1
|
Quinlan S, Witherspoon E, Forcelli PA. Padsevonil suppresses seizures without inducing cell death in neonatal rats. Pharmacol Rep 2024; 76:1055-1066. [PMID: 39028384 PMCID: PMC11584979 DOI: 10.1007/s43440-024-00628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Padsevonil (PSL) is a rationally designed anti-seizure medication (ASM) which has overlapping mechanisms of action with the two most common ASMs used for neonatal seizures, phenobarbital (PB) and levetiracetam (LEV). Here we evaluated the anti-seizure properties of PSL across the neonatal and adolescent period in rats in the pentlyenetetrazole (PTZ) induced seizures model. METHODS Postnatal day (P)7, P14 and P21 Sprague-Dawley rat pups were pre-treated with PSL (1-30 mg/kg), and assessed for seizure latency and severity 30 min later following injection of PTZ. A separate cohort of P7 pups were treated with neonatal ASMs and euthanized 24 h later (on P8) to assess induction of cell death, a feature common to many ASMs when given to P7 rodents. This effect has been extensively reported with PB, but not with LEV. Cell death was assessed by PathoGreen staining. RESULTS PSL suppressed PTZ-evoked seizures across multiple age groups, particularly at higher doses, without producing increased cell death compared to vehicle. The effects of PSL were particularly notable at suppressing tonic-clonic seizure manifestations (82% of P7 and 100% of P14 and P21 animals were protected from tonic-clonic seizures with the 30 mg/kg dose). CONCLUSIONS PSL displayed dose-dependent anti-seizure effects in immature rodents in the PTZ model of seizures in immature rats. While many ASMs, including PB, induce cell death in neonatal rats, PSL does not. This suggests that PSL may offer therapeutic benefit and a favorable safety profile for the treatment of neonatal seizures.
Collapse
Affiliation(s)
- Sean Quinlan
- Department of Pharmacology & Physiology, Georgetown University, New Research Bldg., W209B, 3970 Reservoir Road NW, Washington, DC, 20007, USA
| | - Eric Witherspoon
- Department of Pharmacology & Physiology, Georgetown University, New Research Bldg., W209B, 3970 Reservoir Road NW, Washington, DC, 20007, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University, New Research Bldg., W209B, 3970 Reservoir Road NW, Washington, DC, 20007, USA.
- Department of Neuroscience, Georgetown University, Washington, DC, USA.
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
2
|
Sharpe C, Yang DZ, Haas RH, Reiner GE, Lee L, Capparelli EV. Pharmacokinetic and pharmacodynamic data from the NEOLEV1 and NEOLEV2 studies. Arch Dis Child 2024; 109:854-860. [PMID: 38902005 DOI: 10.1136/archdischild-2022-324952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVES To confirm that levetiracetam (LEV) demonstrates predictable pharmacokinetics(PK) at higher doses and to study the pharmacodynamics(PD) of LEV. DESIGN Pharmacokinetic data from the NEOLEV1 and NEOLEV2 trials were analysed using a non-linear mixed effects modelling approach. A post hoc analysis of the effect of LEV on seizure burden was conducted. SETTING Neonatal intensive care unit. PATIENTS Term neonates with electrographically confirmed seizures. INTERVENTIONS In NEOLEV1, neonates with seizures persisting following phenobarbital (PHB) received LEV 20 or 40 mg/kg bolus followed by 5 or 10 mg/kg maintenance dose(MD) daily. In NEOLEV2, patients received a 40 mg/kg intravenous LEV load, followed by 10 mg/kg doses 8 hourly. If seizures persisted, a further 20 mg/kg intravenous load was given. If seizures persisted, PHB was given. PK data were collected from 16 NEOLEV1 patients and 33 NEOLEV2 patients. cEEG data from 48 NEOLEV2 patients were analysed to investigate onset of action and seizure burden reduction. MAIN OUTCOME MEASURES Clearance (CL) and volume of distribution (Vd) were determined. Covariates that significantly affected LEV disposition were identified. RESULTS Primary outcome: The median initial LEV level was 57 µg/mL (range 19-107) after the first loading dose and at least 12 µg/mL at 48 hours in all infants. CL and Vd were estimated to be 0.0538 L/hour and 0.832 L, respectively. A direct relationship between postnatal age and CL was observed. The final population pharmacokinetic(PopPK) model described the observed data well without significant biases. CL and Vd were described as CL (L/hour)=0.0538×(weight in kg/3.34)0.75×(postnatal age in days/5.5) 0.402 and Vd (L)=0.832×(weight in kg/3.34).Seizure burden reduced within 30 min of LEV administration. 28% of patients were completely seizure free after LEV. In an additional 25% of patients, seizure burden reduced by 50%. CONCLUSIONS LEV pharmacokinetics remained predictable at higher doses. Very high-dose LEV can now be studied in neonates. TRIAL REGISTRATION NUMBER NCT01720667.
Collapse
Affiliation(s)
- Cynthia Sharpe
- Paediatric Neurology, Starship Children's Health, Auckland, New Zealand
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Derek Z Yang
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Richard H Haas
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
- Department of Neurology, Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Gail E Reiner
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Lilly Lee
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Edmund V Capparelli
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Witherspoon E, Zuczek N, Williams G, Bernstein B, Ghosh A, Culjat M, Kaushal S, Forcelli PA. A single exposure to brivaracetam or perampanel does not cause cell death in neonatal rats. Front Pediatr 2024; 12:1441891. [PMID: 39350791 PMCID: PMC11440516 DOI: 10.3389/fped.2024.1441891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Exposure to a range of anti-seizure medications (ASMs) during early brain development adversely impacts neurodevelopmental outcomes in both animal models and in clinical studies. Many ASMs, including phenobarbital, phenytoin, valproate (VPA), and benzodiazepines, are associated with acute neurotoxicity (cell death), impaired synaptic development, and long-term behavioral changes following gestational or neonatal exposure in animals. This is mirrored in clinical studies which show lasting neurodevelopmental deficits following early-life or gestational exposure to these drugs. Brivaracetam (BRV) and perampanel (PER) are two newer generation anti-seizure medications and are of interest based on their mechanisms of action (SV2A modulator, AMPA antagonist, respectively), as other drugs with these mechanisms of action do not trigger acute neurotoxicity. Both BRV and PER show anti-seizure efficacy in developing animals, but potential neurotoxicity of these drugs is unexplored. Methods To address this gap, we treated postnatal day (P)7 Sprague-Dawley rats with BRV (20, 40, 80 mg/kg) and PER (0.1, 0.9, 2.7 mg/kg), and assessed the induction of cell death across a range of vulnerable brain regions 24 h after exposure. Cell death was assessed using pathogreen staining. Results In each of the regions examined (dorsal striatum, nucleus accumbens, motor cortex, cingulate cortex, lateral thalamus, septum, hippocampus), VPA, which served as a positive control, significantly increased cell death as measured by the numer of pathogreen positive cells. By contrast, neither BRV nor PER increased the number of pathogreen positive cells in any region examined. Discussion Our results suggest that BRV and PER may have a positive safety profile-at least with respect to acute induction of cell death - and therefore may offer a safer option for the treatment of early life seizures.
Collapse
Affiliation(s)
- Eric Witherspoon
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Nicholas Zuczek
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Gabrielle Williams
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Briana Bernstein
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | - Anjik Ghosh
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Marko Culjat
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Suhasini Kaushal
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Patrick A. Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
4
|
Witherspoon E, Williams G, Zuczek N, Forcelli PA. Cenobamate suppresses seizures without inducing cell death in neonatal rats. Epilepsy Behav 2024; 158:109898. [PMID: 39002273 PMCID: PMC11551878 DOI: 10.1016/j.yebeh.2024.109898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/15/2024]
Abstract
GABA modulators such as phenobarbital (PB) and sodium channel blockers such as phenytoin (PHT) have long been the mainstay of pharmacotherapy for the epilepsies. In the context of neonatal seizures, both PB and PHT display incomplete clinical efficacy. Moreover, in animal models, neonatal exposure to these medications result in neurodegeneration raising concerns about safety. Cenobamate, a more recently approved medication, displays unique pharmacology as it is both a positive allosteric modulator of GABA-A receptors, and a voltage-gated sodium channel blocker. While cenobamate is approved for adult use, its efficacy and safety profile against neonatal seizures is poorly understood. To address this gap, we assessed the efficacy and safety of cenobamate in immature rodents. Postnatal day (P)7 rat pups were pretreated with cenobamate and challenged with the chemoconvulsant pentylenetetrazole (PTZ) to screen for anti-seizure effects. In a separate experiment, P7 rats were treated with cenobamate, and brains were processed to assess induction of cell death. Cenobamate displays dose-dependent anti-seizure efficacy in neonatal rats. Unlike PHB and PHT, it does not induce neurotoxicity in P7 rats. Thus, cenobamate may be effective at treating neonatal seizures while avoiding unwanted neurotoxic side effects such as cell death.
Collapse
Affiliation(s)
- Eric Witherspoon
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Gabrielle Williams
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Nicholas Zuczek
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA; Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
5
|
Quinlan S, Khan T, McFall D, Campos-Rodriguez C, Forcelli PA. Early life phenobarbital exposure dysregulates the hippocampal transcriptome. Front Pharmacol 2024; 15:1340691. [PMID: 38606173 PMCID: PMC11007044 DOI: 10.3389/fphar.2024.1340691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/01/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction: Phenobarbital (PB) and levetiracetam (LEV) are the first-line therapies for neonates with diagnosed seizures, however, a growing body of evidence shows that these drugs given during critical developmental windows trigger lasting molecular changes in the brain. While the targets and mechanism of action of these drugs are well understood-what is not known is how these drugs alter the transcriptomic landscape, and therefore molecular profile/gene expression during these critical windows of neurodevelopment. PB is associated with a range of neurotoxic effects in developing animals, from cell death to altered synaptic development to lasting behavioral impairment. LEV does not produce these effects. Methods: Here we evaluated the effects of PB and Lev on the hippocampal transcriptome by RNA sequencing. Neonatal rat pups were given a single dose of PB, Lev or vehicle and sacrificed 72 h later-at time at which drug is expected to be cleared. Results: We found PB induces broad changes in the transcriptomic profile (124 differentially expressed transcripts), as compared to relatively small changes in LEV-treated animals (15 transcripts). PB exposure decreased GABAergic and oligodendrocyte markers pvalb and opalin, and increased the marker of activated microglia, cd68 and the astrocyte- associated gene vegfa. These data are consistent with the existing literature showing developmental neurotoxicity associated with PB, but not LEV. Discussion: The widespread change in gene expression after PB, which affected transcripts reflective of multiple cell types, may provide a link between acute drug administration and lasting drug toxicity.
Collapse
Affiliation(s)
- Seán Quinlan
- Department of Physiology and Pharmacology, Georgetown University, Washington, DC, United States
| | - Tahiyana Khan
- Department of Physiology and Pharmacology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | - David McFall
- Department of Physiology and Pharmacology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | | | - Patrick A. Forcelli
- Department of Physiology and Pharmacology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
6
|
Ghosh A, Quinlan S, Forcelli PA. Anti-seizure medication-induced developmental cell death in neonatal rats is unaltered by history of hypoxia. Epilepsy Res 2024; 201:107318. [PMID: 38430668 PMCID: PMC11018699 DOI: 10.1016/j.eplepsyres.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Many anti-seizure medications (ASMs) trigger neuronal cell death when administered during a confined period of early life in rodents. Prototypical ASMs used to treat early-life seizures such as phenobarbital induce this effect, whereas levetiracetam does not. However, most prior studies have examined the effect of ASMs in naïve animals, and the degree to which underlying brain injury interacts with these drugs to modify cell death is poorly studied. Moreover, the degree to which drug-induced neuronal cell death differs as a function of sex is unknown. METHODS We treated postnatal day 7 Sprague Dawley rat pups with vehicle, phenobarbital (75 mg/kg) or levetiracetam (200 mg/kg). Separate groups of pups were pre-exposed to either normoxia or graded global hypoxia. Separate groups of males and females were used. Twenty-four hours after drug treatment, brains were collected and processed for markers of cell death. RESULTS Consistent with prior studies, phenobarbital, but not levetiracetam, increased cell death in cortical regions, basal ganglia, hippocampus, septum, and lateral thalamus. Hypoxia did not modify basal levels of cell death. Females - collapsed across treatment and hypoxia status, displayed a small but significant increase in cell death as compared to males in the cingulate cortex, somatosensory cortex, and the CA1 and CA3 hippocampus; these effects were not modulated by hypoxia or drug treatment. CONCLUSION We found that a history of graded global hypoxia does not alter the neurotoxic profile of phenobarbital. Levetiracetam, which does not induce cell death in normal developing animals, maintained a benign profile on the background of neonatal hypoxia. We found a sex-based difference, as female animals showed elevated levels of cell death across all treatment conditions. Together, these data address several long-standing gaps in our understanding of the neurotoxic profile of antiseizure medications during early postnatal development.
