1
|
Li Z, Ye R, He Q, Lu J, Sun Y, Sun X, Tang S, Hu S, Chai J, Kong L, Liu X, Chen J, Fang Y, Lan Y, Xie Q, Liu J, Shao L, Fu W, Wang Y, Li W. Discovery of an Ortho-Substituted N-Cyclopropylmethyl-7α-phenyl-6,14- endoethano-tetrahydronorthebaine Derivative as a Selective and Potent Kappa Opioid Receptor Agonist with Subsided Sedative Effect. J Med Chem 2024. [PMID: 38647397 DOI: 10.1021/acs.jmedchem.3c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Research into kappa opioid receptor (KOR) agonists with attenuated central-nervous-system side effects is a critical focus for developing productive and safe analgesics. Herein, a series of ortho-substituted N-cyclopropylmethyl-7α-phenyl-6,14-endoethano-tetrahydronorthebaines were designed, synthesized, and subjected to bioassays. Compound 7a exhibited high subtype selectivity and potent agonistic activity toward KOR (KOR, Ki = 3.9 nM, MOR/KOR = 270, DOR/KOR = 1075; [35S]GTPγS binding, EC50 = 3.4 nM). Additionally, this compound exhibited robust and persistent antinociceptive effects in rodent models with different animal strains (hot plate test, ED50 = 0.20-0.30 mg/kg, i.p.; abdominal constriction test, ED50 = 0.20-0.60 mg/kg, i.p.), with its KOR-mediated mechanism for antinociception firmly established. Notably, compound 7a, unlike conventional KOR agonists, displayed minimal sedation and aversion at the antinociceptive ED50 dose. This feature addresses a crucial limitation in existing KOR agonists, positioning compound 7a as a promising novel therapeutic agent.
Collapse
Affiliation(s)
- Zixiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Rufeng Ye
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qian He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Jiashuo Lu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
- Department of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yanting Sun
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou 310053, China
| | - Xiujian Sun
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou 310053, China
| | - Siyuan Tang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Shuyang Hu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jingrui Chai
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Xiaoning Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Jing Chen
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yun Fang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yingjie Lan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Jinggen Liu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou 310053, China
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yujun Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
2
|
Zhang Q, Xu B, Chen D, Wu S, Hu X, Zhang X, Yu B, Zhang S, Yang Z, Zhang M, Fang Q. Structure-Activity Relationships of a Novel Cyclic Hexapeptide That Exhibits Multifunctional Opioid Agonism and Produces Potent Antinociceptive Activity. J Med Chem 2024; 67:272-288. [PMID: 38118143 DOI: 10.1021/acs.jmedchem.3c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The cyclic peptide c[d-Lys2, Asp5]-DN-9 has recently been identified as a multifunctional opioid/neuropeptide FF receptor agonist, displaying potent analgesic activity with reduced side effects. This study utilized Tyr-c[d-Lys-Gly-Phe-Asp]-d-Pro-NH2 (0), a cyclic hexapeptide derived from the opioid pharmacophore of c[d-Lys2, Asp5]-DN-9, as a chemical template. We designed, synthesized, and characterized 22 analogs of 0 with a single amino acid substitution to investigate its structure-activity relationship. Most of these cyclic hexapeptide analogs exhibited multifunctional activity at μ and δ opioid receptors (MOR and DOR, respectively) and produced antinociceptive effects following subcutaneous administration. The lead compound analog 15 showed potent agonistic activities at the MOR, κ opioid receptor (KOR), and DOR in vitro and produced a strong and long-lasting analgesic effect through peripheral MOR and KOR in the tail-flick test. Further biological evaluation identified that analog 15 did not cause significant side effects such as tolerance, withdrawal, or reward liability.
Collapse
Affiliation(s)
- Qinqin Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Dan Chen
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Shuyuan Wu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xuanran Hu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xiaodi Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Bowen Yu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Shichao Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Zhenyun Yang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Mengna Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Quan Fang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| |
Collapse
|
3
|
Rehrauer KJ, Cunningham CW. IUPHAR Review - Bivalent and bifunctional opioid receptor ligands as novel analgesics. Pharmacol Res 2023; 197:106966. [PMID: 37865129 DOI: 10.1016/j.phrs.2023.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Though efficacious in managing chronic, severe pain, opioid analgesics are accompanied by significant adverse effects including constipation, tolerance, dependence, and respiratory depression. The life-threatening risks associated with µ opioid receptor agonist-based analgesics challenges their use in clinic. A rational approach to combatting these adverse effects is to develop agents that incorporate activity at a second pharmacologic target in addition to µ opioid receptor activation. The promise of such bivalent or bifunctional ligands is the development of an analgesic with an improved side effect profile. In this review, we highlight ongoing efforts in the development of bivalent and bifunctional analgesics that combine µ agonism with efficacy at κ and δ opioid receptors, the nociceptin opioid peptide (NOP) receptor, σ receptors, and cannabinoid receptors. Several examples of bifunctional analgesics in preclinical and clinical development are highlighted, as are strategies being employed toward the rational design of novel agents.
