1
|
Jena S, Gonzalez G, Vítek D, Kvasnicová M, Štěpánková Š, Strnad M, Voller J, Chanda K. Novel neuroprotective 5,6-dihydropyrido[2',1':2,3]imidazo[4,5-c]quinoline derivatives acting through cholinesterase inhibition and CB2 signaling modulation. Eur J Med Chem 2024; 276:116592. [PMID: 39013357 DOI: 10.1016/j.ejmech.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024]
Abstract
A novel group of 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines was prepared via a microwave assisted one-pot telescopic approach. The synthetic sequence involves the formation of an amine precursor of imidazo [1,2-a]pyridine via condensation and reduction under microwave irradiation. Subsequently, the Pictet-Spengler cyclisation reaction occurs with ketones (cyclic or acyclic) to obtain substituted 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines in excellent yields. The compounds were tested as neuroprotective agents. Observed protection of neuron-like cells, SH-SY5Y differentiated with ATRA, in Parkinson's and Huntington's disease models inspired further mechanistic studies of protective activity against damage induced by 1-methyl-4-phenylpyridinium (MPP+), a compound causing Parkinson's disease. The novel compounds exhibit similar or higher potency than ebselen, an established drug with antioxidant activity, in the cells against MPP + -induced total cellular superoxide production and cell death. However, they exhibit a significantly higher capacity to reduce mitochondrial superoxide and preserve mitochondrial membrane potential. We also observed marked differences between a selected derivative and ebselen in terms of normalizing MPP + -induced phosphorylation of Akt and ERK1/2. The cytoprotective activity was abrogated when signaling through cannabinoid receptor CB2 was blocked. The compounds also inhibit both acetylcholine and butyrylcholine esterases. Overall the data show that novel 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinoline have a broad cytoprotective activity which is mediated by several mechanisms including mitoprotection.
Collapse
Affiliation(s)
- Sushovan Jena
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gabriel Gonzalez
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Department of Neurology, University Hospital in Olomouc, I. P. Pavlova 6, 77520, Olomouc, Czech Republic
| | - Dominik Vítek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77515, Olomouc, Czech Republic
| | - Marie Kvasnicová
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Jiří Voller
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77515, Olomouc, Czech Republic.
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam, 782435, India.
| |
Collapse
|
2
|
Kandhari K, Mishra JPN, Agarwal R, Singh RP. Acacetin induces sustained ERK1/2 activation and RIP1-dependent necroptotic death in breast cancer cells. Toxicol Appl Pharmacol 2023; 462:116409. [PMID: 36740148 DOI: 10.1016/j.taap.2023.116409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Acacetin (AC), a naturally occurring flavonoid has shown anticancer potential. Herein, we studied the mechanisms of cell death and growth inhibition by AC in breast carcinoma T-47D and MDA-MB-231 cells. AC (10-40 μM) significantly decreased the levels of G2/M phase cyclins and CDKs, simultaneously increasing the expression of CDK inhibitors including Cip1/p21. A concentration-dependent increase in cell death was noted in both breast cancer cell lines with no such considerable effects on MCF-10A non-tumorigenic breast cells. The cell death-inducing potential of AC was further confirmed using confocal microscopy and flow cytometry analysis. AC resulted in mitochondrial superoxide generation, DNA damage, and ROS generation. N-acetyl cysteine (NAC) pre-treatment inhibited ROS generation and partially reversed ERK1/2 activation as well as cell death by AC. Further, AC enhanced the expression of RIP1 and RIP3, which mediate necroptosis. RIP1-specific inhibitor Necrostatin-1 (NS-1) reversed the AC-induced DNA damage and cell death. Collectively, these findings, for the first time, suggested that AC exerts its antitumor potential through ROS induction and RIP1-dependent necroptosis in breast carcinoma cells.
Collapse
Affiliation(s)
- Kushal Kandhari
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jai P N Mishra
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
3
|
ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021; 10:cells10102509. [PMID: 34685488 PMCID: PMC8533760 DOI: 10.3390/cells10102509] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.
Collapse
|
4
|
DsbA-L mediated renal tubulointerstitial fibrosis in UUO mice. Nat Commun 2020; 11:4467. [PMID: 32948751 PMCID: PMC7501299 DOI: 10.1038/s41467-020-18304-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies have reported that upregulation of disulfide-bond A oxidoreductase-like protein (DsbA-L) prevented lipid-induced renal injury in diabetic nephropathy (DN). However, the role and regulation of proximal tubular DsbA-L for renal tubulointerstitial fibrosis (TIF) remains unclear. In current study, we found that a proximal tubules-specific DsbA-L knockout mouse (PT-DsbA-L-KO) attenuated UUO-induced TIF, renal cell apoptosis and inflammation. Mechanistically, the DsbA-L interacted with Hsp90 in mitochondria of BUMPT cells which activated the signaling of Smad3 and p53 to produce connective tissue growth factor (CTGF) and then resulted in accumulation of ECM of BUMPT cells and mouse kidney fibroblasts. In addition, the progression of TIF caused by UUO, ischemic/reperfusion (I/R), aristolochic acid, and repeated acute low-dose cisplatin was also alleviated in PT-DsbA-L-KO mice via the activation of Hsp90 /Smad3 and p53/CTGF axis. Finally, the above molecular changes were verified in the kidney biopsies from patients with obstructive nephropathy (Ob). Together, these results suggest that DsbA-L in proximal tubular cells promotes TIF via activation of the Hsp90 /Smad3 and p53/CTGF axis. DsbA-L upregulation prevents lipid-induced renal injury in diabetic nephropathy. Here, the authors show that DsbA-L knockout attenuates tubulointerstitial fibrosis in mice, and show that this occurs via activation of Smad3 and p53, which result in modulation of CTGF, a regulator of kidney fibrosis.
Collapse
|
5
|
miRNA-20a suppressed lipopolysaccharide‐induced HK‐2 cells injury via NFκB and ERK1/2 signaling by targeting CXCL12. Mol Immunol 2020; 118:117-123. [DOI: 10.1016/j.molimm.2019.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/26/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
|
6
|
Wei L, Qin Y, Jiang L, Yu X, Xi Z. PPARγ and mitophagy are involved in hypoxia/reoxygenation-induced renal tubular epithelial cells injury. J Recept Signal Transduct Res 2019; 39:235-242. [PMID: 31538845 DOI: 10.1080/10799893.2019.1660894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Renal tubular epithelial cell (RTEC) injury is the main cause and common pathological process of various renal diseases. Mitochondrial dysfunction (MtD) is a pathological process after renal injury. Mitophagy is vital for mitochondrial function. Hypoxia is a common cause of RTEC injury. Peroxisome proliferator-activated receptor γ (PPARγ) is involved in cell proliferation, apoptosis, and inflammation. Previous studies have shown that the low expression of PPARγ might be involved in hypoxia-induced RTEC injury. The present study aimed to investigate the correlation between PPARγ and mitophagy in damaged RTEC in the hypoxia/reoxygenation (HR) model. The results showed that HR inhibited the expression of PPARγ, but increased the expression of LC3II, Atg5, SQSTM1/P62, and PINK1 in a time-dependent manner. Moreover, mitochondrial DNA (mt DNA) copy number, mitochondria membrane potential (MMP) levels, ATP content, and cell viability were decreased in hypoxic RTECs, the expression of SQSTM1/P62 and PINK1, the release of cytochrome c (cyt C), and production of reactive oxygen species (ROS) were increased. Mitochondrial-containing autophagosomes (APs) were detected using transmission election microscope (TEM) and laser scanning confocal microscope (LSCM). Furthermore, PPARγ protein expression was negatively correlated with that of LC3II, PINK1, and the positive rate of RTEC-containing mitochondrial-containing APs (all p < .05), but positively correlated with cell viability, MMP level, and ATP content (all p < .05). These data suggested that PPARγ and mitophagy are involved in the RTEC injury process. Thus, a close association could be detected between PPARγ and mitophagy in HR-induced RTEC injury, albeit additional investigation is imperative.
Collapse
Affiliation(s)
- Luming Wei
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Yuanhan Qin
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Ling Jiang
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Xueyun Yu
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Zhiyang Xi
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| |
Collapse
|
7
|
Targeting enhancer of zeste homolog 2 protects against acute kidney injury. Cell Death Dis 2018; 9:1067. [PMID: 30341286 PMCID: PMC6195522 DOI: 10.1038/s41419-018-1012-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 11/08/2022]
Abstract
Despite the established oncogenic and profibrotic functions of enhancer of zeste homolog 2 (EZH2), a methyltransferase that induces histone H3 lysine 27 trimethylation (H3K27me3), its role in acute kidney injury (AKI) remains unclear. In this study, we demonstrated that EZH2 and H3K27me3 were upregulated in the murine kidney with AKI induced by either ischemia-reperfusion (I/R) or folic acid (FA). Pharmacologic inhibition of EZH2 with 3-deazaneplanocin A (3-DZNeP) prevented tubular injury in both models as demonstrated by reduced renal dysfunction, diminished neutrophil gelatinase-associated lipocalin expression and decreased renal tubular cell death. Injury to the kidney resulted in reduced expression of E-cadherin and ZO-1, whereas EZH2 inhibition largely preserved their expression. Moreover, 3-DZNep was effective in counteracting the increased expression of matrix metalloproteinase (MMP)-2 and MMP-9, as well as the phosphorylation of Raf-1 and ERK1/2 in the injured kidney. Conversely, blocking EZH2 reversed the decrease of tissue inhibitor of metalloproteinase (TIMP)-2 and metalloproteinase (TIMP)-3, and Raf kinase inhibitor protein (RKIP) in the kidney after acute injury. Similarly, oxidant injury to cultured kidney proximal tubular epithelial cells caused a decrease in the expression of E-cadherin, ZO-1, TIMP-2/-3, and RKIP, as well as an increase in the expression of MMP-2/9 and phosphorylation of Raf-1 ERK1/2. Blocking EZH2 with 3-DZNep or SiRNA hindered these responses. Thus, these results suggest that targeting EZH2 protects against AKI through a mechanism associated with the preservation of adhesion/junctions, reduction of matrix metalloproteinases and attenuation of the Raf-1/ERK1/2 pathway.
