1
|
Colucci R, Fornai M, Antonioli L, Segnani C, Ippolito C, Pellegrini C, Nericcio A, Zizzo MG, Serio R, Blandizzi C, Bernardini N. Role of cyclooxygenase pathways in bowel fibrotic remodelling in a murine model of experimental colitis. J Pharm Pharmacol 2023; 75:264-275. [PMID: 36477570 DOI: 10.1093/jpp/rgac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Gut fibrosis occurs under chronic inflammation. This study examined the effects of different cyclooxygenase (COX) inhibitors on fibrosis in the inflamed colon. METHODS Colitis was induced by 2,4-dinitrobenzenesulfonic acid (DNBS) in albino male Sprague-Dawley rats. After 6, 12 and 18 days, macroscopic and microscopic damage, collagen and elastic fibre content were examined. At day 6, pro-fibrotic factors (collagen I and III, hydroxyproline, fibronectin, matrix metalloproteinase-2 and -9), transforming growth factor-beta (TGF-β) signalling [TGF-β, Ras homolog gene family member A (RhoA), phosphorylated small mother against decapentaplegic (pSMAD)-2 and -6] and peristalsis were assessed, and the effects of indomethacin, SC-560 or celecoxib were tested. KEY FINDINGS Six days after DNBS administration, significant histopathological signs of fibrotic remodelling were observed in rats. At day 6, pro-fibrotic factors were up-regulated and colonic peristalsis was altered. COX inhibitors reversed the histochemical, molecular and functional changes in the fibrotic colon. COX inhibition reduced TGF-β expression, SMAD2 phosphorylation and RhoA, and increased SMAD6 expression. CONCLUSIONS Colonic fibrosis is associated with altered bowel motility and induction of profibrotic factors driven by TGF-β signalling. COX-1 and COX-2 inhibition counteracts this fibrotic remodelling by the modulation of TGF-β/SMAD signalling, mainly via SMAD6 induction and reduction in SMAD2 phosphorylation.
Collapse
Affiliation(s)
- Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Anna Nericcio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Acute visceral pain relief mediated by A3AR agonists in rats: involvement of N-type voltage-gated calcium channels. Pain 2021; 161:2179-2190. [PMID: 32379223 DOI: 10.1097/j.pain.0000000000001905] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pharmacological tools for chronic visceral pain management are still limited and inadequate. A3 adenosine receptor (A3AR) agonists are effective in different models of persistent pain. Recently, their activity has been related to the block of N-type voltage-gated Ca2+ channels (Cav2.2) in dorsal root ganglia (DRG) neurons. The present work aimed to evaluate the efficacy of A3AR agonists in reducing postinflammatory visceral hypersensitivity in both male and female rats. Colitis was induced by the intracolonic instillation of 2,4-dinitrobenzenesulfonic acid (DNBS; 30 mg in 0.25 mL 50% EtOH). Visceral hypersensitivity was assessed by measuring the visceromotor response and the abdominal withdrawal reflex to colorectal distension. The effects of A3AR agonists (MRS5980 and Cl-IB-MECA) were evaluated over time after DNBS injection and compared to that of the selective Cav2.2 blocker PD173212, and the clinically used drug linaclotide. A3AR agonists significantly reduced DNBS-evoked visceral pain both in the postinflammatory (14 and 21 days after DNBS injection) and persistence (28 and 35 days after DNBS) phases. Efficacy was comparable to effects induced by linaclotide. PD173212 fully reduced abdominal hypersensitivity to control values, highlighting the role of Cav2.2. The effects of MRS5980 and Cl-IB-MECA were completely abolished by the selective A3AR antagonist MRS1523. Furthermore, patch-clamp recordings showed that A3AR agonists inhibited Cav2.2 in dorsal root ganglia neurons isolated from either control or DNBS-treated rats. The effect on Ca2+ current was PD173212-sensitive and prevented by MRS1523. A3AR agonists are effective in relieving visceral hypersensitivity induced by DNBS, suggesting a potential therapeutic role against abdominal pain.
Collapse
|
3
|
Parisio C, Lucarini E, Micheli L, Toti A, Bellumori M, Cecchi L, Calosi L, Bani D, Di Cesare Mannelli L, Mulinacci N, Ghelardini C. Extra virgin olive oil and related by-products (Olea europaea L.) as natural sources of phenolic compounds for abdominal pain relief in gastrointestinal disorders in rats. Food Funct 2020; 11:10423-10435. [PMID: 33237043 DOI: 10.1039/d0fo02293d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Management of abdominal pain, a common symptom of IBDs and IBS, is still a clinical problem. Extra virgin olive oil (EVOO), a main component of the Mediterranean diet, shows positive effects on chronic inflammation in IBDs. In this study, the effect of the oral administration of EVOO (3 mL) and two olive milling by-products, DPA (300 mg kg-1) and DRF (300 mg kg-1), on preventing the development of abdominal pain in a DNBS-induced colitis model in rats was evaluated. The doses were chosen with the aim of simulating a plausible daily intake in humans. DPA and EVOO treatments significantly reduced the abdominal viscero-motor response to colon-rectal distension at 2 and 3 mL of balloon distension volume, both 7 and 14 days after the DNBS-injection. DRF showed efficacy in the reduction of visceral hypersensitivity only with 3 mL balloon inflation. In awake animals, DPA and DRF reduced pain perception (evaluated as abdominal withdrawal reflex) with all balloon distension volumes, while EVOO was effective only with higher distension volumes. Fourteen days after the DNBS-injection, all samples reduced the macroscopic intestinal damage (quantified as the macroscopic damage score) also showing, at the microscopic level, a reduction of the inflammatory infiltrate (quantified by hematoxylin and eosin analysis), fibrosis (highlighted by picrosirius red staining), the increase in mast cells and their degranulation (analyzed by triptase immunohistochemistry). This is the first report on the promotion of abdominal pain relief in a rat model obtained administering EVOO and two derived by-products. Our results suggest a protective role of phenol-rich EVOO and milling by-products, which may be proposed as food ingredients for novel functional foods.