Collapse
Affiliation(s)
- Kyle J Rehrauer
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA
| | - Christopher W Cunningham
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA; CUW Center for Structure-Based Drug Discovery and Development, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA.
| |
Collapse
|
4
|
Secker C, Fackeldey K, Weber M, Ray S, Gorgulla C, Schütte C. Novel multi-objective affinity approach allows to identify pH-specific μ-opioid receptor agonists. J Cheminform 2023; 15:85. [PMID: 37726792 PMCID: PMC10510211 DOI: 10.1186/s13321-023-00746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Opioids are essential pharmaceuticals due to their analgesic properties, however, lethal side effects, addiction, and opioid tolerance are extremely challenging. The development of novel molecules targeting the [Formula: see text]-opioid receptor (MOR) in inflamed, but not in healthy tissue, could significantly reduce these unwanted effects. Finding such novel molecules can be achieved by maximizing the binding affinity to the MOR at acidic pH while minimizing it at neutral pH, thus combining two conflicting objectives. Here, this multi-objective optimal affinity approach is presented, together with a virtual drug discovery pipeline for its practical implementation. When applied to finding pH-specific drug candidates, it combines protonation state-dependent structure and ligand preparation with high-throughput virtual screening. We employ this pipeline to characterize a set of MOR agonists identifying a morphine-like opioid derivative with higher predicted binding affinities to the MOR at low pH compared to neutral pH. Our results also confirm existing experimental evidence that NFEPP, a previously described fentanyl derivative with reduced side effects, and recently reported [Formula: see text]-fluorofentanyls and -morphines show an increased specificity for the MOR at acidic pH when compared to fentanyl and morphine. We further applied our approach to screen a >50K ligand library identifying novel molecules with pH-specific predicted binding affinities to the MOR. The presented differential docking pipeline can be applied to perform multi-objective affinity optimization to identify safer and more specific drug candidates at large scale.
Collapse
Affiliation(s)
- Christopher Secker
- Zuse Institute Berlin, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | - Konstantin Fackeldey
- Zuse Institute Berlin, Berlin, Germany
- Institute of Mathematics, Technical University Berlin, Berlin, Germany
| | | | | | - Christoph Gorgulla
- Zuse Institute Berlin, Berlin, Germany
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christof Schütte
- Zuse Institute Berlin, Berlin, Germany
- Mathematics Institute, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Ouyang X, Su M, Xue D, Dong L, Niu H, Li W, Liu Y, Wang K, Shao L. Design, synthesis, and biological evaluation of acyl sulfonamide derivatives with spiro cycles as Na V1.7 inhibitors for antinociception. Bioorg Med Chem 2023; 86:117290. [PMID: 37137269 DOI: 10.1016/j.bmc.2023.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023]
Abstract
Chronic pain, as an unmet medical need, severely impacts the quality of life. The voltage-gated sodium channel NaV1.7 preferentially expressed in sensory neurons of dorsal root ganglia (DRG) serves a promising target for pain therapy. Here, we report the design, synthesis, and evaluation of a series of acyl sulfonamide derivatives targeting Nav1.7 for their antinociceptive activities. Among the derivatives tested, the compound 36c was identified as a selective and potent NaV1.7 inhibitor in vitro and exhibited antinociceptive effects in vivo. The identification of 36c not only provides a new insight into the discovery of selective NaV1.7 inhibitors, but also may hold premise for pain therapy.
Collapse
Affiliation(s)
- Xiangshuo Ouyang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Min Su
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Dengqi Xue
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Liying Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Heling Niu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China.
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology, Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
6
|
Kong L, Shu X, Tang S, Ye R, Sun H, Jiang S, Li Z, Chai J, Fang Y, Lan Y, Yu L, Xie Q, Fu W, Wang Y, Li W, Qiu Z, Liu J, Shao L. SLL-627 Is a Highly Selective and Potent κ Opioid Receptor (KOR) Agonist with an Unexpected Nonreduction in Locomotor Activity. J Med Chem 2022; 65:10377-10392. [PMID: 35900351 DOI: 10.1021/acs.jmedchem.2c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Undue central nervous system (CNS) side effects including dysphoria and sedation remain to be a challenge for the development of κ opioid receptor (KOR) agonists as effective and safe analgesics. On the basis of our previous work on morphinan-based KOR agonists, a series of 7α-methyl-7β-substituted northebaine derivatives were designed, synthesized, and biologically assayed. Among others, compound 4a (SLL-627) has been identified as a highly selective and potent KOR agonist both in vitro and in vivo, and its molecular basis was also examined and discussed. Besides low liability to conditioned place aversion (CPA) test, treatment of SLL-627 was associated with a nonreduction in locomotor activity, compared to most of the other arylacetamide- or morphinan-based KOR agonists which generally exhibited apparently sedative effects. This unexpected finding provides new insights to dissociate analgesia from sedation for future discovery of innovative KOR agonists.
Collapse
Affiliation(s)
- Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Xuelian Shu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, No. 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Siyuan Tang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Rongrong Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Huijiao Sun
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Shuang Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
| | - Zixiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Jingrui Chai
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yun Fang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yinjie Lan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Linqian Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yujun Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Jinggen Liu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China.,State Key Laboratory of Medical Neurobiology, Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
7
|
Novel selective κ agonists SLL-039 and SLL-1206 produce potent antinociception with fewer sedation and aversion. Acta Pharmacol Sin 2022; 43:1372-1382. [PMID: 34493813 PMCID: PMC9160296 DOI: 10.1038/s41401-021-00761-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
SLL-039 (N-cyclopropylmethyl-7α-4'-(N'-benzoyl) amino-phenyl-6,14-endoethano-tetrahydronorthebaine) and SLL-1206 (N-cyclopropylmethyl-7α-3'-(p-methoxybenzyl) amino-phenyl-6,14-endoethano-tetrahydronorthebaine) are two 4,5-epoxymorphinan-based high selective κ receptor agonists that we recently discovered. In the present study we characterized their pharmacological properties in comparison with arylacetamide-based typical κ agonist U50,488H. We showed that both SLL-039 and SLL-1206 produced potent and long-lasting antinociceptive actions in three different rodent models of pain via activation of κ opioid receptor. In hot-plate assay, the antinociceptive potency of SLL-039 and SLL-1206 increased about 11-and 17.3-fold compared to U50,488H and morphine, respectively, with ED50 values of 0.4 mg/kg. Following repeated administration, SLL-1206, SLL-039, and U50,488H all developed analgesic tolerance tested in hot-plate assay. U50,488H and SLL-039 produced antipruritic effects in a dose-dependent manner, whereas SLL-1206 displayed some antipruritic effects only at very low doses. In addition, SLL-1206 was capable of decreasing morphine-induced physical dependence. More importantly, SLL-039 and SLL-1206 at effective analgesic doses did not cause sedation and conditioned place aversion (CPA), whereas U50,488H did. In comparison with SLL-039, SLL-1206 caused similar antinociceptive responses, but fewer sedation and CPA. In conclusion, our results suggest that SLL-039 and SLL-1206 have potential to be developed as novel analgesic agents, and 4,5-expoxymorphinan scaffold is an attractive structure for the development of selective κ agonists with fewer side effects.
