1
|
Raup-Konsavage WM, Sepulveda DE, Wang J, Dokholyan NV, Vrana KE, Graziane NM. Antinociceptive Effects of Cannabichromene (CBC) in Mice: Insights from von Frey, Tail-Flick, Formalin, and Acetone Tests. Biomedicines 2023; 12:83. [PMID: 38255191 PMCID: PMC10813533 DOI: 10.3390/biomedicines12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cannabis sativa contains minor cannabinoids that have potential therapeutic value in pain management. However, detailed experimental evidence for the antinociceptive effects of many of these minor cannabinoids remains lacking. Here, we employed artificial intelligence (AI) to perform compound-protein interaction estimates with cannabichromene (CBC) and receptors involved in nociceptive signaling. Based on our findings, we investigated the antinociceptive properties of CBC in naïve or neuropathic C57BL/6 male and female mice using von Frey (mechanical allodynia), tail-flick (noxious radiant heat), formalin (acute and persistent inflammatory pain), and acetone (cold thermal) tests. For von Frey assessments, CBC dose (0-20 mg/kg, i.p.) and time (0-6 h) responses were measured in male and female neuropathic mice. For tail-flick, formalin, and acetone assays, CBC (20 mg/kg, i.p.) was administered to naïve male and female mice 1 h prior to testing. The results show that CBC (10 and 20 mg/kg, i.p.) significantly reduced mechanical allodynia in neuropathic male and female mice 1-2 h after treatment. Additionally, CBC treatment caused significant reductions in nociceptive behaviors in the tail-flick assay and in both phase 1 and phase 2 of the formalin test. Finally, we found a significant interaction in neuropathic male mice in the acetone test. In conclusion, our results suggest that CBC targets receptors involved in nociceptive signaling and imparts antinociceptive properties that may benefit males and females afflicted with diverse forms of acute or chronic/persistent pain.
Collapse
Affiliation(s)
| | - Diana E. Sepulveda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Anesthesiology & Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Nicholas M. Graziane
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Anesthesiology & Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
2
|
Dragun T, Brown CV, Tulppo MP, Obad A, Dujić Ž. The Influence of Oral Cannabidiol on 24-h Ambulatory Blood Pressure and Arterial Stiffness in Untreated Hypertension: A Double-Blind, Placebo-Controlled, Cross-Over Pilot Study. Adv Ther 2023; 40:3495-3511. [PMID: 37291376 DOI: 10.1007/s12325-023-02560-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Studies reveal that cannabidiol may acutely reduce blood pressure and arterial stiffness in normotensive humans; however, it remains unknown if this holds true in patients with untreated hypertension. We aimed to extend these findings to examine the influence of the administration of cannabidiol on 24-h ambulatory blood pressure and arterial stiffness in hypertensive individuals. METHODS Sixteen volunteers (eight females) with untreated hypertension (elevated blood pressure, stage 1, stage 2) were given oral cannabidiol (150 mg every 8 h) or placebo for 24 h in a randomised, placebo-controlled, double-blind, cross-over study. Measures of 24-h ambulatory blood pressure and electrocardiogram (ECG) monitoring and estimates of arterial stiffness and heart rate variability were obtained. Physical activity and sleep were also recorded. RESULTS Although physical activity, sleep patterns and heart rate variability were comparable between groups, arterial stiffness (~ 0.7 m/s), systolic blood pressure (~ 5 mmHg), and mean arterial pressure (~ 3 mmHg) were all significantly (P < 0.05) lower over 24 h on cannabidiol when compared to the placebo. These reductions were generally larger during sleep. Oral cannabidiol was safe and well tolerated with no development of new sustained arrhythmias. CONCLUSIONS Our findings indicate that acute dosing of cannabidiol over 24 h can lower blood pressure and arterial stiffness in individuals with untreated hypertension. The clinical implications and safety of longer-term cannabidiol usage in treated and untreated hypertension remains to be established.
Collapse
Affiliation(s)
- Tanja Dragun
- Department of Integrative Physiology, University of Split School of Medicine, Šoltanska 2, 21000, Split, Croatia
| | - Courtney V Brown
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, BC, Canada
| | - Mikko P Tulppo
- Research Unit of Biomedicine, Medical Research Center Oulu, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - Ante Obad
- Department of Health Studies, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Željko Dujić
- Department of Integrative Physiology, University of Split School of Medicine, Šoltanska 2, 21000, Split, Croatia.
| |
Collapse
|
3
|
Mensah E, Tabrizchi R, Daneshtalab N. Pharmacognosy and Effects of Cannabinoids in the Vascular System. ACS Pharmacol Transl Sci 2022; 5:1034-1049. [PMID: 36407955 PMCID: PMC9667477 DOI: 10.1021/acsptsci.2c00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Understanding the pharmacodynamics of cannabinoids is an essential subject due to the recent increasing global acceptance of cannabis and its derivation for recreational and therapeutic purposes. Elucidating the interaction between cannabinoids and the vascular system is critical to exploring cannabinoids as a prospective therapeutic agent for treating vascular-associated clinical conditions. This review aims to examine the effect of cannabinoids on the vascular system and further discuss the fundamental pharmacological properties and mechanisms of action of cannabinoids in the vascular system. Data from literature revealed a substantial interaction between endocannabinoids, phytocannabinoids, and synthetic cannabinoids within the vasculature of both humans and animal models. However, the mechanisms and the ensuing functional response is blood vessels and species-dependent. The current understanding of classical cannabinoid receptor subtypes and the recently discovered atypical cannabinoid receptors and the development of new synthetic analogs have further enhanced the pharmacological characterization of the vascular cannabinoid receptors. Compelling evidence also suggest that cannabinoids represent a formidable therapeutic candidate for vascular-associated conditions. Nonetheless, explanations of the mechanisms underlining these processes are complex and paradoxical based on the heterogeneity of receptors and signaling pathways. Further insight from studies that uncover the mechanisms underlining the therapeutic effect of cannabinoids in the treatment of vascular-associated conditions is required to determine whether the known benefits of cannabinoids thus currently outweigh the known/unknown risks.
Collapse
Affiliation(s)
- Eric Mensah
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Reza Tabrizchi
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Noriko Daneshtalab
- School
of Pharmacy, Memorial University of Newfoundland
and Labrador, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
4
|
Schmiedhofer P, Vogel FD, Koniuszewski F, Ernst M. Cys-loop receptors on cannabinoids: All high? Front Physiol 2022; 13:1044575. [PMID: 36439263 PMCID: PMC9682269 DOI: 10.3389/fphys.2022.1044575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Endocannabinoids (eCBS) are endogenously derived lipid signaling molecules that serve as tissue hormones and interact with multiple targets, mostly within the endocannabinoid system (ECS). The ECS is a highly conserved regulatory system involved in homeostatic regulation, organ formation, and immunomodulation of chordates. The term “cannabinoid” evolved from the distinctive class of plant compounds found in Cannabis sativa, an ancient herb, due to their action on CB1 and CB2 receptors. CB1/2 receptors are the primary targets for eCBs, but their effects are not limited to the ECS. Due to the high interest and extensive research on the ECS, knowledge on its constituents and physiological role is substantial and still growing. Crosstalk and multiple targeting of molecules are common features of endogenous and plant compounds. Cannabimimetic molecules can be divided according to their origin, natural or synthetic, including phytocannabinoids (pCB’s) or synthetic cannabinoids (sCB’s). The endocannabinoid system (ECS) consists of receptors, transporters, enzymes, and signaling molecules. In this review, we focus on the effects of cannabinoids on Cys-loop receptors. Cys-loop receptors belong to the class of membrane-bound pentameric ligand gated ion channels, each family comprising multiple subunits. Mammalians possess GABA type A receptors (GABAAR), glycine receptors (GlyR), serotonin receptors type 3 (5-HT3R), and nicotinic acetylcholine receptors (nAChR). Several studies have shown different modulatory effects of CBs on multiple members of the Cys-loop receptor family. We highlight the existing knowledge, especially on subunits and protein domains with conserved binding sites for CBs and their possible pharmacological and physiological role in epilepsy and in chronic pain. We further discuss the potential for cannabinoids as first line treatments in epilepsy, chronic pain and other neuropsychiatric conditions, indicated by their polypharmacology and therapeutic profile.
Collapse
Affiliation(s)
- Philip Schmiedhofer
- SBR Development Holding, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| | - Florian Daniel Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| |
Collapse
|
5
|
Tagen M, Klumpers LE. Review of delta-8-tetrahydrocannabinol (Δ 8 -THC): Comparative pharmacology with Δ 9 -THC. Br J Pharmacol 2022; 179:3915-3933. [PMID: 35523678 DOI: 10.1111/bph.15865] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
The use of the intoxicating cannabinoid delta-8-tetrahydrocannabinol (Δ8 -THC) has grown rapidly over the last several years. There have been dozens of Δ8 -THC studies dating back over many decades, yet no review articles have comprehensively covered these findings. In this review, we summarize the pharmacological studies of Δ8 -THC, including receptor binding, cell signalling, in vivo cannabimimetic activity, clinical activity and pharmacokinetics. We give special focus to studies that directly compared Δ8 -THC to its more commonly studied isomer, Δ9 -THC. Overall, the pharmacokinetics and pharmacodynamics of Δ8 -THC and Δ9 -THC are very similar. Δ8 -THC is a partial agonist of the cannabinoid CB1 receptor and has cannabimimetic activity in both animals and humans. The reduced potency of Δ8 -THC in clinical studies compared with Δ9 -THC can be explained by weaker cannabinoid CB1 receptor affinity, although there are other plausible mechanisms that may contribute. We highlight the gaps in our knowledge of Δ8 -THC pharmacology where further studies are needed, particularly in humans.