Collapse
Affiliation(s)
- Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Metin M, Altun A, Köylüoğlu G. The effect of probiotics on ıntestinal motility in an experimental short bowel model. Acta Cir Bras 2020; 35:e202000804. [PMID: 32901681 PMCID: PMC7478466 DOI: 10.1590/s0102-865020200080000004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To investigate the effect of probiotics on spontaneous contractions of smooth muscle isolated from jejunum and ileum of rat model. METHODS Four rat groups were created (n=8, in each) including control (Group 1), control+probiotic (Group 2), short bowel (Group 3), and short bowel+probiotic (Group 4). Groups 1 and 2 underwent sham operation, Groups 3 and 4 underwent massive bowel resection. Bifidobacterium Lactis was administered in Groups 2 and 4 daily (P.O.) for three weeks. On postoperative week 3, rats were sacrificed, and jejunum and ileum smooth muscle were isolated for organ bath. Muscle contraction changes were analyzed before and after addition of antagonists. RESULTS Short bowel group exhibited increased amplitude and frequency of spontaneous contractions. The addition of probiotics significantly decreased enhanced amplitude and frequency of bowel contraction in short bowel group and returned to control values. L-NNA increased amplitude and frequency of contractions in all groups. While indomethacin and nimesulide increased the amplitude in all groups, the frequency was only increased in jejunum. Hexamethonium and tetrodotoxin did not change the contraction characteristics in all groups. CONCLUSION We suggest that early use of probiotics may significantly regulate bowel motility, and accordingly improve absorption of nutrients in short bowel syndrome.
Collapse
Affiliation(s)
- Mehmet Metin
- Cumhuriyet University, Turkey; Hitit University Erol Olçok Training and Research Hospital, Turkey
| | | | | |
Collapse
|
5
|
Parisio C, Lucarini E, Micheli L, Toti A, Khatib M, Mulinacci N, Calosi L, Bani D, Di Cesare Mannelli L, Ghelardini C. Pomegranate Mesocarp against Colitis-Induced Visceral Pain in Rats: Effects of a Decoction and Its Fractions. Int J Mol Sci 2020; 21:E4304. [PMID: 32560291 PMCID: PMC7353021 DOI: 10.3390/ijms21124304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The management of chronic visceral pain related to Inflammatory Bowel Diseases or Irritable Bowel Syndrome is still a clinical problem and new therapeutic strategies continue to be investigated. In the present study, the efficacy of a pomegranate decoction and of its polysaccharide and ellagitannin components in preventing the development of colitis-induced abdominal pain in rats was evaluated. After colitis induction by 2,4-dinitrobenzenesulfonic acid (DNBS), the pomegranate decoction (300 mg kg-1), polysaccharides (300 mg kg-1), and ellagitannins (45 mg kg-1) were orally administered for 14 days. Repeated treatment with decoction reduced visceral hypersensitivity in the colitic animals both at 7 and 14 days. Similar efficacy was shown by polysaccharides, but with lower potency. Ellagitannins administered at dose equivalent to decoction content showed higher efficacy in reducing the development of visceral pain. Macroscopic and microscopic evaluations performed on the colon 14 days after the damage showed that all three preparations reduced the overall amount of mast cells, the number of degranulated mast cells, and the density of collagen fibers in the mucosal stroma. Although ellagitannins seem to be responsible for most of the beneficial effects of pomegranate on DNBS-induced colitis, the polysaccharides support and enhance its effect. Therefore, pomegranate mesocarp preparations could represent a complementary approach to conventional therapies for promoting abdominal pain relief.
Collapse
Affiliation(s)
- Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Mohamad Khatib
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (M.K.); (N.M.)
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (M.K.); (N.M.)
| | - Laura Calosi
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (L.C.); (D.B.)
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (L.C.); (D.B.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| |
Collapse
|
6
|
Parisio C, Lucarini E, Micheli L, Toti A, Di Cesare Mannelli L, Antonini G, Panizzi E, Maidecchi A, Giovagnoni E, Lucci J, Ghelardini C. Researching New Therapeutic Approaches for Abdominal Visceral Pain Treatment: Preclinical Effects of an Assembled System of Molecules of Vegetal Origin. Nutrients 2019; 12:nu12010022. [PMID: 31861862 PMCID: PMC7019336 DOI: 10.3390/nu12010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal pain is a frequent symptom of irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBDs). Although the knowledge of these pathologies is progressing, new therapeutic strategies continue to be investigated. In the present study, the effect of a system of molecules of natural origin (a medical device according to EU Directive 93/42/EC, engineered starting from Boswellia serrata resins, Aloe vera polysaccharides and Matricaria chamomilla and Melissa officinalis polyphenols) was evaluated against the intestinal damage and visceral pain development in DNBS-induced colitis model in rats. The system (250 and 500 mg kg−1) was orally administered once daily, starting three days before the injection of 2,4-dinitrobenzenesulfonic acid (DNBS) and for 14 days thereafter. The viscero-motor response (VMR) to colon-rectal balloon distension (CRD) was used as measure of visceral sensitivity. The product significantly reduced the VMR of DNBS-treated animals. Its effect on pain threshold was better than dexamethasone and mesalazine, and not lower than amitriptyline and otilonium bromide. At microscopic and macroscopic level, the tested system was more effective in protecting the intestinal mucosa than dexamethasone and mesalazine, promoting the healing of tissue lesions. Therefore, we suggest that the described system of molecules of natural origin may represent a therapeutic option to manage painful bowel diseases.
