1
|
Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci 2022; 15:919773. [PMID: 35782382 PMCID: PMC9242007 DOI: 10.3389/fnmol.2022.919773] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Nikhil Shah
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
3
|
Centanni SW, Bedse G, Patel S, Winder DG. Driving the Downward Spiral: Alcohol-Induced Dysregulation of Extended Amygdala Circuits and Negative Affect. Alcohol Clin Exp Res 2019; 43:2000-2013. [PMID: 31403699 PMCID: PMC6779502 DOI: 10.1111/acer.14178] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
Alcohol use disorder (AUD) afflicts a large number of individuals, families, and communities globally. Affective disturbances, including stress, depression, and anxiety, are highly comorbid with AUD, contributing in some cases to initial alcohol use and continued use. Negative affect has a particularly strong influence on the withdrawal/abstinence stage of addiction as individuals with AUD frequently report stressful events, depression, and anxiety as key factors for relapse. Treatment options for negative affect associated with AUD are limited and often ineffective, highlighting the pressing need for preclinical studies examining the underlying neural circuitry driving AUD-associated negative affect. The extended amygdala (EA) is a set of brain areas collectively involved in generating and regulating affect, and extensive research has defined a critical role for the EA in all facets of substance use disorder. Here, we review the expansive historical literature examining the effects of ethanol exposure on the EA, with an emphasis on the complex EA neural circuitry driving negative affect in all phases of the alcohol addiction cycle. Specifically, this review focuses on the effects of alcohol exposure on the neural circuitry in 2 key components of the EA, the central nucleus of the amygdala and the bed nucleus of the stria terminalis. Additionally, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and neural circuitry in the EA, with the long-term goal of developing better diagnostic tools and new pharmacological targets aimed at treating negative affect in AUD. The concepts detailed here will serve as the foundation for a companion review focusing on the potential for the endogenous cannabinoid system in the EA as a novel target for treating the stress, anxiety, and negative emotional state driving AUD.
Collapse
Affiliation(s)
- Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
| | - Gaurav Bedse
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| |
Collapse
|
4
|
Granholm L, Todkar A, Bergman S, Nilsson K, Comasco E, Nylander I. The expression of opioid genes in non-classical reward areas depends on early life conditions and ethanol intake. Brain Res 2017; 1668:36-45. [PMID: 28511993 DOI: 10.1016/j.brainres.2017.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 12/28/2022]
Abstract
The young brain is highly sensitive to environmental influences that can cause long-term changes in neuronal function, possibly through altered gene expression. The endogenous opioid system continues to mature after birth and because of its involvement in reward, an inadequate maturation of this system could lead to enhanced susceptibility for alcohol use disorder. Recent studies show that the classical reward areas nucleus accumbens and ventral tegmental area are less affected by early life stress whereas endogenous opioids in non-classical areas, e.g. dorsal striatum and amygdala, are highly responsive. The aim was to investigate the interaction between early life conditions and adult voluntary ethanol intake on opioid gene expression. Male Wistar rats were exposed to conventional rearing, 15, or 360min of daily maternal separation (MS) postnatal day 1-21, and randomly assigned to ethanol or water drinking postnatal week 10-16. Rats exposed to early life stress (MS360) had increased opioid receptor gene (Oprm1, Oprd1 and Oprk1) expression in the dorsal striatum. Ethanol drinking was associated with lower striatal Oprd1 and Oprk1 expression solely in rats exposed to early life stress. Furthermore, rats exposed to early life stress had high inherent Pomc expression in the amygdala but low expression after ethanol intake. Thus, adverse events early in life induced changes in opioid gene expression and also influenced the central molecular response to ethanol intake. These long-term consequences of early life stress can contribute to the enhanced risk for excessive ethanol intake and alcohol use disorder seen after exposure to childhood adversity.
Collapse
Affiliation(s)
- Linnea Granholm
- Neuropharmacology, Addiction and Behaviour, Dept. Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Aniruddah Todkar
- Neuropsychopharmacology, Dept. Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Sofia Bergman
- Neuropsychopharmacology, Dept. Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Kent Nilsson
- Västerås Centre for Clinical Research, Uppsala University, Uppsala, Sweden.
| | - Erika Comasco
- Neuropsychopharmacology, Dept. Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Ingrid Nylander
- Neuropharmacology, Addiction and Behaviour, Dept. Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Alongkronrusmee D, Chiang T, van Rijn RM. Delta Opioid Pharmacology in Relation to Alcohol Behaviors. Handb Exp Pharmacol 2016; 247:199-225. [PMID: 27316912 DOI: 10.1007/164_2016_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Delta opioid receptors (DORs) are heavily involved in alcohol-mediated processes in the brain. In this chapter we provide an overview of studies investigating how alcohol directly impacts DOR pharmacology and of early studies indicating DOR modulation of alcohol behavior. We will offer a brief summary of the different animal species used in alcohol studies investigating DORs followed by a broader overview of the types of alcohol behaviors modulated by DORs. We will highlight a small set of studies investigating the relationship between alcohol and DORs in analgesia. We will then provide an anatomical overview linking DOR expression in specific brain regions to different alcohol behaviors. In this section, we will provide two models that try to explain how endogenous opioids acting at DORs may influence alcohol behaviors. Next, we will provide an overview of studies investigating certain new aspects of DOR pharmacology, including the formation of heteromers and biased signaling. Finally, we provide a short overview of the genetics of the DORs in relation to alcohol use disorders (AUDs) and a short statement on the potential of using DOR-based therapeutics for treatment of AUDs.