Collapse
Affiliation(s)
| | - Linda E Klumpers
- Verdient Science LLC, Denver, Colorado.,Tomori Pharmacology Inc., Denver, Colorado, USA.,Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.,Anebulo Pharmaceuticals Inc., Austin, Texas, USA
| |
Collapse
|
6
|
Holloman BL, Nagarkatti M, Nagarkatti P. Epigenetic Regulation of Cannabinoid-Mediated Attenuation of Inflammation and Its Impact on the Use of Cannabinoids to Treat Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22147302. [PMID: 34298921 PMCID: PMC8307988 DOI: 10.3390/ijms22147302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is considered to be a silent killer because it is the underlying cause of a wide range of clinical disorders, from cardiovascular to neurological diseases, and from cancer to obesity. In addition, there are over 80 different types of debilitating autoimmune diseases for which there are no cure. Currently, the drugs that are available to suppress chronic inflammation are either ineffective or overtly suppress the inflammation, thereby causing increased susceptibility to infections and cancer. Thus, the development of a new class of drugs that can suppress chronic inflammation is imperative. Cannabinoids are a group of compounds produced in the body (endocannabinoids) or found in cannabis (phytocannabinoids) that act through cannabinoid receptors and various other receptors expressed widely in the brain and immune system. In the last decade, cannabinoids have been well established experimentally to mediate anti-inflammatory properties. Research has shown that they suppress inflammation through multiple pathways, including apoptosis and inducing immunosuppressive T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Interestingly, cannabinoids also mediate epigenetic alterations in genes that regulate inflammation. In the current review, we highlight how the epigenetic modulations caused by cannabinoids lead to the suppression of inflammation and help identify novel pathways that can be used to target autoimmune diseases.
Collapse
|
7
|
Paland N, Pechkovsky A, Aswad M, Hamza H, Popov T, Shahar E, Louria-Hayon I. The Immunopathology of COVID-19 and the Cannabis Paradigm. Front Immunol 2021; 12:631233. [PMID: 33643316 PMCID: PMC7907157 DOI: 10.3389/fimmu.2021.631233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease-19 caused by the novel RNA betacoronavirus SARS-CoV2 has first emerged in Wuhan, China in December 2019, and since then developed into a worldwide pandemic with >99 million people afflicted and >2.1 million fatal outcomes as of 24th January 2021. SARS-CoV2 targets the lower respiratory tract system leading to pneumonia with fever, cough, and dyspnea. Most patients develop only mild symptoms. However, a certain percentage develop severe symptoms with dyspnea, hypoxia, and lung involvement which can further progress to a critical stage where respiratory support due to respiratory failure is required. Most of the COVID-19 symptoms are related to hyperinflammation as seen in cytokine release syndrome and it is believed that fatalities are due to a COVID-19 related cytokine storm. Treatments with anti-inflammatory or anti-viral drugs are still in clinical trials or could not reduce mortality. This makes it necessary to develop novel anti-inflammatory therapies. Recently, the therapeutic potential of phytocannabinoids, the unique active compounds of the cannabis plant, has been discovered in the area of immunology. Phytocannabinoids are a group of terpenophenolic compounds which biological functions are conveyed by their interactions with the endocannabinoid system in humans. Here, we explore the anti-inflammatory function of cannabinoids in relation to inflammatory events that happen during severe COVID-19 disease, and how cannabinoids might help to prevent the progression from mild to severe disease.
Collapse
Affiliation(s)
- Nicole Paland
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Antonina Pechkovsky
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Miran Aswad
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Haya Hamza
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Tania Popov
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Eduardo Shahar
- Clinical Immunology Unit, Rambam Health Care Campus, Haifa, Israel
| | - Igal Louria-Hayon
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
- Department of Hematology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
8
|
Musetti B, González-Ramos H, González M, Bahnson EM, Varela J, Thomson L. Cannabis sativa extracts protect LDL from Cu 2+-mediated oxidation. J Cannabis Res 2020; 2. [PMID: 33123676 PMCID: PMC7592720 DOI: 10.1186/s42238-020-00042-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Multiple therapeutic properties have been attributed to Cannabis sativa. However, further research is required to unveil the medicinal potential of Cannabis and the relationship between biological activity and chemical profile. Objectives The primary objective of this study was to characterize the chemical profile and antioxidant properties of three varieties of Cannabis sativa available in Uruguay during progressive stages of maturation. Methods Fresh samples of female inflorescences from three stable Cannabis sativa phenotypes, collected at different time points during the end of the flowering period were analyzed. Chemical characterization of chloroform extracts was performed by 1H-NMR. The antioxidant properties of the cannabis sativa extracts, and pure cannabinoids, were measured in a Cu2+-induced LDL oxidation assay. Results The main cannabinoids in the youngest inflorescences were tetrahydrocannabinolic acid (THC-A, 242 ± 62 mg/g) and tetrahydrocannabinol (THC, 7.3 ± 6.5 mg/g). Cannabinoid levels increased more than twice in two of the mature samples. A third sample showed a lower and constant concentration of THC-A and THC (177 ± 25 and 1 ± 1, respectively). The THC-A/THC rich cannabis extracts increased the latency phase of LDL oxidation by a factor of 1.2-3.5 per μg, and slowed down the propagation phase of lipoperoxidation (IC50 1.7-4.6 μg/mL). Hemp, a cannabidiol (CBD, 198 mg/g) and cannabidiolic acid (CBD-A, 92 mg/g) rich variety, also prevented the formation of conjugated dienes during LDL oxidation. In fact, 1 μg of extract was able to stretch the latency phase 3.7 times and also to significantly reduce the steepness of the propagation phase (IC50 of 8 μg/mL). Synthetic THC lengthened the duration of the lag phase by a factor of 21 per μg, while for the propagation phase showed an IC50 ≤ 1 μg/mL. Conversely, THC-A was unable to improve any parameter. Meanwhile, the presence of 1 μg of pure CBD and CBD-A increased the initial latency phase 4.8 and 9.4 times, respectively, but did not have an effect on the propagation phase. Conclusion Cannabis whole extracts acted on both phases of lipid oxidation in copper challenged LDL. Those effects were just partially related with the content of cannabinoids and partially recapitulated by isolated pure cannabinoids. Our results support the potentially beneficial effects of cannabis sativa whole extracts on the initial phase of atherosclerosis.
Collapse
Affiliation(s)
- Bruno Musetti
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Helena González-Ramos
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay.,Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Mercedes González
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Edward M Bahnson
- Division of Vascular Surgery, Department of Surgery, and Department of Cell Biology & Physiology, Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Javier Varela
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
9
|
The Impact of Marijuana on the Cardiovascular System: A Review of the Most Common Cardiovascular Events Associated with Marijuana Use. J Clin Med 2020; 9:jcm9061925. [PMID: 32575540 PMCID: PMC7355963 DOI: 10.3390/jcm9061925] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 02/03/2023] Open
Abstract
With the expanded legalization of marijuana, its medical and recreational use have sharply increased over the past decade. A wide array of new forms of cannabis is available on the market today, and the potencies are ten times those of forms previously tested, meaning that the true impact of marijuana on the cardiovascular system remains unclear. Cannabis mainly exerts its effects via the sympathetic and parasympathetic nervous systems, with different doses affecting different cannabinoids receptors. Studies have shown that marijuana plays a role in thrombosis, inflammation, and atherosclerosis. Case reports have linked marijuana use to myocardial infarction, cardiac arrythmias, cardiomyopathies, stroke, and arteritis. Most patients are young, healthy men with no cardiovascular risk factors; however, the patient population is expected to change to include older individuals in the future. The widespread public perception of safety accompanying marijuana use has contributed to its increased use among the elderly, who are the most at risk population for acute cardiovascular events. In this review, we aim to provide a basic understanding of the physiological effects of marijuana on the cardiovascular system and to review the current literature regarding cardiovascular diseases linked to marijuana use in adults.
Collapse
|
10
|
Martínez V, Iriondo De-Hond A, Borrelli F, Capasso R, del Castillo MD, Abalo R. Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci 2020; 21:E3067. [PMID: 32357565 PMCID: PMC7246936 DOI: 10.3390/ijms21093067] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cannabis sativa is an aromatic annual flowering plant with several botanical varieties, used for different purposes, like the production of fibers, the production of oil from the seeds, and especially for recreational or medical purposes. Phytocannabinoids (terpenophenolic compounds derived from the plant), include the well-known psychoactive cannabinoid Δ9-tetrahydrocannabinol, and many non-psychoactive cannabinoids, like cannabidiol. The endocannabinoid system (ECS) comprises of endocannabinoid ligands, enzymes for synthesis and degradation of such ligands, and receptors. This system is widely distributed in the gastrointestinal tract, where phytocannabinoids exert potent effects, particularly under pathological (i.e., inflammatory) conditions. Herein, we will first look at the hemp plant as a possible source of new functional food ingredients and nutraceuticals that might be eventually useful to treat or even prevent gastrointestinal conditions. Subsequently, we will briefly describe the ECS and the general pharmacology of phytocannabinoids. Finally, we will revise the available data showing that non-psychoactive phytocannabinoids, particularly cannabidiol, may be useful to treat different disorders and diseases of the gastrointestinal tract. With the increasing interest in the development of functional foods for a healthy life, the non-psychoactive phytocannabinoids are hoped to find a place as nutraceuticals and food ingredients also for a healthy gastrointestinal tract function.