Collapse
|
8
|
Hou X, Xiao H, Zhang Y, Zeng X, Huang M, Chen X, Birnbaumer L, Liao Y. Transient receptor potential channel 6 knockdown prevents apoptosis of renal tubular epithelial cells upon oxidative stress via autophagy activation. Cell Death Dis 2018; 9:1015. [PMID: 30282964 PMCID: PMC6170481 DOI: 10.1038/s41419-018-1052-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/04/2018] [Accepted: 09/10/2018] [Indexed: 01/24/2023]
Abstract
Reactive oxygen species (ROS) are generated under various pathological conditions such as renal ischemia/reperfusion (I/R) injury and provoke damage to multiple cellular organelles and processes. Overproduction of ROS causes oxidative stress and contributes to damages of renal proximal tubular cells (PTC), which are the main cause of the pathogenesis of renal I/R injury. Autophagy is a dynamic process that removes long-lived proteins and damaged organelles via lysosome-mediated degradation, which has an antioxidant effect that relieves oxidative stress. The canonical transient receptor potential channel 6 (TRPC6), a nonselective cation channel that allows passage of Ca2+, plays an important role in renal disease. Yet, the relationship between TRPC6 and autophagy, as well as their functions in renal oxidative stress injury, remains unclear. In this study, we found that oxidative stress triggered TRPC6-dependent Ca2+ influx in PTC to inhibit autophagy, thereby rendering cells more susceptible to death. We also demonstrated that TRPC6 knockout (TRPC6-/-) or inhibition by SAR7334, a TRPC6-selective inhibitor, increased autophagic flux and mitigated oxidative stress-induced apoptosis of PTC. The protective effects of TRPC6 ablation were prevented by autophagy inhibitors Chloroquine and Bafilomycin A1. Moreover, this study also shows that TRPC6 blockage promotes autophagic flux via inhibiting the PI3K/Akt/mTOR and ERK1/2 signaling pathways. This is the first evidence showing that TRPC6-mediated Ca2+ influx plays a novel role in suppressing cytoprotective autophagy triggered by oxidative stress in PTC, and it may become a novel therapeutic target for the treatment of renal oxidative stress injury in the future.
Collapse
Affiliation(s)
- Xin Hou
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Department of Anatomy, Medical College, Affiliated Hospital, Hebei University of Engineering, 056002, Handan, China
| | - Haitao Xiao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yanhong Zhang
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xixi Zeng
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Mengjun Huang
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiaoyun Chen
- Department of Pathology, First Hospital of Wuhan, 430030, Wuhan, China
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF, Buenos Aires, Argentina. .,Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.
| | - Yanhong Liao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China. .,Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
9
|
Bilal S, Jaggi S, Janosevic D, Shah N, Teymour S, Voronina A, Watari J, Axis J, Amsler K. ZO-1 protein is required for hydrogen peroxide to increase MDCK cell paracellular permeability in an ERK 1/2-dependent manner. Am J Physiol Cell Physiol 2018; 315:C422-C431. [PMID: 29874107 DOI: 10.1152/ajpcell.00185.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen peroxide (H2O2) increases paracellular permeability of Madin-Darby canine kidney (MDCK) cells, but the mechanism mediating this effect remains unclear. Treatment of MDCK cells with H2O2 activated ERK 1/2. Inhibition of ERK 1/2 activation blocked the ability of H2O2 to increase paracellular permeability. Knockdown of zonula occludens-1 (ZO-1) protein but not occludin eliminated the ability of H2O2 to increase paracellular permeability. H2O2 treatment did not, however, affect the total cell content or contents of the Triton X-100-soluble and -insoluble fractions for occludin, ZO-1, or ZO-2. H2O2 treatment decreased the number of F-actin stress fibers in the basal portion of the cells. Similar to wild-type MDCK cells, H2O2 increased ERK 1/2 activation in ZO-1 knockdown and occludin knockdown cells. Inhibition of ERK 1/2 activation blocked the increase in paracellular permeability in occludin knockdown cells. ZO-1 knockdown cell paracellular permeability was regulated by PP1, an src inhibitor, indicating that the loss of response to H2O2 was not a general loss of the ability to regulate the paracellular barrier. Inhibition of myosin ATPase activity with blebbistatin increased paracellular permeability in ZO-1 knockdown cells but not in wild-type MDCK cells. H2O2 treatment sensitized wild-type MDCK cells to inhibition of myosin ATPase. Knockdown of TOCA-1 protein, which promotes formation of local branched actin networks, reproduced the effects of ZO-1 protein knockdown. These results demonstrate that H2O2 increases MDCK cell paracellular permeability through activation of ERK 1/2. This H2O2 action requires ZO-1 protein and TOCA-1 protein, suggesting involvement of the actin cytoskeleton.
Collapse
Affiliation(s)
- Sahar Bilal
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Shirin Jaggi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Danielle Janosevic
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Nikita Shah
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Shereen Teymour
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Angelina Voronina
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Jessica Watari
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Josephine Axis
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Kurt Amsler
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| |
Collapse
|
10
|
Soto C, Bergado G, Blanco R, Griñán T, Rodríguez H, Ros U, Pazos F, Lanio ME, Hernández AM, Álvarez C. Sticholysin II-mediated cytotoxicity involves the activation of regulated intracellular responses that anticipates cell death. Biochimie 2018; 148:18-35. [DOI: 10.1016/j.biochi.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
|
11
|
Jella KK, Moriarty R, McClean B, Byrne HJ, Lyng FM. Reactive oxygen species and nitric oxide signaling in bystander cells. PLoS One 2018; 13:e0195371. [PMID: 29621312 PMCID: PMC5886541 DOI: 10.1371/journal.pone.0195371] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 03/21/2018] [Indexed: 12/16/2022] Open
Abstract
It is now well accepted that radiation induced bystander effects can occur in cells exposed to media from irradiated cells. The aim of this study was to follow the bystander cells in real time following addition of media from irradiated cells and to determine the effect of inhibiting these signals. A human keratinocyte cell line, HaCaT cells, was irradiated (0.005, 0.05 and 0.5 Gy) with γ irradiation, conditioned medium was harvested after one hour and added to recipient bystander cells. Reactive oxygen species, nitric oxide, Glutathione levels, caspase activation, cytotoxicity and cell viability was measured after the addition of irradiated cell conditioned media to bystander cells. Reactive oxygen species and nitric oxide levels in bystander cells treated with 0.5Gy ICCM were analysed in real time using time lapse fluorescence microscopy. The levels of reactive oxygen species were also measured in real time after the addition of extracellular signal-regulated kinase and c-Jun amino-terminal kinase pathway inhibitors. ROS and glutathione levels were observed to increase after the addition of irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). Caspase activation was found to increase 4 hours after irradiated cell conditioned media treatment (0.005, 0.05 and 0.5 Gy ICCM) and this increase was observed up to 8 hours and there after a reduction in caspase activation was observed. A decrease in cell viability was observed but no major change in cytotoxicity was found in HaCaT cells after treatment with irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). This study involved the identification of key signaling molecules such as reactive oxygen species, nitric oxide, glutathione and caspases generated in bystander cells. These results suggest a clear connection between reactive oxygen species and cell survival pathways with persistent production of reactive oxygen species and nitric oxide in bystander cells following exposure to irradiated cell conditioned media.
Collapse
Affiliation(s)
- Kishore Kumar Jella
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Roisin Moriarty
- Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin, Ireland
| | | | - Hugh J. Byrne
- Focas Institute, Dublin Institute of Technology, Dublin, Ireland
| | - Fiona M. Lyng
- Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Physics, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
12
|
Xiong C, Zang X, Zhou X, Liu L, Masucci MV, Tang J, Li X, Liu N, Bayliss G, Zhao TC, Zhuang S. Pharmacological inhibition of Src kinase protects against acute kidney injury in a murine model of renal ischemia/reperfusion. Oncotarget 2018; 8:31238-31253. [PMID: 28415724 PMCID: PMC5458204 DOI: 10.18632/oncotarget.16114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
Activation of Src kinase has been implicated in the pathogenesis of acute brain, liver, and lung injury. However, the role of Src in acute kidney injury (AKI) remains unestablished. To address this, we evaluated the effects of Src inhibition on renal dysfunction and pathological changes in a murine model of AKI induced by ischemia/reperfusion (I/R). I/R injury to the kidney resulted in increased Src phosphorylation at tyrosine 416 (activation). Administration of PP1, a highly selective Src inhibitor, blocked Src phosphorylation, improved renal function and ameliorated renal pathological damage. PP1 treatment also suppressed renal expression of neutrophil gelatinase-associated lipocalin and reduced apoptosis in the injured kidney. Moreover, Src inhibition prevented downregulation of several adherens and tight junction proteins, including E-cadherin, ZO-1, and claudins-1/−4 in the kidney after I/R injury as well as in cultured renal proximal tubular cells following oxidative stress. Finally, PP1 inhibited I/R–induced renal expression of matrix metalloproteinase-2 and -9, phosphorylation of extracellular signal–regulated kinases1/2, signal transducer and activator of transcription-3, and nuclear factor-κB, and the infiltration of macrophages into the kidney. These data indicate that Src is a pivotal mediator of renal epithelial injury and that its inhibition may have a therapeutic potential to treat AKI.