Collapse
Affiliation(s)
- Doungkamol Alongkronrusmee
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Terrance Chiang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Interactions between ethanol and the endocannabinoid system at GABAergic synapses on basolateral amygdala principal neurons. Alcohol 2015; 49:781-94. [PMID: 26603632 DOI: 10.1016/j.alcohol.2015.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/11/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
The basolateral amygdala (BLA) plays crucial roles in stimulus value coding, as well as drug and alcohol dependence. Ethanol alters synaptic transmission in the BLA, while endocannabinoids (eCBs) produce presynaptic depression at BLA synapses. Recent studies suggest interactions between ethanol and eCBs that have important consequences for alcohol drinking behavior. To determine how ethanol and eCBs interact in the BLA, we examined the physiology and pharmacology of GABAergic synapses onto BLA pyramidal neurons in neurons from young rats. Application of ethanol at concentrations relevant to intoxication increased, in both young and adult animals, the frequency of spontaneous and miniature GABAergic inhibitory postsynaptic currents, indicating a presynaptic site of ethanol action. Ethanol did not potentiate sIPSCs during inhibition of adenylyl cyclase while still exerting its effect during inhibition of protein kinase A. Activation of type 1 cannabinoid receptors (CB1) in the BLA inhibited GABAergic transmission via an apparent presynaptic mechanism, and prevented ethanol potentiation. Surprisingly, ethanol potentiation was also prevented by CB1 antagonists/inverse agonists. Brief depolarization of BLA pyramidal neurons suppressed GABAergic transmission (depolarization-induced suppression of inhibition [DSI]), an effect previously shown to be mediated by postsynaptic eCB release and presynaptic CB1 activation. A CB1-mediated suppression of GABAergic transmission was also produced by combined afferent stimulation at 0.1 Hz (LFS), and postsynaptic loading with the eCB arachidonoyl ethanolamide (AEA). Both DSI and LFS-induced synaptic depression were prevented by ethanol. Our findings indicate antagonistic interactions between ethanol and eCB/CB1 modulation at GABAergic BLA synapses that may contribute to eCB roles in ethanol seeking and drinking.
Collapse
|
7
|
Klenowski P, Morgan M, Bartlett SE. The role of δ-opioid receptors in learning and memory underlying the development of addiction. Br J Pharmacol 2014; 172:297-310. [PMID: 24641428 DOI: 10.1111/bph.12618] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/10/2014] [Accepted: 01/19/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Opioids are important endogenous ligands that exist in both invertebrates and vertebrates and signal by activation of opioid receptors to produce analgesia and reward or pleasure. The μ-opioid receptor is the best known of the opioid receptors and mediates the acute analgesic effects of opiates, while the δ-opioid receptor (DOR) has been less well studied and has been linked to effects that follow from chronic use of opiates such as stress, inflammation and anxiety. Recently, DORs have been shown to play an essential role in emotions and increasing evidence points to a role in learning actions and outcomes. The process of learning and memory in addiction has been proposed to involve strengthening of specific brain circuits when a drug is paired with a context or environment. The DOR is highly expressed in the hippocampus, amygdala, striatum and other basal ganglia structures known to participate in learning and memory. In this review, we will focus on the role of the DOR and its potential role in learning and memory underlying the development of addiction. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Paul Klenowski
- Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | |
Collapse
|
8
|
Rashvand M, Khajavai A, Parviz M, Hasanein P, Keshavarz M. GABAAreceptors are involved in the analgesic effects of morphine microinjected into the central nucleus of the amygdala. Clin Exp Pharmacol Physiol 2014; 41:338-44. [DOI: 10.1111/1440-1681.12223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Mina Rashvand
- Department of Physiology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Ali Khajavai
- Department of Physiology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Mohsen Parviz
- Department of Physiology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Parisa Hasanein
- Department of Biology; School of Basic Sciences; Bu-Ali Sina University; Hamedan Iran
| | - Mansoor Keshavarz
- Department of Physiology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
9
|
Gilpin NW, Roberto M, Koob GF, Schweitzer P. Kappa opioid receptor activation decreases inhibitory transmission and antagonizes alcohol effects in rat central amygdala. Neuropharmacology 2013; 77:294-302. [PMID: 24157490 DOI: 10.1016/j.neuropharm.2013.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/19/2013] [Accepted: 10/08/2013] [Indexed: 12/30/2022]
Abstract