Collapse
Affiliation(s)
- Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
- Correspondence: ; Tel.: +39-055-275-8395
| | - Giulia Antonini
- Aboca SpA Società Agricola, Innovation & Medical Science Division, Loc. Aboca 20, 52037 Sansepolcro (AR), Italy; (G.A.); (E.P.); (A.M.); (E.G.); (J.L.)
| | - Elena Panizzi
- Aboca SpA Società Agricola, Innovation & Medical Science Division, Loc. Aboca 20, 52037 Sansepolcro (AR), Italy; (G.A.); (E.P.); (A.M.); (E.G.); (J.L.)
- Natural Bio-Medicine SpA, Loc. Aboca 20, 52037 Sansepolcro (AR), Italy
| | - Anna Maidecchi
- Aboca SpA Società Agricola, Innovation & Medical Science Division, Loc. Aboca 20, 52037 Sansepolcro (AR), Italy; (G.A.); (E.P.); (A.M.); (E.G.); (J.L.)
| | - Emiliano Giovagnoni
- Aboca SpA Società Agricola, Innovation & Medical Science Division, Loc. Aboca 20, 52037 Sansepolcro (AR), Italy; (G.A.); (E.P.); (A.M.); (E.G.); (J.L.)
| | - Jacopo Lucci
- Aboca SpA Società Agricola, Innovation & Medical Science Division, Loc. Aboca 20, 52037 Sansepolcro (AR), Italy; (G.A.); (E.P.); (A.M.); (E.G.); (J.L.)
- Natural Bio-Medicine SpA, Loc. Aboca 20, 52037 Sansepolcro (AR), Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| |
Collapse
|
7
|
Pellegrini C, Antonioli L, Colucci R, Tirotta E, Gentile D, Ippolito C, Segnani C, Levandis G, Cerri S, Blandini F, Barocelli E, Ballabeni V, Bernardini N, Blandizzi C, Fornai M. Effects of L-DOPA/benserazide co-treatment on colonic excitatory cholinergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. Neuropharmacology 2017; 123:22-33. [DOI: 10.1016/j.neuropharm.2017.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/23/2023]
|
8
|
Safdari B, Sia T, Wattchow D, Smid S. Effects of pro-inflammatory cytokines, lipopolysaccharide and COX-2 mediators on human colonic neuromuscular function and epithelial permeability. Cytokine 2016; 83:231-238. [DOI: 10.1016/j.cyto.2016.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 01/08/2023]
|
9
|
Fornai M, Colucci R, Antonioli L, Ippolito C, Segnani C, Buccianti P, Marioni A, Chiarugi M, Villanacci V, Bassotti G, Blandizzi C, Bernardini N. Role of cyclooxygenase isoforms in the altered excitatory motor pathways of human colon with diverticular disease. Br J Pharmacol 2016; 171:3728-40. [PMID: 24758697 DOI: 10.1111/bph.12733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/14/2014] [Accepted: 04/10/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The COX isoforms (COX-1, COX-2) regulate human gut motility, although their role under pathological conditions remains unclear. This study examines the effects of COX inhibitors on excitatory motility in colonic tissue from patients with diverticular disease (DD). EXPERIMENTAL APPROACH Longitudinal muscle preparations, from patients with DD or uncomplicated cancer (controls), were set up in organ baths and connected to isotonic transducers. Indomethacin (COX-1/COX-2 inhibitor), SC-560 (COX-1 inhibitor) or DFU (COX-2 inhibitor) were assayed on electrically evoked, neurogenic, cholinergic and tachykininergic contractions, or carbachol- and substance P (SP)-induced myogenic contractions. Distribution and expression of COX isoforms in the neuromuscular compartment were assessed by RT-PCR, Western blot and immunohistochemical analysis. KEY RESULTS In control preparations, neurogenic cholinergic contractions were enhanced by COX inhibitors, whereas tachykininergic responses were blunted. Carbachol-evoked contractions were increased by indomethacin or SC-560, but not DFU, whereas all inhibitors reduced SP-induced motor responses. In preparations from DD patients, COX inhibitors did not affect electrically evoked cholinergic contractions. Both indomethacin and DFU, but not SC-560, decreased tachykininergic responses. COX inhibitors did not modify carbachol-evoked motor responses, whereas they counteracted SP-induced contractions. COX-1 expression was decreased in myenteric neurons, whereas COX-2 was enhanced in glial cells and smooth muscle. CONCLUSIONS AND IMPLICATIONS In control colon, COX-1 and COX-2 down-regulate cholinergic motility, whereas both isoforms enhance tachykininergic motor activity. In the presence of DD, there is a loss of modulation by both COX isoforms on the cholinergic system, whereas COX-2 displays an enhanced facilitatory control on tachykininergic contractile activity.
Collapse
Affiliation(s)
- M Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Segnani C, Ippolito C, Antonioli L, Pellegrini C, Blandizzi C, Dolfi A, Bernardini N. Histochemical Detection of Collagen Fibers by Sirius Red/Fast Green Is More Sensitive than van Gieson or Sirius Red Alone in Normal and Inflamed Rat Colon. PLoS One 2015; 10:e0144630. [PMID: 26673752 PMCID: PMC4682672 DOI: 10.1371/journal.pone.0144630] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/21/2015] [Indexed: 12/14/2022] Open
Abstract
Collagen detection in histological sections and its quantitative estimation by computer-aided image analysis represent important procedures to assess tissue localization and distribution of connective fibers. Different histochemical approaches have been proposed to detect and quantify collagen deposition in paraffin slices with different degrees of satisfaction. The present study was performed to compare the qualitative and quantitative efficiency of three histochemical methods available for collagen staining in paraffin sections of colon. van Gieson, Sirius Red and Sirius Red/Fast Green stainings were carried out for collagen detection and quantitative estimation by morphometric image analysis in colonic specimens from normal rats or animals with 2,4-dinitrobenzenesulfonic acid (DNBS) induced colitis. Haematoxylin/eosin staining was carried out to assess tissue morphology and histopathological lesions. Among the three investigated methods, Sirius Red/Fast Green staining allowed to best highlight well-defined red-stained collagen fibers and to obtain the highest quantitative results by morphometric image analysis in both normal and inflamed colon. Collagen fibers, which stood out against the green-stained non-collagen components, could be clearly appreciated, even in their thinner networks, within all layers of normal or inflamed colonic wall. The present study provides evidence that, as compared with Sirius Red alone or van Gieson staining, the Sirius Red/Fast Green method is the most sensitive, in terms of both qualitative and quantitative evaluation of collagen fibers, in paraffin sections of both normal and inflamed colon.