Collapse
|
8
|
French AR, van Rijn RM. An updated assessment of the translational promise of G-protein-biased kappa opioid receptor agonists to treat pain and other indications without debilitating adverse effects. Pharmacol Res 2022; 177:106091. [PMID: 35101565 PMCID: PMC8923989 DOI: 10.1016/j.phrs.2022.106091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/22/2023]
Abstract
Kappa opioid receptor (κOR) agonists lack the abuse liability and respiratory depression effects of clinically used mu opioid receptor (μOR) analgesics and are hypothesized to be safer alternatives. However, κOR agonists have limiting adverse effects of their own, including aversion, sedation, and mood effects, that have hampered their clinical translation. Studies performed over the last 15 years have suggested that these adverse effects could result from activation of distinct intracellular signaling pathways that are dependent on β-arrestin, whereas signaling downstream of G protein activation produces antinociception. This led to the hypothesis that agonists biased away from β-arrestin signaling would have improved therapeutic windows over traditional unbiased agonists and allow for clinical development of analgesic G-protein-biased κOR agonists. Given a recent controversy regarding the benefits of G-protein-biased μOR agonists, it is timely to reassess the therapeutic promise of G-protein-biased κOR agonists. Here we review recent discoveries from preclinical κOR studies and critically evaluate the therapeutic windows of G-protein-biased κOR agonists in each of the adverse effects above. Overall, we find that G-protein-biased κOR agonists generally have improved therapeutic window relative to unbiased agonists, although frequently study design limits strong conclusions in this regard. However, a steady flow of newly developed biased κOR agonists paired with recently engineered behavioral and molecular tools puts the κOR field in a prime position to make major advances in our understanding of κOR function and fulfill the promise of translating a new generation of biased κOR agonists to the clinic.
Collapse
Affiliation(s)
- Alexander R French
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
9
|
Zhang M, Xu B, Li N, Zhang R, Zhang Q, Shi X, Xu K, Xiao J, Chen D, Niu J, Shi Y, Fang Q. Development of Multifunctional and Orally Active Cyclic Peptide Agonists of Opioid/Neuropeptide FF Receptors that Produce Potent, Long-Lasting, and Peripherally Restricted Antinociception with Diminished Side Effects. J Med Chem 2021; 64:13394-13409. [PMID: 34465090 DOI: 10.1021/acs.jmedchem.1c00694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously reported that a multifunctional opioid/neuropeptide FF receptor agonist, DN-9, achieved peripherally restricted analgesia with reduced side effects. To develop stable and orally bioavailable analogues of DN-9, eight lactam-bridged cyclic analogues of DN-9 between positions 2 and 5 were designed, synthesized, and biologically evaluated. In vitro cAMP assays revealed that these analogues, except 7, were multifunctional ligands that activated opioid and neuropeptide FF receptors. Analogue 1 exhibited improved potency for κ-opioid and NPFF2 receptors. All analogues exhibited potent, long-lasting, and peripherally restricted antinociception in the tail-flick test without tolerance development after subcutaneous administration and produced oral analgesia. Oral administration of the optimized compound analogue 1 exhibited powerful, peripherally restricted antinociceptive effects in mouse models of acute, inflammatory, and neuropathic pain. Remarkably, orally administered analogue 1 had no significant side effects, such as tolerance, dependence, constipation, or respiratory depression, at effective analgesic doses.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Xuerui Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Kangtai Xu
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu Province 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Yonghang Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| |
Collapse
|
10
|
Liu X, Jiang S, Kong L, Ye R, Xiao L, Xu X, He Q, Wei Y, Li Z, Sun H, Xie Q, Xu X, Lu Y, Wang Y, Li W, Fu W, Qiu Z, Liu J, Shao L. Exploration of the SAR Connection between Morphinan- and Arylacetamide-Based κ Opioid Receptor (κOR) Agonists Using the Strategy of Bridging. ACS Chem Neurosci 2021; 12:1018-1030. [PMID: 33650843 DOI: 10.1021/acschemneuro.1c00034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
κ opioid receptor (κOR) is a subtype of opioid receptors, and there are two major κOR agonists currently available, morphinans and arylacetamides, which are structurally distinct from each other. Numerous efforts had been made to correlate these series of compounds in order to establish a consensus binding pattern for κOR agonists. Unfortunately, no morphinan-based agent with an arylacetamidyl substituent has been identified as a κOR agonist with a pharmacological profile similar to arylacetamides. Since the recently described morphinan-based compound SLL-039 was identified as a selective and potent κOR agonist that contains a unique benzamidyl substituent in structure similar to arylacetamides, numerous arylacetamidyl substituents were introduced to this scaffold to examine whether the structure-activity relationships (SARs) of arylacetamides in conferring κOR agonistic activities could be reproduced by these analogues. Thus, a series of N-cyclopropylmethyl-7α-arylacetamidylphenyl-6,14-endoethanotetrahydronorthebaine analogues were designed, synthesized, and assayed for biological activities. Among these compounds, compound 4j with a 3',4'-dimethylphenylacetamidyl substituent showed a single digit low nanomolar affinity to the κOR and relatively high subtype selectivity in binding assays, but this profile was not reproduced in functional assays. In contrast, compound 4i displayed moderately selective κOR agonistic activities in functional assays, which was inconsistent with its nonselective nature in binding assays. Overall, introduction of an arylacetamidyl substituent to the morphinan-based scaffold was associated with pharmacological diversity in both binding and functional activities on opioid receptors in vitro. The resultant SARs were inconsistent with that of classical arylacetamides as κOR agonists, despite bearing a similar arylacetamidyl substituent in the structure. Therefore, the arylacetamidyl substituent of the morphinan-based scaffold was found to be disconnected from that of arylacetamides in conferring κOR activities.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Shuang Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Rongrong Ye
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Li Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xuejun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Qian He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 210009, China
| | - Zixiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Huijiao Sun
