. They also support and preferentially direct neurite outgrowth from primary neurons. NF1 null and heterozygous SC-like cells proliferate at an accelerated rate compared to NF1 wild type; this growth advantage can be reverted to wild type levels using an inhibitor of MAP kinase kinase (Mek). The mESC of all NF1 types can also be differentiated into neuron-like cells. This novel model system provides an ideal paradigm for studies of the role of NF1 in cell growth and differentiation of the different cell types affected by NF1 in cells with differing levels of neurofibromin that are neither transformed nor malignant.
Collapse
Affiliation(s)
- Therese M Roth
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
43
|
Clark MK, Scott SA, Wojtkowiak J, Chirco R, Mathieu P, Reiners JJ, Mattingly RR, Borch RF, Gibbs RA. Synthesis, biochemical, and cellular evaluation of farnesyl monophosphate prodrugs as farnesyltransferase inhibitors. J Med Chem 2007; 50:3274-82. [PMID: 17555307 DOI: 10.1021/jm0701829] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Certain farnesyl diphosphate (FPP) analogs are potent inhibitors of the potential anticancer drug target protein farnesyltransferase (FTase), but these compounds are not suitable as drug candidates. Thus, phosphoramidate prodrug derivatives of the monophosphate precursors of FPP-based FTase inhibitors have been synthesized. The monophosphates themselves were significantly more potent inhibitors of FTase than the corresponding FPP analogs. The effects of the prodrug 5b (a derivative of 3-allylfarnesyl monophosphate) have been evaluated on prenylation of RhoB and on the cell cycle in a human malignant schwannoma cell line (STS-26T). In combination treatments, 1-3 microM 5b plus 1 microM lovastatin induced a significant inhibition of RhoB prenylation, and a combination of these drugs at 1 microM each also resulted in significant cell cycle arrest in G1. Indeed, combinations as low as 50 nM lovastatin + 1 microM 5c or 250 nM lovastatin + 50 nM 5c were highly cytostatic in STS-26T cell culture.
Collapse
Affiliation(s)
- Michelle K Clark
- Medicinal Chemistry and Molecular Pharmacology and Cancer Center, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
✓Discovery that the Schwann cell is the primary cell type responsible for both the neurofibroma as well as the schwannoma has proven to represent a crucial milestone in understanding the pathogenesis of peripheral nerve tumor development. This information and related findings have served as a nidus for research aimed at more fully characterizing this family of conditions. Recent discoveries in the laboratory have clarified an understanding of the molecular mechanisms underlying the pathogenesis of benign peripheral nerve tumors. Similarly, the mechanisms whereby idiopathic and syndromic (NF1- andNF2-associated) nerve sheath tumors progress to malignancy are being elucidated. This detailed understanding of the molecular pathogenesis of peripheral nerve tumors provides the information necessary to create a new generation of therapies tailored specifically to the prevention, cessation, or reversal of pathological conditions at the fundamental level of dysfunction. The authors review the data that have helped to elucidate the molecular pathogenesis of this category of conditions, explore the current progress toward exploitation of these findings, and discuss potential therapeutic avenues for future research.