Collapse
Affiliation(s)
- Chongxiang Xiong
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Xiaoxu Zhou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Lirong Liu
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Monica V Masucci
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jinhua Tang
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuezhu Li
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Na Liu
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Boston University, Providence, RI, 02908, USA
| | - Shougang Zhuang
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
13
|
SIRT2-mediated FOXO3a deacetylation drives its nuclear translocation triggering FasL-induced cell apoptosis during renal ischemia reperfusion. Apoptosis 2018; 22:519-530. [PMID: 28078537 DOI: 10.1007/s10495-016-1341-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We have found that Fas/FasL-mediated "extrinsic" pathway promoted cell apoptosis induced by renal ischemic injury. This study is to elucidate the upstream mechanism regulating FasL-induced extrinsic pathway during renal ischemia/reperfusion. Results demonstrated that when SIRT2 was activated by renal ischemia/reperfusion, activated SIRT2 could bind to and deacetylate FOXO3a, promoting FOXO3a nuclear translocation which resulted in an increase of nuclear FOXO3a along with FasL expression and activation of caspase8 and caspase3, triggering cell apoptosis during renal ischemia/reperfusion. The administration of SIRT2 inhibitor AGK2 prior to renal ischemia decreased significantly the number of apoptotic renal tubular cells and alleviated ultrastructure injury. These results indicate that inhibition of FOXO3a deacetylation might be a promising therapeutic approach for renal ischemia /reperfusion injury.
Collapse
|
14
|
Robinson BL, Dumas M, Ali SF, Paule MG, Gu Q, Kanungo J. Mechanistic studies on ketamine-induced mitochondrial toxicity in zebrafish embryos. Neurotoxicol Teratol 2017; 69:63-72. [PMID: 29225006 DOI: 10.1016/j.ntt.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022]
Abstract
Ketamine, a phencyclidine derivative, is an antagonist of the Ca2+-permeable N-methyl-d-aspartate (NMDA)-type glutamate receptors. It is a pediatric anesthetic and has been implicated in developmental neurotoxicity. Ketamine has also been shown to deplete ATP in mammalian cells. Our previous studies showed that acetyl l-carnitine (ALCAR) prevented ketamine-induced cardiotoxicity and neurotoxicity in zebrafish embryos. Based on our finding that ALCAR's protective effect was blunted by oligomycin A, an inhibitor of ATP synthase, we further investigated the effects of ketamine and ALCAR on ATP levels, mitochondria and ATP synthase in zebrafish embryos. The results demonstrated that ketamine reduced ATP levels in the embryos but not in the presence of ALCAR. Ketamine reduced total mitochondrial protein levels and mitochondrial potential, which were prevented with ALCAR co-treatment. To determine the cause of ketamine-induced ATP deficiency, we explored the status of ATP synthase. The results showed that a subunit of ATP synthase, atp5α1, was transcriptionally down-regulated by ketamine, but not in the presence of ALCAR, although ketamine caused a significant upregulation in another ATP synthase subunit, atp5β and total ATP synthase protein levels. Most of the ATP generated by heart mitochondria are utilized for its contraction and relaxation. Ketamine-treated embryos showed abnormal heart structure, which was abolished with ALCAR co-treatment. This study offers evidence for a potential mechanism by which ketamine could cause ATP deficiency mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Bonnie L Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Melanie Dumas
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
15
|
Ni Y, Seballos S, Fletcher B, Romigh T, Yehia L, Mester J, Senter L, Niazi F, Saji M, Ringel MD, LaFramboise T, Eng C. Germline compound heterozygous poly-glutamine deletion in USF3 may be involved in predisposition to heritable and sporadic epithelial thyroid carcinoma. Hum Mol Genet 2017; 26:243-257. [PMID: 28011713 PMCID: PMC5351935 DOI: 10.1093/hmg/ddw382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
Cowden syndrome (CS) is an autosomal dominant disorder that predisposes to breast, thyroid, and other epithelial cancers. Differentiated thyroid carcinoma (DTC), as one of the major component cancers of CS, is the fastest rising incident cancer in the USA, and the most familial of all solid tumours. To identify additional candidate genes of CS and potentially DTC, we analysed a multi-generation CS-like family with papillary thyroid cancer (PTC), applying a combined linkage-based and whole-genome sequencing strategy and identified an in-frame germline compound heterozygous deletion, p.[Gln1478del];[Gln1476-Gln1478del] in USF3 (previously known as KIAA2018). Among 90 unrelated CS/CS-like individuals, 29% were found to have p.[Gln1478del];[Gln1476-Gln1478del]. Of 497 TCGA PTC individuals, 138 (27%) were found to carry this germline compound deletion, with somatically decreased tumour USF3 expression. We demonstrate an increased migration phenotype along with enhanced epithelial-to-mesenchymal transition (EMT) signature after USF3 knockdown or USF3 p.[Gln1478del];[Gln1476-Gln1478del] overexpression, which sensitizes cells to the endoplasmic reticulum (ER) stress. Loss of USF3 function induced cell necrosis-like features and impaired respiratory capacity while providing a glutamine-dependent cell survival advantage, strongly suggests a metabolic survival and migration-favouring microenvironment for carcinogenesis. Therefore, USF3 may be involved in the predisposition of thyroid cancer. Importantly, the results that glutamine-dependent survival and sensitivity to ER stress in USF3-deficient cells provide avenues for therapeutic and adjunct preventive interventions for both sporadic cancer as well as cancer predisposition syndromes with similar mechanisms.
Collapse
Affiliation(s)
- Ying Ni
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA.,Department of Genetics and Genome Sciences.,Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, OH, USA
| | - Spencer Seballos
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA
| | - Benjamin Fletcher
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA
| | - Todd Romigh
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA
| | - Jessica Mester
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA
| | - Leigha Senter
- Division of Human Genetics.,Thyroid Center Unit, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, OH, USA
| | - Farshad Niazi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA
| | - Motoyasu Saji
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University School of Medicine, Columbus, Ohio, OH, USA.,Thyroid Center Unit, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, OH, USA
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University School of Medicine, Columbus, Ohio, OH, USA.,Thyroid Center Unit, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, OH, USA
| | - Thomas LaFramboise
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA.,Department of Genetics and Genome Sciences.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA.,Stanley Shalom Zielony Nursing Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA.,Department of Genetics and Genome Sciences.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, OH, USA
| |
Collapse
|
16
|
Sapiro JM, Monks TJ, Lau SS. All- trans-retinoic acid-mediated cytoprotection in LLC-PK 1 renal epithelial cells is coupled to p-ERK activation in a ROS-independent manner. Am J Physiol Renal Physiol 2017; 313:F1200-F1208. [PMID: 28768661 DOI: 10.1152/ajprenal.00085.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/13/2017] [Accepted: 07/23/2017] [Indexed: 02/05/2023] Open
Abstract
Although all-trans-retinoic acid (ATRA) provides protection against a variety of conditions in vivo, particularly ischemia, the molecular mechanisms underpinning these effects remain unclear. The present studies were designed to assess potential mechanisms by which ATRA affords cytoprotection against renal toxicants in LLC-PK1 cells. Pretreatment of LLC-PK1 cells with ATRA (25 μM) for 24 h afforded cytoprotection against oncotic cell death induced by p-aminophenol (PAP), 2-(glutathion-S-yl)hydroquinone (MGHQ), and iodoacetamide but not against apoptotic cell death induced by cisplatin. Inhibition of protein synthesis with cycloheximide blunted ATRA protection, indicating essential cell survival pathways must be engaged before toxicant exposure to provide cytoprotection. Interestingly, ATRA did not prevent the PAP-induced generation of reactive oxygen species (ROS) nor did it alter glutathione levels. Moreover, ATRA had no significant effect on Nrf2 protein expression, and the Nrf2 inducers sulforaphane and MG132 did not influence ATRA cytoprotection, suggesting cytoprotective pathways beyond those that influence ROS levels contribute to ATRA protection. In contrast, ATRA rapidly (15 min) induced levels of the cellular stress kinases p-ERK and p-AKT at concentrations of ATRA (10 and 25 μM) required for cytoprotection. Consistent with a role for p-ERK in ATRA-mediated cytoprotection, inhibition of p-ERK with PD98059 reduced the ability of ATRA to afford protection against PAP toxicity. Collectively, these data suggest that p-ERK and its downstream targets, independent of ROS and antioxidant signaling, are important contributors to the cytoprotective effects of ATRA against oncotic cell death.
Collapse
Affiliation(s)
- Jessica M Sapiro
- Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; and.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Terrence J Monks
- Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; and .,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Serrine S Lau
- Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; and.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
17
|
García-Niño WR, Correa F, Rodríguez-Barrena JI, León-Contreras JC, Buelna-Chontal M, Soria-Castro E, Hernández-Pando R, Pedraza-Chaverri J, Zazueta C. Cardioprotective kinase signaling to subsarcolemmal and interfibrillar mitochondria is mediated by caveolar structures. Basic Res Cardiol 2017; 112:15. [PMID: 28160133 DOI: 10.1007/s00395-017-0607-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/31/2017] [Indexed: 01/22/2023]
Abstract
The demonstration that caveolin-3 overexpression reduces myocardial ischemia/reperfusion injury and our own finding that multiprotein signaling complexes increase in mitochondria in association with caveolin-3 levels, led us to investigate the contribution of caveolae-driven extracellular signal-regulated kinases 1/2 (ERK1/2) on maintaining the function of cardiac mitochondrial subpopulations from reperfused hearts subjected to postconditioning (PostC). Rat hearts were isolated and subjected to ischemia/reperfusion and to PostC. Enhanced cardiac function, reduced infarct size and preserved ultrastructure of cardiomyocytes were associated with increased formation of caveolar structures, augmented levels of caveolin-3 and mitochondrial ERK1/2 activation in PostC hearts in both subsarcolemmal (SSM) and interfibrillar (IFM) subpopulations. Disruption of caveolae with methyl-β-cyclodextrin abolished cardioprotection in PostC hearts and diminished pho-ERK1/2 gold-labeling in both mitochondrial subpopulations in correlation with suppression of resistance to permeability transition pore opening. Also, differences between the mitochondrial subpopulations in the setting of PostC were evaluated. Caveolae disruption with methyl-β-cyclodextrin abolished the cardioprotective effect of postconditioning by inhibiting the interaction of ERK1/2 with mitochondria and promoted decline in mitochondrial function. SSM, which are particularly sensitive to reperfusion damage, take advantage of their location in cardiomyocyte boundary and benefit from the cardioprotective signaling driven by caveolae, avoiding injury propagation.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Sección XVI, 14080, Ciudad de México, México.