Collapse
Affiliation(s)
- Anjik Ghosh
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Sean Quinlan
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA; Department of Neuroscience, Georgetown University, Washington, DC, USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
7
|
Lazar S, Neufeld-Cohen A, Egoz I, Baranes S, Gez R, Glick P, Cohen M, Gutman H, Chapman S, Gore A. Efficacy of a combined anti-seizure treatment against cholinergic established status epilepticus following a sarin nerve agent insult in rats. Toxicol Appl Pharmacol 2024; 484:116870. [PMID: 38395364 DOI: 10.1016/j.taap.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The development of refractory status epilepticus (SE) following sarin intoxication presents a therapeutic challenge. Here, we evaluated the efficacy of delayed combined double or triple treatment in reducing abnormal epileptiform seizure activity (ESA) and the ensuing long-term neuronal insult. SE was induced in rats by exposure to 1.2 LD50 sarin followed by treatment with atropine and TMB4 (TA) 1 min later. Double treatment with ketamine and midazolam or triple treatment with ketamine, midazolam and levetiracetam was administered 30 min post-exposure, and the results were compared to those of single treatment with midazolam alone or triple treatment with ketamine, midazolam, and valproate, which was previously shown to ameliorate this neurological insult. Toxicity and electrocorticogram activity were monitored during the first week, and behavioral evaluations were performed 2 weeks post-exposure, followed by biochemical and immunohistopathological analyses. Both double and triple treatment reduced mortality and enhanced weight recovery compared to TA-only treatment. Triple treatment and, to a lesser extent, double treatment significantly ameliorated the ESA duration. Compared to the TA-only or the TA+ midazolam treatment, both double and triple treatment reduced the sarin-induced increase in the neuroinflammatory marker PGE2 and the brain damage marker TSPO and decreased gliosis, astrocytosis and neuronal damage. Finally, both double and triple treatment prevented a change in behavior, as measured in the open field test. No significant difference was observed between the efficacies of the two triple treatments, and both triple combinations completely prevented brain injury (no differences from the naïve rats). Delayed double and, to a greater extent, triple treatment may serve as an efficacious delayed therapy, preventing brain insult propagation following sarin-induced refractory SE.
Collapse
Affiliation(s)
- Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel.
| | - Adi Neufeld-Cohen
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Inbal Egoz
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Shlomi Baranes
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Rellie Gez
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Pnina Glick
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Maayan Cohen
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hila Gutman
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Shira Chapman
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Ariel Gore
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel.
| |
Collapse
|
8
|
Dudarenko MV, Pozdnyakova NG. Perinatal hypoxia and thalamus brain region: increased efficiency of antiepileptic drug levetiracetam to inhibit GABA release from nerve terminals. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Levetiracetam (LV), 2S-(2-oxo-1-pyrrolidiny1) butanamide, is an antiepileptic drug. The exact mechanisms of anticonvulsant effects of LV remain unclear. In this study, rats (Wistar strain) underwent hypoxia and seizures at the age of 10–12 postnatal days (pd). [3H]GABA release was analysed in isolated from thalamus nerve terminals (synaptosomes) during development at the age of pd 17–19 and pd 24–26 (infantile stage), pd 38–40 (puberty) and pd 66–73 (young adults) in control and after perinatal hypoxia. The extracellular level of [3H]GABA in the preparation of thalamic synaptosomes increased during development at the age of pd 38–40 and pd 66–73 as compared to earlier ones. LV did not influence the extracellular level of [3H]GABA in control and after perinatal hypoxia at all studied ages. Exocytotic [3H]GABA release in control increased at the age of pd 24–26 as compared to pd 17–19. After hypoxia, exocytotic [3H]GABA release from synaptosomes also increased during development. LV elevated [3H]GABA release from thalamic synaptosomes at the age of pd 66–73 after hypoxia and during blockage of GABA uptake by NO-711 only. LV realizes its antiepileptic effects at the presynaptic site through an increase in exocytotic release of [3H]GABA in thalamic synaptosomes after perinatal hypoxia at pd 66–73. LV exhibited a more significant effect in thalamic synaptosomes after perinatal hypoxia than in control ones. The action of LV is age-dependent, and the drug was inert at the infantile stage that can be useful for an LV application strategy in child epilepsy therapy. Keywords: brain development, exocytosis, GABA, levetiracetam, perinatal hypoxia, thalamic synaptosomes
Collapse
|
9
|
Devadasa Acharya S, Ullal SD, Blossom V, Parida A, Noushida N. Levetiracetam exposure during prenatal and postnatal period induces cognitive decline in rat offsprings, not completely prevented by Bacopa monnieri. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:897-903. [PMID: 34284529 DOI: 10.1515/jcim-2020-0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Levetiracetam (LEV) is an antiepileptic recommended during pregnancy. Bacopa monneri is a medicinal herb used in Ayurveda for improvement of cognition. Data on effects of LEV and Bacopa on cognition is inadequate. The study evaluated the cognitive effects of LEV on rat offspring of dams exposed to LEV and whether pretreatment with Bacopa monnieri, inhibits the potential cognitive decline by LEV. METHODS Pregnant rats were allocated into four groups of three rats each. Groups 1, 2, 3 and 4 received 2% gum acacia, LEV 270 mg/kg, LEV 270 mg/kg + Bacopa 100 mg/kg and LEV 270 mg/kg + Bacopa 200 mg/kg respectively during pregnancy and lactation. Three pups from all dams were chosen at random and exposed to passive avoidance, Hebb-Williams and Morris water maze tests to check for their cognition and relevant histopathology was done. RESULTS In the passive avoidance model groups 3 and 4, showed an increase in escape latency compared with group 2, demonstrating an improved learning (p=0.05). In Hebb-Williams maze, the time taken to reach reward chamber by group 2 increased compared to group 1, p=0.006, showing cognitive decline. Neuronal count in hippocampus and prefrontal cortex decreased significantly in group 2, which improved in group 3 & 4 however there was distortion of architecture in group 4. CONCLUSIONS LEV exposure in intrauterine and neonatal period induced cognitive decline in rat offsprings and Bacopa 100 mg/kg prevented LEV induced cognitive decline. However safety of exposure to Bacopa during the gestation period has to be evaluated.
Collapse
Affiliation(s)
- Sahana Devadasa Acharya
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, 575001 Karnataka, India
| | - Sheetal D Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, 575001 Karnataka, India
| | - Vandana Blossom
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Amrita Parida
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of higher Education, Manipal, Karnataka, India
| | - Nadira Noushida
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, 575001 Karnataka, India
| |
Collapse
|
10
|
Kubová H, Mikulecká A, Mareš P. The outcome of early life status epilepticus—lessons from laboratory animals. Epilepsia Open 2022; 8 Suppl 1:S90-S109. [PMID: 36352789 PMCID: PMC10173850 DOI: 10.1002/epi4.12664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Status epilepticus (SE) is the most common neurologic emergency in children. Both clinical and laboratory studies have demonstrated that SE in early life can cause brain damage and permanent behavioral abnormalities, trigger epileptogenesis, and interfere with normal brain development. In experimental rodent models, the consequences of seizures are dependent upon age, the model used, and seizure duration. In studies involving neonatal and infantile animals, the model used, experimental design, conditions during the experiment, and manipulation of animals can significantly affect the course of the experiments as well as the results obtained. Standardization of laboratory approaches, harmonization of scientific methodology, and improvement in data collection can improve the comparability of data among laboratories.
Collapse
Affiliation(s)
- Hana Kubová
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| | - Anna Mikulecká
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| | - Pavel Mareš
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| |
Collapse
|
11
|
Abstract
Most children born to women with epilepsy (WWE) are normal, but have increased risks for malformations and poor neuropsychological outcomes. Antiseizure medications (ASMs) are among the most commonly prescribed teratogenic medications in women of childbearing age. However, WWE typically cannot avoid using ASMs during pregnancy. Teratogenic risks vary across ASMs. Valproate poses a special risk for anatomic and behavioral teratogenic risks compared with other ASMs. The risks for many ASMs remain uncertain. Women of childbearing potential taking ASMs should be taking folic acid. Breastfeeding while taking ASMs seems safe. WWE should receive informed consent outlining risks before conception.
Collapse
Affiliation(s)
- Kimford J Meador
- Department of Neurology & Neurological Sciences, Stanford University, Stanford University School of Medicine, 213 Quarry Road, MC 5979, Palo Alto, CA 94304-5979, USA.
| |
Collapse
|
12
|
Nucera B, Brigo F, Trinka E, Kalss G. Treatment and care of women with epilepsy before, during, and after pregnancy: a practical guide. Ther Adv Neurol Disord 2022; 15:17562864221101687. [PMID: 35706844 PMCID: PMC9189531 DOI: 10.1177/17562864221101687] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/03/2022] [Indexed: 01/16/2023] Open
Abstract
Women with epilepsy (WWE) wishing for a child represent a highly relevant subgroup of epilepsy patients. The treating epileptologist needs to delineate the epilepsy syndrome and choose the appropriate anti-seizure medication (ASM) considering the main goal of seizure freedom, teratogenic risks, changes in drug metabolism during pregnancy and postpartum, demanding for up-titration during and down-titration after pregnancy. Folic acid or vitamin K supplements and breastfeeding are also discussed in this review. Lamotrigine and levetiracetam have the lowest teratogenic potential. Data on teratogenic risks are also favorable for oxcarbazepine, whereas topiramate tends to have an unfavorable profile. Valproate needs special emphasis. It is most effective in generalized seizures but should be avoided whenever possible due to its teratogenic effects and the negative impact on neuropsychological development of in utero-exposed children. Valproate still has its justification in patients not achieving seizure freedom with other ASMs or if a woman decides to or cannot become pregnant for any reason. When valproate is the most appropriate treatment option, the patient and caregiver must be fully informed of the risks associated with its use during pregnancies. Folate supplementation is recommended to reduce the risk of major congenital malformations. However, there is insufficient information to address the optimal dose and it is unclear whether higher doses offer greater protection. There is currently no general recommendation for a peripartum vitamin K prophylaxis. During pregnancy most ASMs (e.g. lamotrigine, oxcarbazepine, and levetiracetam) need to be increased to compensate for the decline in serum levels; exceptions are valproate and carbamazepine. Postpartum, baseline levels are reached relatively fast, and down-titration is performed empirically. Many ASMs in monotherapy are (moderately) safe for breastfeeding and women should be encouraged to do so. This review provides a practically oriented overview of the complex management of WWE before, during, and after pregnancy.