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yan Lu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yujun Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jinggen Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology, Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
11
|
Atigari DV, Paton KF, Uprety R, Váradi A, Alder AF, Scouller B, Miller JH, Majumdar S, Kivell BM. The mixed kappa and delta opioid receptor agonist, MP1104, attenuates chemotherapy-induced neuropathic pain. Neuropharmacology 2021; 185:108445. [PMID: 33383089 PMCID: PMC8344368 DOI: 10.1016/j.neuropharm.2020.108445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/20/2020] [Accepted: 12/20/2020] [Indexed: 01/04/2023]
Abstract
Effective treatments for chronic pain without abuse liability are urgently needed. One in 5 adults suffer chronic pain and half of these patients report inefficient treatment. Mu opioid receptor agonists (MOP), including oxycodone, tramadol and morphine, are often prescribed to treat chronic pain, however, use of drugs targeting MOP can lead to drug dependency, tolerance and overdose deaths. Kappa opioid receptor (KOP) agonists have antinociceptive effects without abuse potential; however, they have not been utilised clinically due to dysphoria and sedation. We hypothesise that mixed opioid receptor agonists targeting the KOP and delta opioid receptor (DOP) would have a wider therapeutic index, with the rewarding effects of DOP negating the negative effects of KOP. MP1104, an analogue of 3-Iodobenzoyl naltrexamine, is a novel mixed opioid receptor agonist with potent antinociceptive effects mediated via KOP and DOP in mice without rewarding or aversive effects. In this study, we show MP1104 has potent, long-acting antinociceptive effects in the warm-water tail-withdrawal assay in male and female mice and rats; and is longer acting than morphine. In the paclitaxel-induced neuropathic pain model in mice, MP1104 reduced both mechanical and cold allodynia and unlike morphine, did not produce tolerance when administered daily for 23 days. Moreover, MP1104 did not induce sedative effects in the open-field locomotor activity test, respiratory depression in mice using whole-body plethysmography, or have cross-tolerance with morphine. This data supports the therapeutic development of mixed opioid receptor agonists, particularly mixed KOP/DOP agonists, as non-addictive pain medications with reduced tolerance.
Collapse
Affiliation(s)
- Diana Vivian Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Kelly Frances Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rajendra Uprety
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - András Váradi
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - Amy Frances Alder
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Brittany Scouller
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - John H Miller
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Susruta Majumdar
- Center of Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
| | - Bronwyn Maree Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
12
|
Paton KF, Atigari DV, Kaska S, Prisinzano T, Kivell BM. Strategies for Developing κ Opioid Receptor Agonists for the Treatment of Pain with Fewer Side Effects. J Pharmacol Exp Ther 2020; 375:332-348. [PMID: 32913006 DOI: 10.1124/jpet.120.000134] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
There is significant need to find effective, nonaddictive pain medications. κ Opioid receptor (KOPr) agonists have been studied for decades but have recently received increased attention because of their analgesic effects and lack of abuse potential. However, a range of side effects have limited the clinical development of these drugs. There are several strategies currently used to develop safer and more effective KOPr agonists. These strategies include identifying G-protein-biased agonists, developing peripherally restricted KOPr agonists without centrally mediated side effects, and developing mixed opioid agonists, which target multiple receptors at specific ratios to balance side-effect profiles and reduce tolerance. Here, we review the latest developments in research related to KOPr agonists for the treatment of pain. SIGNIFICANCE STATEMENT: This review discusses strategies for developing safer κ opioid receptor (KOPr) agonists with therapeutic potential for the treatment of pain. Although one strategy is to modify selective KOPr agonists to create peripherally restricted or G-protein-biased structures, another approach is to combine KOPr agonists with μ, δ, or nociceptin opioid receptor activation to obtain mixed opioid receptor agonists, therefore negating the adverse effects and retaining the therapeutic effect.
Collapse
Affiliation(s)
- Kelly F Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Diana V Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Sophia Kaska
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Thomas Prisinzano
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| |
Collapse
|
13
|
Khan K, Tareen AK, Aslam M, Sagar RUR, Zhang B, Huang W, Mahmood A, Mahmood N, Khan K, Zhang H, Guo Z. Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. NANO-MICRO LETTERS 2020; 12:167. [PMID: 34138161 PMCID: PMC7770787 DOI: 10.1007/s40820-020-00504-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/12/2020] [Indexed: 05/03/2023]
Abstract
The successful photo-catalyst library gives significant information on feature that affects photo-catalytic performance and proposes new materials. Competency is considerably significant to form multi-functional photo-catalysts with flexible characteristics. Since recently, two-dimensional materials (2DMs) gained much attention from researchers, due to their unique thickness-dependent uses, mainly for photo-catalytic, outstanding chemical and physical properties. Photo-catalytic water splitting and hydrogen (H2) evolution by plentiful compounds as electron (e-) donors is estimated to participate in constructing clean method for solar H2-formation. Heterogeneous photo-catalysis received much research attention caused by their applications to tackle numerous energy and environmental issues. This broad review explains progress regarding 2DMs, significance in structure, and catalytic results. We will discuss in detail current progresses of approaches for adjusting 2DMs-based photo-catalysts to assess their photo-activity including doping, hetero-structure scheme, and functional formation assembly. Suggested plans, e.g., doping and sensitization of semiconducting 2DMs, increasing electrical conductance, improving catalytic active sites, strengthening interface coupling in semiconductors (SCs) 2DMs, forming nano-structures, building multi-junction nano-composites, increasing photo-stability of SCs, and using combined results of adapted approaches, are summed up. Hence, to further improve 2DMs photo-catalyst properties, hetero-structure design-based 2DMs' photo-catalyst basic mechanism is also reviewed.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology (DGUT), Dongguan, 523808, Guangdong, People's Republic of China.