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Sección XVI, 14080, Ciudad de México, México
| | - Julia Isabel Rodríguez-Barrena
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Sección XVI, 14080, Ciudad de México, México
| | - Juan Carlos León-Contreras
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", 14000, Ciudad de México, México
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Sección XVI, 14080, Ciudad de México, México
| | - Elizabeth Soria-Castro
- Departamento de Patología, Instituto Nacional de Cardiología "Ignacio Chávez", 14080, Ciudad de México, México
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", 14000, Ciudad de México, México
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Sección XVI, 14080, Ciudad de México, México.
| |
Collapse
|
18
|
Shi Y, Xu L, Tang J, Fang L, Ma S, Ma X, Nie J, Pi X, Qiu A, Zhuang S, Liu N. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury. Am J Physiol Renal Physiol 2017; 312:F502-F515. [PMID: 28052874 DOI: 10.1152/ajprenal.00546.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liuqing Xu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhua Tang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Fang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuchen Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Nie
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoling Pi
- Department of Internal Medicine, Pudong New District Gongli Hospital, Shanghai, China
| | - Andong Qiu
- School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China; and
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China;
| |
Collapse
|
19
|
Collier JB, Whitaker RM, Eblen ST, Schnellmann RG. Rapid Renal Regulation of Peroxisome Proliferator-activated Receptor γ Coactivator-1α by Extracellular Signal-Regulated Kinase 1/2 in Physiological and Pathological Conditions. J Biol Chem 2016; 291:26850-26859. [PMID: 27875304 PMCID: PMC5207191 DOI: 10.1074/jbc.m116.754762] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that extracellular signal-regulated kinase 1/2 (ERK1/2) directly inhibits mitochondrial function during cellular injury. We evaluated the role of ERK1/2 on the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) gene, a master regulator of mitochondrial function. The potent and specific MEK1/2 inhibitor trametinib rapidly blocked ERK1/2 phosphorylation, decreased cytosolic and nuclear FOXO3a/1 phosphorylation, and increased PGC-1α gene expression and its downstream mitochondrial biogenesis (MB) targets under physiological conditions in the kidney cortex and in primary renal cell cultures. The epidermal growth factor receptor (EGFR) inhibitor erlotinib blocked ERK1/2 phosphorylation and increased PGC-1α gene expression similar to treatment with trametinib, linking EGFR activation and FOXO3a/1 inactivation to the down-regulation of PGC-1α and MB through ERK1/2. Pretreatment with trametinib blocked early ERK1/2 phosphorylation following ischemia/reperfusion kidney injury and attenuated the down-regulation of PGC-1α and downstream target genes. These results demonstrate that ERK1/2 rapidly regulates mitochondrial function through a novel pathway, EGFR/ERK1/2/FOXO3a/1/PGC-1α, under physiological and pathological conditions. As such, ERK1/2 down-regulates mitochondrial function directly by phosphorylation of upstream regulators of PGC-1α and subsequently decreasing MB.
Collapse
Affiliation(s)
- Justin B Collier
- From the Departments of Drug Discovery and Biomedical Sciences and
| | - Ryan M Whitaker
- From the Departments of Drug Discovery and Biomedical Sciences and
| | - Scott T Eblen
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Rick G Schnellmann
- From the Departments of Drug Discovery and Biomedical Sciences and
- the Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina 29425
| |
Collapse
|
20
|
Rajpoot M, Bhattacharyya R, Banerjee D, Sharma A. Melamine binding with arachidonic acid binding sites of albumin is a potential mechanism for melamine-induced inflammation. Biotechnol Appl Biochem 2016; 64:490-495. [PMID: 27245360 DOI: 10.1002/bab.1512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/24/2016] [Indexed: 11/08/2022]
Abstract
Melamine adulteration of food is a public health concern. It has been seen that melamine causes disease in many organs. Melamine-induced kidney disease is a well-recognized clinicopathological entity. Inflammation is thought to be important in melamine-induced pathology. Melamine is expected to bind with albumin because it has a positive charge. Albumin binds arachidonic acid. So if binding of melamine with albumin takes place, it has the potential to displace arachidonic acid from the albumin bound state. This phenomenon may be the source of mediators of inflammation in the melamine exposure state. This aspect is investigated in the present study by docking and molecular dynamics simulation. It is observed that melamine binds with some known arachidonic acid binding sites of albumin. This can lead to formation of more free arachidonic acid. It is also observed that melamine does not bind with extracellular signal regulated kinase 2 (ERK2). Therefore, the signal transduction mediated process involving ERK2 is not a likely mechanism of melamine-induced inflammation. Therefore, we think that an increased free arachidonic acid level may contribute more to inflammation in the melamine exposure state.
Collapse
Affiliation(s)
- Meenakshi Rajpoot
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, India
| | - Rajasri Bhattacharyya
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anil Sharma
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, India
| |
Collapse
|
21
|
Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell Biosci 2016; 6:25. [PMID: 27087918 PMCID: PMC4832502 DOI: 10.1186/s13578-016-0089-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/01/2016] [Indexed: 12/02/2022] Open
Abstract
The mitochondria are double membrane-bound organelles found in most eukaryotic cells. They generate most of the cell’s energy supply of adenosine triphosphate (ATP). Protein phosphorylation and dephosphorylation are critical mechanisms in the regulation of cell signaling networks and are essential for almost all the cellular functions. For many decades, mitochondria were considered autonomous organelles merely functioning to generate energy for cells to survive and proliferate, and were thought to be independent of the cellular signaling networks. Consequently, phosphorylation and dephosphorylation processes of mitochondrial kinases and phosphatases were largely neglected. However, evidence accumulated in recent years on mitochondria-localized kinases/phosphatases has changed this longstanding view. Mitochondria are increasingly recognized as a hub for cell signaling, and many kinases and phosphatases have been reported to localize in mitochondria and play important functions. However, the strength of the evidence on mitochondrial localization and the activities of the reported kinases and phosphatases vary greatly, and the detailed mechanisms on how these kinases/phosphatases translocate to mitochondria, their subsequent function, and the physiological and pathological implications of their localization are still poorly understood. Here, we provide an updated perspective on the recent advancement in this area, with an emphasis on the implications of mitochondrial kinases/phosphatases in cancer and several other diseases.
Collapse
|
22
|
Zhang B, Cowden D, Zhang F, Yuan J, Siedlak S, Abouelsaad M, Zeng L, Zhou X, O'Toole J, Das AS, Kofskey D, Warren M, Bian Z, Cui Y, Tan T, Kresak A, Wyza RE, Petersen RB, Wang GX, Kong Q, Wang X, Sedor J, Zhu X, Zhu H, Zou WQ. Prion Protein Protects against Renal Ischemia/Reperfusion Injury. PLoS One 2015; 10:e0136923. [PMID: 26327228 PMCID: PMC4556704 DOI: 10.1371/journal.pone.0136923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
The cellular prion protein (PrPC), a protein most noted for its link to prion diseases, has been found to play a protective role in ischemic brain injury. To investigate the role of PrPC in the kidney, an organ highly prone to ischemia/reperfusion (IR) injury, we examined wild-type (WT) and PrPC knockout (KO) mice that were subjected to 30-min of renal ischemia followed by 1, 2, or 3 days of reperfusion. Renal dysfunction and structural damage was more severe in KO than in WT mice. While PrP was undetectable in KO kidneys, Western blotting revealed an increase in PrP in IR-injured WT kidneys compared to sham-treated kidneys. Compared to WT, KO kidneys exhibited increases in oxidative stress markers heme oxygenase-1, nitrotyrosine, and Nε-(carboxymethyl)lysine, and decreases in mitochondrial complexes I and III. Notably, phosphorylated extracellular signal-regulated kinase (pERK) staining was predominantly observed in tubular cells from KO mice following 2 days of reperfusion, a time at which significant differences in renal dysfunction, histological changes, oxidative stress, and mitochondrial complexes between WT and KO mice were observed. Our study provides the first evidence that PrPC may play a protective role in renal IR injury, likely through its effects on mitochondria and ERK signaling pathways.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, The People’s Republic of China
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Ministry of Health and Key Laboratory of Ministry of Education, Wuhan, HuBei, The People’s Republic of China
| | - Daniel Cowden
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Fan Zhang
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Shandong University, Jinan, The People’s Republic of China
| | - Jue Yuan
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Sandra Siedlak
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Mai Abouelsaad
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Liang Zeng
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Urology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People’s Republic of China
| | - Xuefeng Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - John O'Toole
- Kidney Disease Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- Departments of Medicine and Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alvin S. Das
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Diane Kofskey
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Miriam Warren
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Zehua Bian
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Yuqi Cui
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Adam Kresak
- Human Tissue Procurement Facility (HTPF) and the Comprehensive Cancer Center Tissue Resources Core, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio 44106, United States of America
| | - Robert E. Wyza
- Human Tissue Procurement Facility (HTPF) and the Comprehensive Cancer Center Tissue Resources Core, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio 44106, United States of America
| | - Robert B. Petersen
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Neurology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Gong-Xian Wang
- Department of Urology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People’s Republic of China
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Neurology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- National Center for Regenerative Medicine, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - John Sedor
- Kidney Disease Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- Departments of Medicine and Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- * E-mail: (WQZ); (HZ); (XZ)
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (WQZ); (HZ); (XZ)
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Urology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People’s Republic of China
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Neurology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- National Center for Regenerative Medicine, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, The People’s Republic of China
- * E-mail: (WQZ); (HZ); (XZ)
| |
Collapse
|
23
|
Liu LZ, Ding M, Zheng JZ, Zhu Y, Fenderson BA, Li B, Yu JJ, Jiang BH. Tungsten Carbide-Cobalt Nanoparticles Induce Reactive Oxygen Species, AKT, ERK, AP-1, NF-κB, VEGF, and Angiogenesis. Biol Trace Elem Res 2015; 166:57-65. [PMID: 25893364 DOI: 10.1007/s12011-015-0331-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/06/2015] [Indexed: 01/28/2023]
Abstract
Powder mixtures of tungsten carbide and metallic cobalt (WC-Co) are widely used in various products. Nanoparticles are engineered structures with at least one dimension of 100 nm or smaller. WC-Co is known to be associated with lung injury and diseases. Angiogenesis is a key process during vasculature, carcinogenesis, recovery of injury, and inflammatory diseases. However, the cellular effects of WC-Co nanoparticles on angiogenesis remain to be elucidated. In this study, we investigated angiogenic response and relative mechanisms after exposure to WC-Co nanoparticles. Our results showed that WC-Co nanoparticles at 5 μg/cm(2) induced ROS production which activated AKT and ERK1/2 signaling pathways in lung epithelial cells by reactive oxygen species (ROS) staining and immunoblotting; WC-Co treatment also increased transcriptional activation of AP-1, NF-κB, and VEGF by reporter assay. Further studies demonstrated that ROS are upstream molecules of AKT and ERK signaling pathways; the activation of AP-1, NF-κB, and VEGF was through ROS generation, AKT and ERK1/2 activation. In addition, WC-Co nanoparticles affected the cells to induce angiogenesis by chicken chorioallantoic membrane (CAM) assay. These results illustrate that exposure to WC-Co nanoparticles induces angiogenic response by activating ROS, AKT, and ERK1/2 signaling pathways and the downstream molecules and elucidate the potential molecular mechanisms during this process. This information may be useful for preventing potential damage from nanoparticle exposure in the future.