Collapse
Affiliation(s)
- Bruna Nucera
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy
| | - Francesco Brigo
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Member of the ERN EpiCARE, Salzburg, Austria
| | - Gudrun Kalss
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Member of the ERN EpiCARE, Ignaz-Harrer-Str. 79, 5020 Salzburg, Austria
| |
Collapse
|
13
|
Qiao MY, Cui HT, Zhao LZ, Miao JK, Chen QX. Efficacy and Safety of Levetiracetam vs. Phenobarbital for Neonatal Seizures: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:747745. [PMID: 34867732 PMCID: PMC8636327 DOI: 10.3389/fneur.2021.747745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Neonatal seizures are a common neurological emergency in newborns. Phenobarbital (PB) is the first-line antiepileptic drug (AED). However, PB has some side effects, such as hypotension and respiratory depression, and it can accelerate neuronal apoptosis in the immature brain. Levetiracetam (LEV), a new antiepileptic drug, has been used as a second-line drug for the treatment of neonatal seizures. Compared with PB, LEV has many advantages, including a low incidence of side effects and better neurodevelopmental outcomes. However, there are only a few systematic reviews of LEV for the treatment of neonatal seizures. Objective: To evaluate the efficacy and safety of LEV for neonatal seizures and to compare the efficacy, side effects, and neurological outcomes between LEV and PB in the treatment of neonatal seizures. Methods: The keywords LEV, PB, and neonatal seizure were searched in the MEDLINE, Cochrane Library, Web of Science, EMBASE, clinicaltrials.gov, and China National Knowledge Internet (CNKI) databases with a last update in July 2021 to collect high-quality studies. We collected studies studying the efficacy or safety of LEV and PB in the treatment of neonatal seizures applying strict inclusion and exclusion criteria. The data were extracted and outcome measures, including efficacy, side effect rate, neurological score, and mortality rate, were analyzed with RevMan 5.3 software. Results: Ten articles were finally included in the meta-analysis. The meta-analysis showed that there was no difference in efficacy between LEV and PB in the treatment of neonatal seizures. Compared with PB, the incidence of side effects of LEV was lower. The incidence of hypotension and respiratory depression in the LEV group was significantly lower than that in the PB group. In terms of long-term neurodevelopmental outcomes, there was no significant difference in the Bayley Scales of Infant Development (BSID) scores between LEV and PB. Conclusion: PB is still the first-line AED recommended by the WHO for the treatment of neonatal seizures. The new AEDs LEV may not have better efficacy than PB. At the same time, LEV is associated with better neurodevelopment outcomes and a lower risk of adverse effects. In addition, continuous EEG monitoring should be used to diagnose neonatal seizures to evaluate the severity of the seizures, remission, and drug efficacy. Systematic Review Registration: PROSPERO, identifier: CRD42021279029.
Collapse
Affiliation(s)
- Meng-Yuan Qiao
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hong-Tao Cui
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.,Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Zhi Zhao
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jing-Kun Miao
- Chongqing Health Center for Women and Children, Chongqing, China
| | - Qi-Xiong Chen
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
14
|
Barzroodi Pour M, Bayat M, Navazesh A, Soleimani M, Karimzadeh F. Exercise Improved the Anti-Epileptic Effect of Carbamazepine through GABA Enhancement in Epileptic Rats. Neurochem Res 2021; 46:2112-2130. [PMID: 34008120 DOI: 10.1007/s11064-021-03349-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/14/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Carbamazepine (CBZ) is an anticonvulsant drug that usually is used for the treatment of seizures. The anti-epileptic and the anti-epileptogenic effect of exercise has been reported, as well. This study was aimed to evaluate the synergic effect of combined therapy of exercise and CBZ in epileptic rats, as well as the alternation of the GABA pathway as a possible involved mechanism. The seizure was induced by pentylenetetrazol (PTZ) injection. Animals were divided into sham, seizure, exercise (EX), CBZ (25, 50 and 75), EX + CBZ (25, 50 and 75). Treadmill forced running for 30 min has been considered as the exercise 5 days per week for four weeks. CBZ was injected in doses of 25, 50 and 75 mg/kg, half an hour before seizure induction and 5 h after doing exercise in the animals forced to exercise. Seizure severity reduced and latency increased in the EX + CBZ (25) and EX + CBZ (50) groups compared to the seizure group. The distribution of GAD65 in both hippocampal CA1 and CA3 areas increased in the EX + CBZ (75) group. GABAA receptor α1 was up-regulated in the CA3 area of the EX + CBZ (75) group. The distribution of GAD65 in the cortical area increased in EX, EX + CBZ (50), CBZ (75) and EX + CBZ (75) groups. GABAA receptor α1 was up-regulated in the neocortex of EX + CBZ (50), CBZ (75) and EX + CBZ (75) groups. Our findings suggested that exercise has improved the efficacy of CBZ and reduced the anti-epileptic dose. The enhancement of GABA signaling might be involved in the synergistic effect of exercise and CBZ.
Collapse
Affiliation(s)
- Mitra Barzroodi Pour
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Bayat
- Department of Anatomy, Arak University of Medical Sciences, Arak, Iran
| | - Azam Navazesh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Zhou KQ, McDouall A, Drury PP, Lear CA, Cho KHT, Bennet L, Gunn AJ, Davidson JO. Treating Seizures after Hypoxic-Ischemic Encephalopathy-Current Controversies and Future Directions. Int J Mol Sci 2021; 22:ijms22137121. [PMID: 34281174 PMCID: PMC8268683 DOI: 10.3390/ijms22137121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Seizures are common in newborn infants with hypoxic-ischemic encephalopathy and are highly associated with adverse neurodevelopmental outcomes. The impact of seizure activity on the developing brain and the most effective way to manage these seizures remain surprisingly poorly understood, particularly in the era of therapeutic hypothermia. Critically, the extent to which seizures exacerbate brain injury or merely reflect the underlying evolution of injury is unclear. Current anticonvulsants, such as phenobarbital and phenytoin have poor efficacy and preclinical studies suggest that most anticonvulsants are associated with adverse effects on the developing brain. Levetiracetam seems to have less potential neurotoxic effects than other anticonvulsants but may not be more effective. Given that therapeutic hypothermia itself has significant anticonvulsant effects, randomized controlled trials of anticonvulsants combined with therapeutic hypothermia, are required to properly determine the safety and efficacy of these drugs. Small clinical studies suggest that prophylactic phenobarbital administration may improve neurodevelopmental outcomes compared to delayed administration; however, larger high-quality studies are required to confirm this. In conclusion, there is a distinct lack of high-quality evidence for whether and to what extent neonatal seizures exacerbate brain damage after hypoxia-ischemia and how best to manage them in the era of therapeutic hypothermia.
Collapse
|
16
|
Yates N, Gunn AJ, Bennet L, Dhillon SK, Davidson JO. Preventing Brain Injury in the Preterm Infant-Current Controversies and Potential Therapies. Int J Mol Sci 2021; 22:1671. [PMID: 33562339 PMCID: PMC7915709 DOI: 10.3390/ijms22041671] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Preterm birth is associated with a high risk of morbidity and mortality including brain damage and cerebral palsy. The development of brain injury in the preterm infant may be influenced by many factors including perinatal asphyxia, infection/inflammation, chronic hypoxia and exposure to treatments such as mechanical ventilation and corticosteroids. There are currently very limited treatment options available. In clinical trials, magnesium sulfate has been associated with a small, significant reduction in the risk of cerebral palsy and gross motor dysfunction in early childhood but no effect on the combined outcome of death or disability, and longer-term follow up to date has not shown improved neurological outcomes in school-age children. Recombinant erythropoietin has shown neuroprotective potential in preclinical studies but two large randomized trials, in extremely preterm infants, of treatment started within 24 or 48 h of birth showed no effect on the risk of severe neurodevelopmental impairment or death at 2 years of age. Preclinical studies have highlighted a number of promising neuroprotective treatments, such as therapeutic hypothermia, melatonin, human amnion epithelial cells, umbilical cord blood and vitamin D supplementation, which may be useful at reducing brain damage in preterm infants. Moreover, refinements of clinical care of preterm infants have the potential to influence later neurological outcomes, including the administration of antenatal and postnatal corticosteroids and more accurate identification and targeted treatment of seizures.
Collapse
Affiliation(s)
- Nathanael Yates
- The Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia;
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alistair J. Gunn
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Simerdeep K. Dhillon
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Joanne O. Davidson
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| |
Collapse
|
17
|
Yan S, Chen R, Wang M, Zha J. Carbamazepine at environmentally relevant concentrations caused DNA damage and apoptosis in the liver of Chinese rare minnows (Gobiocypris rarus) by the Ras/Raf/ERK/p53 signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116245. [PMID: 33359871 DOI: 10.1016/j.envpol.2020.116245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 05/13/2023]
Abstract
To assess genetoxicity and the underlying mechanisms of carbamazepine (CBZ) toxicity in fish, adult Chinese rare minnows (Gobiocypris rarus) were exposed to 1, 10, and 100 μg/L CBZ for 28 d. Comet assays indicated that hepatic DNA damage was significantly increased in groups of minnows exposed to CBZ at all concentrations in a dose-dependent manner compared to those of the control groups (p < 0.05). Liver levels of 8-hydroxydeoxyguanosine (8-OHdG) were significantly increased at 10 and 100 μg/L CBZ (p < 0.05). TUNEL assays indicated that the average apoptotic rates of the livers of female and male minnows were significantly increased following exposure to CBZ at all concentrations for 28 d (p < 0.05). Significant increases in caspase 3 and 9 activities after CBZ exposure at all concentrations and caspase 8 at 10 and 100 μg/L CBZ exposure reflected the presence of mitochondrial apoptosis (p < 0.05). The mRNA levels of gadd45a, mdm2, casp3 and casp9 in female and male minnows exposed to CBZ at all concentrations were significantly increased compared with those in the control groups (p < 0.05). Significant increases in the levels of p21 in female minnows exposed to 1 and 100 μg/L CBZ, p53 in female minnows at all CBZ treatments and bcl2 in male minnows exposed to 1 and 100 μg/L CBZ were observed, indicating p53 pathway activation. The inhibition of ras levels in females and males exposed to CBZ at all concentrations and increased levels of raf1 in males exposed to CBZ at all concentrations indicated Ras/Raf1/MAPK (ERK) activation. Therefore, the present study demonstrates that CBZ at environmentally relevant levels induces DNA damage and apoptosis in Chinese rare minnows by the Ras/Raf/ERK/p53 signaling pathway.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Miao Wang
- China Machinery International Engineering Design and Research Institute, Changsha, 410000, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
18
|
Pollock S, Manganas LN. Use of levetiracetam in neonates. DIAGNOSIS, MANAGEMENT AND MODELING OF NEURODEVELOPMENTAL DISORDERS 2021:389-394. [DOI: 10.1016/b978-0-12-817988-8.00034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Alix V, James M, Jackson AH, Visintainer PF, Singh R. Efficacy of Fosphenytoin as First-Line Antiseizure Medication for Neonatal Seizures Compared to Phenobarbital. J Child Neurol 2021; 36:30-37. [PMID: 32811255 DOI: 10.1177/0883073820947514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Currently used treatment protocols for neonatal seizures vary among centers with limited evidence to support the choice of a given antiseizure medication. Because of concerns about the potential negative impact of phenobarbital on long-term neurodevelopment outcomes, our unit transitioned to fosphenytoin as the first-line antiseizure medication. A retrospective observational cohort study was conducted to compare the acute and long-term outcomes of fosphenytoin and phenobarbital as first-line antiseizure medication for neonatal seizure treatment. The 2 study groups had similar baseline characteristics for neonatal variables as well as maternal antenatal complications. We did not find any differences in the acute outcomes between the 2 groups. However, significantly fewer infants in the fosphenytoin group had moderate-to-severe neurodevelopmental delay at the 18- and 24-month assessments. In conclusion, although both medications were equally efficacious for acute neonatal seizure control, fosphenytoin had the potential for significantly better neurodevelopmental outcomes at 18-24 months of age.