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Muhammad Aslam
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
- Government Degree College Paharpur, Gomel University, Dera Ismail Khan, K.P.K, Islamic Republic of Pakistan
| | - Rizwan Ur Rehman Sagar
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Jiangxi, 341000, People's Republic of China
| | - Bin Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Weichun Huang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Asif Mahmood
- School of Chemical and Bio-Molecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nasir Mahmood
- School of Engineering, The Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Kishwar Khan
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Zhongyi Guo
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology (DGUT), Dongguan, 523808, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Mercadante S, Romualdi P. The Therapeutic Potential of Novel Kappa Opioid Receptor-based Treatments. Curr Med Chem 2020; 27:2012-2020. [PMID: 30666905 DOI: 10.2174/0929867326666190121142459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/13/2018] [Accepted: 12/29/2018] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Similarly to the μ opioid receptor, kappa opioid receptor (KOR), is present either in the central nervous system or in peripheral tissues. In the last years, several molecules, able to interact with KOR, have been the focus of basic research for their therapeutic potential in the field of chronic pain, as well as in depression, autoimmune disorders and neurological diseases. DISCUSSION The role of KOR system and the consequent clinical effects derived by its activation or inhibition are discussed. Their potential therapeutic utilization in conditions of stress and drug relapse, besides chronic pain, is presented here, including the possible use of KORagonists in drug addiction. Moreover, the potential role of KOR-antagonists, KOR agonistantagonists and peripheral KOR agonists is proposed. CONCLUSION Other than pain, KORs have a role in regulating reward and mood. Due to its location, KORs seem to mediate interactions between psychiatric disorders, addiction and depression. Experimental studies in animal models have identified brain mechanisms that may contribute to clarify specific pathophysiological processes.
Collapse
Affiliation(s)
- Sebastiano Mercadante
- Pain Relief & Palliative/Supportive Care Unit, La Maddalena Cancer Center, Palermo, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Huang H, Wang W, Xu X, Zhu C, Wang Y, Liu J, Li W, Fu W. Discovery of 3-((dimethylamino)methyl)-4-hydroxy-4-(3-methoxyphenyl)-N-phenylpiperidine-1-carboxamide as novel potent analgesic. Eur J Med Chem 2020; 189:112070. [PMID: 31982651 DOI: 10.1016/j.ejmech.2020.112070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Management of moderate to severe pain by clinically used opioid analgesics is associated with a plethora of side effects. Despite many efforts have been dedicated to reduce undesirable side effects, moderate progress has been made. In this work, starting from Tramadol, a series of 3-((dimethylamino)methyl)-4-hydroxy-4-(3-methoxyphenyl)piperidine-1-carboxamide derivatives were designed and synthesized, and their in vitro and in vivo activities were evaluated. Our campaign afforded selective μ opioid receptor (MOR) ligand 2a (KiMOR: 7.3 ± 0.5 nM; KiDOR: 849.4 ± 96.6 nM; KiKOR: 49.1 ± 6.9 nM) as potent analgesic with ED50 of 3.1 mg/kg in 55 °C hot plate model. Its antinociception effect was blocked by opioid antagonist naloxone. High binding affinity toward MOR of compound 2a was associated with water bridge, salt bridge, hydrogen bond and hydrophobic interaction with MOR. The high selectivity of compound 2a for MOR over δ opioid receptor (DOR) and κ opioid receptor (KOR) was due to steric hindrance of compound 2a with DOR and KOR. 2a, a compound with novel scaffold, could serve as a lead for the development of novel opioid ligands.
Collapse
Affiliation(s)
- Huoming Huang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wenli Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xuejun Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Chen Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yujun Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Jinggen Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
16
|
Xiao L, Wang Y, Zhang M, Wu W, Kong L, Ma Y, Xu X, Liu X, He Q, Qian Y, Sun H, Wu H, Lin C, Huang H, Ye R, Jiang S, Ye RF, Yuan C, Fang S, Xue D, Yang X, Chen H, Zheng Y, Yu L, Xie Q, Zheng L, Fu W, Li W, Qiu Z, Liu J, Shao L. Discovery of a Highly Selective and Potent κ Opioid Receptor Agonist from N-Cyclopropylmethyl-7α-phenyl-6,14-endoethanotetrahydronorthebaines with Reduced Central Nervous System (CNS) Side Effects Navigated by the Message-Address Concept. J Med Chem 2019; 62:11054-11070. [PMID: 31738550 DOI: 10.1021/acs.jmedchem.9b00857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective and safe analgesics represent an unmet medical need for the treatment of acute and chronic pain. A series of N-cyclopropylmethyl-7α-phenyl-6,14-endoethanotetrahydronorthebaines were designed, synthesized, and assayed, leading to the discovery of a benzylamine derivative (compound 4, SLL-039) as a highly selective and potent κ opioid agonist (κ, Ki = 0.47 nM, κ/μ = 682, κ/δ = 283), which was confirmed by functional assays in vitro and antinociceptive assays in vivo. The in vivo effect could be blocked by pretreatment with the selective κ antagonist nor-BNI. Moreover, this compound did not induce sedation, a common dose limiting effect of κ opioid receptor agonists, at its analgesic dose compared to U50,488H. The dissociation of sedation/antinociception found in SLL-039 was assumed to be correlated with the occupation of its benzamide motif in a unique subsite involving V1182.63, W124EL1, and E209EL2.