Collapse
Affiliation(s)
- Jonathan Riley
- Department of Neurosciences and the Center for Neurological Restoration, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
45
|
Wang S, Guan Q, Diao H, Lian D, Zhong R, Jevnikar AM, Du C. Prolongation of Cardiac Allograft Survival by Inhibition of ERK1/2 Signaling in a Mouse Model. Transplantation 2007; 83:323-32. [PMID: 17297407 DOI: 10.1097/01.tp.0000251374.49225.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND It has been demonstrated that in vitro the presence of extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling inhibitor suppresses T cell activation and Th1 development. However, pharmacological interference of ERK1/2 signaling by administration of its small molecule inhibitor has not been tested as a therapeutic target in the prevention of allograft rejection. METHODS The immunosuppressive effect of targeting ERK1/2 signaling was tested on cardiac allograft survival in C57BL/6 (H-2b) to Balb/c (H-2d) murine model using PD98059 inhibitor. Phosphorylation/activation of ERK 1/2 and STAT6 proteins were assessed by Western blot. RESULTS Blockade of ERK1/2 using PD98059 had significant immunosuppressive effect and prolonged survival of mouse cardiac allografts from 8.3+/-0.5 days (vehicle) to 12.6+/-1.3 days (100 mg/kg PD98059; P<0.0001). Combination therapy of PD98059 (100 mg/kg) with cyclosporine (CsA, 15 mg/kg for 20 days) additionally enhanced graft survival (34.4+/-1.2 days) compared to CsA (14.9+/-1.1 days; P<0.0001) or PD98059 monotherapy (P<0.0001). Attenuation of graft rejection by PD98059 correlated to reduction of intragraft ERK phosphorylation and leukocyte infiltration, and to increase in interleukin (IL)-4 or decrease in interferon-gamma production within the grafts. In vitro inhibition of ERK1/2 by PD98059 promoted Th2 differentiation by upregulation IL-4 production but not altering IL-4 stimulating STAT6 pathway. CONCLUSION Targeting ERK1/2 signaling results in suppression of alloimmune responses by an unique mechanism that involves Th1/Th2 skewing, suggesting a therapeutic potential of inhibition of ERK1/2 signaling for transplant rejection, particularly in combination with CsA.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Medicine, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Saito H, Yoshida T, Yamazaki H, Suzuki N. Conditional N-rasG12V expression promotes manifestations of neurofibromatosis in a mouse model. Oncogene 2007; 26:4714-9. [PMID: 17237809 DOI: 10.1038/sj.onc.1210250] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human clinical neurofibromatosis type 1 (NF1) and type 2 (NF2) result from mutations and inactivation of neurofibromin and merlin genes, respectively, which negatively regulate Ras pathways. To evaluate the contribution of N-Ras activity to the development of NF, we generated a novel transgenic mouse expressing oncogenic N-ras specifically in central nerve cells, neural crest-derived cells and lens epithelial cells. Soon after birth, the mouse skin showed hyperpigmentation of the epidermis and melanin-laden macrophages in the dermis, as observed in the café-au-lait spots of human cases. At 3 months of age, all the mice had neurofibromas in the skin and neurofibroma-like tumors with structure similar to Wagner-Meissner bodies in the adrenal medulla. At 4 months of age, all the mice developed subcapsular cataract. In the 5th month, some developed protruding dermal neurofibromas involving subcutaneous fat. However, plexiform neurofibroma, schwannoma, astrocytoma and pheochromocytoma were not observed in the mice, suggesting a requirement for signal(s) other than the activated N-Ras pathway to induce these tumors. Thus, the activated N-Ras signal may be a main pathway for the development of the disease phenotypes characteristic of NF.
Collapse
Affiliation(s)
- H Saito
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, Edobashi, Tsu, Mie, Japan
| | | | | | | |
Collapse
|
47
|
Barkan B, Starinsky S, Friedman E, Stein R, Kloog Y. The Ras inhibitor farnesylthiosalicylic acid as a potential therapy for neurofibromatosis type 1. Clin Cancer Res 2006; 12:5533-42. [PMID: 17000690 DOI: 10.1158/1078-0432.ccr-06-0792] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Farnesylthiosalicylic acid (FTS) is a Ras inhibitor that dislodges all active Ras isoforms from the membrane. We assessed the ability of FTS to reverse the transformed phenotype of neurofibromatosis type 1 (NF1)-associated tumor cell lines of malignant peripheral nerve sheath tumor (MPNST). EXPERIMENTAL DESIGN nf1 mutations were genotyped, allelic losses were analyzed, and neurofibromin expression levels were determined in MPNST cell lines ST88-14, S265P21, and 90-8. The effects of FTS on GTP-bound Ras (Ras-GTP) and its prominent downstream targets, as well as on cell morphology, anchorage-dependent and anchorage-independent growth, and tumor growth in mice, were assessed. RESULTS The MPNST cell lines were biallelic, NF1 inactive, and neurofibromin deficient. We show that FTS treatment shortened the relatively long duration of Ras activation and signaling to extracellular signal-regulated kinase, Akt, and RalA in all NF1-deficient MPNST cell lines (NF1 cells) to that observed in a non-NF1, normally expressing neurofibromin MPNST cell line. These effects of FTS led to lower steady-state levels of Ras-GTP and its activated targets. Both anchorage-dependent and anchorage-independent growth of NF1 cells were dose dependently inhibited by FTS, and the inhibition correlated positively with Ras-GTP levels. NF1 cells were found to possess strong actin stress fibers, and this phenotype was also corrected by FTS. NF1 tumor growth in a nude mouse model was inhibited by oral FTS. CONCLUSIONS FTS treatment of NF1 cells normalized Ras-GTP levels, resulting in reversal of the transformed phenotype and inhibition of tumor growth. FTS may therefore be considered as a potential drug for the treatment of NF1.