Collapse
Affiliation(s)
- Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Amelio Dolfi
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
11
|
Ippolito C, Segnani C, Errede M, Virgintino D, Colucci R, Fornai M, Antonioli L, Blandizzi C, Dolfi A, Bernardini N. An integrated assessment of histopathological changes of the enteric neuromuscular compartment in experimental colitis. J Cell Mol Med 2014; 19:485-500. [PMID: 25521239 PMCID: PMC4407593 DOI: 10.1111/jcmm.12428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/14/2014] [Indexed: 12/19/2022] Open
Abstract
Bowel inflammatory fibrosis has been largely investigated, but an integrated assessment of remodelling in inflamed colon is lacking. This study evaluated tissue and cellular changes occurring in colonic wall upon induction of colitis, with a focus on neuromuscular compartment. Colitis was elicited in rats by 2,4-dinitrobenzenesulfonic acid (DNBS). After 6 and 21 days, the following parameters were assessed on paraffin sections from colonic samples: tissue injury and inflammatory infiltration by histology; collagen and elastic fibres by histochemistry; HuC/D, glial fibrillar acidic protein (GFAP), proliferating cell nuclear antigen (PCNA), nestin, substance P (SP), von Willebrand factor, c-Kit and transmembrane 16A/Anoctamin1 (TMEM16A/ANO1) by immunohistochemistry. TMEM16A/ANO1 was also examined in isolated colonic smooth muscle cells (ICSMCs). On day 6, inflammatory alterations and fibrosis were present in DNBS-treated rats; colonic wall thickening and fibrotic remodelling were evident on day 21. Colitis was associated with both an increase in collagen fibres and a decrease in elastic fibres. Moreover, the neuromuscular compartment of inflamed colon displayed a significant decrease in neuron density and increase in GFAP/PCNA-positive glia of myenteric ganglia, enhanced expression of neural SP, blood vessel remodelling, reduced c-Kit- and TMEM16A/ANO1-positive interstitial cells of Cajal (ICCs), as well as an increase in TMEM16A/ANO1 expression in muscle tissues and ICSMCs. The present findings provide an integrated view of the inflammatory and fibrotic processes occurring in the colonic neuromuscular compartment of rats with DNBS-induced colitis. These morphological alterations may represent a suitable basis for understanding early pathophysiological events related to bowel inflammatory fibrosis.
Collapse
Affiliation(s)
- Chiara Ippolito
- Unit of Histology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
EP2 and EP4 receptors mediate PGE2 induced relaxation in murine colonic circular muscle: Pharmacological characterization. Pharmacol Res 2014; 90:76-86. [DOI: 10.1016/j.phrs.2014.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 01/27/2023]
|
13
|
Iizuka Y, Kuwahara A, Karaki SI. Role of PGE2 in the colonic motility: PGE2 generates and enhances spontaneous contractions of longitudinal smooth muscle in the rat colon. J Physiol Sci 2014; 64:85-96. [PMID: 24170253 PMCID: PMC10717406 DOI: 10.1007/s12576-013-0295-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 10/01/2013] [Indexed: 12/18/2022]
Abstract
The aim of this study was to determine which PGE2 receptors (EP1-4 receptors) influence colonic motility. Mucosa-free longitudinal smooth muscle strips of the rat middle colon spontaneously induced frequent phasic contractions (giant contractions, GCs) in vitro, and the GCs were almost completely abolished by a cyclooxygenase inhibitor, piroxicam, and by an EP3 receptor antagonist, ONO-AE3-240, but enhanced by tetrodotoxin (TTX). In the presence of piroxicam, exogenous PGE2, both ONO-AE-248 (EP3 agonist), and ONO-DI-004 (EP1 agonist) induced GC-like contractions, and increased the frequency and amplitude. These effects of EP receptor agonists were insensitive to TTX and ω-conotoxins. In immunohistochemistry, the EP1 and EP3 receptors were expressed in the longitudinal smooth muscle cells. These results suggest that the endogenous PGE2 spontaneously generates and enhances the frequent phasic contractions directly activating the EP1 and EP3 receptors expressed on longitudinal smooth muscle cells in the rat middle colon.