Collapse
Affiliation(s)
- Ling-Zhi Liu
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yan Y, Bai J, Zhou X, Tang J, Jiang C, Tolbert E, Bayliss G, Gong R, Zhao TC, Zhuang S. P2X7 receptor inhibition protects against ischemic acute kidney injury in mice. Am J Physiol Cell Physiol 2015; 308:C463-72. [PMID: 25588875 DOI: 10.1152/ajpcell.00245.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activation of the purinergic P2X7 receptor (P2X7R) has been associated with the development of experimental nephritis and diabetic and hypertensive nephropathy. However, its role in acute kidney injury (AKI) remains unknown. In this study, we examined the effects of P2X7R inhibition in a murine model of ischemia-reperfusion (I/R)-induced AKI using A438079, a selective inhibitor of P2X7R. At 24 h after I/R, mice developed renal dysfunction and renal tubular damage, which was accompanied by elevated expression of P2X7R. Early administration of A438079 immediately or 6 h after the onset of reperfusion protected against renal dysfunction and attenuated kidney damage whereas delayed administration of A438079 at 24 h after restoration of perfusion had no protective effects. The protective actions of A438079 were associated with inhibition of renal tubule injury and cell death and suppression of renal expression of monocyte chemotactic protein-1 and regulated upon expression normal T cell expressed and secreted (RANTES). Moreover, I/R injury led to an increase in phosphorylation (activation) of extracellular signal-regulated kinases 1/2 in the kidney; treatment with A438079 diminished this response. Collectively, these results indicate that early P2X7R inhibition is effective against renal tubule injury and proinflammatory response after I/R injury and suggest that targeting P2X7R may be a promising therapeutic strategy for treatment of AKI.
Collapse
Affiliation(s)
- Yanli Yan
- Department of Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Jianwen Bai
- Department of Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoxu Zhou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Jinhua Tang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Chunming Jiang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Evelyn Tolbert
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Rujun Gong
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| |
Collapse
|
25
|
LeGendre O, Breslin PAS, Foster DA. (-)-Oleocanthal rapidly and selectively induces cancer cell death via lysosomal membrane permeabilization. Mol Cell Oncol 2015; 2:e1006077. [PMID: 26380379 PMCID: PMC4568762 DOI: 10.1080/23723556.2015.1006077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
(-)-Oleocanthal (OC), a phenolic compound present in extra-virgin olive oil (EVOO), has been implicated in the health benefits associated with diets rich in EVOO. We investigated the effect of OC on human cancer cell lines in culture and found that OC induced cell death in all cancer cells examined as rapidly as 30 minutes after treatment in the absence of serum. OC treatment of non-transformed cells suppressed their proliferation but did not cause cell death. OC induced both primary necrotic and apoptotic cell death via induction of lysosomal membrane permeabilization (LMP). We provide evidence that OC promotes LMP by inhibiting acid sphingomyelinase (ASM) activity, which destabilizes the interaction between proteins required for lysosomal membrane stability. The data presented here indicate that cancer cells, which tend to have fragile lysosomal membranes compared to non-cancerous cells, are susceptible to cell death induced by lysosomotropic agents. Therefore, targeting lysosomal membrane stability represents a novel approach for the induction of cancer-specific cell death.
Collapse
Affiliation(s)
- Onica LeGendre
- Department of Biological Sciences; Hunter College of the City University of New York; New York, NY, USA
- Department of Natural Sciences; LaGuardia Community College of the City University of New York; Long Island City, NY, USA
- Correspondence to: David A Foster; ; Onica LeGendre;
| | - Paul AS Breslin
- Rutgers University Department of Nutritional Sciences; New Brunswick, NJ, USA
- Monell Chemical Senses Center; Philadelphia, PA, USA
| | - David A Foster
- Department of Biological Sciences; Hunter College of the City University of New York; New York, NY, USA
- Department of Pharmacology; Weill-Cornell Medical College; New York, NY, USA
- Correspondence to: David A Foster; ; Onica LeGendre;
| |
Collapse
|
26
|
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 2014; 144:202-25. [PMID: 24924700 DOI: 10.1016/j.pharmthera.2014.05.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| | - Bryan Agostini
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| |
Collapse
|
27
|
Zhang D, Liu Y, Wei Q, Huo Y, Liu K, Liu F, Dong Z. Tubular p53 regulates multiple genes to mediate AKI. J Am Soc Nephrol 2014; 25:2278-89. [PMID: 24700871 DOI: 10.1681/asn.2013080902] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A pathogenic role of p53 in AKI was suggested a decade ago but remains controversial. Indeed, recent work indicates that inhibition of p53 protects against ischemic AKI in rats but exacerbates AKI in mice. One intriguing possibility is that p53 has cell type-specific roles in AKI. To determine the role of tubular p53, we generated two conditional gene knockout mouse models, in which p53 is specifically ablated from proximal tubules or other tubular segments, including distal tubules, loops of Henle, and medullary collecting ducts. Proximal tubule p53 knockout (PT-p53-KO) mice were resistant to ischemic and cisplatin nephrotoxic AKI, which was indicated by the analysis of renal function, histology, apoptosis, and inflammation. However, other tubular p53 knockout (OT-p53-KO) mice were sensitive to AKI. Mechanistically, AKI associated with the upregulation of several known p53 target genes, including Bax, p53-upregulated modulator of apoptosis-α, p21, and Siva, and this association was attenuated in PT-p53-KO mice. In global expression analysis, ischemic AKI induced 371 genes in wild-type kidney cortical tissues, but the induction of 31 of these genes was abrogated in PT-p53-KO tissues. These 31 genes included regulators of cell death, metabolism, signal transduction, oxidative stress, and mitochondria. These results suggest that p53 in proximal tubular cells promotes AKI, whereas p53 in other tubular cells does not.
Collapse
Affiliation(s)
- Dongshan Zhang
- Departments of Emergency Medicine and Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Cellular Biology and Anatomy, Vascular Biology Center and Department of Biochemistry and Molecular Biology, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Yu Liu
- Departments of Emergency Medicine and Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Cellular Biology and Anatomy, Vascular Biology Center and Department of Biochemistry and Molecular Biology, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Vascular Biology Center and Department of Biochemistry and Molecular Biology, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Yuqing Huo
- Department of Cellular Biology and Anatomy, Vascular Biology Center and Department of Biochemistry and Molecular Biology, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Kebin Liu
- Department of Cellular Biology and Anatomy, Vascular Biology Center and Department of Biochemistry and Molecular Biology, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Fuyou Liu
- Departments of Emergency Medicine and Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Zheng Dong
- Departments of Emergency Medicine and Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Cellular Biology and Anatomy, Vascular Biology Center and Department of Biochemistry and Molecular Biology, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
28
|
Guterbaum TJ, Braunstein TH, Fossum A, Holstein-Rathlou NH, Torp-Pedersen CT, Domínguez H. Endothelial nitric oxide synthase phosphorylation at Threonine 495 and mitochondrial reactive oxygen species formation in response to a high H₂O₂ concentration. J Vasc Res 2013; 50:410-20. [PMID: 24008236 DOI: 10.1159/000354225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 07/05/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H₂O₂) is produced in vessels during ischemia/reperfusion and during inflammation, both leading to vascular dysfunction. We investigated cellular pathways involved in endothelial nitric oxide synthase (eNOS) phosphorylation at Threonine 495 (Thr(495)) in human umbilical vein endothelial cells (HUVECs) exposed to H₂O₂. METHODS HUVECs were exposed to 400 μM H₂O₂ for 30 min. Phosphorylation at Thr(495) was assessed by Western blotting and reactive oxygen species (ROS) monitored by flow cytometry. Protein kinase C (PKC) pathways were investigated by pretreatment with PKC-β inhibitor ruboxistaurin or pan-PKC inhibitor GF109203X. In addition, we investigated ROCK and ERK pathways by MEKK1/2 inhibitor U0126 and ROCK inhibitor Y27632. RESULTS H₂O₂ increased eNOS phosphorylation at Thr(495) (to 176% vs. control (100%), p < 0.001) along with increased mitochondrial ROS formation (from 19.7 to 45.3%, p < 0.01). This rise in phosphorylation could be prevented by U0126 and Y27632 in a dose-dependent manner, but did not result in lowered mitochondrial ROS formation. Conversely, addition of the antioxidant N-acetyl-L-cysteine only prevented mitochondrial ROS formation but did not prevent phosphorylation of eNOS Thr(495). CONCLUSION H₂O₂-mediated phosphorylation of eNOS Thr(495) is mediated by ROCK and ERK activity, but not by PKC, and is uncoupled from mitochondrial ROS signaling. Furthermore, ERK inhibition increased mitochondrial ROS formation.