Collapse
Affiliation(s)
- Veronica Alix
- Department of Pediatrics, Baystate Children's Hospital, UMMS-Baystate, Springfield, MA, USA
| | - Mansi James
- Department of Pediatrics, Baystate Children's Hospital, UMMS-Baystate, Springfield, MA, USA
| | - Anthony H Jackson
- Department of Pediatrics, Baystate Children's Hospital, UMMS-Baystate, Springfield, MA, USA
- Department of Neurology, UMMS-Baystate, Springfield, MA, USA
| | - Paul F Visintainer
- Epidemiology & Biostatistics, Office of Research, UMMS-Baystate, Springfield, MA, USA
| | - Rachana Singh
- Department of Pediatrics, Baystate Children's Hospital, UMMS-Baystate, Springfield, MA, USA
| |
Collapse
|
20
|
Randomized Controlled Trial Evaluating Levetiracetam as First-line Therapy for Seizures in Neonates. Indian Pediatr 2020. [DOI: 10.1007/s13312-020-1965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Sharpe C, Reiner GE, Davis SL, Nespeca M, Gold JJ, Rasmussen M, Kuperman R, Harbert MJ, Michelson D, Joe P, Wang S, Rismanchi N, Le NM, Mower A, Kim J, Battin MR, Lane B, Honold J, Knodel E, Arnell K, Bridge R, Lee L, Ernstrom K, Raman R, Haas RH. Levetiracetam Versus Phenobarbital for Neonatal Seizures: A Randomized Controlled Trial. Pediatrics 2020; 145:peds.2019-3182. [PMID: 32385134 PMCID: PMC7263056 DOI: 10.1542/peds.2019-3182] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVES There are no US Food and Drug Administration-approved therapies for neonatal seizures. Phenobarbital and phenytoin frequently fail to control seizures. There are concerns about the safety of seizure medications in the developing brain. Levetiracetam has proven efficacy and an excellent safety profile in older patients; therefore, there is great interest in its use in neonates. However, randomized studies have not been performed. Our objectives were to study the efficacy and safety of levetiracetam compared with phenobarbital as a first-line treatment of neonatal seizures. METHODS The study was a multicenter, randomized, blinded, controlled, phase IIb trial investigating the efficacy and safety of levetiracetam compared with phenobarbital as a first-line treatment for neonatal seizures of any cause. The primary outcome measure was complete seizure freedom for 24 hours, assessed by independent review of the EEGs by 2 neurophysiologists. RESULTS Eighty percent of patients (24 of 30) randomly assigned to phenobarbital remained seizure free for 24 hours, compared with 28% of patients (15 of 53) randomly assigned to levetiracetam (P < .001; relative risk 0.35 [95% confidence interval: 0.22-0.56]; modified intention-to-treat population). A 7.5% improvement in efficacy was achieved with a dose escalation of levetiracetam from 40 to 60 mg/kg. More adverse effects were seen in subjects randomly assigned to phenobarbital (not statistically significant). CONCLUSIONS In this phase IIb study, phenobarbital was more effective than levetiracetam for the treatment of neonatal seizures. Higher rates of adverse effects were seen with phenobarbital treatment. Higher-dose studies of levetiracetam are warranted, and definitive studies with long-term outcome measures are needed.
Collapse
Affiliation(s)
- Cynthia Sharpe
- Department of Paediatric Neurology, Starship Children’s Health, Auckland, New Zealand;,Department of Neurosciences, School of Medicine, University of California, San Diego and Rady Children’s Hospital–San Diego, San Diego, California
| | - Gail E. Reiner
- Department of Neurosciences, School of Medicine, University of California, San Diego and Rady Children’s Hospital–San Diego, San Diego, California
| | - Suzanne L. Davis
- Department of Paediatric Neurology, Starship Children’s Health, Auckland, New Zealand
| | - Mark Nespeca
- Department of Neurosciences, School of Medicine, University of California, San Diego and Rady Children’s Hospital–San Diego, San Diego, California
| | - Jeffrey J. Gold
- Department of Neurosciences, School of Medicine, University of California, San Diego and Rady Children’s Hospital–San Diego, San Diego, California
| | | | - Rachel Kuperman
- Pediatric Neurology, University of California, San Francisco Benioff Children’s Hospital Oakland, Oakland, California
| | - Mary Jo Harbert
- Department of Neurosciences, School of Medicine, University of California, San Diego and Sharp Mary Birch Hospital for Women & Newborns, San Diego, California
| | - David Michelson
- Division of Pediatric Neurology, Department of Pediatrics, Loma Linda University Children’s Hospital, Loma Linda, California
| | - Priscilla Joe
- Division of Neonatology, Departments of Pediatrics and
| | - Sonya Wang
- Department of Neurosciences, School of Medicine, University of California, San Diego and Rady Children’s Hospital–San Diego, San Diego, California
| | - Neggy Rismanchi
- Department of Neurosciences, School of Medicine, University of California, San Diego and Rady Children’s Hospital–San Diego, San Diego, California
| | - Ngoc Minh Le
- Neonatal Research Institute, Sharp Mary Birch Hospital for Women & Newborns, San Diego, California
| | - Andrew Mower
- Department of Neurology, Children’s Hospital of Orange County, Orange, California
| | - Jae Kim
- Division of NeoNatology, Departments of Pediatrics and
| | - Malcolm R. Battin
- Department of Neonatology, Auckland District Health Board, Auckland, New Zealand; and
| | - Brian Lane
- Division of Neonatology, Departments of Pediatrics, University of California, San Diego and Rady Children's Hospital San Diego, San Diego, California
| | - Jose Honold
- Division of Neonatology, Departments of Pediatrics, University of California, San Diego and Rady Children's Hospital San Diego, San Diego, California
| | - Ellen Knodel
- Division of Neonatology, Departments of Pediatrics, University of California, San Diego and Rady Children's Hospital San Diego, San Diego, California
| | - Kathy Arnell
- Neonatal Research Institute, Sharp Mary Birch Hospital for Women & Newborns, San Diego, California
| | - Renee Bridge
- Division of NeoNatology, Departments of Pediatrics and
| | - Lilly Lee
- Neurosciences, School of Medicine, University of California, San Diego, San Diego, California
| | - Karin Ernstrom
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Rema Raman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Richard H. Haas
- Department of Neurosciences, School of Medicine, University of California, San Diego and Rady Children’s Hospital–San Diego, San Diego, California
| | | |
Collapse
|
22
|
Thibault C, Naim MY, Abend NS, Licht DJ, Gaynor JW, Xiao R, Massey SL. A retrospective comparison of phenobarbital and levetiracetam for the treatment of seizures following cardiac surgery in neonates. Epilepsia 2020; 61:627-635. [PMID: 32162678 DOI: 10.1111/epi.16469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To compare the safety and efficacy of phenobarbital and levetiracetam in a cohort of neonates with seizures following cardiac surgery. METHODS We performed a retrospective single-center study of consecutive neonates with electrographically confirmed seizures managed with antiseizure medication after cardiac surgery from June 15, 2012 to December 31, 2018. We compared the safety and efficacy of phenobarbital and levetiracetam as first-line therapy. RESULTS First-line therapy was phenobarbital in 31 neonates and levetiracetam in 22 neonates. Phenobarbital was associated with more adverse events (P = .006). Eight neonates (14%) experienced an adverse event related to phenobarbital use, including seven with hypotension and one with respiratory depression. No adverse events were reported with levetiracetam use. The cessation of electrographic seizures was similar in both groups, including 18 neonates (58%) with seizure cessation after phenobarbital and 12 neonates (55%) with seizure cessation after levetiracetam (P = 1.0). The combined cessation rates of phenobarbital and levetiracetam when used as first- or second-line therapy were 58% and 47%, respectively (P = .47). SIGNIFICANCE Phenobarbital was associated with more adverse events than levetiracetam, and the two drugs were equally but incompletely effective in treating electrographically confirmed seizures in neonates following cardiac surgery. Given its more acceptable safety profile and potential noninferiority, levetiracetam may be a reasonable option for first-line therapy for treatment of seizures in this population. Further prospective studies are needed to confirm these results.
Collapse
Affiliation(s)
- Céline Thibault
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nicholas S Abend
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Licht
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J William Gaynor
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Rui Xiao
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Shavonne L Massey
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
González-Maciel A, Romero-Velázquez RM, Alfaro-Rodríguez A, Sanchez Aparicio P, Reynoso-Robles R. Prenatal exposure to oxcarbazepine increases hippocampal apoptosis in rat offspring. J Chem Neuroanat 2019; 103:101729. [PMID: 31794794 DOI: 10.1016/j.jchemneu.2019.101729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 01/18/2023]
Abstract
This study assessed apoptosis in the offspring of rats exposed to oxcarbazepine (OXC) from day 7 to 15 of gestation. Three groups of pregnant Wistar rats were used: 1) Control, treated with saline solution; 2) treated with 100 mg/kg OXC; 3) treated with 100 mg/kg of carbamazepine (CBZ, as a positive control for apoptosis); the route of administration was intragastric. Apoptosis was detected at three postnatal ages using the TUNEL technique in the CA1, and CA3 regions of the hippocampus and in the dentate gyrus (DG); neurogenesis was assessed in the DG using an antibody against doublecortin. The litter characteristics were recorded. OXC increased apoptosis in all regions (p < 0.01) at the three ages evaluated. Lamination disruption occurred in CA1 and CA3 due to the neuron absence and to ectopic neurons; there were also malformations in the dorsal lamina of the DG in 38% and 25% of the pups born from rats treated with OXC and CBZ respectively. CBZ also increased apoptosis. No clear effect on neurogenesis in the DG was observed. The size of the litter was smaller (p < 0.01) in the experimental groups. Nineteen-day OXC fetuses had low weight (p < 0.01), but 21 and 30 postnatal days old CBZ and OXC pups were overweight (p < 0.01). The results demonstrate that OXC administered during gestation is pro-apoptotic, alters the cytoarchitecture of the hippocampus, reduces litter size, and probably influences postnatal weight. We provide evidence of the proapoptotic effect of CBZ when administered early in gestation.
Collapse
Affiliation(s)
- A González-Maciel
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico.
| | - R M Romero-Velázquez
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico.
| | - A Alfaro-Rodríguez
- Division of Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Secretaría de Salud, Col. Arenal de Guadalupe, Mexico City, C.P. 14389, Mexico.
| | - P Sanchez Aparicio
- Faculty of Veterinary Medicine, Department of Pharmacology, Universidad Autónoma del Estado de México, Mexico
| | - R Reynoso-Robles
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico.
| |
Collapse
|
24
|
Effect of gabapentin on fetal rat brain and its amelioration by ginger. Heliyon 2019; 5:e02387. [PMID: 31517117 PMCID: PMC6732712 DOI: 10.1016/j.heliyon.2019.e02387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 01/17/2023] Open
Abstract
Intrauterine exposure to antiepileptic drugs (AEDs) is associated with neurodevelopmental alterations causing postnatal behavioral and cognitive alterations. These disorders are associated with the interference of these AEDs with the developing cerebral cortex and hippocampal neurons. Therefore, it is crucial to identify the drugs that should be avoided during pregnancy in order to prevent AED mediated developmental alterations. The present study was conducted to investigate the effects of prenatal exposure to the antiepileptic drug gabapentin (GBP) on the rat fetal brain during the organogenesis phase and to examine the potential ameliorative effect of ginger (Zingiber officinale). Consequently, the current study addressed the developmental neural changes on the histological, immuno-histochemical and ultrastructural levels. The brain of fetuses from the GBP group showed a highly significant decrease in their weight. Histologically, the cerebral cortex and hippocampus regions of fetuses maternally injected with GBP showed layer disorganization, vacuolated neuropil and massive cell degeneration. The expression of Caspase 3 was significantly increased in the brain of GBP fetuses, unlike the expression of Bcl-2 which was significantly decreased. On the ultrastructure level, the neurons showed pyknotic and chromatolytic nuclei. The cytoplasm was rarefied with swollen organelles. Co-administration of ginger evidently ameliorated most of these effects. In conclusion, GBP administration during pregnancy could possibly affect the developing fetal brain and ginger may have ameliorating effect against the induced GBP neurotoxicity and should be taken in parallel.