Collapse
Affiliation(s)
- Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Neurosciences Institute, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Amaia Iriondo De-Hond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Raquel Abalo
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Campus de Alcorcón, Avda. de Atenas s/n, 28022 Madrid, Spain
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain;
| |
Collapse
|
11
|
Tassorelli C, Greco R, Silberstein SD. The endocannabinoid system in migraine: from bench to pharmacy and back. Curr Opin Neurol 2019; 32:405-412. [DOI: 10.1097/wco.0000000000000688] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Ramer R, Schwarz R, Hinz B. Modulation of the Endocannabinoid System as a Potential Anticancer Strategy. Front Pharmacol 2019; 10:430. [PMID: 31143113 PMCID: PMC6520667 DOI: 10.3389/fphar.2019.00430] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Currently, the involvement of the endocannabinoid system in cancer development and possible options for a cancer-regressive effect of cannabinoids are controversially discussed. In recent decades, a number of preclinical studies have shown that cannabinoids have an anticarcinogenic potential. Therefore, especially against the background of several legal simplifications with regard to the clinical application of cannabinoid-based drugs, an extended basic knowledge about the complex network of the individual components of the endocannabinoid system is required. The canonical endocannabinoid system consists of the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol as well as the Gi/o protein-coupled transmembrane cannabinoid receptors CB1 and CB2. As a result of extensive studies on the broader effect of these factors, other fatty acid derivatives, transmembrane and intracellular receptors, enzymes and lipid transporters have been identified that contribute to the effect of endocannabinoids when defined in the broad sense as “extended endocannabinoid system.” Among these additional components, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid-binding protein family, additional cannabinoid-activated G protein-coupled receptors such as GPR55, members of the transient receptor family, and peroxisome proliferator-activated receptors were identified as targets for possible strategies to combat cancer progression. Other endocannabinoid-related fatty acids such as 2-arachidonoyl glyceryl ether, O-arachidonoylethanolamine, N-arachidonoyldopamine and oleic acid amide showed an effect via cannabinoid receptors, while other compounds such as endocannabinoid-like substances exert a permissive action on endocannabinoid effects and act via alternative intracellular target structures. This review gives an overview of the modulation of the extended endocannabinoid system using the example of anticancer cannabinoid effects, which have been described in detail in preclinical studies.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
13
|
Kopjar N, Fuchs N, Žunec S, Mikolić A, Micek V, Kozina G, Lucić Vrdoljak A, Brčić Karačonji I. DNA Damaging Effects, Oxidative Stress Responses and Cholinesterase Activity in Blood and Brain of Wistar Rats Exposed to Δ 9-Tetrahydrocannabinol. Molecules 2019; 24:E1560. [PMID: 31010235 PMCID: PMC6515386 DOI: 10.3390/molecules24081560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/24/2023] Open
Abstract
Currently we are faced with an ever-growing use of Δ9-tetrahydrocannabinol (THC) preparations, often used as supportive therapies for various malignancies and neurological disorders. As some of illegally distributed forms of such preparations, like cannabis oils and butane hash oil, might contain over 80% of THC, their consumers can become intoxicated or experience various detrimental effects. This fact motivated us for the assessments of THC toxicity in vivo on a Wistar rat model, at a daily oral dose of 7 mg/kg which is comparable to those found in illicit preparations. The main objective of the present study was to establish the magnitude and dynamics of DNA breakage associated with THC exposure in white blood and brain cells of treated rats using the alkaline comet assay. The extent of oxidative stress after acute 24 h exposure to THC was also determined as well as changes in activities of plasma and brain cholinesterases (ChE) in THC-treated and control rats. The DNA of brain cells was more prone to breakage after THC treatment compared to DNA in white blood cells. Even though DNA damage quantified by the alkaline comet assay is subject to repair, its elevated level detected in the brain cells of THC-treated rats was reason for concern. Since neurons do not proliferate, increased levels of DNA damage present threats to these cells in terms of both viability and genome stability, while inefficient DNA repair might lead to their progressive loss. The present study contributes to existing knowledge with evidence that acute exposure to a high THC dose led to low-level DNA damage in white blood cells and brain cells of rats and induced oxidative stress in brain, but did not disturb ChE activities.
Collapse
Affiliation(s)
- Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | - Nino Fuchs
- University Hospital Centre Zagreb, Zagreb HR-10000 Croatia.
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | - Anja Mikolić
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | - Goran Kozina
- University Centre Varaždin, University North, Varaždin HR-42000, Croatia.
| | - Ana Lucić Vrdoljak
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | | |
Collapse
|
14
|
Singh A, Saluja S, Kumar A, Agrawal S, Thind M, Nanda S, Shirani J. Cardiovascular Complications of Marijuana and Related Substances: A Review. Cardiol Ther 2018; 7:45-59. [PMID: 29218644 PMCID: PMC5986667 DOI: 10.1007/s40119-017-0102-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
The recreational use of cannabis has sharply increased in recent years in parallel with its legalization and decriminalization in several countries. Commonly, the traditional cannabis has been replaced by potent synthetic cannabinoids and cannabimimetics in various forms. Despite overwhelming public perception of the safety of these substances, an increasing number of serious cardiovascular adverse events have been reported in temporal relation to recreational cannabis use. These have included sudden cardiac death, vascular (coronary, cerebral and peripheral) events, arrhythmias and stress cardiomyopathy among others. Many of the victims of these events are relatively young men with few if any cardiovascular risk factors. However, there are reasons to believe that older individuals and those with risk factors for or established cardiovascular disease are at even higher danger of such events following exposure to cannabis. The pathophysiological basis of these events is not fully understood and likely encompasses a complex interaction between the active ingredients (particularly the major cannabinoid, Δ9-tetrahydrocannabinol), and the endo-cannabinoid system, autonomic nervous system, as well as other receptor and non-receptor mediated pathways. Other complicating factors include opposing physiologic effects of other cannabinoids (predominantly cannabidiol), presence of regulatory proteins that act as metabolizing enzymes, binding molecules, or ligands, as well as functional polymorphisms of target receptors. Tolerance to the effects of cannabis may also develop on repeated exposures at least in part due to receptor downregulation or desensitization. Moreover, effects of cannabis may be enhanced or altered by concomitant use of other illicit drugs or medications used for treatment of established cardiovascular diseases. Regardless of these considerations, it is expected that the current cannabis epidemic would add significantly to the universal burden of cardiovascular diseases.
Collapse
Affiliation(s)
- Amitoj Singh
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Sajeev Saluja
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Akshat Kumar
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Sahil Agrawal
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Munveer Thind
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Sudip Nanda
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Jamshid Shirani
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA.
| |
Collapse
|
15
|
Richter JS, Quenardelle V, Rouyer O, Raul JS, Beaujeux R, Gény B, Wolff V. A Systematic Review of the Complex Effects of Cannabinoids on Cerebral and Peripheral Circulation in Animal Models. Front Physiol 2018; 9:622. [PMID: 29896112 PMCID: PMC5986896 DOI: 10.3389/fphys.2018.00622] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
While cannabis is perceived as a relatively safe drug by the public, accumulating clinical data suggest detrimental cardiovascular effects of cannabinoids. Cannabis has been legalized in several countries and jurisdictions recently. Experimental studies specifically targeting cannabinoids' effects on the cerebral vasculature are rare. There is evidence for transient vasoconstrictive effects of cannabinoids in the peripheral and cerebral vasculature in a complex interplay of vasodilation and vasoconstriction. Vasoreactivity to cannabinoids is dependent on the specific molecules, their metabolites and dose, baseline vascular tone, and vessel characteristics as well as experimental conditions and animal species. We systematically review the currently available literature of experimental results in in vivo and in vitro animal studies, examining cannabinoids' effects on circulation and reactive vasodilation or vasoconstriction, with a particular focus on the cerebral vascular bed.
Collapse
Affiliation(s)
- J. Sebastian Richter
- Department of Interventional Neuroradiology, University Hospital of Strasbourg, Strasbourg, France
- Institute of Image-Guided Surgery (IHU), Strasbourg, France
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
| | - Véronique Quenardelle
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
| | - Olivier Rouyer
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, Strasbourg, France
| | | | - Rémy Beaujeux
- Department of Interventional Neuroradiology, University Hospital of Strasbourg, Strasbourg, France
- Institute of Image-Guided Surgery (IHU), Strasbourg, France
| | - Bernard Gény
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Wolff
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
| |
Collapse
|
16
|
Schwarz R, Ramer R, Hinz B. Targeting the endocannabinoid system as a potential anticancer approach. Drug Metab Rev 2018; 50:26-53. [PMID: 29390896 DOI: 10.1080/03602532.2018.1428344] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is currently under intense investigation due to the therapeutic potential of cannabinoid-based drugs as treatment options for a broad variety of diseases including cancer. Besides the canonical endocannabinoid system that includes the cannabinoid receptors CB1 and CB2 and the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, recent investigations suggest that other fatty acid derivatives, receptors, enzymes, and lipid transporters likewise orchestrate this system as components of the endocannabinoid system when defined as an extended signaling network. As such, fatty acids acting at cannabinoid receptors (e.g. 2-arachidonoyl glyceryl ether [noladin ether], N-arachidonoyldopamine) as well as endocannabinoid-like substances that do not elicit cannabinoid receptor activation (e.g. N-palmitoylethanolamine, N-oleoylethanolamine) have raised interest as anticancerogenic substances. Furthermore, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid binding protein family, additional cannabinoid-activated G protein-coupled receptors, members of the transient receptor potential family as well as peroxisome proliferator-activated receptors have been considered as targets of antitumoral cannabinoid activity. Therefore, this review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.
Collapse
Affiliation(s)
- Rico Schwarz
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| | - Robert Ramer
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| | - Burkhard Hinz
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
17
|
Abstract
The growing popularity of medical and recreational consumption of cannabis, especially among the youth, raises immediate concerns regarding its safety and long-terms effects. The cardiovascular effects of cannabis are not well known. Cannabis consumption has been shown to cause arrhythmia including ventricular tachycardia, and potentially sudden death, and to increase the risk of myocardial infarction (MI). These effects appear to be compounded by cigarette smoking and precipitated by excessive physical activity, especially during the first few hours of consumption. Cannabinoids, or the active compounds of cannabis, have been shown to have heterogeneous effects on central and peripheral circulation. Acute cannabis consumption has been shown to cause an increase in blood pressure, specifically systolic blood pressure (SBP), and orthostatic hypotension. Cannabis use has been reported to increase risk of ischemic stroke, particularly in the healthy young patients. The endocannabinoid system (ECS) is currently considered as a promising therapeutic target in the management of several disease conditions. Synthetic cannabinoids (SCs) are being increasingly investigated for their therapeutic effects; however, the value of their benefits over possible complications remains controversial. Despite the considerable research in this field, the benefits of cannabis and its synthetic derivatives remains questionable even in the face of an increasingly tolerating attitude towards recreational consumption and promotion of the therapeutic complications. More efforts are needed to increase awareness among the public, especially youth, about the cardiovascular risks associated with cannabis use and to disseminate the accumulated knowledge regarding its ill effects.