Activation of the kappa opioid receptor (KOR) system mediates negative emotional states and considerable evidence suggests that KOR and their natural ligand, dynorphin, are involved in ethanol dependence and reward. The central amygdala (CeA) plays a major role in alcohol dependence and reinforcement. Dynorphin peptide and gene expression are activated in the amygdala during acute and chronic administration of alcohol, but the effects of activation or blockade of KOR on inhibitory transmission and ethanol effects have not been studied. We used the slice preparation to investigate the physiological role of KOR and interaction with ethanol on GABA(A) receptor-mediated synaptic transmission. Superfusion of dynorphin or U69593 onto CeA neurons decreased evoked inhibitory postsynaptic potentials (IPSPs) in a concentration-dependent manner, an effect prevented by the KOR antagonist norbinaltorphimine (norBNI). Applied alone, norBNI increased GABAergic transmission, revealing a tonic endogenous activity at KOR. Paired-pulse analysis suggested a presynaptic KOR mechanism. Superfusion of ethanol increased IPSPs and pretreatment with KOR agonists diminished the ethanol effect. Surprisingly, the ethanol-induced augmentation of IPSPs was completely obliterated by KOR blockade. Our results reveal an important role of the dynorphin/KOR system in the regulation of inhibitory transmission and mediation of ethanol effects in the CeA.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University, Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70130, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders & Pearson Center for Alcoholism and Addiction Research, SP30 2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - George F Koob
- Committee on the Neurobiology of Addictive Disorders & Pearson Center for Alcoholism and Addiction Research, SP30 2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paul Schweitzer
- Committee on the Neurobiology of Addictive Disorders & Pearson Center for Alcoholism and Addiction Research, SP30 2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Pharmacological traits of delta opioid receptors: pitfalls or opportunities? Psychopharmacology (Berl) 2013; 228:1-18. [PMID: 23649885 PMCID: PMC3679311 DOI: 10.1007/s00213-013-3129-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/15/2013] [Indexed: 12/11/2022]
Abstract
RATIONALE Delta opioid receptors (DORs) have been considered as a potential target to relieve pain as well as treat depression and anxiety disorders and are known to modulate other physiological responses, including ethanol and food consumption. A small number of DOR-selective drugs are in clinical trials, but no DOR-selective drugs have been approved by the Federal Drug Administration and some candidates have failed in phase II clinical trials, highlighting current difficulties producing effective delta opioid-based therapies. Recent studies have provided new insights into the pharmacology of the DOR, which is often complex and at times paradoxical. OBJECTIVE This review will discuss the existing literature focusing on four aspects: (1) Two DOR subtypes have been postulated based on differences in pharmacological effects of existing DOR-selective ligands. (2) DORs are expressed ubiquitously throughout the body and central nervous system and are, thus, positioned to play a role in a multitude of diseases. (3) DOR expression is often dynamic, with many reports of increased expression during exposure to chronic stimuli, such as stress, inflammation, neuropathy, morphine, or changes in endogenous opioid tone. (4) A large structural variety in DOR ligands implies potential different mechanisms of activating the receptor. CONCLUSION The reviewed features of DOR pharmacology illustrate the potential benefit of designing tailored or biased DOR ligands.
Collapse
|
11
|
Kang-Park M, Kieffer BL, Roberts AJ, Siggins GR, Moore SD. κ-Opioid receptors in the central amygdala regulate ethanol actions at presynaptic GABAergic sites. J Pharmacol Exp Ther 2013; 346:130-7. [PMID: 23587526 DOI: 10.1124/jpet.112.202903] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human and animal studies indicate that κ-opioid receptors (KORs) are involved in ethanol drinking and dependence (Xuei et al., 2006; Walker and Koob, 2008; Walker et al., 2011). Using in vitro single-cell recording techniques in mouse brain slices, we examined the physiologic effects of KOR activation in the central amygdala (CeA) on GABAergic neurotransmission and its interaction with acute ethanol. A selective KOR agonist (U69593, 1 μM) diminished evoked GABAergic inhibitory postsynaptic currents (IPSCs) by 18% (n = 10), whereas blockade of KORs with a selective antagonist (nor-binaltorphimine, 1 μM) augmented the baseline evoked GABAergic IPSCs by 14% (P < 0.01; n = 34), suggesting that the KOR system contributes to tonic inhibition of GABAergic neurotransmission in the CeA. In addition, the enhancement by acute ethanol of GABAergic IPSC amplitudes was further augmented by pharmacologic blockade of KORs, from 14% (n = 36) to 27% (n = 26; P < 0.01), or by genetic deletion of KORs, from 14% in wild-type mice (n = 19) to 34% in KOR knockout mice (n = 13; P < 0.01). Subsequent experiments using tetrodotoxin to block activity-dependent neurotransmission suggest that KORs regulate GABA release at presynaptic sites. Our data support the idea that KORs modulate GABAergic synaptic responses and ethanol effects as one of multiple opioid system-dependent actions of ethanol in the CeA, possibly in a circuit-specific manner.