Collapse
Affiliation(s)
- T J Guterbaum
- The Danish National Research Foundation Center for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
29
|
Kano G, Almanan M, Bochner BS, Zimmermann N. Mechanism of Siglec-8-mediated cell death in IL-5-activated eosinophils: role for reactive oxygen species-enhanced MEK/ERK activation. J Allergy Clin Immunol 2013; 132:437-45. [PMID: 23684072 PMCID: PMC4042061 DOI: 10.1016/j.jaci.2013.03.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is expressed on human eosinophils, where its ligation induces cell death. Paradoxically, Siglec-8-mediated cell death is markedly enhanced by the presence of the activation and survival factor IL-5 and becomes independent of caspase activity. OBJECTIVE In this report we investigate the mechanism of Siglec-8-mediated cell death in activated eosinophils. METHODS Human peripheral blood eosinophils were treated with agonistic anti-Siglec-8 antibody and IL-5, and cell death was determined by using flow cytometry and morphology. Phosphorylation of mitogen-activated protein kinase (MAPK) was determined by using phosphoLuminex, flow cytometry, and Western blotting. Reactive oxygen species (ROS) accumulation was determined by using dihydrorhodamine fluorescence. RESULTS Costimulation with anti-Siglec-8 and IL-5 significantly increased the rate and proportion of cell death by means of necrosis accompanied by granule release compared with that seen after stimulation with anti-Siglec-8 alone, in which apoptosis predominated. Together with the caspase-independent mode of cell death in costimulated cells, these findings suggest the activation of a specific and distinct biochemical pathway of cell death during anti-Siglec-8/IL-5 costimulation. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and MAPK-ERK kinase (MEK) 1 was significantly enhanced and sustained in costimulated cells compared with that seen in cells stimulated with IL-5 alone; anti-Siglec-8 alone did not cause ERK1/2 phosphorylation. MEK1 inhibitors blocked anti-Siglec-8/IL-5-induced cell death. ROS accumulation was induced by Siglec-8 ligation in a MEK-independent manner. In contrast, an ROS inhibitor prevented the anti-Siglec-8/IL-5-induced enhancement of ERK phosphorylation and cell death. Exogenous ROS mimicked stimulation by anti-Siglec-8 and was sufficient to induce enhanced cell death in IL-5-treated cells. Collectively, these data suggest that the enhancement of ERK phosphorylation is downstream of ROS generation. CONCLUSIONS In activated eosinophils ligation of Siglec-8 leads to ROS-dependent enhancement of IL-5-induced ERK phosphorylation, which results in a novel mode of biochemically regulated eosinophil cell death.
Collapse
Affiliation(s)
- Gen Kano
- Division of Allergy & Immunology, Cincinnati Children’s Hospital, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maha Almanan
- Division of Allergy & Immunology, Cincinnati Children’s Hospital, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bruce S. Bochner
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nives Zimmermann
- Division of Allergy & Immunology, Cincinnati Children’s Hospital, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
30
|
Wang Y, Ji HX, Zheng JN, Pei DS, Hu SQ, Qiu SL. Protective effect of selenite on renal ischemia/reperfusion injury through inhibiting ASK1–MKK3–p38 signal pathway. Redox Rep 2013; 14:243-50. [DOI: 10.1179/135100009x12525712409896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
31
|
Hegedűs C, Lakatos P, Kiss-Szikszai A, Patonay T, Gergely S, Gregus A, Bai P, Haskó G, Szabó É, Virág L. Cytoprotective dibenzoylmethane derivatives protect cells from oxidative stress-induced necrotic cell death. Pharmacol Res 2013; 72:25-34. [PMID: 23523665 DOI: 10.1016/j.phrs.2013.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 12/20/2022]
Abstract
Screening of a small in-house library of 1863 compounds identified 29 compounds that protected Jurkat cells from hydrogen peroxide-induced cytotoxicity. From the cytoprotective compounds eleven proved to possess antioxidant activity (ABTS radical scavenger effect) and two were found to inhibit poly(ADP-ribosyl)ation (PARylation), a cytotoxic pathway operating in severely injured cells. Four cytoprotective dibenzoylmethane (DBM) derivatives were investigated in more detail as they did not scavenge hydrogen peroxide nor did they inhibit PARylation. These compounds protected cells from necrotic cell death while caspase activation, a parameter of apoptotic cell death was not affected. Hydrogen peroxide activated extracellular signal regulated kinase (ERK1/2) and p38 MAP kinases but not c-Jun N-terminal kinase (JNK). The cytoprotective DBMs suppressed the activation of Erk1/2 but not that of p38. Cytoprotection was confirmed in another cell type (A549 lung epithelial cells), indicating that the cytoprotective effect is not cell type specific. In conclusion we identified DBM analogs as a novel class of cytoprotective compounds inhibiting ERK1/2 kinase and protecting from necrotic cell death by a mechanism independent of poly(ADP-ribose) polymerase inhibition.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Growth Inhibition and Apoptosis of Neuroblastoma Cells Through ROS-Independent MEK/ERK Activation by Sulforaphane. Cell Biochem Biophys 2013; 66:765-74. [DOI: 10.1007/s12013-013-9522-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
He S, Liu N, Bayliss G, Zhuang S. EGFR activity is required for renal tubular cell dedifferentiation and proliferation in a murine model of folic acid-induced acute kidney injury. Am J Physiol Renal Physiol 2012; 304:F356-66. [PMID: 23255615 DOI: 10.1152/ajprenal.00553.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Proliferation of dedifferentiated intrinsic renal tubular cells has been recognized to be the major cellular event that contributes to renal repair after acute kidney injury (AKI). However, the underlying mechanism that initiates renal tubular dedifferentiation in vivo remains unexplored. Here we investigated whether epidermal growth factor receptor (EGFR) mediates this process in a murine model of folic acid (FA)-induced AKI using waved-2 mice that have reduced tyrosine kinase activity of EGFR and gefitinib, a specific EGFR inhibitor. Administration of FA for 48 h induced EGFR phosphorylation in the kidney of wild-type mice, but this was inhibited in waved-2 mice and wild-type mice given gefitinib. Compared with wild-type mice, waved-2 mice and wild-type mice treated with gefitinib had increased renal dysfunction, histologic damage, and tubular cell apoptosis after FA administration. PAX2, a dedifferentiation marker, and proliferating cell nuclear antigen, a proliferating marker, were highly expressed in renal tubular cells in wild-type mice; however, their expression was largely inhibited in the kidney of waved-2 mice. Inhibition of EGFR with gefitinib also blocked FA-induced expression of these two proteins in wild-type mice. Moreover, FA exposure resulted in phosphorylation of AKT, a downstream signaling molecule of the phosphatidylinositol 3-kinases pathway associated with renal epithelial proliferation in wild-type mice, and its phosphorylation was totally suppressed in waved-2 mice and wild-type mice given gefitinib. Taken together, these results suggest that EGFR activation is essential for initiation of renal tubular cell dedifferentiation and proliferation after AKI.
Collapse
Affiliation(s)
- Song He
- Department of Medicine, Alpert Medical School, Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | | | | | | |
Collapse
|
34
|
Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2. Cell Death Dis 2012; 3:e312. [PMID: 22622131 PMCID: PMC3366080 DOI: 10.1038/cddis.2012.46] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The regulation of mitochondrial quality has emerged as a central issue in neurodegeneration, diabetes, and cancer. We utilized repeated low-dose applications of the complex I inhibitor 1-methyl-4-phenylpyridinium (MPP+) over 2 weeks to study cellular responses to chronic mitochondrial stress. Chronic MPP+ triggered depletion of functional mitochondria resulting in diminished capacities for aerobic respiration. Inhibiting autophagy/mitophagy only partially restored mitochondrial content. In contrast, inhibiting activation of extracellular signal-regulated protein kinases conferred complete cytoprotection with full restoration of mitochondrial functional and morphological parameters, enhancing spare respiratory capacity in MPP+ co-treated cells above that of control cells. Reversal of mitochondrial injury occurred when U0126 was added 1 week after MPP+, implicating enhanced repair mechanisms. Chronic MPP+ caused a >90% decrease in complex I subunits, along with decreases in complex III and IV subunits. Decreases in respiratory complex subunits were reversed by co-treatment with U0126, ERK1/2 RNAi or transfection of dominant-negative MEK1, but only partially restored by degradation inhibitors. Chronic MPP+ also suppressed the de novo synthesis of mitochondrial DNA-encoded proteins, accompanied by decreased expression of the mitochondrial transcription factor TFAM. U0126 completely reversed each of these deficits in mitochondrial translation and protein expression. These data indicate a key, limiting role for mitochondrial biogenesis in determining the outcome of injuries associated with elevated mitophagy.