Collapse
Affiliation(s)
- Hemant Goyal
- Department of Internal Medicine, Mercer University School of Medicine, Macon, GA, USA
| | - Hamza H Awad
- Department of community Medicine/Internal Medicine, Mercer University School of Medicine, Macon, GA, USA
| | - Jalal K Ghali
- Division of Cardiology, Mercer University School of Medicine, Macon, GA, USA
| |
Collapse
|
18
|
López-Dyck E, Andrade-Urzúa F, Elizalde A, Ferrer-Villada T, Dagnino-Acosta A, Huerta M, Osuna-Calleros Z, Rangel-Sandoval C, Sánchez-Pastor E. ACPA and JWH-133 modulate the vascular tone of superior mesenteric arteries through cannabinoid receptors, BK Ca channels, and nitric oxide dependent mechanisms. Pharmacol Rep 2017; 69:1131-1139. [PMID: 29128791 DOI: 10.1016/j.pharep.2017.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/26/2017] [Accepted: 06/20/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Some cannabinoids, a family of compounds derived from Cannabis sativa (marijuana), have previously shown vasodilator effects in several studies, a feature that makes them suitable for the generation of a potential treatment for hypertension. The mechanism underlying this vasodilator effect in arteries is still controversial. In this report, we explored how the synthetic cannabinoids ACPA (CB1-selective agonist) and JWH-133 (CB2-selective agonist) regulate the vascular tone of rat superior mesenteric arteries. METHODS To screen the expression of CB1 (Cannabinoid receptor 1) and CB2 (Cannabinoid receptor 2) receptors in arterial rings or isolated smooth muscle cells obtained from the artery, immunocytochemistry, immunohistochemistry, and confocal microscopy were performed. In addition, the effects on vascular tone induced by the two cannabinoids were tested in isometric tension experiments in rings obtained from superior mesenteric arteries. The participation of voltage and calcium-activated potassium channel of big conductance (BKCa) and the role of nitric oxide (NO) release on the vascular effects induced by ACPA and JWH-133 were tested. RESULTS CB1 and CB2 receptors were highly expressed in the rat superior mesenteric artery, in both smooth muscle and endothelium. The vasodilation effect shown by ACPA was endothelium-dependent through a mechanism involving CB1 receptors, BKCa channel activation, and NO release; meanwhile, the vasodilator effect of JWH-133 was induced by the activation of CB2 receptors located in smooth muscle and by a CB2 receptor-independent mechanism inducing NO release. CONCLUSIONS CB1 and CB2 receptor activation in superior mesenteric artery causes vasorelaxation by mechanisms involving BKCa channels and NO release.
Collapse
Affiliation(s)
- Evelyn López-Dyck
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Alejandro Elizalde
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Tania Ferrer-Villada
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Zyanya Osuna-Calleros
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Enrique Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico.
| |
Collapse
|
19
|
Molecular Targets of the Phytocannabinoids: A Complex Picture. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 103:103-131. [PMID: 28120232 DOI: 10.1007/978-3-319-45541-9_4] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For centuries, hashish and marihuana, both derived from the Indian hemp Cannabis sativa L., have been used for their medicinal, as well as, their psychotropic effects. These effects are associated with the phytocannabinoids which are oxygen containing C21 aromatic hydrocarbons found in Cannabis sativa L. To date, over 120 phytocannabinoids have been isolated from Cannabis. For many years, it was assumed that the beneficial effects of the phytocannabinoids were mediated by the cannabinoid receptors, CB1 and CB2. However, today we know that the picture is much more complex, with the same phytocannabinoid acting at multiple targets. This contribution focuses on the molecular pharmacology of the phytocannabinoids, including Δ9-THC and CBD, from the prospective of the targets at which these important compounds act.
Collapse
|
20
|
Molecular Pharmacology of Phytocannabinoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 103:61-101. [PMID: 28120231 DOI: 10.1007/978-3-319-45541-9_3] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cannabis sativa has been used for recreational, therapeutic and other uses for thousands of years. The plant contains more than 120 C21 terpenophenolic constituents named phytocannabinoids. The Δ9-tetrahydrocannabinol type class of phytocannabinoids comprises the largest proportion of the phytocannabinoid content. Δ9-tetrahydrocannabinol was first discovered in 1971. This led to the discovery of the endocannabinoid system in mammals, including the cannabinoid receptors CB1 and CB2. Δ9-Tetrahydrocannabinol exerts its well-known psychotropic effects through the CB1 receptor but this effect of Δ9-tetrahydrocannabinol has limited the use of cannabis medicinally, despite the therapeutic benefits of this phytocannabinoid. This has driven research into other targets outside the endocannabinoid system and has also driven research into the other non-psychotropic phytocannabinoids present in cannabis. This chapter presents an overview of the molecular pharmacology of the seven most thoroughly investigated phytocannabinoids, namely Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabivarin, cannabinol, cannabidiol, cannabidivarin, cannabigerol, and cannabichromene. The targets of these phytocannabinoids are defined both within the endocannabinoid system and beyond. The pharmacological effect of each individual phytocannabinoid is important in the overall therapeutic and recreational effect of cannabis and slight structural differences can elicit diverse and competing physiological effects. The proportion of each phytocannabinoid can be influenced by various factors such as growing conditions and extraction methods. It is therefore important to investigate the pharmacology of these seven phytocannabinoids further, and characterise the large number of other phytocannabinoids in order to better understand their contributions to the therapeutic and recreational effects claimed for the whole cannabis plant and its extracts.
Collapse
|
21
|
The Role of Nuclear Hormone Receptors in Cannabinoid Function. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:291-328. [PMID: 28826538 DOI: 10.1016/bs.apha.2017.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the early 2000s, evidence has been accumulating that most cannabinoid compounds interact with the nuclear hormone family peroxisome proliferator-activated receptors (PPARs). This can be through direct binding of these compounds to PPARs, metabolism of cannabinoid to other PPAR-activating chemicals, or indirect activation of PPAR through cell signaling pathways. Delivery of cannabinoids to the nucleus may be facilitated by fatty acid-binding proteins and carrier proteins. All PPAR isoforms appear to be activated by cannabinoids, but the majority of evidence is for PPARα and γ. To date, little is known about the potential interaction of cannabinoids with other nuclear hormones. At least some (but not all) of the well-known biological actions of cannabinoids including neuroprotection, antiinflammatory action, and analgesic effects are partly mediated by PPAR-activation, often in combination with activation of the more traditional target sites of action. This has been best investigated for the endocannabinoid-like compounds palmitoylethanolamide and oleoylethanolamine acting at PPARα, and for phytocannabinoids or their derivatives activation acting at PPARγ. However, there are still many aspects of cannabinoid activation of PPAR and the role it plays in the biological and therapeutic effects of cannabinoids that remain to be investigated.
Collapse
|
22
|
Abstract
Marijuana is currently the most used illicit substance in the world. With the current trend of decriminalization and legalization of marijuana in the US, physicians in the US will encounter more patients using marijuana recreationally over a diverse range of ages and health states. Therefore, it is relevant to review marijuana's effects on human cardiovascular physiology and disease. Compared with placebo, marijuana cigarettes cause increases in heart rate, supine systolic and diastolic blood pressures, and forearm blood flow via increased sympathetic nervous system activity. These actions increase myocardial oxygen demand to a degree that they can decrease the time to exercise-induced angina in patients with a history of stable angina. In addition, marijuana has been associated with triggering myocardial infarctions (MIs) in young male patients. Smoking marijuana has been shown to increase the risk of MI onset by a factor of 4.8 for the 60 minutes after marijuana consumption, and to increase the annual risk of MI in the daily cannabis user from 1.5% to 3% per year. Human and animal models suggest that this effect may be due to coronary arterial vasospasm. However, longitudinal studies have indicated that marijuana use may not have a significant effect on long-term mortality. While further research is required to definitively determine the impact of marijuana on cardiovascular disease, it is reasonable to recommend against recreational marijuana use, especially in individuals with a history of coronary artery disorders.
Collapse
|
23
|
Pisanti S, Malfitano AM, Ciaglia E, Lamberti A, Ranieri R, Cuomo G, Abate M, Faggiana G, Proto MC, Fiore D, Laezza C, Bifulco M. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol Ther 2017; 175:133-150. [PMID: 28232276 DOI: 10.1016/j.pharmthera.2017.02.041] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past years, several lines of evidence support a therapeutic potential of Cannabis derivatives and in particular phytocannabinoids. Δ9-THC and cannabidiol (CBD) are the most abundant phytocannabinoids in Cannabis plants and therapeutic application for both compounds have been suggested. However, CBD is recently emerging as a therapeutic agent in numerous pathological conditions since devoid of the psychoactive side effects exhibited instead by Δ9-THC. In this review, we highlight the pharmacological activities of CBD, its cannabinoid receptor-dependent and -independent action, its biological effects focusing on immunomodulation, angiogenetic properties, and modulation of neuronal and cardiovascular function. Furthermore, the therapeutic potential of cannabidiol is also highlighted, in particular in nuerological diseases and cancer.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy.
| | - Anna Maria Malfitano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Anna Lamberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Roberta Ranieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Gaia Cuomo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Giorgio Faggiana
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | | | | | | | - Maurizio Bifulco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy; Corporea, Fondazione Idis-Città della Scienza, Naples, Italy.
| |
Collapse
|
24
|
Stanley CP, Hind WH, Tufarelli C, O'Sullivan SE. The endocannabinoid anandamide causes endothelium-dependent vasorelaxation in human mesenteric arteries. Pharmacol Res 2016; 113:356-363. [PMID: 27633407 PMCID: PMC5113919 DOI: 10.1016/j.phrs.2016.08.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/14/2016] [Accepted: 08/27/2016] [Indexed: 12/12/2022]
Abstract
The endocannabinoid anandamide (AEA) causes vasorelaxation in animal studies. Although circulating AEA levels are increased in many pathologies, little is known about its vascular effects in humans. The aim of this work was to characterise the effects of AEA in human arteries. Ethical approval was granted to obtain mesenteric arteries from patients (n = 31) undergoing bowel resection. Wire myography was used to probe the effects and mechanisms of action of AEA. RT‐PCR was used to confirm the presence of receptor mRNA in human aortic endothelial cells (HAECs) and intracellular signalling proteins were measured using multiplex technology. AEA caused vasorelaxation of precontracted human mesenteric arteries with an Rmax of ∼30%. A synthetic CB1 agonist (CP55940) caused greater vasorelaxation (Rmax ∼60%) while a CB2 receptor agonist (HU308) had no effect on vascular tone. AEA-induced vasorelaxation was inhibited by removing the endothelium, inhibition of nitric oxide (NO) synthase, antagonising the CB1 receptor and antagonising the proposed novel endothelial cannabinoid receptor (CBe). AEA‐induced vasorelaxation was not affected by CB2 antagonism, by depleting sensory neurotransmitters, or inhibiting cyclooxygenase activity. RT‐PCR showed CB1 but not CB2 receptors were present in HAECs, and AEA and CP55940 had similar profiles in HAECs (increased phosphorylation of JNK, NFκB, ERK, Akt, p70s6K, STAT3 and STAT5). Post hoc analysis of the data set showed that overweight patients and those taking paracetamol had reduced vasorelaxant responses to AEA. These data show that AEA causes moderate endothelium-dependent, NO-dependent vasorelaxation in human mesenteric arteries via activation of CB1 receptors.