Collapse
Affiliation(s)
- Maenghee Kang-Park
- Department of Psychiatry, Duke University Medical Center, and Research Service, Veterans Administration Medical Center, Durham, North Carolina 27705, USA
| | | | | | | | | |
Collapse
|
12
|
Wang J, Hamida SB, Darcq E, Zhu W, Gibb SL, Lanfranco MF, Carnicella S, Ron D. Ethanol-mediated facilitation of AMPA receptor function in the dorsomedial striatum: implications for alcohol drinking behavior. J Neurosci 2012; 32:15124-32. [PMID: 23100433 PMCID: PMC3498079 DOI: 10.1523/jneurosci.2783-12.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/17/2012] [Accepted: 09/05/2012] [Indexed: 12/13/2022] Open
Abstract
We found previously that acute ex vivo as well as repeated cycles of in vivo ethanol exposure and withdrawal, including excessive voluntary consumption of ethanol, produces a long-lasting increase in the activity of NR2B-containing NMDA receptors (NR2B-NMDARs) in the dorsomedial striatum (DMS) of rats (Wang et al., 2010a). Activation of NMDARs is required for the induction of long-term potentiation (LTP) of AMPA receptor (AMPAR)-mediated synaptic response. We therefore examined whether the ethanol-mediated upregulation of NMDAR activity alters the induction of LTP in the DMS. We found that ex vivo acute exposure of striatal slices to, and withdrawal from, ethanol facilitates the induction of LTP in DMS neurons, which is abolished by the inhibition of NR2B-NMDARs. We also report that repeated systemic administration of ethanol causes an NR2B-NMDAR-dependent facilitation of LTP in the DMS. LTP is mediated by the insertion of AMPAR subunits into the synaptic membrane, and we found that repeated systemic administration of ethanol, as well as cycles of excessive ethanol consumption and withdrawal, produced a long-lasting increase in synaptic localization of the GluR1 and GluR2 subunits of AMPARs in the DMS. Importantly, we report that inhibition of AMPARs in the DMS attenuates operant self-administration of ethanol, but not of sucrose. Together, our data suggest that aberrant synaptic plasticity in the DMS induced by repeated cycles of ethanol exposure and withdrawal contributes to the molecular mechanisms underlying the development and/or maintenance of excessive ethanol consumption.
Collapse
Affiliation(s)
- Jun Wang
- Ernest Gallo Research Center and
- Department of Neurology, University of California at San Francisco, Emeryville, California 94608
| | | | | | | | | | | | - Sebastien Carnicella
- Ernest Gallo Research Center and
- Department of Neurology, University of California at San Francisco, Emeryville, California 94608
| | - Dorit Ron
- Ernest Gallo Research Center and
- Department of Neurology, University of California at San Francisco, Emeryville, California 94608
| |
Collapse
|
13
|
Bajo M, Madamba SG, Lu X, Sharkey LM, Bartfai T, Siggins GR. Receptor subtype-dependent galanin actions on gamma-aminobutyric acidergic neurotransmission and ethanol responses in the central amygdala. Addict Biol 2012; 17:694-705. [PMID: 21955024 DOI: 10.1111/j.1369-1600.2011.00360.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The neuropeptide galanin and its three receptor subtypes (GalR1-3) are expressed in the central amygdala (CeA), a brain region involved in stress- and anxiety-related behaviors, as well as alcohol dependence. Galanin also has been suggested to play a role in alcohol intake and alcohol dependence. We examined the effects of galanin in CeA slices from wild-type and knockout (KO) mice deficient of GalR2 and both GalR1 and GalR2 receptors. Galanin had dual effects on gamma-aminobutyric acid (GABA)-ergic transmission, decreasing the amplitudes of pharmacologically isolated GABAergic inhibitory postsynaptic potentials (IPSPs) in over half of CeA neurons but augmenting IPSPs in the others. The increase in IPSP size was absent after superfusion of the GalR3 antagonist SNAP 37889, whereas the IPSP depression was absent in CeA neurons of GalR1 × GalR2 double KO and GalR2 KO mice. Paired-pulse facilitation studies showed weak or infrequent effects of galanin on GABA release. Thus, galanin may act postsynaptically through GalR3 to augment GABAergic transmission in some CeA neurons, whereas GalR2 receptors likely are involved in the depression of IPSPs. Co-superfusion of ethanol, which augments IPSPs presynaptically, together with galanin caused summated effects of ethanol and galanin in those CeA neurons showing galanin-augmented IPSPs, suggesting the two agents act via different mechanisms in this population. However, in neurons showing IPSP-diminishing galanin effects, galanin blunted the ethanol effects, suggesting a preemptive effect of galanin. These findings may increase understanding of the complex cellular mechanisms that underlie the anxiety-related behavioral effects of galanin and ethanol in CeA.