Collapse
|
25
|
Demirel Yılmaz B, Eren B, Sağır D, Eren Z, Başardı Gökçe A. Stereological examination of curcumin's effects on hippocampal damage caused by the anti-epileptic drugs phenobarbital and valproic acid in the developing rat brain. Acta Histochem 2019; 121:430-436. [PMID: 30948196 DOI: 10.1016/j.acthis.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/05/2023]
Abstract
The anti-epileptic drugs phenobarbital and valproic acid have an extremely strong negative effect on cognitive processes such as learning and memory in the developing brain. We examined whether or not curcumin has protective effects on neuronal injury caused by these drugs in the developing rat brain. Young male Wistar rats were studied in two groups, a 7 days old and a 14 days old group (35 rats in each). Both groups were then divided into 7 sub-groups as the control, curcumin, dimethylsulfoxide, phenobarbital, valproic acid, phenobarbital + curcumin, and valproic acid + curcumin groups (n = 5 in each group). At 24 h after the intraperitoneal injection of the compounds, the rats were sacrificed, and the hippocampal tissue was subjected to stereological analysis with the optical fractionation method. Total numbers of neurons in the hippocampus of the 7 days old and 14 days old rats were calculated. It was found that treatment with phenobarbital resulted in a loss of 43% of the neurons, and valproic acid induced a loss of 57% of the neurons in the 7 days old rats. Curcumin prevented this loss significantly with only 19% in the phenobarbital group and 41% in the valproic acid group. In the 14 days old rat groups, phenobarbital was found to reduce the number of neurons by 30%, and valproic acid reduced it by 38%. Curcumin treatment limited neuronal loss to 3% in the phenobarbital + curcumin group and 10% in the valproic acid + curcumin group. These data strongly indicate that curcumin is a protective agent and prevents hippocampal neuronal damage induced by phenobarbital and valproic acid treatment.
Collapse
Affiliation(s)
| | - Banu Eren
- Ondokuz Mayis University Faculty of Arts and Sciences, TR-55139 Samsun, Turkey.
| | - Dilek Sağır
- Sinop University Health High School, TR-57000 Sinop, Turkey.
| | - Zafer Eren
- Ondokuz Mayis University Faculty of Arts and Sciences, TR-55139 Samsun, Turkey.
| | - Ayşe Başardı Gökçe
- Ondokuz Mayis University Faculty of Arts and Sciences, TR-55139 Samsun, Turkey.
| |
Collapse
|
26
|
Abstract
Juvenile myoclonic epilepsy (JME) is both a frequent and a very characteristic epileptic syndrome with female preponderance. Treatment of JME in women of childbearing potential must consider multiple factors such as desire for pregnancy, use of contraception, seizure control and previously used antiepileptic drugs (AEDs). Approximately 85% of cases are well controlled with valproate, which remains the reference AED in JME but is nowadays considered unsafe for the expecting mother and her fetus. The prescription of valproate is now severely restricted in women of childbearing potential but may still be considered, at the lowest possible dose and when pregnancies can be reliably planned, with temporary alternatives to valproate prescribed before fertilization. Alternatives have emerged, especially lamotrigine and levetiracetam, but also topiramate, zonisamide, and recently perampanel, but none of these AEDs can be considered fully safe in the context of pregnancy. In special settings, benzodiazepines and barbiturates may be useful. In some cases, combination therapy, especially lamotrigine and levetiracetam, may be useful or even required. However, lamotrigine may have the potential to aggravate JME, with promyoclonic effects. Carbamazepine, oxcarbazepine and phenytoin must be avoided. Valproate, levetiracetam, zonisamide, topiramate if the daily dose is ≤ 200 mg and perampanel if the daily dose is ≤ 10 mg do not affect combined hormonal contraception. Lamotrigine ≥ 300 mg/day has been shown to decrease levonorgestrel levels by 20% but does not compromise combined hormonal contraception. Patients with JME taking oral contraceptive should be counselled on the fact that the estrogenic component can reduce concentrations of lamotrigine by over 50%, putting patients at risk of increased seizures. Pregnancy is a therapeutic challenge, and the risk/benefit ratio for the mother and fetus must be considered when choosing the appropriate drug. Lamotrigine (< 325 mg daily in the European Registry of Antiepileptic Drugs in Pregnancy) and levetiracetam seem to be comparatively safer in pregnancy than other AEDs, especially topiramate and valproate. Plasma concentration of lamotrigine and levetiracetam decreases significantly during pregnancy, and dosage adjustments may be necessary. With persisting generalized tonic-clonic seizures, the combination of lamotrigine and levetiracetam offer the chance of seizure control and lesser risks of major congenital malformations. The risk of malformation increases when valproate or topiramate are included in the drug combination. In one study, the relative risk of autism and autism spectrum disorders (ASD) in children born to women with epilepsy (WWE) treated with valproate were, respectively, 5.2 for autism and 2.9 for ASD versus 2.12 for autism and 1.6 for ASD in WWE not treated with valproate. More studies are needed to assess the risk of autism with AEDs other than valproate. The current knowledge is that the risk appears to be double that in the general population. In patients with JME, valproate remains an essential and life-changing agent. The consequences of a lifetime of poorly controlled epilepsy need to be balanced against the teratogenic risks of valproate during limited times in a woman's life. The management of JME in WWE should include lifestyle interventions, with avoidance of sleep deprivation, and planned pregnancy.
Collapse
|
27
|
Favrais G, Ursino M, Mouchel C, Boivin E, Jullien V, Zohar S, Saliba E. Levetiracetam optimal dose-finding as first-line treatment for neonatal seizures occurring in the context of hypoxic-ischaemic encephalopathy (LEVNEONAT-1): study protocol of a phase II trial. BMJ Open 2019; 9:e022739. [PMID: 30679288 PMCID: PMC6347888 DOI: 10.1136/bmjopen-2018-022739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Therapeutic schedules for treating neonatal seizures remain elusive. First-line treatment with phenobarbital is widely supported but without strong scientific evidence. Levetiracetam (LEV) is an emerging and promising antiepileptic drug (AED). The aim of this phase II trial is to determine the benefits of LEV by applying a strict methodology and to estimate the optimal dose of LEV as a first-line AED to treat seizures in newborns suffering from hypoxic-ischaemic encephalopathy. METHODS AND ANALYSIS LEVNEONAT-1 is an open and sequential LEV dose-finding study. The optimal dose is that which is estimated to be associated with a toxicity not exceeding 10% and an efficacy higher than 60%. Efficacy is defined by a seizure burden reduction of 80% after the loading dose. Four increasing dose regimens will be assessed including one loading dose of 30, 40, 50 or 60 mg/kg followed by eight maintenance doses (ie, a quarter of the loading dose) injected every 8 hours. A two-patient cohort will be necessary at each dose level to consider an upper dose level assignment. The maximal sample size expected is 50 participants with a minimum of 24 patients or fewer in the case of a high rate of toxicity. Patients will be recruited in five neonatal intensive care units beginning in October 2017 and continuing for 2 years. In parallel, the LEV pharmacokinetics will be measured five times (ie, 30 min; 4 and 7 hours after the loading dose; 1-3 hours and 12-18 hours after the last maintenance dose). ETHICS AND DISSEMINATION Ethics approval has been obtained from the regional ethical committee (2016-R25) and the French Drug Safety Agency (160652A-31). The results will be published in a peer-reviewed journal. The results will also be presented at medical meetings. TRIAL REGISTRATION NUMBER NCT02229123; Pre-results.
Collapse
Affiliation(s)
- Geraldine Favrais
- Neonatal Intensive Care Unit, CHRU de Tours, Tours, France
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Moreno Ursino
- INSERM, UMRS 1138, team 22, CRC, Université Paris 5, Université Paris 6, Paris, France
| | - Catherine Mouchel
- INSERM CIC-1414, Clinical investigation Center, Université Rennes 1, Rennes, France
- Department of Clinical Pharmacology, CHRU de Rennes, Rennes, France
| | - Estelle Boivin
- Research Clinical and Innovation Delegation, CHRU de Tours, Tours, France
| | - Vincent Jullien
- INSERM U1129, Department of Pharmacology, Université Paris Descartes, Hôpital Européen Georges Pompidou, Paris, France
| | - Sarah Zohar
- INSERM, UMRS 1138, team 22, CRC, Université Paris 5, Université Paris 6, Paris, France
| | - Elie Saliba
- Neonatal Intensive Care Unit, CHRU de Tours, Tours, France
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| |
Collapse
|
28
|
Huizenga MN, Sepulveda-Rodriguez A, Forcelli PA. Preclinical safety and efficacy of cannabidivarin for early life seizures. Neuropharmacology 2019; 148:189-198. [PMID: 30633929 DOI: 10.1016/j.neuropharm.2019.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 01/25/2023]
Abstract
A significant proportion of neonatal and childhood seizures are poorly controlled by existing anti-seizure drugs (ASDs), likely due to prominent differences in ionic homeostasis and network connectivity between the immature and mature brain. In addition to the poor efficacy of current ASDs, many induce apoptosis, impair synaptic development, and produce behavioral deficits when given during early postnatal development. There is growing interest in new targets, such as cannabidiol (CBD) and its propyl analog cannabidivarin (CBDV) for early life indications. While CBD was recently approved for treatment of refractory childhood epilepsies, little is known about the efficacy or safety of CBDV. Here, we addressed this gap through a systematic evaluation of CBDV against multiple seizure models in postnatal day (P) 10 and 20 animals. We also evaluated the impact of CBDV on acute neurotoxicity in immature rats. CBDV (50-200 mg/kg) displayed an age and model-specific profile of anticonvulsant action. In P10 rats, CBDV suppressed seizures only in the pentylenetetrazole model. In P20 rats, CBDV suppressed seizures in the pentylenetetrazole, DMCM, and maximal electroshock models. Between P10 and P20, we identified significant increases in mRNA expression of TRPV1 in multiple brain regions; when CBDV was tested in P20 TRPV1 knockout mice, anticonvulsant effects were attenuated. Finally, CBDV treatment generally avoided induction of neuronal degeneration in immature rats. Together, the efficacy and safety profile of CBDV suggest it may have therapeutic value for early life seizures.
Collapse
Affiliation(s)
- Megan N Huizenga
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Alberto Sepulveda-Rodriguez
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States; Department of Neuroscience, Georgetown University, Washington, DC, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States.
| |
Collapse
|
29
|
Yi ZM, -, Wen C, Cai T, Xu L, Zhong XL, Zhan SY, Zhai SD. Levetiracetam for epilepsy: an evidence map of efficacy, safety and economic profiles. Neuropsychiatr Dis Treat 2018; 15:1-19. [PMID: 30587993 PMCID: PMC6301299 DOI: 10.2147/ndt.s181886] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy, safety and economics of levetiracetam (LEV) for epilepsy. MATERIALS AND METHODS PubMed, Scopus, the Cochrane Library, OpenGrey.eu and ClinicalTrials.gov were searched for systematic reviews (SRs), meta-analyses, randomized controlled trials (RCTs), observational studies, case reports and economic studies published from January 2007 to April 2018. We used a bubble plot to graphically display information of included studies and conducted meta-analyses to quantitatively synthesize the evidence. RESULTS A total of 14,803 records were obtained. We included 30 SRs/meta-analyses, 34 RCTs, 18 observational studies, 58 case reports and 2 economic studies after the screening process. The included SRs enrolled patients with pediatric epilepsy, epilepsy in pregnancy, focal epilepsy, generalized epilepsy and refractory focal epilepsy. Meta-analysis of the included RCTs indicated that LEV was as effective as carbamazepine (CBZ; treatment for 6 months: 58.9% vs 64.8%, OR=0.76, 95% CI: 0.50-1.16; 12 months: 54.9% vs 55.5%, OR=1.24, 95% CI: 0.79-1.93), oxcarbazepine (57.7% vs 59.8%, OR=1.34, 95% CI: 0.34-5.23), phenobarbital (50.0% vs 50.9%, OR=1.20, 95% CI: 0.51-2.82) and lamotrigine (LTG; 61.5% vs 57.7%, OR=1.22, 95% CI: 0.90-1.66). SRs and observational studies indicated a low malformation rate and intrauterine death rate for pregnant women, as well as low risk of cognitive side effects. But psychiatric and behavioral side effects could not be ruled out. LEV decreased discontinuation due to adverse events compared with CBZ (OR=0.52, 95% CI: 0.41-0.65), while no difference was found when LEV was compared with placebo and LTG. Two cost-effectiveness evaluations for refractory epilepsy with decision-tree model showed US$ 76.18 per seizure-free day gained in Canada and US$ 44 per seizure-free day gained in Korea. CONCLUSION LEV is as effective as CBZ, oxcarbazepine, phenobarbital and LTG and has an advantage for pregnant women and in cognitive functions. Limited evidence supports its cost-effectiveness. REGISTERED NUMBER PROSPERO (No CRD 42017069367).