Collapse
MESH Headings
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Colon/drug effects
- Colon/metabolism
- Cyclooxygenase Inhibitors/pharmacology
- Dinoprostone/analogs & derivatives
- Dinoprostone/metabolism
- Dinoprostone/pharmacology
- Dose-Response Relationship, Drug
- Gastrointestinal Motility/drug effects
- In Vitro Techniques
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Piroxicam/pharmacology
- Rats
- Rats, Wistar
- Receptors, Prostaglandin E, EP1 Subtype/agonists
- Receptors, Prostaglandin E, EP1 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/agonists
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Yumiko Iizuka
- Laboratory of Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences/Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
- Department of Nutrition, National Hospital Organization Shizuoka Medical Center, 762-1 Nagasawa, Shimizu-cho, Sunto-gun, Shizuoka 411-0915 Japan
| | - Atsukazu Kuwahara
- Laboratory of Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences/Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Shin-Ichiro Karaki
- Laboratory of Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences/Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| |
Collapse
|
14
|
Colucci R, Antonioli L, Bernardini N, Ippolito C, Segnani C, Awwad O, Tuccori M, Blandizzi C, Scarpignato C, Fornai M. Nonsteroidal Anti-Inflammatory Drug-Activated Gene-1 Plays a Role in the Impairing Effects of Cyclooxygenase Inhibitors on Gastric Ulcer Healing. J Pharmacol Exp Ther 2012; 342:140-9. [DOI: 10.1124/jpet.111.190116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Iwanaga K, Okada M, Murata T, Hori M, Ozaki H. Prostaglandin E2 Promotes Wound-Induced Migration of Intestinal Subepithelial Myofibroblasts via EP2, EP3, and EP4 Prostanoid Receptor Activation. J Pharmacol Exp Ther 2011; 340:604-11. [DOI: 10.1124/jpet.111.189845] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
16
|
Fairbrother SE, Smith JE, Borman RA, Cox HM. Characterization of the EP receptor types that mediate longitudinal smooth muscle contraction of human colon, mouse colon and mouse ileum. Neurogastroenterol Motil 2011; 23:782-e336. [PMID: 21605283 DOI: 10.1111/j.1365-2982.2011.01727.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prostaglandin E(2) (PGE(2) ) is an inflammatory mediator implicated in several gastrointestinal pathologies that affect normal intestinal transit. The aim was to establish the contribution of the four EP receptor types (EP(1-4) ), in human colon, that mediate PGE(2) -induced longitudinal smooth muscle contraction. METHODS Changes in isometric muscle tension of human colon, mouse colon and mouse ileum were measured in organ baths in response to receptor-specific agonists and antagonists. In addition, lidocaine was used to block neurogenic activity to investigate whether EP receptors were pre- or post-junctional. KEY RESULTS PGE(2) contracted longitudinal muscle from human and mouse colon and mouse ileum. These contractions were inhibited by the EP(1) receptor antagonist, EP(1) A in human colon, whereas a combination of EP(1) A and the EP(3) antagonist, L798106 inhibited agonist responses in both mouse preparations. The EP(3) agonist, sulprostone also increased muscle tension in both mouse tissues, and these responses were inhibited by lidocaine in the colon but not in the ileum. Although PGE(2) consistently contracted all three muscle preparations, butaprost decreased tension by activating smooth muscle EP(2) receptors in both colonic tissues. Alternatively, in mouse ileum, butaprost responses were lidocaine-sensitive, suggesting that it was activating prejunctional EP(2) receptors on inhibitory motor neurons. Conversely, EP(4) receptors were not functional in all the intestinal muscle preparations tested. CONCLUSIONS & INFERENCES PGE(2) -induced contraction of longitudinal smooth muscle is mediated by EP(1) receptors in human colon and by a combination of EP(1) and EP(3) receptors in mouse intestine, whereas EP(2) receptors modulate relaxation in all three preparations.
Collapse
Affiliation(s)
- S E Fairbrother
- King's College London, Wolfson Centre for Age-Related Diseases, London, UK.
| | | | | | | |
Collapse
|
17
|
Antonioli L, Fornai M, Colucci R, Ghisu N, Tuccori M, Awwad O, Bin A, Zoppellaro C, Castagliuolo I, Gaion RM, Giron MC, Blandizzi C. Control of enteric neuromuscular functions by purinergic A(3) receptors in normal rat distal colon and experimental bowel inflammation. Br J Pharmacol 2010; 161:856-71. [PMID: 20860664 DOI: 10.1111/j.1476-5381.2010.00917.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Adenosine A(3) receptors mediate beneficial effects in experimental colitis, but their involvement in enteric neuromuscular functions during bowel inflammation is undetermined. This study investigated the regulatory role of A(3) receptors on colonic motility in the presence of experimental colitis. EXPERIMENTAL APPROACH Colitis was induced in rats by 2,4-dinitrobenzenesulfonic acid. A(3) receptors and adenosine deaminase (ADA, adenosine catabolic enzyme) mRNA were examined by RT-PCR. Tissue distribution of A(3) receptors was detected by confocal immunofluorescence. The effects of 2,3-ethyl-4,5-dipropyl-6-phenylpyridine-3-thiocarboxylate-5-carboxylate (MRS1523) (MRS, A(3) receptor antagonist), 2-chloro-N(6) -(3-iodobenzyl)-adenosine-5'-N-methyluronamide (2Cl-IB-MECA) (CIB, A(3) receptor agonist), dipyridamole (DIP, adenosine transport inhibitor) and ADA were assayed on contractile responses evoked by electrical stimulation (ES) or carbachol in colonic longitudinal muscle preparations (LMP). KEY RESULTS RT-PCR showed A(3) receptors and ADA mRNA in normal colon and their increased level in inflamed tissues. Immunofluorescence showed a predominant distribution of A(3) receptors in normal myenteric ganglia and an increased density during colitis. MRS enhanced ES-induced cholinergic contractions in normal LMP, but was less effective in inflamed tissues. After pretreatment with dipyridamole plus ADA, to reduce extracellular adenosine, CIB decreased cholinergic motor responses of normal LMP to ES, with enhanced efficacy in inflamed LMP. A(3) receptor ligands did not affect carbachol-induced contractions in LMP from normal or inflamed colon. CONCLUSIONS AND IMPLICATIONS Normally, adenosine modulated colonic cholinergic motility via activation of A(3) receptors in the myenteric plexus. A(3) receptor-mediated tonic inhibitory control by adenosine was impaired in inflamed bowel, despite increased density of functioning and pharmacologically recruitable A(3) receptors.