Collapse
Affiliation(s)
- Michal Bajo
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
14
|
Cui WY, Seneviratne C, Gu J, Li MD. Genetics of GABAergic signaling in nicotine and alcohol dependence. Hum Genet 2012; 131:843-55. [PMID: 22048727 PMCID: PMC3746562 DOI: 10.1007/s00439-011-1108-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/23/2011] [Indexed: 12/19/2022]
Abstract
Both nicotine and alcohol addictions are common chronic brain disorders that are of great concern to individuals and society. Although genetics contributes significantly to these disorders, the susceptibility genes and variants underlying them remain largely unknown. Many years of genome-wide linkage and association studies have implicated a number of genes and pathways in the etiology of nicotine and alcohol addictions. In this communication, we focus on current evidence, primarily from human genetic studies, supporting the involvement of genes and variants in the GABAergic signaling system in the etiology of nicotine dependence and alcoholism based on linkage, association, and gene-by-gene interaction studies. Current efforts aim not only to replicate these findings in independent samples, but also to identify which variant contributes to the detected associations and through what molecular mechanisms.
Collapse
Affiliation(s)
- Wen-Yan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Chamindi Seneviratne
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 1670 Discovery Drive, Suite 110, Charlottesville, VA 22911, USA
| | - Jun Gu
- National Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 1670 Discovery Drive, Suite 110, Charlottesville, VA 22911, USA
| |
Collapse
|
15
|
Nielsen CK, Simms JA, Bito-Onon JJ, Li R, Ananthan S, Bartlett SE. The delta opioid receptor antagonist, SoRI-9409, decreases yohimbine stress-induced reinstatement of ethanol-seeking. Addict Biol 2012; 17:224-34. [PMID: 21309957 DOI: 10.1111/j.1369-1600.2010.00295.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A major problem in treating alcohol use disorders (AUDs) is the high rate of relapse due to stress and re-exposure to cues or an environment previously associated with alcohol use. Stressors can induce relapse to alcohol-seeking in humans or reinstatement in rodents. Delta opioid peptide receptors (DOP-Rs) play a role in cue-induced reinstatement of ethanol-seeking; however, their role in stress-induced reinstatement of ethanol-seeking is not known. The objective of this study was to determine the role of DOP-Rs in yohimbine-stress-induced reinstatement of ethanol-seeking. Male, Long-Evans rats were trained to self-administer 10% ethanol in daily 30-minute operant self-administration sessions using a FR3 schedule of reinforcement, followed by extinction training. Once extinction criteria were met, we examined the effects of the DOP-R antagonist, SoRI-9409 (0-5 mg/kg, i.p.) on yohimbine (2 mg/kg, i.p.) stress-induced reinstatement. Additionally, DOP-R-stimulated [(35) S]GTPγS binding was measured in brain membranes and plasma levels of corticosterone (CORT) were determined. Pre-treatment with SoRI-9409 decreased yohimbine stress-induced reinstatement of ethanol-seeking but did not affect yohimbine-induced increases in plasma CORT levels. Additionally, yohimbine increased DOP-R-stimulated (35) [S]GTPγS binding in brain membranes of ethanol-trained rats, an effect that was inhibited by SoRI-9409. This suggests that the DOP-R plays an important role in yohimbine-stress-induced reinstatement of ethanol-seeking behavior, and DOP-R antagonists may be promising candidates for further development as a treatment for AUDs.
Collapse
Affiliation(s)
- Carsten K Nielsen
- Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Emeryville, CA, USA
| | | | | | | | | | | |
Collapse
|
16
|
Effects of acute ethanol on corticotropin-releasing hormone and β-endorphin systems at the level of the rat central amygdala. Psychopharmacology (Berl) 2011; 218:229-39. [PMID: 21597991 DOI: 10.1007/s00213-011-2337-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 04/19/2011] [Indexed: 12/27/2022]
Abstract
RATIONALE The endogenous opioid and corticotropin-releasing hormone (CRH) systems, present in the central amygdala (CeA), are implicated in alcohol consumption. OBJECTIVES The purpose of this study is to investigate the hypothesis that, in CeA, alcohol stimulates CRH release, which then stimulates β-endorphin release. MATERIALS AND METHODS Rats were unilaterally implanted with a guide cannula to aim microdialysis probes in CeA. Experiment 1: rats received an intraperitoneal (IP) injection of various ethanol doses (0.0, 2.0, 2.4, or 2.8 g ethanol/kg body weight) and microdialysates were sampled at 30-min intervals to determine the effects over time of acute alcohol on the extracellular CRH concentrations in CeA. Experiment 2: phosphate-buffered saline, CRH, or CRH receptor (CRHR) antagonists (antalarmin or anti-sauvagine-30) was microinjected into CeA followed by a saline or 2.8 g/kg ethanol IP injection to determine the effects of CRHR activation or blockade in CeA on the basal and alcohol-stimulated release of β-endorphin. CRH and β-endorphin dialysate contents were determined using specific radioimmunoassays. RESULTS Acute alcohol induced a delayed increase in the extracellular CRH levels in CeA. Behavioural data showed no difference in locomotion between alcohol- and saline-treated rats. However, a transient increase in grooming was observed which did not correspond with alcohol-induced changes in CRH. Local CRH microinjections increased the extracellular β-endorphin concentrations in CeA. CRHR1 and CRHR2 blockade with microinjections of antalarmin and anti-sauvagine-30, respectively, attenuated the alcohol-induced increase of extracellular β-endorphin in CeA. CONCLUSIONS Acute alcohol exerts indirect actions on CRH release and induced interactions of the CRH and β-endorphin systems in CeA.