Collapse
Affiliation(s)
- Zhan-Miao Yi
- Department of Pharmacy, Peking University Third Hospital, Beijing, China,
| | - -
- Department of Pharmacy, Peking University Third Hospital, Beijing, China,
| | - Cheng Wen
- Department of Pharmacy, Peking University Third Hospital, Beijing, China,
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University Health Science Center, Beijing, China
| | - Ting Cai
- Department of Epidemiology and Bio-statistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Lu Xu
- Department of Epidemiology and Bio-statistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Xu-Li Zhong
- Department of Pharmacy, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Si-Yan Zhan
- Department of Epidemiology and Bio-statistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Center for Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Suo-Di Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing, China,
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China,
| |
Collapse
|
30
|
Whelehan A, Delanty N. Therapeutic strategies for treating epilepsy during pregnancy. Expert Opin Pharmacother 2018; 20:323-332. [PMID: 30526135 DOI: 10.1080/14656566.2018.1550073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Counseling for women with epilepsy of childbearing potential surrounding pregnancy issues is of the utmost importance and should be done when antiepileptic medications are prescribed and reviewed regularly at clinic visits. Physicians must be familiar with risks associated with antiepileptic medication, and endeavor to minimize risks to a fetus while selecting best medications for epilepsy type. AREAS COVERED The authors discuss the role of folic acid, updated evidence relating to the occurrence of major congenital malformations and neurocognitive risks associated with antiepileptic medication. They also examine the rationale for monitoring drug levels, optimum delivery strategies, and evidence for the safety of breastfeeding while taking antiepileptic medication. EXPERT OPINION Valproate carries the highest known teratogenic risk in pregnancy and should only be prescribed to women of child-bearing potential in a specialist setting. There is a need for the ongoing register collection of risks associated with newer AEDs which lack substantial (major) data. Choosing these newer medications can create a dilemma for physicians, particularly when seizures are not well controlled or where treatment options are limited. The authors advocate a multidisciplinary team approach to managing women with epilepsy so that pregnancies in such women can be well managed in an optimum and individualized fashion.
Collapse
Affiliation(s)
- Anna Whelehan
- a Department of Neurology , Beaumont Hospital , Dublin , Ireland
| | - Norman Delanty
- a Department of Neurology , Beaumont Hospital , Dublin , Ireland.,b Department of Molecular and Cellular Therapeutics and Future Neuro , Royal College of Surgeons in Ireland , Dublin , Ireland
| |
Collapse
|
31
|
Akil O, Blits B, Lustig LR, Leake PA. Virally Mediated Overexpression of Glial-Derived Neurotrophic Factor Elicits Age- and Dose-Dependent Neuronal Toxicity and Hearing Loss. Hum Gene Ther 2018; 30:88-105. [PMID: 30183384 DOI: 10.1089/hum.2018.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Contemporary cochlear implants (CI) are generally very effective for remediation of severe to profound sensorineural hearing loss, but outcomes are still highly variable. Auditory nerve survival is likely one of the major factors underlying this variability. Neurotrophin therapy therefore has been proposed for CI recipients, with the goal of improving outcomes by promoting improved survival of cochlear spiral ganglion neurons (SGN) and/or residual hair cells. Previous studies have shown that glial-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor, and neurotrophin-3 can rescue SGNs following insult. The current study was designed to determine whether adeno-associated virus vector serotype 5 (AAV-5) encoding either green fluorescent protein or GDNF can transduce cells in the mouse cochlea to express useful levels of neurotrophin and to approximate the optimum therapeutic dose(s) for transducing hair cells and SGN. The findings demonstrate that AAV-5 is a potentially useful gene therapy vector for the cochlea, resulting in extremely high levels of transgene expression in the cochlear inner hair cells and SGN. However, overexpression of human GDNF in newborn mice caused severe neurological symptoms and hearing loss, likely due to Purkinje cell loss and cochlear nucleus pathology. Thus, extremely high levels of transgene protein expression should be avoided, particularly for proteins that have neurological function in neonatal subjects.
Collapse
Affiliation(s)
- Omar Akil
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California
| | - Bas Blits
- 2 Department of Research and Development, UniQure Biopharma B.V., Amsterdam, The Netherlands
| | - Lawrence R Lustig
- 3 Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York
| | - Patricia A Leake
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
32
|
Neuroprotective Action of the CB1/2 Receptor Agonist, WIN 55,212-2, against DMSO but Not Phenobarbital-Induced Neurotoxicity in Immature Rats. Neurotox Res 2018; 35:173-182. [PMID: 30141144 DOI: 10.1007/s12640-018-9944-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 01/14/2023]
Abstract
The developing brain is uniquely susceptible to drug-induced increases in programmed cell death or apoptosis. Many compounds, including anticonvulsant drugs, anesthetic agents, and ethanol, when administered in a narrow postnatal window in rodents, result in increased pruning of neurons. Here, we report that dimethyl sulfoxide (DMSO) triggers widespread neurodegeneration in the immature (postnatal day, P7) rat brain, an effect consistent with a prior report in neonatal mice. We found that the synthetic cannabinoid receptor agonist WIN 55,212-2 (WIN) exerts a neuroprotective effect against DMSO-induced cell death. We extended these findings to determine if WIN is neuroprotective against another drug class known to increase developmental cell death, namely antiseizure drugs. The antiseizure drug phenobarbital (PB) remains the primary treatment for neonatal seizures, despite significantly increasing cell death in the developing rodent brain. WIN exerts antiseizure effects in immature rodent seizure models, but increases the toxicity associated with neonatal ethanol exposure. We thus sought to determine if WIN would protect against or exacerbate PB-induced cell death. Unlike either the prior report with ethanol or our present findings with DMSO, WIN was largely without effect on PB-induced cell death. WIN alone did not increase cell death over levels observed in vehicle-treated rats. These data suggest that WIN has a favorable safety profile in the developing brain and could potentially serve as an adjunct therapy with phenobarbital (albeit one that does not attenuate PB-induced toxicity).
Collapse
|
33
|
Al-Muhtasib N, Sepulveda-Rodriguez A, Vicini S, Forcelli PA. Neonatal phenobarbital exposure disrupts GABAergic synaptic maturation in rat CA1 neurons. Epilepsia 2018; 59:333-344. [PMID: 29315524 DOI: 10.1111/epi.13990] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. The use of phenobarbital continues despite growing evidence that it exerts suboptimal seizure control and is associated with long-term alterations in brain structure, function, and behavior. Alterations following neonatal phenobarbital exposure include acute induction of neuronal apoptosis, disruption of synaptic development in the striatum, and a host of behavioral deficits. These behavioral deficits include those in learning and memory mediated by the hippocampus. However, the synaptic changes caused by acute exposure to phenobarbital that lead to lasting effects on brain function and behavior remain understudied. METHODS Postnatal day (P)7 rat pups were treated with phenobarbital (75 mg/kg) or saline. On P13-14 or P29-37, acute slices were prepared and whole-cell patch-clamp recordings were made from CA1 pyramidal neurons. RESULTS At P14 we found an increase in miniature inhibitory postsynaptic current (mIPSC) frequency in the phenobarbital-exposed as compared to the saline-exposed group. In addition to this change in mIPSC frequency, the phenobarbital group displayed larger bicuculline-sensitive tonic currents, decreased capacitance and membrane time constant, and a surprising persistence of giant depolarizing potentials. At P29+, the frequency of mIPSCs in the saline-exposed group had increased significantly from the frequency at P14, typical of normal synaptic development; at this age the phenobarbital-exposed group displayed a lower mIPSC frequency than did the control group. Spontaneous inhibitory postsynaptic current (sIPSC) frequency was unaffected at either P14 or P29+. SIGNIFICANCE These neurophysiological alterations following phenobarbital exposure provide a potential mechanism by which acute phenobarbital exposure can have a long-lasting impact on brain development and behavior.
Collapse
Affiliation(s)
- Nour Al-Muhtasib
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA
| | - Alberto Sepulveda-Rodriguez
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.,Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.,Department of Neuroscience, Georgetown University, Washington, DC, USA
| |
Collapse
|
34
|
Fujimura K, Mitsuhashi T, Takahashi T. Adverse effects of prenatal and early postnatal exposure to antiepileptic drugs: Validation from clinical and basic researches. Brain Dev 2017; 39:635-643. [PMID: 28450094 DOI: 10.1016/j.braindev.2017.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/19/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
Epilepsy requires the long-term administration of antiepileptic drugs (AEDs), and thus, we must consider the effects of prenatal AED exposure on fetus when treating female patients of child bearing age. Large prospective clinical researches in humans have demonstrated the following: (1) prenatal exposure to valproic acid (VPA), carbamazepine, and phenobarbital increases the risk of congenital malformations in a dose-dependent manner and (2) prenatal exposure to VPA increases the risk of higher brain function impairments including intellectual disabilities and autistic spectrum disorders in the offspring. Furthermore, basic researches in animals have shown that prenatal exposure to specific AEDs causes microscopic structural abnormalities in the fetal brain. Specifically, prenatal exposure to VPA has been reported to inhibit the differentiation of neural progenitor cells during the early to middle phases of neuronogenesis, leading to increased number of projection neurons in the superficial layers of postnatal neocortices in mice. It is indispensable to prescribe AEDs that are associated with lower risk of congenital malformations and impairment of higher brain functions as well as to administer them at requisite minimum doses.
Collapse
Affiliation(s)
- Kimino Fujimura
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takayuki Mitsuhashi
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
35
|
Sampath D, Valdez R, White AM, Raol YH. Anticonvulsant effect of flupirtine in an animal model of neonatal hypoxic-ischemic encephalopathy. Neuropharmacology 2017; 123:126-135. [PMID: 28587899 DOI: 10.1016/j.neuropharm.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/07/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022]
Abstract
Research studies suggest that neonatal seizures, which are most commonly associated with hypoxic-ischemic injury, may contribute to brain injury and adverse neurologic outcome. Unfortunately, neonatal seizures are often resistant to treatment with current anticonvulsants. In the present study, we evaluated the efficacy of flupirtine, administered at clinically relevant time-points, for the treatment of neonatal seizures in an animal model of hypoxic-ischemic injury that closely replicates features of the human syndrome. We also compared the efficacy of flupirtine to that of phenobarbital, the current first-line drug for neonatal seizures. Flupirtine is a KCNQ potassium channel opener. KCNQ channels play an important role in controlling brain excitability during early development. In this study, hypoxic-ischemic injury was induced in neonatal rats, and synchronized video-EEG records were acquired at various time-points during the experiment to identify seizures. The results revealed that flupirtine, administered either 5 min after the first electroclinical seizure, or following completion of 2 h of hypoxia, i.e., during the immediate reperfusion period, reduced the number of rats with electroclinical seizures, and also the frequency and total duration of electroclinical seizures. Further, daily dosing of flupirtine decreased the seizure burden over 3 days following HI-induction, and modified the natural evolution of acute seizures. Moreover, compared to a therapeutic dose of phenobarbital, which was modestly effective against electroclinical seizures, flupirtine showed greater efficacy. Our results indicate that flupirtine is an extremely effective treatment for neonatal seizures in rats and provide evidence for a trial of this medication in newborn humans.