Collapse
Affiliation(s)
- Christopher P Stanley
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - William H Hind
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Christina Tufarelli
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Saoirse E O'Sullivan
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK.
| |
Collapse
|
25
|
O'Sullivan SE. An update on PPAR activation by cannabinoids. Br J Pharmacol 2016; 173:1899-910. [PMID: 27077495 PMCID: PMC4882496 DOI: 10.1111/bph.13497] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 03/16/2016] [Accepted: 04/04/2016] [Indexed: 02/06/2023] Open
Abstract
Some cannabinoids activate the different isoforms of PPARs (α, β and γ), as shown through the use of reporter gene assays, binding studies, selective antagonists and knockout studies. Activation of all isoforms, but primarily PPARα and γ, mediates some (but not all) of the analgesic, neuroprotective, neuronal function modulation, anti-inflammatory, metabolic, anti-tumour, gastrointestinal and cardiovascular effects of some cannabinoids, often in conjunction with activation of the more traditional target sites of action such as the cannabinoid CB1 and CB2 receptors and the TRPV1 ion channel. PPARs also mediate some of the effects of inhibitors of endocannabinoid degradation or transport. Cannabinoids may be chaperoned to the PPARs by fatty acid binding proteins. The aims of this review are to update the evidence supporting PPAR activation by cannabinoids and to review the physiological responses to cannabinoids that are mediated, and not mediated, by PPAR activation.
Collapse
|
26
|
de Guglielmo G, Kallupi M, Scuppa G, Stopponi S, Demopulos G, Gaitanaris G, Ciccocioppo R. Analgesic tolerance to morphine is regulated by PPARγ. Br J Pharmacol 2015; 171:5407-16. [PMID: 25048682 DOI: 10.1111/bph.12851] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Opioid drugs are potent analgesics. However, their chronic use leads to the rapid development of tolerance to their analgesic effects and subsequent increase of significant side effects, including drug dependence and addiction. Here, we investigated the role of PPARγ in the development of analgesic tolerance to morphine in mice. EXPERIMENTAL APPROACH We monitored analgesia on alternate days using the tail immersion test. KEY RESULTS Daily administration of morphine (30 mg·kg(-1) , bid) resulted in the rapid development of tolerance to thermal analgesia. Co-administration of pioglitazone (10 and 30 mg·kg(-1) , bid) significantly attenuated the development and expression of tolerance. However, pretreatment with GW-9662 (5 mg·kg(-1) , bid), a selective PPARγ antagonist, completely abolished this effect. Injection of GW-9662 and a lower dose of morphine (15 mg·kg(-1) , bid) accelerated the development of tolerance to its antinociceptive effect. Subsequently, we found that conditional neuronal PPARγ knockout (KO) mice develop a more rapid and pronounced tolerance to morphine antinociception compared with wild-type (WT) controls. Moreover, in PPARγ KO mice, pioglitazone was no longer able to prevent the development of morphine tolerance. CONCLUSIONS AND IMPLICATIONS Overall, our results demonstrate that PPARγ plays a tonic role in the modulation of morphine tolerance, and its pharmacological activation may help to reduce its development. These findings provide new information about the role of neuronal PPARγ and suggest that combining PPARγ agonists with opioid analgesics may reduce the development of tolerance and possibly attenuate the potential for opioid abuse.
Collapse
|
27
|
Stanley CP, Hind WH, Tufarelli C, O'Sullivan SE. Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries via CB1 activation. Cardiovasc Res 2015; 107:568-78. [PMID: 26092099 PMCID: PMC4540144 DOI: 10.1093/cvr/cvv179] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/12/2015] [Indexed: 12/18/2022] Open
Abstract
Aims The protective effects of cannabidiol (CBD) have been widely shown in preclinical models and have translated into medicines for the treatment of multiple sclerosis and epilepsy. However, the direct vascular effects of CBD in humans are unknown. Methods and results Using wire myography, the vascular effects of CBD were assessed in human mesenteric arteries, and the mechanisms of action probed pharmacologically. CBD-induced intracellular signalling was characterized using human aortic endothelial cells (HAECs). CBD caused acute, non-recoverable vasorelaxation of human mesenteric arteries with an Rmax of ∼40%. This was inhibited by cannabinoid receptor 1 (CB1) receptor antagonists, desensitization of transient receptor potential channels using capsaicin, removal of the endothelium, and inhibition of potassium efflux. There was no role for cannabinoid receptor-2 (CB2) receptor, peroxisome proliferator activated receptor (PPAR)γ, the novel endothelial cannabinoid receptor (CBe), or cyclooxygenase. CBD-induced vasorelaxation was blunted in males, and in patients with type 2 diabetes or hypercholesterolemia. In HAECs, CBD significantly reduced phosphorylated JNK, NFκB, p70s6 K and STAT5, and significantly increased phosphorylated CREB, ERK1/2, and Akt levels. CBD also increased phosphorylated eNOS (ser1177), which was correlated with increased levels of ERK1/2 and Akt levels. CB1 receptor antagonism prevented the increase in eNOS phosphorylation. Conclusion This study shows, for the first time, that CBD causes vasorelaxation of human mesenteric arteries via activation of CB1 and TRP channels, and is endothelium- and nitric oxide-dependent.
Collapse
Affiliation(s)
- Christopher P Stanley
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - William H Hind
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Cristina Tufarelli
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Saoirse E O'Sullivan
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| |
Collapse
|
28
|
Stanley C, O'Sullivan SE. Vascular targets for cannabinoids: animal and human studies. Br J Pharmacol 2014; 171:1361-78. [PMID: 24329566 DOI: 10.1111/bph.12560] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/18/2013] [Accepted: 11/18/2013] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Application of cannabinoids and endocannabinoids to perfused vascular beds or individual isolated arteries results in changes in vascular resistance. In most cases, the result is vasorelaxation, although vasoconstrictor responses are also observed. Cannabinoids also modulate the actions of vasoactive compounds including acetylcholine, methoxamine, angiotensin II and U46619 (thromboxane mimetic). Numerous mechanisms of action have been proposed including receptor activation, potassium channel activation, calcium channel inhibition and the production of vasoactive mediators such as calcitonin gene-related peptide, prostanoids, NO, endothelial-derived hyperpolarizing factor and hydrogen peroxide. The purpose of this review is to examine the evidence for the range of receptors now known to be activated by cannabinoids. Direct activation by cannabinoids of CB1 , CBe , TRPV1 (and potentially other TRP channels) and PPARs in the vasculature has been observed. A potential role for CB2, GPR55 and 5-HT1 A has also been identified in some studies. Indirectly, activation of prostanoid receptors (TP, IP, EP1 and EP4 ) and the CGRP receptor is involved in the vascular responses to cannabinoids. The majority of this evidence has been obtained through animal research, but recent work has confirmed some of these targets in human arteries. Vascular responses to cannabinoids are enhanced in hypertension and cirrhosis, but are reduced in obesity and diabetes, both due to changes in the target sites of action. Much further work is required to establish the extent of vascular actions of cannabinoids and the application of this research in physiological and pathophysiological situations. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- Christopher Stanley
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, UK
| | | |
Collapse
|
29
|
Wheal AJ, Cipriano M, Fowler CJ, Randall MD, O'Sullivan SE. Cannabidiol improves vasorelaxation in Zucker diabetic fatty rats through cyclooxygenase activation. J Pharmacol Exp Ther 2014; 351:457-66. [PMID: 25212218 DOI: 10.1124/jpet.114.217125] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cannabidiol (CBD) decreases insulitis, inflammation, neuropathic pain, and myocardial dysfunction in preclinical models of diabetes. We recently showed that CBD also improves vasorelaxation in the Zucker diabetic fatty (ZDF) rat, and the objective of the present study was to establish the mechanisms underlying this effect. Femoral arteries from ZDF rats and ZDF lean controls were isolated, mounted on a myograph, and incubated with CBD (10 μM) or vehicle for 2 hours. Subsequent vasorelaxant responses were measured in combination with various interventions. Prostaglandin metabolites were detected using enzyme immunoassay. Direct effects of CBD on cyclooxygenase (COX) enzyme activity were measured by oxygraph assay. CBD enhanced the maximum vasorelaxation to acetylcholine (ACh) in femoral arteries from ZDF lean rats (P < 0.01) and especially ZDF rats (P < 0.0001). In ZDF arteries, this enhancement persisted after cannabinoid receptor (CB) type 1, endothelial CB, or peroxisome proliferator-activated receptor-γ antagonism but was inhibited by CB2 receptor antagonism. CBD also uncovered a vasorelaxant response to a CB2 agonist not previously observed. The CBD-enhanced ACh response was endothelium-, nitric oxide-, and hydrogen peroxide-independent. It was, however, COX-1/2- and superoxide dismutase-dependent, and CBD enhanced the activity of both purified COX-1 and COX-2. The CBD-enhanced ACh response in the arteries was inhibited by a prostanoid EP4 receptor antagonist. Prostaglandin E2 metabolite levels were below the limits of detection, but 6-keto prostaglandin F1 α was decreased after CBD incubation. These data show that CBD exposure enhances the ability of arteries to relax via enhanced production of vasodilator COX-1/2-derived products acting at EP4 receptors.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Cannabidiol/pharmacology
- Cyclooxygenase 1/metabolism
- Cyclooxygenase 2/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Dinoprostone/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Femoral Artery/drug effects
- Femoral Artery/metabolism
- Hydrogen Peroxide/metabolism
- Male
- Nitric Oxide/metabolism
- PPAR gamma/antagonists & inhibitors
- PPAR gamma/metabolism
- Rats
- Rats, Zucker
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Superoxide Dismutase/metabolism
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Amanda J Wheal
- Pharmacology Research Group, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom (A.J.W., M.D.R.); School of Medicine, University of Nottingham Medical School, Royal Derby Hospital, Derby, United Kingdom (S.E.O.); and Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden (M.C., C.J.F.)