Collapse
|
17
|
Kelm MK, Criswell HE, Breese GR. Ethanol-enhanced GABA release: a focus on G protein-coupled receptors. BRAIN RESEARCH REVIEWS 2011; 65:113-23. [PMID: 20837058 PMCID: PMC3005894 DOI: 10.1016/j.brainresrev.2010.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 12/20/2022]
Abstract
While research on the actions of ethanol at the GABAergic synapse has focused on postsynaptic mechanisms, recent data have demonstrated that ethanol also facilitates GABA release from presynaptic terminals in many, but not all, brain regions. The ability of ethanol to increase GABA release can be regulated by different G protein-coupled receptors (GPCRs), such as the cannabinoid-1 receptor, corticotropin-releasing factor 1 receptor, GABA(B) receptor, and the 5-hydroxytryptamine 2C receptor. The intracellular messengers linked to these GPCRs, including the calcium that is released from internal stores, also play a role in ethanol-enhanced GABA release. Hypotheses are proposed to explain how ethanol interacts with the GPCR pathways to increase GABA release and how this interaction contributes to the brain region specificity of ethanol-enhanced GABA release. Defining the mechanism of ethanol-facilitated GABA release will further our understanding of the GABAergic profile of ethanol and increase our knowledge of how GABAergic neurotransmission may contribute to the intoxicating effects of alcohol and to alcohol dependence.
Collapse
Affiliation(s)
- M Katherine Kelm
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599-7178, USA.
| | | | | |
Collapse
|
18
|
Theile JW, Morikawa H, Gonzales RA, Morrisett RA. GABAergic transmission modulates ethanol excitation of ventral tegmental area dopamine neurons. Neuroscience 2010; 172:94-103. [PMID: 20974231 DOI: 10.1016/j.neuroscience.2010.10.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/14/2010] [Accepted: 10/16/2010] [Indexed: 01/17/2023]
Abstract
Activation of the dopaminergic (DA) neurons of the ventral tegmental area (VTA) by ethanol has been implicated in its rewarding and reinforcing effects. We previously demonstrated that ethanol enhances GABA release onto VTA-DA neurons via activation of 5-HT2C receptors and subsequent release of calcium from intracellular stores. Here we demonstrate that excitation of VTA-DA neurons by ethanol is limited by an ethanol-enhancement in GABA release. In this study, we performed whole-cell voltage clamp recordings of miniature inhibitory postsynaptic currents (mIPSCs) and cell-attached recordings of action potential firing from VTA-DA neurons in midbrain slices from young Long Evans rats. Acute exposure to ethanol (75 mM) transiently enhanced the firing rate of VTA-DA neurons as well as the frequency of mIPSCs. Simultaneous blockade of both GABA(A) and GABA(B) receptors (Picrotoxin (75 μM) and SCH50911 (20 μM)) disinhibited VTA-DA firing rate whereas a GABA(A) agonist (muscimol, 1 μM) strongly inhibited firing rate. In the presence of picrotoxin, ethanol enhanced VTA-DA firing rate more than in the absence of picrotoxin. Additionally, a sub-maximal concentration of muscimol together with ethanol inhibited VTA-DA firing rate more than muscimol alone. DAMGO (3 μM) inhibited mIPSC frequency but did not block the ethanol-enhancement in mIPSC frequency. DAMGO (1 and 3 μM) had no effect on VTA-DA firing rate. Naltrexone (60 μM) had no effect on basal or ethanol-enhancement of mIPSC frequency. Additionally, naltrexone (20 and 60 μM) did not block the ethanol-enhancement in VTA-DA firing rate. Overall, the present results indicate that the ethanol enhancement in GABA release onto VTA-DA neurons limits the stimulatory effect of ethanol on VTA-DA neuron activity and may have implications for the rewarding properties of ethanol.