Collapse
Affiliation(s)
- L Antonioli
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Antonioli L, Fornai M, Colucci R, Awwad O, Ghisu N, Tuccori M, Del Tacca M, Blandizzi C. Differential recruitment of high affinity A1 and A2A adenosine receptors in the control of colonic neuromuscular function in experimental colitis. Eur J Pharmacol 2010; 650:639-49. [PMID: 21034735 DOI: 10.1016/j.ejphar.2010.10.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 01/03/2023]
Abstract
This study investigated the expression of A(1) and A(2A) receptors in the rat colonic neuromuscular compartment, and characterized their roles in the control of motility during inflammation. Colitis was induced by 2,4-dinitrobenzenesulfonic acid. A(1), A(2A) receptors, and ecto-5'-nucleotidase (CD73, adenosine producing enzyme) mRNA expression was examined by RT-PCR. The effects of DPCPX (A(1) receptor antagonist), CCPA (A(1) receptor agonist), 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (A(2A) receptor antagonist), 4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (A(2A) receptor agonist), AOPCP (CD73 inhibitor) were tested on electrically or carbachol-evoked contractions in colonic longitudinal muscle preparations. In normal colon, RT-PCR revealed the presence of A(1) receptors, A(2A) receptors and CD73, and an increased expression of A(2A) receptors and CD73 was detected in inflamed tissues. In normal colon, DPCPX or 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol enhanced electrically-induced contractions, while in inflamed preparations the effect of DPCPX no longer occurred. In normal colon, CCPA or 4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl] benzenepropanoic acid hydrochloride decreased electrically-induced contractions. Under inflammation, 4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl] benzenepropanoic acid hydrochloride reduced electrically evoked contractions with higher efficacy, while the inhibition by CCPA remained unchanged. A(1) and A(2A) receptor ligands did not affect carbachol-induced contractions. AOPCP enhanced electrically-induced contractions and prevented the contractile effects of 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol, without interfering with DPCPX, both in normal and inflamed colons. These results indicate that, in normal colon, both A(1) and A(2A) receptors contribute to the inhibitory control of motor functions at neuronal level. Under bowel inflammation, A(1) receptor loses its modulating actions, while the recruitment of A(2A) receptor by CD73-dependent endogenous adenosine drives an enhanced inhibitory control of colonic neuromotility.
Collapse
Affiliation(s)
- Luca Antonioli
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fornai M, Antonioli L, Colucci R, Bernardini N, Ghisu N, Tuccori M, De Giorgio R, Del Tacca M, Blandizzi C. Emerging role of cyclooxygenase isoforms in the control of gastrointestinal neuromuscular functions. Pharmacol Ther 2010; 125:62-78. [DOI: 10.1016/j.pharmthera.2009.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 09/16/2009] [Indexed: 02/06/2023]
|
20
|
Ippolito C, Segnani C, De Giorgio R, Blandizzi C, Mattii L, Castagna M, Moscato S, Dolfi A, Bernardini N. Quantitative evaluation of myenteric ganglion cells in normal human left colon: implications for histopathological analysis. Cell Tissue Res 2009; 336:191-201. [PMID: 19322590 DOI: 10.1007/s00441-009-0770-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 01/22/2009] [Indexed: 12/18/2022]
Abstract
The analysis of myenteric neurons is becoming increasingly important for the assessment of enteric nervous system injury and degeneration occurring in motor disorders of the gut. Limited information is presently available on the quantitative estimation of myenteric neurons and glial cells in paraffin-embedded colonic sections; additional data would be useful for diagnostic purposes. In this morphometric study, we performed immunohistochemistry to count myenteric neurons and glial cells in paraffin sections of human colon. Serial cross sections of formalin-fixed paraffin-embedded full-thickness normal human left colon (n = 10, age-range: 50-72 years) were examined. HuC/D and S100beta antigens were found to be the best markers for the detection of neurons and glial cells, respectively. Significant correlations were noted between the numbers of neurons/glial cells and the respective myenteric ganglion areas. These findings suggest that HuC/D-S100beta-immunostained paraffin cross sections of human colon can be regarded as valuable tools for the quantitative estimation of myenteric neurons and glial cells. Based on the present method, only a limited number of paraffin sections are needed for reliable quantitative assessments of myenteric ganglion cells, thus allowing fast and simple approaches in the settings of the histopathological diagnosis of colonic motility disorders and retrospective evaluations of pathological archival tissue specimens.