Collapse
|
35
|
Bao H, Ge Y, Zhuang S, Dworkin LD, Liu Z, Gong R. Inhibition of glycogen synthase kinase-3β prevents NSAID-induced acute kidney injury. Kidney Int 2012; 81:662-73. [PMID: 22258319 PMCID: PMC3305839 DOI: 10.1038/ki.2011.443] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clinical use of nonsteroidal anti-inflammatory drugs (NSAIDs) like diclofenac (DCLF) is limited by multiple adverse effects, including renal toxicity leading to acute kidney injury. In mice with DCLF-induced nephrotoxicity, TDZD-8, a selective glycogen synthase kinase (GSK)3β inhibitor, improved acute kidney dysfunction and ameliorated tubular necrosis and apoptosis associated with induced cortical expression of cyclooxygenase-2 (COX-2) and prostaglandin E2. This renoprotective effect was blunted but still largely preserved in COX-2-null mice, suggesting that other GSK3β targets beyond COX-2 functioned in renal protection. Indeed, TDZD-8 diminished the mitochondrial permeability transition in DCLF-injured kidneys. In vitro, GSK3β inhibition reinstated viability and suppressed necrosis and apoptosis in DCLF-stimulated tubular epithelial cells. DCLF elicited oxidative stress, enhanced the activity of the redox-sensitive GSK3β, and promoted a mitochondrial permeability transition by interacting with cyclophilin D, a key component of the mitochondrial permeability transition pore. TDZD-8 blocked GSK3β activity and prevented GSK3β-mediated cyclophilin D phosphorylation and the ensuing mitochondrial permeability transition, concomitant with normalization of intracellular ATP. Conversely, ectopic expression of a constitutively active GSK3β abolished the effects of TDZD-8. Hence, inhibition of GSK3β ameliorates NSAID-induced acute kidney injury by induction of renal cortical COX-2 and direct inhibition of the mitochondrial permeability transition.
Collapse
Affiliation(s)
- Hao Bao
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Division of Kidney Disease and Hypertension, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Yan Ge
- Division of Kidney Disease and Hypertension, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Shougang Zhuang
- Division of Kidney Disease and Hypertension, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Lance D Dworkin
- Division of Kidney Disease and Hypertension, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Zhihong Liu
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Brown University School of Medicine, Providence, Rhode Island, USA
| |
Collapse
|
36
|
Abstract
It has been known for decades that uric acid causes acute kidney injury by intratubular crystal precipitation and obstructing the renal tubules. Uric acid crystals stimulate inflammation and elicit immune responses in many disease conditions, including gouty arthritis. More recently, soluble uric acid has been reported to stimulate proliferation of vascular smooth muscle cells, inhibit endothelial function, cause renal vasoconstriction, impair renal blood flow autoregulation, and induce inflammatory response via crystal-independent mechanisms. This article examines the changing role for uric acid in acute kidney injury.
Collapse
Affiliation(s)
- Michiko Shimada
- Division of Cardiology, Respiratory Medicine and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | |
Collapse
|
37
|
Characterization of bone-marrow-derived rat mesenchymal stem cells depending on donor age. Cell Biol Int 2012; 35:1055-62. [PMID: 21592091 DOI: 10.1042/cbi20100586] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is generally accepted that autologous transfers, as non-immunogenic, constitute the safest approach in cellular transplantations. However, this attitude is often associated with the need for isolation and extracorporeal propagation of cells derived from aged patients. Thus the knowledge about relationship between aging and the properties of MSCs (mesenchymal stem cells) is crucial in developing new clinical strategies. The aim of this study was to perform complex comparison of MSC derived from young and aged individuals, which included phenotype, proliferating rate, osteogenic and adipogenic potential and secretory activity. Evaluated populations were isolated from bone marrow of 3-month-old and 24-month-old rats. There was no significant difference in membrane antigen expression and PDT (population doubling time). Additionally, the adipogenic and osteogenic potential did not vary between studied populations. The reaction of MSCs to either mitogen [bFGF (basic fibroblas t growth factor)] or oxidative stress (H2O2) in vitro displayed a very similar pattern in both analysed populations. There was no difference in TGFβ1 (transforming growth factor β1) and VEGF (vascular endothelial growth factor) secretion measured by ELISA test and gene expression evaluated by real-time PCR. However, the expression of the gene for IL-1α (interleukin-1α) was 8-fold lower in oMSC (MSC isolated from old rats). These results indicate that aging individuals can be considered as candidates for autologous transplantation of bone-marrow-derived MSCs.
Collapse
|
38
|
Liu YY, Sparatore A, Del Soldato P, Bian JS. H2S releasing aspirin protects amyloid beta induced cell toxicity in BV-2 microglial cells. Neuroscience 2011; 193:80-8. [DOI: 10.1016/j.neuroscience.2011.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/28/2011] [Accepted: 07/09/2011] [Indexed: 01/11/2023]
|
39
|
Flahou B, Haesebrouck F, Chiers K, Van Deun K, De Smet L, Devreese B, Vandenberghe I, Favoreel H, Smet A, Pasmans F, D'Herde K, Ducatelle R. Gastric epithelial cell death caused by Helicobacter suis and Helicobacter pylori γ-glutamyl transpeptidase is mainly glutathione degradation-dependent. Cell Microbiol 2011; 13:1933-55. [DOI: 10.1111/j.1462-5822.2011.01682.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Pranlukast attenuates hydrogen peroxide-induced necrosis in endothelial cells by inhibiting oxygen reactive species-mediated collapse of mitochondrial membrane potential. J Cardiovasc Pharmacol 2011; 57:479-88. [PMID: 21283018 DOI: 10.1097/fjc.0b013e31821076d3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Recently, we reported that pranlukast, an antagonist of cysteinyl leukotriene receptor 1, attenuates ischemic injury in endothelial cells by decreasing reactive oxygen species (ROS) production and inhibiting nuclear factor-κB activation in a leukotriene-independent manner. In this study, we investigated the effect of pranlukast on oxidative stress injury induced by hydrogen peroxide (H2O2) in EA.hy926 cells, a human endothelial cell line, and the possible mechanisms. METHODS AND RESULTS We found that H2O2 reduced cell viability and increased lactate dehydrogenase release in a concentration- and time-dependent manner. Necrosis was the main death mode, and the necrotic rate increased 32% after exposure to 220 μM H2O2 for 4 hours. Pretreatment with pranlukast significantly ameliorated the reduced viability and the increased lactate dehydrogenase release and necrosis after exposure to H2O2. We next examined the mechanisms underlying the antinecrotic effects of pranlukast. The results showed that pranlukast attenuated excessive ROS production and ameliorated the reduced superoxide dismuase and glutathione peroxidase activity in EA.hy926 cells exposed to H2O2. Pranlukast also inhibited the collapse of mitochondrial membrane potential (MMP) induced by H2O2. Inhibition of ROS production by N-acetyl-l-cysteine, a powerful antioxidant, reduced MMP collapse and necrosis. Inhibition of MMP collapse by cyclosporine A, a mitochondrial permeability transition inhibitor, attenuated necrosis but failed to reduce ROS production. In addition, we found no expression of 5-lipoxygenase in EA.hy926 cells and zileuton, a 5-lipoxygenase inhibitor, did not affect the cellular injury induced by H2O2. CONCLUSION Pranlukast protects endothelial cells from H2O2-induced necrosis by inhibiting ROS-mediated collapse of mitochondrial membrane potential, and this is leukotriene-independent.
Collapse
|
41
|
Aroor AR, Jackson DE, Shukla SD. Elevated activation of ERK1 and ERK2 accompany enhanced liver injury following alcohol binge in chronically ethanol-fed rats. Alcohol Clin Exp Res 2011; 35:2128-38. [PMID: 21790671 DOI: 10.1111/j.1530-0277.2011.01577.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Binge drinking after chronic ethanol consumption is one of the important factors contributing to the progression of steatosis to steatohepatitis. The molecular mechanisms of this effect remain poorly understood. We have therefore examined in rats the effect of single and repeat ethanol binge superimposed on chronic ethanol intake on liver injury, activation of mitogen-activated protein kinases (MAPKs), and gene expression. METHODS Rats were chronically treated with ethanol in liquid diet for 4 weeks followed by single ethanol binge (5 gm/kg body weight) or 3 similar repeated doses of ethanol. Serum alcohol and alanine amino transferase (ALT) levels were determined by enzymatic methods. Steatosis was assessed by histology and hepatic triglycerides. Activation of MAPK, 90S ribosomal kinase (RSK), and caspase 3 were evaluated by Western blot. Levels of mRNA for tumor necrosis factor alpha (TNFα), early growth response-1 (egr-1), and plasminogen activator inhibitor-1 (PAI-1) were measured by real-time qRT-PCR. RESULTS Chronic ethanol treatment resulted in mild steatosis and necrosis, whereas chronic ethanol followed by binge group exhibited marked steatosis and significant increase in necrosis. Chronic binge group also showed significant increase (compared with chronic ethanol alone) in the phosphorylation of extracellular regulated kinase 1 (ERK1), ERK2, and RSK. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK did not increase by the binge. Ethanol binge, after chronic ethanol intake, caused increase in mRNA for egr-1 and PAI-1, but not TNFα. CONCLUSIONS Chronic ethanol exposure increases the susceptibility of rat liver to increased injury by 1 or 3 repeat binge. Among other alterations, the activated levels of ERK1, and more so ERK2, were remarkably amplified by binge suggesting a role of these isotypes in the binge amplification of the injury. In contrast, p38 MAPK and JNK1/2 activities were not amplified. These binge-induced changes were also reflected in the increases in the RNA levels for egr-1 and PAI-1. This study offers chronic followed by repeat binge as a model for the study of progression of liver injury by ethanol and highlights the involvement of ERK1 and ERK2 isotypes in the amplification of liver injury by binge ethanol.