Collapse
Affiliation(s)
- J W Theile
- Cell and Molecular Biology, The College of Pharmacy, The University of Texas at Austin, Austin, TX 78712-1074, USA
| | | | | | | |
Collapse
|
19
|
Bie B, Zhu W, Pan ZZ. Ethanol-induced delta-opioid receptor modulation of glutamate synaptic transmission and conditioned place preference in central amygdala. Neuroscience 2009; 160:348-58. [PMID: 19258026 PMCID: PMC2669697 DOI: 10.1016/j.neuroscience.2009.02.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/18/2009] [Accepted: 02/22/2009] [Indexed: 12/15/2022]
Abstract
Alcoholism involves compulsive behaviors of alcohol drinking, which is thought to be related at least initially to the rewarding effect of alcohol. It has been shown that mu-opioid receptors play an essential role in drug reward and dependence for many drugs of abuse including alcohol, but the function of delta-opioid receptors (DOR) in drug reward remains largely unknown at present. Previous animal studies using systemic approaches with DOR antagonists or DOR knockout animals have yielded inconsistent results, showing a decrease, an increase or no change in alcohol consumption and behaviors of alcohol reward after DOR inhibition or deletion. In the present study, we used ethanol-conditioned rats to investigate adaptive DOR function in neurons of the central nucleus of the amygdala (CeA), a key brain site for alcohol reward and addiction. We found that functional DOR was absent in glutamate synapses of CeA neurons from control rats, but it emerged and inhibited glutamate synaptic currents in CeA neurons from rats displaying ethanol-induced behavior of conditioned place preference (CPP). Analysis of paired-pulse ratios and miniature glutamate synaptic currents revealed that the recruited DOR was present on glutamatergic presynaptic terminals. Similar induction of functional DOR was also found on GABA synapses. Furthermore, microinjection of a DOR antagonist into the CeA reversed ethanol-induced CPP behavior in rats in vivo. These results suggest that repeated alcohol exposure recruits new functional DOR on CeA glutamate and GABA synapses, which may be involved in the expression or maintenance of ethanol-induced CPP behavior.
Collapse
Affiliation(s)
- Bihua Bie
- Department of Anesthesiology and Pain Medicine, The University of Texas-MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Wei Zhu
- Department of Anesthesiology and Pain Medicine, The University of Texas-MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Zhizhong Z. Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas-MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| |
Collapse
|
20
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
21
|
Effects of acute ethanol on opioid peptide release in the central amygdala: an in vivo microdialysis study. Psychopharmacology (Berl) 2008; 201:261-71. [PMID: 18688603 DOI: 10.1007/s00213-008-1267-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 07/19/2008] [Indexed: 12/12/2022]
Abstract
RATIONALE There is experimental evidence that indicates that the endogenous opioid system of the central nucleus of the amygdala (CeA) may mediate some of the reinforcing effects of ethanol. However, the precise interactions of ethanol with the endogenous opioid system at the level of the CeA have not been investigated. OBJECTIVES The aim of the current study was to investigate the hypothesis that acute systemic ethanol administration will increase the release of endogenous opioid peptides at the level of the CeA in a time- and dose-dependent manner. MATERIALS AND METHODS Rats were implanted with a unilateral guide cannula to aim microdialysis probes at the CeA. Intraperitoneal injections of saline and various doses of ethanol (0.8, 1.6, 2.0, 2.4, and 2.8 g ethanol/kg body weight) were administered to the rats. Dialysate samples were collected at 30-min intervals at distinct time points prior to and following treatment. Radioimmunoassays specific for beta-endorphin, met-enkephalin, and dynorphin A1-8 were used to determine the effect of ethanol on the content of the opioid peptides in the dialysate. RESULTS We report that the 2.8-g/kg dose of ethanol induced a long-lasting increase in beta-endorphin release from 60 min onwards following administration and, later, an ongoing increase in dynorphin A1-8 release. None of the ethanol doses tested elicited significant changes in dialysate met-enkephalin content compared to the saline treatment. CONCLUSIONS Acute systemic ethanol administration induced a dose- and time-dependent increase in beta-endorphin and dynorphin A1-8 release at the level of the CeA, which may be involved in ethanol consumption.
Collapse
|
22
|
Wilson MA, Junor L. The role of amygdalar mu-opioid receptors in anxiety-related responses in two rat models. Neuropsychopharmacology 2008; 33:2957-68. [PMID: 18216773 PMCID: PMC2705758 DOI: 10.1038/sj.npp.1301675] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Amygdala opioids such as enkephalin appear to play some role in the control of anxiety and the anxiolytic effects of benzodiazepines, although the opioid receptor subtypes mediating such effects are unclear. This study compared the influences of mu-opioid receptor (MOR) activation in the central nucleus of the amygdala (CEA) on unconditioned fear or anxiety-like responses in two models, the elevated plus maze, and the defensive burying test. The role of MORs in the anxiolytic actions of the benzodiazepine agonist diazepam was also examined using both models. Either the MOR agonist [D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin (DAMGO), or the MOR antagonists Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) or beta-funaltrexamine (FNA) were bilaterally infused into the CEA of rats before testing. The results show that microinjection of DAMGO in the CEA decreased open-arm time in the plus maze, whereas CTAP increased open-arm behaviors. In contrast, DAMGO injections in the CEA reduced burying behaviors and increased rearing following exposure to a predator odor, suggesting a shift in the behavioral response in this context. Amygdala injections of the MOR agonist DAMGO or the MOR antagonist CTAP failed to change the anxiolytic effects of diazepam in either test. Our results demonstrate that MOR activation in the central amygdala exerts distinctive effects in two different models of unconditioned fear or anxiety-like responses, and suggest that opioids may exert context-specific regulation of amygdalar output circuits and behavioral responses during exposure to potential threats (open arms of the maze) vs discrete threats (predator odor).