Collapse
Affiliation(s)
- Chiara Ippolito
- Section of Histology and Medical Embryology, Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
La Motta C, Sartini S, Mugnaini L, Salerno S, Simorini F, Taliani S, Marini AM, Da Settimo F, Lavecchia A, Novellino E, Antonioli L, Fornai M, Blandizzi C, Del Tacca M. Exploiting the Pyrazolo[3,4-d]pyrimidin-4-one Ring System as a Useful Template To Obtain Potent Adenosine Deaminase Inhibitors. J Med Chem 2009; 52:1681-92. [DOI: 10.1021/jm801427r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Concettina La Motta
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Stefania Sartini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Laura Mugnaini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Silvia Salerno
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Francesca Simorini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Sabrina Taliani
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Anna Maria Marini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Federico Da Settimo
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Antonio Lavecchia
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Ettore Novellino
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Luca Antonioli
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Matteo Fornai
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Corrado Blandizzi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| | - Mario Del Tacca
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy, and Centro Interdipartimentale di Ricerche di Farmacologia Clinica e Terapia Sperimentale, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
22
|
Inhibition of cyclooxygenase-2 and EP1 receptor antagonism reduces human colonic longitudinal muscle contractility in vitro. Prostaglandins Other Lipid Mediat 2008; 88:117-21. [PMID: 19126433 DOI: 10.1016/j.prostaglandins.2008.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/03/2008] [Accepted: 12/06/2008] [Indexed: 11/24/2022]
Abstract
We investigated the contribution of cyclo-oxygenase enzyme inhibition and prostamide agonism on human colonic contractility in vitro. The effects of the non-specific COX inhibitor diclofenac were compared against selective COX-2 inhibition via nimesulide, the prostanoid EP(1) receptor antagonist SC19220 or the prostaglandin prodrug/prostamide receptor agonist bimatoprost, on potency of contraction to acetylcholine in human colonic circular and longitudinal muscle strips. Pre-treatment with either nimesulide (10(-5)M) or diclofenac (10(-6)M) caused a significant decrease in the potency of acetylcholine-evoked longitudinal muscle contraction, but did not inhibit acetylcholine-evoked circular muscle contraction. Pre-treatment with the EP(1) receptor antagonist SC19220 (10(-5)M) similarly decreased cholinergic potency in longitudinal muscle, without influence on circular muscle contraction. The prostamide agonist bimatoprost (10(-6)M) increased basal circular and longitudinal muscle tone, but did not alter cholinergic potency in either muscle layer. In conclusion, colonic longitudinal muscle contraction is augmented by COX-2 activity, most likely via PGE(2) acting at EP(1) receptors. While colonic contraction is tonically modulated by bimatoprost, it does not share the same functional properties attributed to other endogenous COX-2 metabolites on colonic contractile function.
Collapse
|
23
|
Smid SD. Gastrointestinal endocannabinoid system: multifaceted roles in the healthy and inflamed intestine. Clin Exp Pharmacol Physiol 2008; 35:1383-7. [PMID: 18671715 DOI: 10.1111/j.1440-1681.2008.05016.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The endogenous cannabinoid (endocannabinoid) system is emerging as a key modulator of intestinal physiology, influencing motility, secretion, epithelial integrity and immune function in the gut, in addition to influencing satiety and emesis. 2. Accumulating evidence suggests that the endocannabinoid system may play a pivotal role in the pathophysiology of gastrointestinal disease, particularly in the light of recent studies demonstrating an effect of endocannabinoids on the development of experimental inflammation and linkages with functional clinical disorders characterized by altered motility. 3. The predominant endocannabinoids, anandamide and 2-arachidonoylglycerol, not only mediate their effects via two recognized cannabinoid receptor subtypes, namely CB(1) and CB(2), but emerging evidence now shows they are also substrates for cyclo-oxygenase (COX)-2, generating a distinct and novel class of prostaglandin ethanolamides (prostamides) and prostaglandin glycerol esters. These compounds are bioactive and may mediate an array of biological effects distinct to those of conventional prostanoids. 4. The effects of prostamides on gastrointestinal motility, secretion, sensation and immune function have not been characterized extensively. Prostamides may play an important role in gastrointestinal inflammation, particularly given the enhanced expression of both COX-2 and endocannabinoids that occurs in the inflamed gut. 5. Further preclinical studies are needed to determine the therapeutic potential of drugs targeting the endocannabinoid system in functional and inflammatory gut disorders, to assist with the determination of feasibility for clinical translation.
Collapse
Affiliation(s)
- Scott D Smid
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
24
|
Alterations in spontaneous contractions of rat ileum and jejunum after peritonitis. Eur J Pharmacol 2007; 580:250-5. [PMID: 18029280 DOI: 10.1016/j.ejphar.2007.10.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the effects of peritonitis on spontaneous contractions of ileum and jejunum smooth muscles isolated from rats. Peritonitis was induced by cecal ligation and puncture in 8 rats. Another group of 8 rats underwent a sham operation and acted as controls. Twenty-four hours after the operation, the rats were killed, and their ileum and jejunum smooth muscles were excised and placed in circular muscle direction in a 10 ml organ bath. Changes in the amplitude and frequency of spontaneous contractions were analyzed before and after the addition of different antagonists. Peritonitis induced the decrease in the amplitude and frequency of spontaneous contractions in ileum and jejunum smooth muscles. In control groups, both ileum and jejunum, the amplitude and frequency of spontaneous contractions were significantly elevated in the presence of N(G)-nitro-L-arginine (L-NNA) and indomethacin. In peritonitis groups, both ileum and jejunum, the amplitude and frequency of spontaneous contractions were significantly enhanced in the presence of L-NNA, aminoguanidine, indomethacin and celecoxib compared to control values. In conclusion, peritonitis induces the decrease in the amplitude and frequency of spontaneous contractions of ileum and jejunum that can be attributed to the rise of nitric oxide synthase and cyclooxygenase isoforms levels.