| | - Mariateresa Cipriano
- Pharmacology Research Group, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom (A.J.W., M.D.R.); School of Medicine, University of Nottingham Medical School, Royal Derby Hospital, Derby, United Kingdom (S.E.O.); and Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden (M.C., C.J.F.)
| | - Christopher J Fowler
- Pharmacology Research Group, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom (A.J.W., M.D.R.); School of Medicine, University of Nottingham Medical School, Royal Derby Hospital, Derby, United Kingdom (S.E.O.); and Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden (M.C., C.J.F.)
| | - Michael D Randall
- Pharmacology Research Group, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom (A.J.W., M.D.R.); School of Medicine, University of Nottingham Medical School, Royal Derby Hospital, Derby, United Kingdom (S.E.O.); and Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden (M.C., C.J.F.)
| | - Saoirse Elizabeth O'Sullivan
- Pharmacology Research Group, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom (A.J.W., M.D.R.); School of Medicine, University of Nottingham Medical School, Royal Derby Hospital, Derby, United Kingdom (S.E.O.); and Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden (M.C., C.J.F.)
| |
Collapse
|
30
|
Cyclooxygenase metabolism mediates vasorelaxation to 2-arachidonoylglycerol (2-AG) in human mesenteric arteries. Pharmacol Res 2014; 81:74-82. [PMID: 24548820 PMCID: PMC3992009 DOI: 10.1016/j.phrs.2014.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 01/19/2014] [Accepted: 02/03/2014] [Indexed: 01/04/2023]
Abstract
Objective The vasorelaxant effect of 2-arachidonoylglycerol (2-AG) has been well characterised in animals. 2-AG is present in human vascular cells and is up-regulated in cardiovascular pathophysiology. However, the acute vascular actions of 2-AG have not been explored in humans. Approach Mesenteric arteries were obtained from patients receiving colorectal surgery and mounted on a myograph. Arteries were contracted and 2-AG concentration–response curves were carried out. Mechanisms of action were characterised pharmacologically. Post hoc analysis was carried out to assess the effects of cardiovascular disease/risk factors on 2-AG responses. Results 2-AG caused vasorelaxation of human mesenteric arteries, independent of cannabinoid receptor or transient receptor potential vanilloid-1 activation, the endothelium, nitric oxide or metabolism via monoacyglycerol lipase or fatty acid amide hydrolase. 2-AG-induced vasorelaxation was reduced in the presence of indomethacin and flurbiprofen, suggesting a role for cyclooxygenase metabolism 2-AG. Responses to 2-AG were also reduced in the presence of Cay10441, L-161982 and potentiated in the presence of AH6809, suggesting that metabolism of 2-AG produces both vasorelaxant and vasoconstrictor prostanoids. Finally, 2-AG-induced vasorelaxation was dependent on potassium efflux and the presence of extracellular calcium. Conclusions We have shown for the first time that 2-AG causes vasorelaxation of human mesenteric arteries. Vasorelaxation is dependent on COX metabolism, activation of prostanoid receptors (EP4 & IP) and ion channel modulation. 2-AG responses are blunted in patients with cardiovascular risk factors.
Collapse
|
31
|
Denniff M, Turrell HE, Vanezis A, Rodrigo GC. The time-of-day variation in vascular smooth muscle contractility depends on a nitric oxide signalling pathway. J Mol Cell Cardiol 2014; 66:133-40. [DOI: 10.1016/j.yjmcc.2013.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 11/26/2022]
|
32
|
Stanley CP, Wheal AJ, Randall MD, O'Sullivan SE. Cannabinoids alter endothelial function in the Zucker rat model of type 2 diabetes. Eur J Pharmacol 2013; 720:376-82. [PMID: 24120371 DOI: 10.1016/j.ejphar.2013.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
Abstract
Circulating levels of anandamide are increased in diabetes, and cannabidiol ameliorates a number of pathologies associated with diabetes. The aim of the present study was to examine how exposure to anandamide or cannabidiol might affect endothelial dysfunction associated with Zucker Diabetic Fatty rats. Age-matched Zucker Diabetic Fatty and Zucker lean rats were killed by cervical dislocation and their arteries mounted on a myograph at 37 °C. Arteries were incubated for 2h with anandamide, cannabidiol or vehicle, contracted, and cumulative concentration-response curves to acetylcholine were constructed. Anandamide (10 µM, 2h) significantly improved the vasorelaxant responses to acetylcholine in aortae and femoral arteries from Zucker Diabetic Fatty rats but not Zucker lean rats. By contrast, anandamide (1 µM, 2h) significantly blunted acetylcholine-induced vasorelaxation in third-order mesenteric arteries (G3) from Zucker Diabetic Fatty rats. Cannabidiol incubation (10 µM, 2h) improved acetylcholine responses in the arteries of Zucker Diabetic Fatty rats (aorta and femoral) and Zucker lean (aorta, femoral and G3 mesenteric), and this effect was greater in the Zucker Diabetic Fatty rat. These studies suggest that increased circulating endocannabinoids may alter vascular function both positively and negatively in type 2 diabetes, and that part of the beneficial effect of cannabidiol in diabetes may be due to improved endothelium-dependent vasorelaxation.
Collapse
Affiliation(s)
- Christopher P Stanley
- Division of Vascular Medicine, School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK.
| | | | | | | |
Collapse
|
33
|
Stanley CP, Hind WH, O'Sullivan SE. Is the cardiovascular system a therapeutic target for cannabidiol? Br J Clin Pharmacol 2013; 75:313-22. [PMID: 22670794 DOI: 10.1111/j.1365-2125.2012.04351.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cannabidiol (CBD) has beneficial effects in disorders as wide ranging as diabetes, Huntington's disease, cancer and colitis. Accumulating evidence now also suggests that CBD is beneficial in the cardiovascular system. CBD has direct actions on isolated arteries, causing both acute and time-dependent vasorelaxation. In vitro incubation with CBD enhances the vasorelaxant responses in animal models of impaired endothelium-dependent vasorelaxation. CBD protects against the vascular damage caused by a high glucose environment, inflammation or the induction of type 2 diabetes in animal models and reduces the vascular hyperpermeability associated with such environments. A common theme throughout these studies is the anti-inflammatory and anti-oxidant effect of CBD. In the heart, in vivo CBD treatment protects against ischaemia-reperfusion damage and against cardiomyopathy associated with diabetes. Similarly, in a different model of ischaemia-reperfusion, CBD has been shown to reduce infarct size and increase blood flow in animal models of stroke, sensitive to 5HT(1A) receptor antagonism. Although acute or chronic CBD treatment seems to have little effect on haemodynamics, CBD reduces the cardiovascular response to models of stress, applied either systemically or intracranially, inhibited by a 5HT(1A) receptor antagonist. In blood, CBD influences the survival and death of white blood cells, white blood cell migration and platelet aggregation. Taken together, these preclinical data appear to support a positive role for CBD treatment in the heart, and in peripheral and cerebral vasculature. However, further work is required to strengthen this hypothesis, establish mechanisms of action and whether similar responses to CBD would be observed in humans.
Collapse
Affiliation(s)
- Christopher P Stanley
- School of Graduate Entry Medicine & Health, Royal Derby Hospital, University of Nottingham, DE22 3DT, UK
| | | | | |
Collapse
|
34
|
Relaxation of human pulmonary arteries by PPARγ agonists. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:445-53. [PMID: 23483194 PMCID: PMC3622741 DOI: 10.1007/s00210-013-0846-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/28/2013] [Indexed: 12/14/2022]
Abstract
It has been suggested that activation of nuclear peroxisome proliferator-activated receptors γ (PPARγ) may represent a new strategy for the treatment of pulmonary arterial hypertension. It has been demonstrated that PPARγ activation relaxed the isolated mouse pulmonary artery. The aims of the present study were to examine whether and to which extent the two PPARγ agonists rosiglitazone and pioglitazone relax the isolated human pulmonary artery and to investigate the underlying mechanism(s). Isolated human pulmonary arteries were obtained from patients without clinical evidence of pulmonary hypertension during resection of lung carcinoma. Vasodilatory effects of PPARγ agonists were examined on endothelium-intact or endothelium-denuded vessels preconstricted with the thromboxane prostanoid receptor agonist U-46619. Rosiglitazone and pioglitazone (0.01–100 μM) caused a concentration- and/or time-dependent full relaxation of U-46619-preconstricted vessels. The rosiglitazone-induced relaxation was attenuated by the PPARγ antagonist GW9662 1 μM, endothelium denudation, the nitric oxide synthase inhibitor L-NAME 300 μM, the cyclooxygenase inhibitor indomethacin 10 μM, and the KATP channel blocker glibenclamide 10 μM. The prostacyclin IP receptor antagonist RO1138452 1 μM shifted the concentration–response curve for rosiglitazone to the right. The PPARγ agonists pioglitazone and rosiglitazone relax human pulmonary arteries. The rosiglitazone-induced vasorelaxation is partially endothelium-dependent and involves PPARγ receptors, arachidonic acid degradation products, nitric oxide, and KATP channels. Thus, the relaxant effect of PPARγ agonists in human pulmonary arteries may represent a new therapeutic target in pulmonary arterial hypertension.
Collapse
|
35
|
Carroll CB, Zeissler ML, Hanemann CO, Zajicek JP. Δ⁹-tetrahydrocannabinol (Δ⁹-THC) exerts a direct neuroprotective effect in a human cell culture model of Parkinson's disease. Neuropathol Appl Neurobiol 2013; 38:535-47. [PMID: 22236282 DOI: 10.1111/j.1365-2990.2011.01248.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Δ⁹-tetrahydrocannabinol (Δ⁹-THC) is neuroprotective in models of Parkinson's disease (PD). Although CB1 receptors are increased within the basal ganglia of PD patients and animal models, current evidence suggests a role for CB1 receptor-independent mechanisms. Here, we utilized a human neuronal cell culture PD model to further investigate the protective properties of Δ⁹-THC. METHODS Differentiated SH-SY5Y neuroblastoma cells were exposed to PD-relevant toxins: 1-methyl-4-phenylpyridinium (MPP+), lactacystin and paraquat. Changes in CB1 receptor level were determined by quantitative polymerase chain reaction and Western blotting. Cannabinoids and modulatory compounds were co-administered with toxins for 48 h and the effects on cell death, viability, apoptosis and oxidative stress assessed. RESULTS We found CB1 receptor up-regulation in response to MPP+, lactacystin and paraquat and a protective effect of Δ⁹-THC against all three toxins. This neuroprotective effect was not reproduced by the CB1 receptor agonist WIN55,212-2 or blocked by the CB1 antagonist AM251. Furthermore, the antioxidants α-tocopherol and butylhydroxytoluene as well as the antioxidant cannabinoids, nabilone and cannabidiol were unable to elicit the same neuroprotection as Δ⁹-THC. However, the peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist T0070907 dose-dependently blocked the neuroprotective, antioxidant and anti-apoptotic effects of Δ⁹-THC, while the PPARγ agonist pioglitazone resulted in protection from MPP+-induced neurotoxicity. Furthermore, Δ⁹-THC increased PPARγ expression in MPP+-treated SH-SY5Y cells, another indicator of PPARγ activation. CONCLUSIONS We have demonstrated up-regulation of the CB1 receptor in direct response to neuronal injury in a human PD cell culture model, and a direct neuronal protective effect of Δ⁹-THC that may be mediated through PPARγ activation.