Collapse
Affiliation(s)
- Li Xiao
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Yujun Wang
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Mumei Zhang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Weiwei Wu
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Yan Ma
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China.,Shanghai University School of Life Sciences , No. 99 Shangda Road , Shanghai 200444 , China
| | - Xuejun Xu
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Xiao Liu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Qian He
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Yuanyuan Qian
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Huijiao Sun
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Haihao Wu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Cheng Lin
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Huoming Huang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Rongrong Ye
- Shanghai Institute of Technology , No. 100 Haiquan Road , Shanghai 201418 , China
| | - Shuang Jiang
- Nanjing University of Chinese Medicine , No. 138 Xianlin Avenue , Nanjing 210023 , China
| | - Ru-Feng Ye
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Congmin Yuan
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Shengyang Fang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Dengqi Xue
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Xicheng Yang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Hao Chen
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Yilin Zheng
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Linqian Yu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Lan Zheng
- Minhang Hospital , Fudan University , No. 170 Xinsong Road , Shanghai 201199 , China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Jinggen Liu
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China.,State Key Laboratory of Medical Neurobiology , Fudan University , No. 138 Yixueyuan Road , Shanghai 200032 , China
| |
Collapse
|
17
|
Wang YH, Chai JR, Xu XJ, Ye RF, Zan GY, Liu GYK, Long JD, Ma Y, Huang X, Xiao ZC, Dong H, Wang YJ. Pharmacological Characterization of Dezocine, a Potent Analgesic Acting as a κ Partial Agonist and μ Partial Agonist. Sci Rep 2018; 8:14087. [PMID: 30237513 PMCID: PMC6148296 DOI: 10.1038/s41598-018-32568-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Dezocine is becoming dominated in China market for relieving moderate to severe pain. It is believed that Dezocine’s clinical efficacy and little chance to provoke adverse events during the therapeutic process are mainly attributed to its partial agonist activity at the μ opioid receptor. In the present work, we comprehensively studied the pharmacological characterization of Dezocine and identified that the analgesic effect of Dezocine was a result of action at both the κ and μ opioid receptors. We firstly found that Dezocine displayed preferential binding to μ opioid receptor over κ and δ opioid receptors. Dezocine, on its own, weakly stimulated G protein activation in cells expressing κ and μ receptors, but in the presence of full κ agonist U50,488 H and μ agonist DAMGO, Dezocine inhibited U50,488H- and DAMGO-mediated G protein activation, indicating that Dezocine was a κ partial agonist and μ partial agonist. Then the in intro results were verified by in vivo studies in mice. We observed that Dezocine-produced antinociception was significantly inhibited by κ antagonist nor-BNI and μ antagonist β-FNA pretreatment, indicating that Dezocine-mediated antinociception was via both the κ and μ opioid receptors. When co-administrating of Dezocine with U50,488 H or morphine, Dezocine was capable of inhibiting U50,488H- or morphine-induced antinociception. Finally, κ receptor activation-associated side effect sedation was investigated. We found that Dezocine displayed limited sedative effect with a ceiling effecting at a moderate dose. Thus, our work led to a better understanding of the analgesic mechanism of action of Dezocine in vivo.
Collapse
Affiliation(s)
- Yu-Hua Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Jing-Rui Chai
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai, 201203, China
| | - Xue-Jun Xu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai, 201203, China
| | - Ru-Feng Ye
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai, 201203, China
| | - Gui-Ying Zan
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai, 201203, China
| | | | - Jian-Dong Long
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai, 201203, China
| | - Yan Ma
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiang Huang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai, 201203, China
| | - Zhi-Chao Xiao
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai, 201203, China
| | - Hu Dong
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai, 201203, China
| | - Yu-Jun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai, 201203, China.
| |
Collapse
|
18
|
|
19
|
Abstract
The opioid receptor system plays a major role in the regulation of mood, reward, and pain. The opioid receptors therefore make attractive targets for the treatment of many different conditions, including pain, depression, and addiction. However, stimulation or blockade of any one opioid receptor type often leads to on-target adverse effects that limit the clinical utility of a selective opioid agonist or antagonist. Literature precedent suggests that the opioid receptors do not act in isolation and that interactions among the opioid receptors and between the opioid receptors and other proteins may produce clinically useful targets. Multifunctional ligands have the potential to elicit desired outcomes with reduced adverse effects by allowing for the activation of specific receptor conformations and/or signaling pathways promoted as a result of receptor oligomerization or crosstalk. In this chapter, we describe several classes of multifunctional ligands that interact with at least one opioid receptor. These ligands have been designed for biochemical exploration and the treatment of a wide variety of conditions, including multiple kinds of pain, depression, anxiety, addiction, and gastrointestinal disorders. The structures, pharmacological utility, and therapeutic drawbacks of these classes of ligands are discussed.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Pharmacology, Medical School and the Edward F. Domino Research Center, University of Michigan, Ann Arbor, MI, USA.
| | - Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
The opioid receptor triple agonist DPI-125 produces analgesia with less respiratory depression and reduced abuse liability. Acta Pharmacol Sin 2017; 38:977-989. [PMID: 28502978 DOI: 10.1038/aps.2017.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/23/2017] [Indexed: 12/23/2022] Open
Abstract
Opioid analgesics remain the first choice for the treatment of moderate to severe pain, but they are also notorious for their respiratory depression and addictive effects. This study focused on the pharmacology of a novel opioid receptor mixed agonist DPI-125 and attempted to elucidate the relationship between the δ-, μ- and κ-receptor potency ratio and respiratory depression and abuse liability. Five diarylmethylpiperazine compounds (DPI-125, DPI-3290, DPI-130, KUST202 and KUST13T02) were selected for this study. PKA fluorescence redistribution assays in CHO cells individually expressing δ-, μ- or κ-receptors were used to measure the agonist potency. The respiratory safety profiles were estimated in rats by the ratio of ED50 (pCO2 increase)/ED50 (antinociception). The abuse liability of DPI-125 was evaluated with a self-administration model in rhesus monkeys. The observed agonist potencies of DPI-125 for δ-, μ- and κ-opioid receptors were 4.29±0.36, 11.10±3.04, and 16.57±4.14 nmol/L, respectively. The other four compounds were also mixed agonists with varying potencies. DPI-125 exhibited a high respiratory safety profile, clearly related to its high δ-receptor potency. The ratio of the EC50 potencies for the μ- and δ-receptors was found to be positively correlated with the respiratory safety ratio. DPI-125 has similar potencies for μ- and κ-receptors, which is likely the reason for its reduced abuse potential. Our results demonstrate that the opioid receptor mixed agonist DPI-125 is safer and less addictive than traditional μ-agonist analgesics. These findings suggest that the development of δ>μ∼κ opioid receptor mixed agonists is feasible, and such compounds could represent a promising class of potent analgesics with wider therapeutic windows.
Collapse
|
21
|
Li W, Long JD, Qian YY, Long Y, Xu XJ, Wang YJ, Shen Q, Wang ZN, Yang XC, Xiao L, Sun HP, Xu YL, Chen YY, Xie Q, Wang YH, Shao LM, Liu JG, Qiu ZB, Fu W. The Pharmacological Heterogeneity of Nepenthone Analogs in Conferring Highly Selective and Potent κ-Opioid Agonistic Activities. ACS Chem Neurosci 2017; 8:766-776. [PMID: 28033462 DOI: 10.1021/acschemneuro.6b00321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To develop novel analgesics with no side effects or less side effects than traditional opioids is highly demanded to treat opioid receptor mediated pain and addiction issues. Recently, κ-opioid receptor (KOR) has been established as an attractive target, although its selective agonists could bear heterogeneous pharmacological activities. In this study, we designed and synthesized two new series of nepenthone derivatives by inserting a spacer (carbonyl) between 6α,14α-endo-ethenylthebaine and the 7α-phenyl substitution of the skeleton and by substituting the 17-N-methyl group with a cyclopropylmethyl group. We performed in vitro tests (binding and functional assays) and molecular docking operations on our newly designed compounds. The results of wet-experimental measures and modeled binding structures demonstrate that these new compounds are selective KOR agonists with nanomolar level affinities. Compound 4 from these new derivatives showed the highest affinity (Ki = 0.4 ± 0.1 nM) and the highest selectivity (μ/κ = 339, δ/κ = 2034) toward KOR. The in vivo tests revealed that compound 4 is able to induce stronger (ED50 = 2.1 mg/kg) and much longer antinociceptive effect than that of the typical KOR agonist U50488H (ED50 = 4.4 mg/kg). Therefore, compound 4 can be used as a perfect lead compound for future design of potent analgesics acting through KOR.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jian-Dong Long
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, Shanghai 201203, China
| | - Yuan-Yuan Qian
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yu Long
- Department of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xue-Jun Xu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, Shanghai 201203, China
| | - Yu-Jun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, Shanghai 201203, China
| | - Qing Shen
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zuo-Neng Wang
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xi-Cheng Yang
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li Xiao
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hong-Peng Sun
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yu-Long Xu
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi-Yi Chen
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yong-Hui Wang
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li-Ming Shao
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jing-Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, Shanghai 201203, China
| | - Zhui-Bai Qiu
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Fu
- Department of Medicinal
Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
22
|
Multitarget opioid ligands in pain relief: New players in an old game. Eur J Med Chem 2015; 108:211-228. [PMID: 26656913 DOI: 10.1016/j.ejmech.2015.11.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/23/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022]
Abstract
Still nowadays pain is one of the most common disabling conditions and yet it remains too often unsolved. Analgesic opioid drugs, and mainly MOR agonists such as morphine, are broadly employed for pain management. MOR activation, however, has been seen to cause not only analgesia but also undesired side effects. A potential pain treatment option is represented by the simultaneous targeting of different opioid receptors. In fact, ligands possessing multitarget capabilities led to an improved pharmacological fingerprint. This review focuses on the examination of multitarget opioid ligands which have been distinguished in peptide and non-peptide and further listed as bivalent and bifunctional ligands. Moreover, the potential of these compounds, both as analgesic drugs and pharmacological tools to explore heteromer receptors, has been stressed.
Collapse
|
23
|
Zhang LS, Wang J, Chen JC, Tao YM, Wang YH, Xu XJ, Chen J, Xu YG, Xi T, Hu XW, Wang YJ, Liu JG. Novel κ-opioid receptor agonist MB-1C-OH produces potent analgesia with less depression and sedation. Acta Pharmacol Sin 2015; 36:565-71. [PMID: 25816912 DOI: 10.1038/aps.2014.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022] Open
Abstract
AIM To characterize the pharmacological profiles of a novel κ-opioid receptor agonist MB-1C-OH. METHODS [(3)H]diprenorphine binding and [(35)S]GTPγS binding assays were performed to determine the agonistic properties of MB-1C-OH. Hot plate, tail flick, acetic acid-induced writhing, and formalin tests were conducted in mice to evaluate the antinociceptive actions. Forced swimming and rotarod tests of mice were used to assess the sedation and depression actions. RESULTS In [(3)H]diprenorphine binding assay, MB-1C-OH did not bind to μ- and δ-opioid receptors at the concentration of 100 μmol/L, but showed a high affinity for κ-opioid receptor (Ki=35 nmol/L). In [(35)S]GTPγS binding assay, the compound had an Emax of 98% and an EC50 of 16.7 nmol/L for κ-opioid receptor. Subcutaneous injection of MB-1C-OH had no effects in both hot plate and tail flick tests, but produced potent antinociception in the acetic acid-induced writhing test (ED50=0.39 mg/kg), which was antagonized by pretreatment with a selective κ-opioid receptor antagonist Nor-BNI. In the formalin test, subcutaneous injection of MB-1C-OH did not affect the flinching behavior in the first phase, but significantly inhibited that in the second phase (ED50=0.87 mg/kg). In addition, the sedation or depression actions of MB-1C-OH were about 3-fold weaker than those of the classical κ agonist (-)U50,488H. CONCLUSION MB-1C-OH is a novel κ-opioid receptor agonist that produces potent antinociception causing less sedation and depression.