Collapse
|
25
|
Burcher E, Shang F, Warner FJ, Du Q, Lubowski DZ, King DW, Liu L. Tachykinin NK2 Receptor and Functional Mechanisms in Human Colon: Changes with Indomethacin and in Diverticular Disease and Ulcerative Colitis. J Pharmacol Exp Ther 2007; 324:170-8. [DOI: 10.1124/jpet.107.130385] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
26
|
Birkenmeier K, Staudt A, Schunck WH, Janke I, Labitzke C, Prange T, Trimpert C, Krieg T, Landsberger M, Stangl V, Felix SB. COX-2-dependent and potentially cardioprotective effects of negative inotropic substances released after ischemia. Am J Physiol Heart Circ Physiol 2007; 293:H2148-54. [PMID: 17660401 DOI: 10.1152/ajpheart.00074.2007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During reperfusion, cardiodepressive factors are released from isolated rat hearts after ischemia. The present study analyzes the mechanisms by which these substances mediate their cardiodepressive effect. After 10 min of global stop-flow ischemia, rat hearts were reperfused and coronary effluent was collected over a period of 30 s. We tested the effect of this postischemic effluent on systolic cell shortening and Ca(2+) metabolism by application of fluorescence microscopy of field-stimulated rat cardiomyocytes stained with fura-2 AM. Cells were preincubated with various inhibitors, e.g., the cyclooxygenase (COX) inhibitor indomethacin, the COX-2 inhibitors NS-398 and lumiracoxib, the COX-1 inhibitor SC-560, and the potassium (ATP) channel blocker glibenclamide. Lysates of cardiomyocytes and extracts from whole rat hearts were tested for expression of COX-2 with Western blot analysis. As a result, in contrast to nonischemic effluent (control), postischemic effluent induced a reduction of Ca(2+) transient and systolic cell shortening in the rat cardiomyocytes (P < 0.001 vs. control). After preincubation of cells with indomethacin, NS-398, and lumiracoxib, the negative inotropic effect was attenuated. SC-560 did not influence the effect of postischemic effluent. The inducibly expressed COX-2 was detected in cardiomyocytes prepared for fluorescence microscopy. The effect of postischemic effluent was eliminated with applications of glibenclamide. Furthermore, postischemic effluent significantly reduced the intracellular diastolic and systolic Ca(2+) increase (P < 0.01 vs. control). In conclusion, the cardiodepressive effect of postischemic effluent is COX-2 dependent and protective against Ca(2+) overload in the cells.
Collapse
|
27
|
Yildiz T, Koyluoglu G, Bagcivan I, Kaya T, Karadas B, Saraç B, Cankorkmaz L. Alterations in spontaneous contractions of rat proximal and distal colon after peritonitis. J Pediatr Surg 2007; 42:1215-20. [PMID: 17618883 DOI: 10.1016/j.jpedsurg.2007.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/PURPOSE The aim of this study was to investigate the effect of peritonitis on spontaneous contractions of distal and proximal colon smooth muscle isolated from rats. METHODS Peritonitis was induced by cecal ligation and puncture in 8 rats. Another group of 8 rats underwent a sham operation and acted as controls. Twenty-four hours after the operation, the rats were killed; and their distal and proximal colon smooth muscle was excised and placed in circular muscle direction in a 10-mL organ bath. Changes in the amplitude and frequency of contractions were analyzed before and after the addition of antagonists. RESULTS Peritonitis induced the increase in the amplitude and frequency of spontaneous contractions. In both distal and proximal colon of the control group, the amplitude of spontaneous contractions was elevated by N(G)-nitro-L-arginine and tetrodotoxin; but the frequency of spontaneous contractions was significantly elevated only in the presence of N(G)-nitro-L-arginine. In both distal and proximal colon of the peritonitis group, the enhanced amplitude and frequency were significantly decreased and returned to control values in the presence of celecoxib. CONCLUSIONS Peritonitis induces the increase in the amplitude and frequency of spontaneous contractions of distal and proximal colon, which can be attributed to a loss of inhibitor nitrergic and other neural control or rise of cyclooxygenase-2 levels.
Collapse
Affiliation(s)
- Turan Yildiz
- Department of Pediatric Surgery, Cumhuriyet University, Faculty of Medicine, 58140 Sivas, Turkey
| | | | | | | | | | | | | |
Collapse
|
28
|
Antonioli L, Fornai M, Colucci R, Ghisu N, Da Settimo F, Natale G, Kastsiuchenka O, Duranti E, Virdis A, Vassalle C, La Motta C, Mugnaini L, Breschi MC, Blandizzi C, Del Taca M. Inhibition of Adenosine Deaminase Attenuates Inflammation in Experimental Colitis. J Pharmacol Exp Ther 2007; 322:435-42. [PMID: 17488880 DOI: 10.1124/jpet.107.122762] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Adenosine modulates the immune system and inhibits inflammation via reduction of cytokine biosynthesis and neutrophil functions. Drugs able to prevent adenosine catabolism could represent an innovative strategy to treat inflammatory bowel disorders. In this study, the effects of 4-amino-2-(2-hydroxy-1-decyl)pyrazole[3,4-d]pyrimidine (APP; novel adenosine deaminase inhibitor), erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride (EHNA; standard adenosine deaminase inhibitor), and dexamethasone were tested in rats with colitis induced by 2,4-dinitrobenzenesulfonic acid (DNBS). DNBS-treated animals received APP (5, 15, or 45 micromol/kg), EHNA (10, 30, or 90 micromol/kg), or dexamethasone (0.25 micromol/kg) i.p. for 7 days starting 1 day before colitis induction. DNBS caused bowel inflammation associated with decrease in food intake and body weight. Animals treated with APP or EHNA, but not dexamethasone, displayed greater food intake and weight gain than inflamed rats. Colitis induced increment in spleen weight, which was counteracted by all test drugs. DNBS administration was followed by macroscopic and microscopic inflammatory colonic alterations, which were ameliorated by APP, EHNA, or dexamethasone. In DNBS-treated rats, colonic myeloperoxidase, malondialdehyde, and tumor necrosis factor (TNF)-alpha levels as well as plasma TNF-alpha and interleukin-6 were increased. All test drugs lowered these phlogistic indexes. Inflamed colonic tissues displayed an increment of inducible nitric-oxide synthase mRNA, which was unaffected by APP or EHNA, but reduced by dexamethasone. Cyclooxygenase-2 expression was unaffected by DNBS or test drugs. These findings indicate that 1) inhibition of adenosine deaminase results in a significant attenuation of intestinal inflammation and 2) the novel compound APP is more effective than EHNA in reducing systemic and intestinal inflammatory alterations.
Collapse
Affiliation(s)
- Luca Antonioli
- Interdepartmental Centre for Research in Clinical Pharmacology and Experimental Therapeutics, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|