Collapse
Affiliation(s)
- C B Carroll
- Department of Clinical Neurobiology, Peninsula College of Medicine and Dentistry, University of Plymouth, Plymouth, UK.
| | | | | | | |
Collapse
|
36
|
O'Sullivan SE. Cannabinoid activation of peroxisome proliferator-activated receptors: an update and review of the physiological relevance. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.73] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Downer EJ, Clifford E, Amu S, Fallon PG, Moynagh PN. The synthetic cannabinoid R(+)WIN55,212-2 augments interferon-β expression via peroxisome proliferator-activated receptor-α. J Biol Chem 2012; 287:25440-53. [PMID: 22654113 DOI: 10.1074/jbc.m112.371757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated that R(+)WIN55,212-2, a synthetic cannabinoid that possesses cannabimimetic properties, acts as a novel regulator of Toll-like receptor 3 (TLR3) signaling to interferon (IFN) regulatory factor 3 (IRF3) activation and IFN-β expression, and this is critical for manifesting its protective effects in a murine multiple sclerosis model. Here we investigated the role of peroxisome proliferator-activated receptor-α (PPARα) in mediating the effects of R(+)WIN55,212-2 on this pathway. Data herein demonstrate that the TLR3 agonist poly(I:C) promotes IFN-β expression and R(+)WIN55,212-2 enhances TLR3-induced IFN-β expression in a stereoselective manner via PPARα. R(+)WIN55,212-2 promotes increased transactivation and expression of PPARα. Using the PPARα antagonist GW6471, we demonstrate that R(+)WIN55,212-2 acts via PPARα to activate JNK, activator protein-1, and positive regulatory domain IV to transcriptionally regulate the IFN-β promoter. Furthermore, GW6471 ameliorated the protective effects of R(+)WIN55,212-2 during the initial phase of experimental autoimmune encephalomyelitis. Overall, these findings define PPARα as an important mediator in manifesting the effects of R(+)WIN55,212-2 on the signaling cascade regulating IFN-β expression. The study adds to our molecular appreciation of potential therapeutic effects of R(+)WIN55,212-2 in multiple sclerosis.
Collapse
Affiliation(s)
- Eric J Downer
- Institute of Immunology, National University of Ireland Maynooth, County Kildare, Ireland
| | | | | | | | | |
Collapse
|
38
|
Romano MR, Lograno MD. Involvement of the peroxisome proliferator-activated receptor (PPAR) alpha in vascular response of endocannabinoids in the bovine ophthalmic artery. Eur J Pharmacol 2012; 683:197-203. [PMID: 22429572 DOI: 10.1016/j.ejphar.2012.02.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/14/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
Endocannabinoids regulate vascular tone in a variety of vascular tissues. This study aimed to investigate the role of peroxisome proliferators-activated receptors (PPARs) in anandamide- and palmitoylethanolamide-induced relaxant responses on the bovine ophthalmic artery and to evaluate the mechanisms involved. The effects of anandamide and palmitoylethanolamide were examined under myographic conditions on arterial rings pharmacologically pre-contracted with 5-HT. Anandamide and palmitoylethanolamide relaxed the ophthalmic artery rings in time- and concentration-dependent manner stimulating the PPAR alpha (PPARα). The vasorelaxation to endocannabinoids was inhibited by PPARα antagonist GW6471 (1μM), but not the PPAR gamma (PPARγ) antagonist GW9662 (1 μM). Anandamide-induced relaxation was attenuate during the first 60 min by AM251, a selective antagonist of cannabinoid CB(1) receptors, and Pertussis toxin, an inhibitor of G(i/o) protein; by the contrast, the palmitoylethanolamide-induced vasorelaxation was unaffected by cannabinoid antagonists and Pertussis toxin. Endothelium removal decreases slightly the potency and efficacy to endocannabinoids. The relaxant effect to anandamide and palmitoylethanolamide was inhibited by L-NMMA (300 μM), an inhibitor of nitric oxide synthase, and iberiotoxin (200 nM), a selective blocker of large conductance Ca²⁺-activated K⁺ (BK(Ca)). These data support the view that anandamide and palmitoylethanolamide relax the ophthalmic artery in a time-dependent manner via the transcription factors PPARα suggesting a function for them in the physiological mechanisms of vascular regulation.
Collapse
Affiliation(s)
- Maria Rosaria Romano
- Department of Pharmacobiology, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | | |
Collapse
|
39
|
Stella N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 2010; 58:1017-30. [PMID: 20468046 DOI: 10.1002/glia.20983] [Citation(s) in RCA: 382] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CB1 and CB2 receptors are activated by a plethora of cannabinoid compounds, be they endogenously-produced, plant-derived or synthetic. These receptors are expressed by microglia, astrocytes and astrocytomas, and their activation regulates these cells' differentiation, functions and viability. Recent studies show that glial cells also express cannabinoid-like receptors, and that their activation regulates different cell functions, but also control cell viability. This review summarizes this evidence, and discusses how selective compounds targeting cannabinoid-like receptors constitute promising therapeutics to manage neuroinflammation and eradicate malignant astrocytomas. Importantly, the selective targeting of cannabinoid-like receptors should provide therapeutic relieve without inducing the typical psychotropic effects and possible addictive properties associated with the use of Delta9-tetrahydrocannabinol, the main psychotropic ingredient produced by the plant Cannabis sativa.
Collapse
Affiliation(s)
- Nephi Stella
- Department of Pharmacology, Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195-7280, USA.
| |
Collapse
|
40
|
El Marroun H, Tiemeier H, Steegers EAP, Roos-Hesselink JW, Jaddoe VWV, Hofman A, Verhulst FC, van den Brink W, Huizink AC. A prospective study on intrauterine cannabis exposure and fetal blood flow. Early Hum Dev 2010; 86:231-6. [PMID: 20451334 DOI: 10.1016/j.earlhumdev.2010.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/30/2010] [Accepted: 03/30/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cannabis is commonly used among pregnant women. It is unclear whether cannabis exposure causes hemodynamic modifications in the fetus, like tobacco does. AIMS This study aims to ascertain fetal blood redistribution due to intrauterine cannabis exposure. METHODS This study was embedded in the Generation R Focus Study, a population-based cohort of parents and children followed from pregnancy onwards. In late pregnancy, fetal hemodynamics was assessed with ultrasound measurements in cannabis-exposed and non-exposed fetuses. Pregnant women reported about substance use during pregnancy. A distinction was made between continued cannabis use (n=9), cannabis use only in early pregnancy (n=14), continued tobacco use (n=85), tobacco use only in early pregnancy (n=92), and no tobacco or cannabis use during pregnancy (n=85). RESULTS Continued cannabis use was associated with an increased pulsatility and resistance index of the uterine artery, while discontinued cannabis use was associated with a decreased pulsatility, and resistance index, as compared to controls. Additionally, continued cannabis exposure resulted in a significantly higher uterine pulsatility index and uterine resistance index compared to tobacco exposure. Continued cannabis use was found to be associated with a smaller aortic diameter, as well. No association between intrauterine cannabis exposure and the fetal cerebral vascular system was found. CONCLUSIONS Our findings suggest that intrauterine cannabis exposure was associated with changes in hemodynamic programming of the vascular system of the fetus in late pregnancy mainly due to tobacco exposure, but intrauterine cannabis exposure did demonstrate a specific effect on the uterine blood flow.
Collapse
|
41
|
O'Sullivan SE, Kendall DA. Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology 2009; 215:611-6. [PMID: 19833407 DOI: 10.1016/j.imbio.2009.09.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/20/2009] [Indexed: 02/07/2023]
Abstract
Cannabinoids act via cell surface G protein-coupled receptors (CB(1) and CB(2)) and the ion channel receptor TRPV1. Evidence has now emerged suggesting that an additional target is the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors. There are three PPAR subtypes alpha, delta (also known as beta) and gamma, which regulate cell differentiation, metabolism and immune function. The major endocannabinoids, anandamide and 2-arachidonoylglycerol, and ajulemic acid, a structural analogue of the phytocannabinoid Delta(9)-tetrahydrocannabinol (THC), have anti-inflammatory properties mediated by PPARgamma. Other cannabinoids which activate PPARgamma include N-arachidonoyl-dopamine, THC, cannabidiol, HU210, WIN55212-2 and CP55940. The endogenous acylethanolamines, oleoylethanolamide and palmitoylethanolamide regulate feeding and body weight, stimulate fat utilization and have neuroprotective effects mediated through PPARalpha. Other endocannabinoids that activate PPARalpha include anandamide, virodhamine and noladin ether. There is, as yet, little direct evidence for interactions of cannabinoids with PPARdelta. There is a convergence of effects of cannabinoids, acting via cell surface and nuclear receptors, on immune cell function which provides promise for the targeted therapy of a variety of immune, particularly neuroinflammatory, diseases.