Collapse
|
23
|
Kelm MK, Criswell HE, Breese GR. The role of protein kinase A in the ethanol-induced increase in spontaneous GABA release onto cerebellar Purkinje neurons. J Neurophysiol 2008; 100:3417-28. [PMID: 18945815 DOI: 10.1152/jn.90970.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ethanol increases miniature inhibitory postsynaptic current frequency and decreases the paired-pulse ratio, which suggests that ethanol increases both spontaneous and evoked GABA release, respectively. We have shown previously that ethanol increases GABA release at the rat interneuron-Purkinje cell synapse and that this ethanol effect involves calcium release from internal stores; however, further exploration of the mechanism responsible for ethanol-enhanced GABA release was needed. We found that a cannabinoid receptor 1 (CB1) agonist, WIN-55212, and a GABA(B) receptor agonist, baclofen, decreased baseline spontaneous GABA release and prevented ethanol from increasing spontaneous GABA release. The CB1 receptor and GABA(B) receptor are Galpha i-linked G protein-coupled receptors with common downstream messengers that include adenylate cyclase and protein kinase A (PKA). Adenylate cyclase and PKA antagonists blocked ethanol from increasing spontaneous GABA release, whereas a PKA antagonist limited to the postsynaptic neuron did not block ethanol from increasing spontaneous GABA release. These results suggest that presynaptic PKA plays an essential role in ethanol-enhanced spontaneous GABA release. Similar to ethanol, we found that the mechanism of the cannabinoid-mediated decrease in spontaneous GABA release involves internal calcium stores and PKA. A PKA antagonist decreased baseline spontaneous GABA release. This effect was reduced after incubating the slice with a calcium chelator, BAPTA-AM, but was unaffected when BAPTA was limited to the postsynaptic neuron. This suggests that the PKA antagonist is acting through a presynaptic, calcium-dependent mechanism to decrease spontaneous GABA release. Overall, these results suggest that PKA activation is necessary for ethanol to increase spontaneous GABA release.
Collapse
Affiliation(s)
- M Katherine Kelm
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA.
| | | | | |
Collapse
|
24
|
Kang-Park MH, Kieffer BL, Roberts AJ, Roberto M, Madamba SG, Siggins GR, Moore SD. Mu-opioid receptors selectively regulate basal inhibitory transmission in the central amygdala: lack of ethanol interactions. J Pharmacol Exp Ther 2008; 328:284-93. [PMID: 18854491 DOI: 10.1124/jpet.108.140749] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endogenous opioid systems are implicated in the actions of ethanol. For example, mu-opioid receptor (MOR) knockout (KO) mice self-administer less alcohol than the genetically intact counterpart wild-type (WT) mice (Roberts et al., 2000). MOR KO mice also exhibit less anxiety-like behavior than WT mice (Filliol et al., 2000). To investigate the neurobiological mechanisms underlying these behaviors, we examined the effect of ethanol in brain slices from MOR KO and WT mice using sharp-electrode and whole-cell patch recording techniques. We focused our study in the central nucleus of the amygdala (CeA) because it is implicated in alcohol drinking behavior and stress behavior. We found that the amplitudes of evoked inhibitory postsynaptic currents (IPSCs) or inhibitory postsynaptic potentials (IPSPs) were significantly greater in MOR KO mice than WT mice. In addition, the baseline frequencies of spontaneous and miniature GABA(A) receptor-mediated inhibitory postsynaptic currents were significantly greater in CeA neurons from MOR KO than WT mice. However, ethanol enhancements of evoked IPSP and IPSC amplitudes and the frequency of miniature IPSCs were comparable between WT and MOR KO mice. Baseline spontaneous and miniature excitatory postsynaptic currents (EPSCs) and ethanol effects on EPSCs were not significantly different between MOR KO and WT mice. Based on knowledge of CeA circuitry and projections, we hypothesize that the role of MOR- and GABA receptor-mediated mechanisms in CeA underlying reinforcing effects of ethanol operate independently, possibly through pathway-specific responses within CeA.
Collapse
Affiliation(s)
- Maeng-Hee Kang-Park
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|