Collapse
Affiliation(s)
- Dayalan Sampath
- Department of Pediatrics, Division of Neurology, School of Medicine, Translational Epilepsy Research Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert Valdez
- Department of Pediatrics, Division of Neurology, School of Medicine, Translational Epilepsy Research Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew M White
- Department of Pediatrics, Division of Neurology, School of Medicine, Translational Epilepsy Research Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yogendra H Raol
- Department of Pediatrics, Division of Neurology, School of Medicine, Translational Epilepsy Research Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
36
|
Ahmed RG, El-Gareib AW. Maternal carbamazepine alters fetal neuroendocrine-cytokines axis. Toxicology 2017; 382:59-66. [PMID: 28267586 DOI: 10.1016/j.tox.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/14/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
This study detected the impact of maternal carbamazepine (CBZ) on the fetal neuroendocrine-cytokines axis. 25 or 50mg/kg of CBZ was intraperitoneally administrated to pregnant albino rats from the gestation day (GD) 1 to 20. Both administrations of CBZ caused a hypothyroidism in dams and fetuses whereas the decreases in serum thyroxine (T4) and triiodothyronine (T3) and increases in serum thyrotropin (TSH) levels were highly significant (LSD; P <0.01) at GD 20 compared to untreated control dams. Also, both administrations had undesirable impacts on the maternofetal body weight, litter weight, survival of dams and fetuses, and their food consumption in comparison to the corresponding control. These administrations also elicited a reduction in fetal serum growth hormone (GH), interferon-γ (IFNγ), interleukins (IL-2 & 4) and prostaglandin E2 (PGE2) levels. Also, the elevation in fetal serum tumor necrosis factor-alpha (TNFα), transforming growth factor-beta (TGFβ), and interleukins (IL-1β & 17) levels was observed at embryonic day (ED) 20. Moreover, there were a cellular fragmentation, distortion, hyperemia, oedema and vacuolation in the fetal cerebellar cortex due to both maternal administrations. These developmental changes were dose-dependent. These novel results suggest that CBZ may act as a developmental immunoneuroendocrine disruptor.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
37
|
Changing antiepileptic drug use for seizures in US neonatal intensive care units from 2005 to 2014. J Perinatol 2017; 37:296-300. [PMID: 27831551 DOI: 10.1038/jp.2016.206] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/17/2016] [Accepted: 10/07/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Neonatal seizures are a common problem in the neonatal intensive care unit and are frequently treated with antiepileptic drugs. Limited data exist on current or changing antiepileptic drug use for seizures in the neonatal intensive care unit.We sought to describe trends of antiepileptic drug exposure in a large volume of US neonatal intensive care unit from 2005 to 2014 and we hypothesized increasing levetiracetam exposure over the 10-year study period. STUDY DESIGN Retrospective cohort study of infants from the Pediatrix Medical Group Clinical Data Warehouse, a large, multicenter, deidentified data set. Data were analyzed for trends in 2-year time periods. Our cohort included infants with a diagnosis of seizures who received an antiepileptic drug that were discharged from the neonatal intensive care unit from 1 January 2005 to 31 December 2014. RESULTS Among 778 395 infants from 341 facilities, we identified 9134 infants with a seizure diagnosis who received an antiepileptic drug. Phenobarbital was used in 98% of the cohort. From 2005-2006 to 2013-2014 phenobarbital exposure declined from 99 to 96% (P<0.001), phenytoin exposure decreased from 15 to 11% (P<0.001) and levetiracetam exposure increased 10-fold from 1.4 to 14% (P<0.001). Overall, <1% of infants were exposed to carbamazepine, lidocaine or topiramate. CONCLUSIONS Infants with seizures were overwhelmingly exposed to phenobarbital, despite a significant increase in levetiracetam exposure. The use of phenytoin declined and has been surpassed by levetiracetam as the second most widely used antiepileptic in the neonatal intensive care unit. These changes in antiepileptic drug usage patterns have occurred in the absence of novel efficacy data in neonates.
Collapse
|
38
|
Gerard EE, Meador KJ. An Update on Maternal Use of Antiepileptic Medications in Pregnancy and Neurodevelopment Outcomes. J Pediatr Genet 2016; 4:94-110. [PMID: 27617120 DOI: 10.1055/s-0035-1556741] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Antiepileptic drugs (AEDs) are prescribed commonly to women of childbearing age. In utero exposure to some AEDs can have significant cognitive and behavioral consequences for the unborn child. Recently, prospective studies of women taking AEDs during pregnancy have added significantly to our understanding of cognitive and behavioral teratogenic risks posed by fetal AED exposure. Valproate is clearly associated with impaired cognitive development as well as an increased risk of disorders such as autism and autism spectrum disorder. Exposure to carbamazepine, lamotrigine, levetiracetam, or phenytoin monotherapy is associated with more favorable cognitive and behavioral outcomes than valproate, but more data are required to clarify if these AEDs have more subtle effects on cognition and behavior. There are insufficient data on the developmental effects of other AEDs in humans. Further, the underlying mechanisms of cognitive teratogenesis are poorly understood, including the genetic factors that affect susceptibility to AEDs.
Collapse
Affiliation(s)
- Elizabeth E Gerard
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Kimford J Meador
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, United States
| |
Collapse
|
39
|
Vajda FJE, O'Brien TJ, Lander CM, Graham J, Eadie MJ. Antiepileptic drug combinations not involving valproate and the risk of fetal malformations. Epilepsia 2016; 57:1048-52. [DOI: 10.1111/epi.13415] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Frank J. E. Vajda
- Department of Medicine and Neurology; University of Melbourne; Royal Melbourne Hospital; Parkville Victoria Australia
| | - Terrence J. O'Brien
- Department of Medicine and Neurology; University of Melbourne; Royal Melbourne Hospital; Parkville Victoria Australia
| | - Cecilie M. Lander
- Department of Neurology; Royal Brisbane and Women's Hospital; Brisbane Queensland Australia
| | - Janet Graham
- Department of Medicine and Neurology; University of Melbourne; Royal Melbourne Hospital; Parkville Victoria Australia
| | - Mervyn J. Eadie
- Faculties of Medicine and Biomedical Science; University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
40
|
Kim EH, Ko TS. Cognitive impairment in childhood onset epilepsy: up-to-date information about its causes. KOREAN JOURNAL OF PEDIATRICS 2016; 59:155-64. [PMID: 27186225 PMCID: PMC4865638 DOI: 10.3345/kjp.2016.59.4.155] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/02/2015] [Accepted: 11/16/2015] [Indexed: 11/27/2022]
Abstract
Cognitive impairment associated with childhood-onset epilepsy is an important consequence in the developing brain owing to its negative effects on neurodevelopmental and social outcomes. While the cause of cognitive impairment in epilepsy appears to be multifactorial, epilepsy-related factors such as type of epilepsy and underlying etiology, age at onset, frequency of seizures, duration of epilepsy, and its treatment are considered important. In recent studies, antecedent cognitive impairment before the first recognized seizure and microstructural and functional alteration of the brain at onset of epilepsy suggest the presence of a common neurobiological mechanism between epilepsy and cognitive comorbidity. However, the overall impact of cognitive comorbidity in children with epilepsy and the independent contribution of each of these factors to cognitive impairment have not been clearly delineated. This review article focuses on the significant contributors to cognitive impairment in children with epilepsy.
Collapse
Affiliation(s)
- Eun-Hee Kim
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Tae-Sung Ko
- Division of Pediatric Neurology, Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Frankel S, Medvedeva N, Gutherz S, Kulick C, Kondratyev A, Forcelli PA. Comparison of the long-term behavioral effects of neonatal exposure to retigabine or phenobarbital in rats. Epilepsy Behav 2016; 57:34-40. [PMID: 26921596 PMCID: PMC4828307 DOI: 10.1016/j.yebeh.2016.01.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/18/2023]
Abstract
Anticonvulsant drugs, when given during vulnerable periods of brain development, can have long-lasting consequences on nervous system function. In rats, the second postnatal week approximately corresponds to the late third trimester of gestation/early infancy in humans. Exposure to phenobarbital during this period has been associated with deficits in learning and memory, anxiety-like behavior, and social behavior, among other domains. Phenobarbital is the most common anticonvulsant drug used in neonatology. Several other drugs, such as lamotrigine, phenytoin, and clonazepam, have also been reported to trigger behavioral changes. A new generation anticonvulsant drug, retigabine, has not previously been evaluated for long-term effects on behavior. Retigabine acts as an activator of KCNQ channels, a mechanism that is unique among anticonvulsants. Here, we examined the effects retigabine exposure from postnatal day (P)7 to P14 on behavior in adult rats. We compared these effects with those produced by phenobarbital (as a positive control) and saline (as a negative control). Motor behavior was assessed by using the open field and rotarod, anxiety-like behavior by the open field, elevated plus maze, and light-dark transition task, and learning/memory by the passive avoidance task; social interactions were assessed in same-treatment pairs, and nociceptive sensitivity was assessed via the tail-flick assay. Motor behavior was unaltered by exposure to either drug. We found that retigabine exposure and phenobarbital exposure both induced increased anxiety-like behavior in adult animals. Phenobarbital, but not retigabine, exposure impaired learning and memory. These drugs also differed in their effects on social behavior, with retigabine-exposed animals displaying greater social interaction than phenobarbital-exposed animals. These results indicate that neonatal retigabine induces a subset of behavioral alterations previously described for other anticonvulsant drugs and extend our knowledge of drug-induced behavioral teratogenesis to a new mechanism of anticonvulsant action.
Collapse
Affiliation(s)
- Sari Frankel
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Natalia Medvedeva
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Samuel Gutherz
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Catherine Kulick
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Alexei Kondratyev
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States.
| |
Collapse
|
42
|
Soysal H, Doğan Z, Kamışlı Ö. Effects of phenytoin and lamotrigine treatment on serum BDNF levels in offsprings of epileptic rats. Neuropeptides 2016; 56:1-8. [PMID: 26706181 DOI: 10.1016/j.npep.2015.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 12/01/2015] [Accepted: 12/06/2015] [Indexed: 12/01/2022]
Abstract
The role of brain-derived neurotrophic factor (BDNF) is to promote and modulate neuronal responses across neurotransmitter systems in the brain. Therefore, abnormal BDNF signaling may be associated with the pathophysiology of schizophrenia. Low BDNF levels have been reported in brains and serums of patients with psychotic disorders. In the present study, we investigated the effects of antiepileptic drugs on BDNF in developing rats. Pregnant rats were treated with phenytoin (PHT), lamotrigine (LTG) and folic acid for long-term, all through their gestational periods. Experimental epilepsy (EE) model was applied in pregnant rats. Epileptic seizures were determined with electroencephalography. After birth, serum BDNF levels were measured in 136 newborn rats on postnatal day (PND) 21 and postnatal day 38. In postnatal day 21, serum BDNF levels of experimental epilepsy group were significantly lower compared with PHT group. This decrease is statistically significant. Serum BDNF levels increased in the group LTG. This increase compared with LTG+EE group was statistically significant. In the folic acid (FA) group, levels of serum BDNF decreased statistically significantly compared to the PHT group. On postnatal day 38, no significant differences were found among the groups for serum BDNF levels. We concluded that, the passed seizures during pregnancy adversely affect fetal brain development, lowering of serum BDNF levels. PHT use during pregnancy prevents seizure-induced injury by increasing the levels of BDNF. About the increase level of BDNF, LTG is much less effective than PHT, the positive effect of folic acid on serum BDNF levels was not observed. LTG increase in BDNF is much less effective than PHT, folic acid did not show a positive effect on serum BDNF levels. Epilepsy affects fetal brain development during gestation in pregnant rats, therefore anti-epileptic therapy should be continued during pregnancy.