Collapse
Affiliation(s)
- S E O'Sullivan
- School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham, UK.
| | | |
Collapse
|
42
|
Time-dependent vascular actions of cannabidiol in the rat aorta. Eur J Pharmacol 2009; 612:61-8. [DOI: 10.1016/j.ejphar.2009.03.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 02/18/2009] [Accepted: 03/03/2009] [Indexed: 11/19/2022]
|
43
|
Time-dependent vascular effects of Endocannabinoids mediated by peroxisome proliferator-activated receptor gamma (PPARγ). PPAR Res 2009; 2009:425289. [PMID: 19421417 PMCID: PMC2676321 DOI: 10.1155/2009/425289] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/05/2009] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to examine whether endocannabinoids cause PPARγ-mediated vascular actions. Functional vascular studies were carried out in rat aortae. Anandamide and N-arachidonoyl-dopamine (NADA), but not palmitoylethanolamide, caused significant vasorelaxation over time (2 hours). Vasorelaxation to NADA, but not anandamide, was inhibited by CB1 receptor antagonism (AM251, 1 μM), and vasorelaxation to both anandamide and NADA was inhibited by PPARγ antagonism (GW9662, 1 μM). Pharmacological inhibition of
de novo protein synthesis, nitric oxide synthase, and super oxide dismutase abolished the responses to anandamide and NADA. Removal of the endothelium partly inhibited the vasorelaxant responses to anandamide and NADA. Inhibition of fatty acid amide hydrolase (URB597, 1 μM) inhibited the vasorelaxant response to NADA, but not anandamide. These data indicate that endocannabinoids cause time-dependent, PPARγ-mediated vasorelaxation. Activation of PPARγ in the vasculature may represent a novel mechanism by which endocannabinoids are involved in vascular regulation.
Collapse
|
44
|
Kreitzer FR, Stella N. The therapeutic potential of novel cannabinoid receptors. Pharmacol Ther 2009; 122:83-96. [PMID: 19248809 DOI: 10.1016/j.pharmthera.2009.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 12/20/2022]
Abstract
Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.
Collapse
Affiliation(s)
- Faith R Kreitzer
- Department of Pharmacology, University of Washington, Seattle, WA 98115-7280, USA
| | | |
Collapse
|
45
|
Smirnov MS, Kiyatkin EA. Behavioral and temperature effects of delta 9-tetrahydrocannabinol in human-relevant doses in rats. Brain Res 2008; 1228:145-60. [PMID: 18619424 DOI: 10.1016/j.brainres.2008.06.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 06/19/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
Abstract
Marijuana smoking dramatically alters responses to various environmental stimuli. To study this phenomenon, we assessed how delta-9-tetrahydrocannabinol (THC), a primary psychoactive ingredient of marijuana, affects locomotor and brain (nucleus accumbens or NAcc), muscle and skin temperature responses to natural arousing stimuli (one-minute tail-pinch and one-minute social interaction with another male rat) and iv cocaine (1 mg/kg) in male rats. THC was administered at three widely varying doses (0.5, 2.0 and 8.0 mg/kg, ip), and the drug-induced changes in basal values and responses to stimuli were compared to those occurring following ip vehicle injections (control). Each stimulus in control conditions caused acute locomotor activation, a prolonged increase in brain and muscle temperature (0.6-1.0 degrees C for 20-50 min) and transient decrease in skin temperature (-0.6 degrees C for 1-3 min). While THC at any dose had a tendency to decrease spontaneous locomotion as well as brain and muscle temperatures, true hypothermia and hypoactivity as well as clearly diminished locomotor and temperature responses to all stimuli were only seen following the largest dose. In this case, temperature decreases in the NAcc were stronger than in the muscle, suggesting metabolic brain inhibition as the primary cause of hypoactivity, hypothermia and hyporesponsiveness. While weaker in strength and without associated vasodilatation, this response pattern is mimicked by general anesthetics, questioning to what extent the hypothermic action of THC is specific (i.e., mediated via endogenous cannabinoid receptors) or non-specific, reflecting drug interaction with membrane lipids or other receptors. In contrast, weaker behavioral and temperature effects of THC at lower doses resemble those of diazepam, whose locomotion- and temperature-decreasing effects are evident only in activated conditions, when rats are moving and basal temperatures are elevated.
Collapse
Affiliation(s)
- Michael S Smirnov
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS Baltimore, Maryland 21224, USA
| | | |
Collapse
|
46
|
Lambert DM, Muccioli GG. Endocannabinoids and related N-acylethanolamines in the control of appetite and energy metabolism: emergence of new molecular players. Curr Opin Clin Nutr Metab Care 2007; 10:735-44. [PMID: 18089956 DOI: 10.1097/mco.0b013e3282f00061] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Endocannabinoids (anandamide and 2-arachidonoylgycerol) and related N-acylethanolamines (N-oleoylethanolamine) exhibit opposite effects in the control of appetite. The purpose of this review is to highlight the similarities and differences of three major lipid-signaling molecules by focusing on their mode of action and the proteins involved in the control of food intake and energy metabolism. RECENT FINDINGS Anandamide and 2-arachidonoylglycerol promote food intake and are the main endogenous ligands of the cannabinoid receptors. One of them, the cannabinoid receptor 1, is responsible for the control of food intake and energy expenditure both at a central and a peripheral level, affecting numerous anorexigenic and orexigenic mediators (leptin, neuropeptide Y, ghrelin, orexin, endogenous opioids, corticotropin-releasing hormone, alpha-melanocyte stimulating hormone, cocaine and amphetamine-related transcript). In the gut, N-oleoylethanolamine plays an opposite role in food regulation, by interacting with two molecular targets different from the cannabinoid receptors: the nuclear receptor peroxisome proliferator-activated receptor alpha and a G-protein coupled receptor GPR119. SUMMARY Recent findings on the molecular mechanisms underlying the promotion of food intake or, in contrast, the suppression of food intake by anandamide and N-oleoylethanolamine, are summarized. Potential strategies for treating overweight, metabolic syndrome, and type II diabetes are briefly outlined.
Collapse
Affiliation(s)
- Didier M Lambert
- Medicinal Chemistry and Radiopharmacy Unit, School of Pharmacy, Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium.
| | | |
Collapse
|
47
|
O'Sullivan SE. Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors. Br J Pharmacol 2007; 152:576-82. [PMID: 17704824 PMCID: PMC2190029 DOI: 10.1038/sj.bjp.0707423] [Citation(s) in RCA: 388] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cannabinoids act at two classical cannabinoid receptors (CB1 and CB2), a 7TM orphan receptor and the transmitter-gated channel transient receptor potential vanilloid type-1 receptor. Recent evidence also points to cannabinoids acting at members of the nuclear receptor family, peroxisome proliferator-activated receptors (PPARs, with three subtypes alpha, beta (delta) and gamma), which regulate cell differentiation and lipid metabolism. Much evidence now suggests that endocannabinoids are natural activators of PPAR alpha. Oleoylethanolamide regulates feeding and body weight, stimulates fat utilization and has neuroprotective effects mediated through activation of PPAR alpha. Similarly, palmitoylethanolamide regulates feeding and lipid metabolism and has anti-inflammatory properties mediated by PPAR alpha. Other endocannabinoids that activate PPAR alpha include anandamide, virodhamine and noladin. Some (but not all) endocannabinoids also activate PPAR gamma; anandamide and 2-arachidonoylglycerol have anti-inflammatory properties mediated by PPAR gamma. Similarly, ajulemic acid, a structural analogue of a metabolite of Delta(9)-tetrahydrocannabinol (THC), causes anti-inflammatory effects in vivo through PPAR gamma. THC also activates PPAR gamma, leading to a time-dependent vasorelaxation in isolated arteries. Other cannabinoids which activate PPAR gamma include N-arachidonoyl-dopamine, HU210, WIN55212-2 and CP55940. In contrast, little research has been carried out on the effects of cannabinoids at PPAR delta. In this newly emerging area, a number of research questions remain unanswered; for example, why do cannabinoids activate some isoforms and not others? How much of the chronic effects of cannabinoids are through activation of nuclear receptors? And importantly, do cannabinoids confer the same neuro- and cardioprotective benefits as other PPAR alpha and PPAR gamma agonists? This review will summarize the published literature implicating cannabinoid-mediated PPAR effects and discuss the implications thereof.
Collapse
Affiliation(s)
- S E O'Sullivan
- School of Biomedical Sciences, University of Notttingham, Queen's Medical Center, Nottingham, UK. saoirse.o'
| |
Collapse
|
48
|
O'Sullivan SE, Randall MD, Gardiner SM. The in Vitro and in Vivo Cardiovascular Effects of Δ9-Tetrahydrocannabinol in Rats Made Hypertensive by Chronic Inhibition of Nitric-Oxide Synthase. J Pharmacol Exp Ther 2007; 321:663-72. [PMID: 17284670 DOI: 10.1124/jpet.106.116566] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence suggests that Delta9-tetrahydrocannabinol (THC) may have antihypertensive effects and that the vasodilator effect of endocannabinoids is enhanced in rats made hypertensive by chronic NO synthase inhibition. Therefore, the aims of the present study were to investigate whether the in vitro and in vivo cardiovascular responses to THC are altered by Nomega-nitro-L-arginine methyl ester (L-NAME) treatment. The vasorelaxant effects of THC were enhanced in small mesenteric arteries from L-NAME-treated rats. This enhanced response was not inhibited by cannabinoid CB1 receptor antagonism [1 microM N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide; AM251]. Pretreating vessels with the transient receptor potential vanilloid receptor receptor agonist capsaicin at 10 microM for 1 h reduced vasorelaxation to THC to a greater extent in L-NAME-treated than control rats. Inhibition of cyclooxygenase with 10 microM indomethacin inhibited THC responses in arteries from L-NAME-treated rats but not from control rats. In conscious, chronically instrumented rats, 1 mg kg-1 i.v. THC caused a pressor effect, with vasoconstriction of the renal and mesenteric vascular beds, and hindquarters vasodilatation. Pretreatment with 3 mg kg-1 i.v. AM251 reduced the pressor and vasoconstrictor effects of THC, abolished the hindquarters vasodilatation, and revealed a bradycardic response. L-NAME-treated rats showed similar pressor and vasoconstrictor responses to THC, but with bradycardia, and reduced hindquarter vasodilatation. These data show that, in vitro, isolated arteries of L-NAME-treated rats show enhanced vasorelaxant responses to THC through an increased sensory nerve component and stimulation of prostanoids. However, in vivo, THC causes a CB1 receptor-mediated pressor effect with hindquarters vasodilatation. There was no evidence of enhanced vasodilator effects of THC in L-NAME-treated animals in vivo.
Collapse
Affiliation(s)
- Saoirse E O'Sullivan
- School of Biomedical Sciences, E Floor, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK. saoirse.o'
| | | | | |
Collapse
|