Collapse
Affiliation(s)
- Batya Barkan
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences and Sackler School of Medicine, Tel Aviv University, Tel Aviv, and The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Sheba Medical, Tel Hashomer, Israel
| | | | | | | | | |
Collapse
|
48
|
Dilworth JT, Kraniak JM, Wojtkowiak JW, Gibbs RA, Borch RF, Tainsky MA, Reiners JJ, Mattingly RR. Molecular targets for emerging anti-tumor therapies for neurofibromatosis type 1. Biochem Pharmacol 2006; 72:1485-92. [PMID: 16797490 DOI: 10.1016/j.bcp.2006.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Revised: 03/30/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
Neurofibromatosis type 1 (NF1) is the most common cancer predisposition syndrome. NF1 patients present with a constellation of clinical manifestations and have an increased risk of developing certain benign and malignant tumors. This disease results from mutation within the gene encoding neurofibromin, a GTPase activating protein (GAP) for Ras. Functional loss of this protein compromises Ras inactivation, which leads to the aberrant growth and proliferation of neural crest-derived cells and, ultimately, tumor formation. Current management of NF1-associated malignancy involves radiation, surgical excision, and cytotoxic drugs. The limited success of these strategies has fueled researchers to further elucidate the molecular changes that drive tumor formation and progression. This discussion will highlight how intracellular signaling molecules, cell-surface receptors, and the tumor microenvironment constitute potential therapeutic targets, which may be relevant not only to NF1-related malignancy but also to other human cancers.
Collapse
Affiliation(s)
- Joshua T Dilworth
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yang H, Mattingly RR. The Ras-GRF1 exchange factor coordinates activation of H-Ras and Rac1 to control neuronal morphology. Mol Biol Cell 2006; 17:2177-89. [PMID: 16481401 PMCID: PMC1446076 DOI: 10.1091/mbc.e05-10-0913] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 02/01/2006] [Accepted: 02/07/2006] [Indexed: 12/18/2022] Open
Abstract
The Ras-GRF1 exchange factor has regulated guanine nucleotide exchange factor (GEF) activity for H-Ras and Rac1 through separate domains. Both H-Ras and Rac1 activation have been linked to synaptic plasticity and thus could contribute to the function of Ras-GRF1 in neuronal signal transduction pathways that underlie learning and memory. We defined the effects of Ras-GRF1 and truncation mutants that include only one of its GEF activities on the morphology of PC12 phaeochromocytoma cells. Ras-GRF1 required coexpression of H-Ras to induce morphological effects. Ras-GRF1 plus H-Ras induced a novel, expanded morphology in PC12 cells, which was characterized by a 10-fold increase in soma size and by neurite extension. A truncation mutant of Ras-GRF1 that included the Ras GEF domain, GRFdeltaN, plus H-Ras produced neurite extensions, but did not expand the soma. This neurite extension was blocked by inhibition of MAP kinase activation, but was independent of dominant-negative Rac1 or RhoA. A truncation mutant of Ras-GRF1 that included the Rac GEF domains, GRFdeltaC, produced the expanded phenotype in cotransfections with H-Ras. Cell expansion was inhibited by wortmannin or dominant-negative forms of Rac1 or Akt. GRFdeltaC binds H-Ras.GTP in both pulldown assays from bacterial lysates and by coimmunoprecipitation from HEK293 cells. These results suggest that coordinated activation of H-Ras and Rac1 by Ras-GRF1 may be a significant controller of neuronal cell size.
Collapse
Affiliation(s)
- Huibin Yang
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|