Collapse
Affiliation(s)
- Annayya R Aroor
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, 65212, USA
| | | | | |
Collapse
|
42
|
Ponnusamy M, Liu N, Gong R, Yan H, Zhuang S. ERK pathway mediates P2X7 expression and cell death in renal interstitial fibroblasts exposed to necrotic renal epithelial cells. Am J Physiol Renal Physiol 2011; 301:F650-9. [PMID: 21677150 DOI: 10.1152/ajprenal.00215.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We recently reported that necrotic renal proximal epithelial cells (RPTC) stimulate the expression of P2X7 receptor in renal fibroblasts and that P2X7 receptor mediates deleterious epithelial-fibroblast cross talk. The present study was carried out to investigate the signaling mechanism of necrotic RPTC-induced P2X7 expression in cultured renal interstitial fibroblasts (NRK-49F). Exposure of NRK-49F to necrotic RPTC supernatant (RPTC-Sup) induced a time- and dose-dependent phosphorylation of several signaling pathways including extracellular signal-regulated kinases (ERK1/2), p38, c-Jun N-terminal kinases (JNKs), and AKT in NRK-49F. Pharmacological inhibition of ERK1/2, but not p38, JNK, and AKT pathways, blocked RPTC-Sup-induced P2X7 expression and renal interstitial fibroblast death. Knockdown of ERK1/2 or MEK1, a direct upstream activator of ERK1/2, also reduced RPTC-Sup-induced P2X7 expression and cell death of renal fibroblasts. Conversely, overexpression of MEK1 enhanced these responses. Upon necrotic RPTC exposure, phosphorylation of Elk1, a transcriptional factor targeted by ERK1/2, was increased in NRK-49F, and knockdown of Elk1 by siRNA remarkably reduced RPTC-Sup-induced P2X7 expression as well as renal fibroblast death. Furthermore, silencing of MEK1 inhibited Elk1 phosphorylation in response to necrotic RPTC, whereas overexpression of MEK1 increased Elk1 phosphorylation. Taken together, these data reveal that necrotic RPTC induces P2X7 expression in renal fibroblasts through activation of the MEK1-ERK1/2-Elk1 signaling pathway.
Collapse
Affiliation(s)
- Murugavel Ponnusamy
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, USA
| | | | | | | | | |
Collapse
|
43
|
Li MM, Wu LY, Zhao T, Xiong L, Huang X, Liu ZH, Fan XL, Xiao CR, Gao Y, Ma YB, Chen JJ, Zhu LL, Fan M. The protective role of 5-HMF against hypoxic injury. Cell Stress Chaperones 2011; 16:267-73. [PMID: 21057989 PMCID: PMC3077221 DOI: 10.1007/s12192-010-0238-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 12/15/2022] Open
Abstract
In an attempt to find new types of anti-hypoxic agents from herbs, we identified 5-hydroxymethyl-2-furfural (5-HMF) as a natural agent that fulfills the criterion. 5-HMF, the final product of carbohydrate metabolism, has favorable biological effects such as anti-oxidant activity and inhibiting sickling of red blood cells. The role of 5-HMF in hypoxia, however, is not yet. Our pilot results showed that pretreatment with 5-HMF markedly increased both the survival time and the survival rate of mice under hypoxic stress. The present study was aimed to further investigate the protective role of 5-HMF and the underlying mechanisms in hypoxic injury using ECV304 cells as an in vitro model. ECV304 cells pretreated with or without 5-HMF for 1 h were exposed to hypoxic condition (0.3% O(2)) for 24 h and then cell apoptosis, necrosis, the changes of mitochondrial membrane potential (MMP) and the expressions of phosphorylation- extracellular signal-regulated kinase (p-ERK) were investigated. Pretreatment with 5-HMF markedly attenuated hypoxia-induced cell necrosis and apoptosis at late stage (p < 0.01). Furthermore, pretreatment with 5-HMF rescued both the decline of the MMP and the increase of p-ERK protein under hypoxia. In a word, these results indicated that 5-HMF had protective effects against hypoxic injury in ECV304 cells, and its effects on MMP and p-ERK may be involved in the mechanism.
Collapse
Affiliation(s)
- Ming-Ming Li
- Beijing Institute for Neuro-Science, Capital Medical University School of Basic Medical Sciences, Beijng, 100069 People’s Republic of China
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Li-Ying Wu
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Tong Zhao
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Lei Xiong
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Xin Huang
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Zhao-Hui Liu
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Xue-Lai Fan
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Cheng-Rong Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850 People’s Republic of China
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing, 100850 People’s Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in Western China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, People’s Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in Western China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, People’s Republic of China
| | - Ling-Ling Zhu
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Ming Fan
- Beijing Institute for Neuro-Science, Capital Medical University School of Basic Medical Sciences, Beijng, 100069 People’s Republic of China
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| |
Collapse
|
44
|
Laguerre M, Decker EA, Lecomte J, Villeneuve P. Methods for evaluating the potency and efficacy of antioxidants. Curr Opin Clin Nutr Metab Care 2010; 13:518-25. [PMID: 20601864 DOI: 10.1097/mco.0b013e32833aff12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to present a brief panorama of the most widely used methods and of new analytical approaches for evaluating antioxidant capacity and to discuss them in terms of advantages and drawbacks. RECENT FINDINGS To date, many in-vitro tests are available from the chemical assay performed in a homogenous solution such as oxygen radical antioxidant capacity assay to more complex cell-based methods using exogenic probes to detect oxidation. In complement to these existing methods, novel approaches have recently been developed such as the conjugated autoxidizable triene assay implemented in emulsions and using tung oil as ultraviolet probe. SUMMARY The complexity and diverse range of research topics investigated have led to the development of a multitude of tests, but unfortunately none of them are universal. Thus, one of the major challenges is to know which method is best suited for a particular application.
Collapse
Affiliation(s)
- Mickaël Laguerre
- Department of Food Science, University of Massachusetts, Chenoweth Laboratory, Amherst, MA, USA
| | | | | | | |
Collapse
|
45
|
Gonzalez JE, DiGeronimo RJ, Arthur DE, King JM. Remodeling of the tight junction during recovery from exposure to hydrogen peroxide in kidney epithelial cells. Free Radic Biol Med 2009; 47:1561-9. [PMID: 19733232 PMCID: PMC2783357 DOI: 10.1016/j.freeradbiomed.2009.08.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 08/25/2009] [Accepted: 08/28/2009] [Indexed: 12/22/2022]
Abstract
Renal ischemia-reperfusion injury results in oxidative stress-induced alterations in barrier function. Activation of the mitogen-activated protein (MAP) kinase pathway during recovery from oxidative stress may be an effector of oxidant-induced tight junction reorganization. We hypothesized that tight junction composition and barrier function would be perturbed during recovery from oxidative stress. We developed a model of short-term H(2)O(2) exposure followed by recovery using Madin Darby canine kidney (MDCK II) cells. H(2)O(2) perturbs barrier function without a significant cytotoxic effect except in significant doses. ERK-1/2 and p38, both enzymes of the MAP kinase pathway, were activated within minutes of exposure to H(2)O(2). Transient exposure to H(2)O(2) produced a biphasic response in the transepithelial electrical resistance (TER). An initial drop in TER at 6 h was followed by a significant increase at 24 h. Inhibition of ERK-1/2 activation attenuated the increase in TER observed at 24 h. Expression of occludin initially decreased, followed by partial recovery at 24 h. In contrast, claudin-1 levels decreased and failed to recover at 24 h. Claudin-2 levels were markedly decreased at 24 h; however, inhibition of ERK-1/2 activation was protective. Occludin and claudin-1 localization at the apical membrane on immunofluorescence images was fragmented at 6 h after H(2)O(2) exposure with subsequent recovery of appropriate localization by 24 h. MDCK II cell recovery after H(2)O(2) exposure is associated with functional and structural modifications of the tight junction that are mediated in part by activation of the MAP kinase enzymes ERK-1/2 and p38.
Collapse
|
46
|
Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J 2009; 277:2-21. [PMID: 19843174 DOI: 10.1111/j.1742-4658.2009.07366.x] [Citation(s) in RCA: 1012] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ras/Raf/extracellular signal-regulated kinase (ERK) signaling pathway plays a crucial role in almost all cell functions and therefore requires exquisite control of its spatiotemporal activity. Depending on the cell type and stimulus, ERK activity will mediate different antiproliferative events, such as apoptosis, autophagy and senescence in vitro and in vivo. ERK activity can promote either intrinsic or extrinsic apoptotic pathways by induction of mitochondrial cytochrome c release or caspase-8 activation, permanent cell cycle arrest or autophagic vacuolization. These unusual effects require sustained ERK activity in specific subcellular compartments and could depend on the presence of reactive oxygen species. We will summarize the mechanisms involved in Ras/Raf/ERK antiproliferative functions.
Collapse
Affiliation(s)
- Sebastien Cagnol
- Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| | | |
Collapse
|
47
|
Dagda RK, Zhu J, Chu CT. Mitochondrial kinases in Parkinson's disease: converging insights from neurotoxin and genetic models. Mitochondrion 2009; 9:289-98. [PMID: 19563915 DOI: 10.1016/j.mito.2009.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/06/2009] [Accepted: 06/22/2009] [Indexed: 12/11/2022]
Abstract
Alterations in mitochondrial biology have long been implicated in neurotoxin, and more recently, genetic models of parkinsonian neurodegeneration. In particular, kinase regulation of mitochondrial dynamics and turnover are emerging as central mechanisms at the convergence of neurotoxin, environmental and genetic approaches to studying Parkinson's disease (PD). Kinases that localize to mitochondria during neuronal injury include mitogen activated protein kinases (MAPK) such as extracellular signal regulated protein kinases (ERK) and c-Jun N-terminal kinases (JNK), protein kinase B/Akt, and PTEN-induced kinase 1 (PINK1). Although site(s) of action within mitochondria and specific kinase targets are still unclear, these signaling pathways regulate mitochondrial respiration, transport, fission-fusion, calcium buffering, reactive oxygen species (ROS) production, mitochondrial autophagy and apoptotic cell death. In this review, we summarize accelerating experimental evidence gathered over the last decade that implicate a central role for kinase signaling at the mitochondrion in Parkinson's and related neurodegenerative disorders. Interactions involving alpha-synuclein, leucine rich repeat kinase 2 (LRRK2), DJ-1 and Parkin are discussed. Converging mechanisms from different model systems support the concept of common pathways in parkinsonian neurodegeneration that may be amenable to future therapeutic interventions.
Collapse
Affiliation(s)
- Ruben K Dagda
- Dept. of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | | | | |
Collapse
|