Collapse
Affiliation(s)
- Handan Soysal
- Faculty of Medicine, Department of Anatomy, Başkent University, Ankara, Turkey.
| | - Zümrüt Doğan
- Faculty of Medicine, Department of Anatomy, Adıyaman University, Adıyaman, Turkey
| | - Özden Kamışlı
- Faculty of Medicine, Department of Nörology, Inönü University, Malatya, Turkey
| |
Collapse
|
43
|
Kaushal S, Tamer Z, Opoku F, Forcelli PA. Anticonvulsant drug-induced cell death in the developing white matter of the rodent brain. Epilepsia 2016; 57:727-34. [PMID: 27012547 DOI: 10.1111/epi.13365] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVE During critical periods of brain development, both seizures and anticonvulsant medications can affect neurodevelopmental outcomes. In rodent models, many anticonvulsants trigger neuronal apoptosis. However, white matter apoptosis (WMA) has not been examined after anticonvulsant drug treatment. Herein, we sought to determine if anticonvulsant drugs induced apoptosis in the developing white matter (WM) in a rodent model. METHODS Postnatal day (P)7 rats were treated with phenobarbital (PB-75), MK-801 (dizocilpine, 0.5), lamotrigine (LTG-20), carbamazepine (CBZ-100), phenytoin (PHT-50), levetiracetam (LEV-250), or saline; all doses are mg/kg. Brain tissue collected 24 h after treatment was stained using the terminal deoxynucleotidyl transferase dUTP nick end labeling method. The number of degenerating cells within WM, that is, anterior commissure (AC), corpus callosum, cingulum, and hippocampus-associated WM tracts, was quantified. RESULTS Saline-treated rats showed low baseline level of apoptosis in developing WM on P8 in all the areas examined. PB, PHT, and MK-801 significantly increased apoptosis in all four brain areas examined. Exposure to CBZ, LTG, or LEV failed to increase apoptosis in all regions. SIGNIFICANCE Commonly used anticonvulsants (PB, PHT) cause apoptosis in the developing WM in a rat model; the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 has a similar effect. These results are consistent with reports of anesthesia-induced WMA during brain development. Consistent with the lack of neuronal apoptosis caused by LTG, LEV, and CBZ, these drugs did not cause WMA. Many infants treated with anticonvulsant drugs have underlying neurologic injury, including WM damage (e.g., following intraventricular hemorrhage [IVH] or hypoxic-ischemic encephalopathy [HIE]). The degree to which anticonvulsant drug treatment will alter outcomes in the presence of underlying injury remains to be examined, but avoiding drugs (when possible) that induce WMA may be beneficial.
Collapse
Affiliation(s)
- Suhasini Kaushal
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC, U.S.A
| | - Zenab Tamer
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC, U.S.A
| | - Freda Opoku
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC, U.S.A
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC, U.S.A
| |
Collapse
|
44
|
|
45
|
Brown L, Gutherz S, Kulick C, Soper C, Kondratyev A, Forcelli PA. Profile of retigabine-induced neuronal apoptosis in the developing rat brain. Epilepsia 2016; 57:660-70. [PMID: 26865186 DOI: 10.1111/epi.13335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Acute neonatal exposure to some, but not all, anticonvulsant drugs induces a profound increase in neuronal apoptosis in rats. Phenobarbital and phenytoin induce apoptosis at a therapeutically relevant dose range, lamotrigine and carbamazepine do so only at supratherapeutic doses or in polytherapy, and valproate does so even at subtherapeutic doses. Levetiracetam is devoid of pro-apoptotic effects. Retigabine, a new-generation drug, acts uniquely by enhancing the M-type potassium current. Because its safety profile in developing animals is unstudied, we sought to determine if retigabine would induce apoptosis. METHODS Postnatal day (P) 7 rat pups were treated with retigabine (5-30 mg/kg), vehicle (saline), or comparator drugs (phenobarbital, lamotrigine, levetiracetam, or carbamazepine). Cell death was assessed using amino-cupric-silver staining. A separate group of animals was treated repeatedly (three times over 24 h) with retigabine (15 mg/kg) or vehicle. To establish a pharmacokinetic profile for retigabine, we measured plasma and brain levels after drug treatment. RESULTS Consistent with prior studies from our group and others, we found phenobarbital-induced cell death throughout thalamus, nucleus accumbens, and several neocortical areas. By contrast, levetiracetam, lamotrigine, and carbamazepine were found to have no appreciable apoptotic effect on the aforementioned structures. Acute (single) exposure to retigabine, even at doses of 30 mg/kg, was also without effect on apoptosis. However, repeated (three times) exposure to retigabine triggered apoptosis in a subset of brain areas. The half-life of retigabine in plasma was 2.5 h, with appreciable concentrations reached in the brain within 1 h of administration. SIGNIFICANCE These data demonstrate that retigabine, like many other anticonvulsant drugs, is capable of triggering neuronal apoptosis in the developing rat brain. Unlike other drugs, repeated dosing of retigabine was necessary to induce this effect. This may be due to its shorter half-life as compared to other drugs, such as phenobarbital.
Collapse
Affiliation(s)
- Lindsay Brown
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, District of Columbia, U.S.A
| | - Samuel Gutherz
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, District of Columbia, U.S.A
| | - Catherine Kulick
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, District of Columbia, U.S.A
| | - Colin Soper
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, District of Columbia, U.S.A
| | - Alexei Kondratyev
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, District of Columbia, U.S.A
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, District of Columbia, U.S.A
| |
Collapse
|
46
|
Abstract
Many studies investigating cognitive outcomes in children of women with epilepsy report an increased risk of mental impairment. Verbal scores on neuropsychometric measures may be selectively more involved. While a variety of factors contribute to the cognitive problems of children of women with epilepsy, antiepileptic drugs (AEDs) appear to play a major role. The mechanisms by which AEDs affect neurodevelopmental outcomes remain poorly defined. Animal models suggest that AED-induced apoptosis, altered neurotransmitter environment, and impaired synaptogenesis are some of the mechanisms responsible for cognitive and behavioral teratogenesis. AEDs that are known to induce apoptosis, such as valproate, appear to affect children's neurodevelopment in a more severe fashion. Fetal valproate exposure has dose-dependent associations with reduced cognitive abilities across a range of domains, and these appear to persist at least until the age of 6. Some studies have shown neurodevelopmental deficiencies associated with the use of phenobarbital and possibly phenytoin. So far, most of the investigations available suggest that fetal exposures to lamotrigine or levetiracetam are safer with regard to cognition when compared with other AEDs. Studies on carbamazepine show contradictory results, but most information available suggests that major poor cognitive outcomes should not be attributed to this medication. Overall, children exposed to polytherapy prenatally appear to have worse cognitive and behavioral outcomes compared with children exposed to monotherapy, and with the unexposed. There is an increase risk of neurodevelopmental deficits when polytherapy involves the use of valproate versus other agents.
Collapse
Affiliation(s)
- Naymee J Velez-Ruiz
- Department of Neurology, Emory University, 1365 Clifton Rd., Clinic A, 2nd Fl., Atlanta, GA, 30322, USA,
| | | |
Collapse
|
47
|
Meador KJ, Loring DW. Developmental effects of antiepileptic drugs and the need for improved regulations. Neurology 2015; 86:297-306. [PMID: 26519545 DOI: 10.1212/wnl.0000000000002119] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022] Open
Abstract
Antiepileptic drugs (AEDs) are among the most common teratogenic drugs prescribed to women of childbearing age. AEDs can induce both anatomical (malformations) and behavioral (cognitive/behavioral deficits) teratogenicity. Only in the last decade have we begun to truly discriminate differential AED developmental effects. Fetal valproate exposure carries a special risk for both anatomical and behavioral teratogenic abnormalities, but the mechanisms and reasons for individual variability are unknown. Intermediate anatomical risks exist for phenobarbital and topiramate. Several AEDs (e.g., lamotrigine and levetiracetam) appear to possess low risks for both anatomical and behavioral teratogenesis. Despite advances in the past decade, our knowledge of the teratogenic risks for most AEDs and the underlying mechanisms remain inadequate. Further, the long-term effects of AEDs in neonates and older children remain uncertain. The pace of progress is slow given the lifelong consequences of diminished developmental outcomes, exposing children unnecessarily to potential adverse effects. It is imperative that new approaches be employed to determine risks more expediently. Our recommendations include a national reporting system for congenital malformations, federal funding of the North American AED Pregnancy Registry, routine meta-analyses of cohort studies to detect teratogenic signals, monitoring of AED prescription practices for women, routine preclinical testing of all new AEDs for neurodevelopmental effects, more specific Food and Drug Administration requirements to establish differential AED cognitive effects in children, and improved funding of basic and clinical research to fully delineate risks and underlying mechanisms for AED-induced anatomical and behavioral teratogenesis.
Collapse
Affiliation(s)
- Kimford J Meador
- From the Department of Neurology and Neurological Sciences (K.J.M.), Stanford University, CA; and the Departments of Neurology and Pediatrics (D.W.L.), Emory University, Atlanta, GA.
| | - David W Loring
- From the Department of Neurology and Neurological Sciences (K.J.M.), Stanford University, CA; and the Departments of Neurology and Pediatrics (D.W.L.), Emory University, Atlanta, GA
| |
Collapse
|
48
|
Mundy WR, Padilla S, Breier JM, Crofton KM, Gilbert ME, Herr DW, Jensen KF, Radio NM, Raffaele KC, Schumacher K, Shafer TJ, Cowden J. Expanding the test set: Chemicals with potential to disrupt mammalian brain development. Neurotoxicol Teratol 2015; 52:25-35. [PMID: 26476195 DOI: 10.1016/j.ntt.2015.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 11/15/2022]
Abstract
High-throughput test methods including molecular, cellular, and alternative species-based assays that examine critical events of normal brain development are being developed for detection of developmental neurotoxicants. As new assays are developed, a "training set" of chemicals is used to evaluate the relevance of individual assays for specific endpoints. Different training sets are necessary for each assay that would comprise a developmental neurotoxicity test battery. In contrast, evaluation of the predictive ability of a comprehensive test battery requires a set of chemicals that have been shown to alter brain development after in vivo exposure ("test set"). Because only a small number of substances have been well documented to alter human neurodevelopment, we have proposed an expanded test set that includes chemicals demonstrated to adversely affect neurodevelopment in animals. To compile a list of potential developmental neurotoxicants, a literature review of compounds that have been examined for effects on the developing nervous system was conducted. The search was limited to mammalian studies published in the peer-reviewed literature and regulatory studies submitted to the U.S. EPA. The definition of developmental neurotoxicity encompassed changes in behavior, brain morphology, and neurochemistry after gestational or lactational exposure. Reports that indicated developmental neurotoxicity was observed only at doses that resulted in significant maternal toxicity or were lethal to the fetus or offspring were not considered. As a basic indication of reproducibility, we only included a chemical if data on its developmental neurotoxicity were available from more than one laboratory (defined as studies originating from laboratories with a different senior investigator). Evidence from human studies was included when available. Approximately 100 developmental neurotoxicity test set chemicals were identified, with 22% having evidence in humans.
Collapse
Affiliation(s)
- William R Mundy
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Stephanie Padilla
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Joseph M Breier
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kevin M Crofton
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mary E Gilbert
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David W Herr
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Karl F Jensen
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nicholas M Radio
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kathleen C Raffaele
- Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC, USA
| | | | - Timothy J Shafer
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - John Cowden
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
49
|
Mula M. Sertraline-carbamazepine neurotoxic interaction: Fiction or fact? Epilepsia 2015; 56:1181-2. [PMID: 26149800 DOI: 10.1111/epi.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marco Mula
- Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's Hospital, London, United Kingdom. .,Institute of Medical and Biomedical Sciences, St. George's University of London, London, United Kingdom.
| |
Collapse
|
50
|
Cognitive outcomes of prenatal antiepileptic drug exposure. Epilepsy Res 2015; 114:89-97. [PMID: 26088891 DOI: 10.1016/j.eplepsyres.2015.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/13/2015] [Accepted: 04/23/2015] [Indexed: 01/18/2023]
Abstract
Antiepileptic drugs (AEDs) have been known to have teratogenic effects for a little over 50 years. While early reports focused on fetal malformations, there has been an increasing amount of data over the last few decades exploring the cognitive outcomes of offspring exposed to AEDs in utero. Although the challenges of confounding factors and varied methodologies have led to inconsistent results, the negative impact of some of the agents, such as valproate, have become clear. Further studies are needed to evaluate the cognitive effects of prenatal exposure to many AEDs which have not been tested, to clarify the effects of existing AEDs which have yielded mixed results, and to better understand the effects of polytherapy. Research in animal models is warranted to screen AEDs for their effects on cognition in exposed offspring and to further our understanding of the underlying mechanisms by which AEDs exert their harmful effects on the developing brain. And finally, new AEDs without these harmful effects and agents which can prevent or reverse the negative consequences imparted by AED therapy on cognition should be sought.
Collapse
|