Collapse
|
24
|
Pharmacological characterization and therapeutic potential for the treatment of opioid abuse with ATPM-ET, an N-ethyl substituted aminothiazolomorphinan with κ agonist and μ agonist/antagonist activity. Eur J Pharmacol 2014; 740:455-63. [DOI: 10.1016/j.ejphar.2014.06.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 02/01/2023]
|
25
|
Banerjee TS, Paul S, Sinha S, Das S. Synthesis of iboga-like isoquinuclidines: Dual opioid receptors agonists having antinociceptive properties. Bioorg Med Chem 2014; 22:6062-70. [PMID: 25281271 DOI: 10.1016/j.bmc.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 11/29/2022]
Abstract
Some novel iboga-analogues consisting of benzofuran moiety and dehydroisoquinuclidine ring connected by -CH2-, (CH2)2 and (CH2)3 linkers have been synthesized with the view to develop potential antinociceptive drugs. The compounds 14 and 21 showed binding at the μ-opioid receptor (MOR), while the compound 11a exhibited dual affinities at both MOR and κ-opioid receptor (KOR). MAP kinase activation indicated all three compounds have opioid agonistic properties. The presence of a double bond and endo-methylcarboxylate group in the dehydroisoquinuclidine ring and the benzofuran and methylene spacer appeared to be essential for opioid receptor binding. Further studies demonstrated 11a caused significant antinociception in mice in the hot-plate test which was comparable to that produced by morphine. The compound 11a was also found to be nontremorigenic unlike various iboga congeners. This study identifies a new pharmacophore which may lead to the development of suitable substitute of morphine in the treatment of pain.
Collapse
Affiliation(s)
- Tuhin Suvro Banerjee
- Neurobiology Department, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Sibasish Paul
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Surajit Sinha
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Sumantra Das
- Neurobiology Department, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
26
|
Bidlack JM. Mixed κ/μ partial opioid agonists as potential treatments for cocaine dependence. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:387-418. [PMID: 24484983 DOI: 10.1016/b978-0-12-420118-7.00010-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cocaine use activates the dopamine reward pathway, leading to the reinforcing effects of dopamine. There is no FDA-approved medication for treating cocaine dependence. Opioid agonists and antagonists have been approved for treating opioid and alcohol dependence. Agonists that activate the μ opioid receptor increase dopamine levels in the nucleus accumbens, while μ receptor antagonists decrease dopamine levels by blocking the effects of endogenous opioid peptides. Activation of the κ opioid receptor decreases dopamine levels and leads to dysphoria. In contrast, inhibition of the κ opioid receptor decreases dopamine levels in the nucleus accumbens. Antagonists acting at the κ receptor reduce stress-mediated behaviors and anxiety. Mixed partial μ/κ agonists have the potential of striking a balance between dopamine levels and attenuating relapse to cocaine. The pharmacological properties of mixed μ/κ opioid receptor agonists will be discussed and results from clinical and preclinical studies will be presented. Results from studies with some of the classical benzomorphans and morphinans will be presented as they lay the foundation for structure-activity relationships. Recent results with other partial opioid agonists, including buprenorphine derivatives and the mixed μ/κ peptide CJ-15,208, will be discussed. The behavioral effects of the mixed μ/κ MCL-741, an aminothiazolomorphinan, in attenuating cocaine-induced locomotor activity will be presented. While not a mixed μ/κ opioid, results obtained with GSK1521498, a μ receptor inverse agonist, will be discussed. Preclinical strategies and successes will lay the groundwork for the further development of mixed μ/κ opioid receptor agonists to treat cocaine dependence.
Collapse
Affiliation(s)
- Jean M Bidlack
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
27
|
Provencher BA, Sromek AW, Li W, Russell S, Chartoff E, Knapp BI, Bidlack JM, Neumeyer JL. Synthesis and pharmacological evaluation of aminothiazolomorphinans at the mu and kappa opioid receptors. J Med Chem 2013; 56:8872-8. [PMID: 24107104 DOI: 10.1021/jm401290y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies with aminothiazolomorphinans suggested that this class of opioid ligands may be useful as a potential pharmacotherapeutic to decrease drug abuse. Novel aminothiazole derivatives of cyclorphan were prepared to evaluate a series of aminothiazolomorphinans with varying pharmacological properties at the κ opioid receptor (KOR) and μ opioid receptor (MOR). This study was focused on exploring the regioisomeric analogs with the aminothiazole on the C-ring of the morphinan skeleton. Receptor binding and [(35)S]GTPγS binding assays were used to characterize the affinity and pharmacological properties of the aminothiazolomorphinans. Intracranial self-stimulation (ICSS) was used to compare the effects of a representative aminothiazolomorphinan with the morphinan mixed-KOR/MOR agonist butorphan (MCL-101) on brain-stimulation reward.
Collapse
Affiliation(s)
- Brian A Provencher
- Alcohol & Drug Abuse Research Center, ‡Mailman Research Center, McLean Hospital, Harvard Medical School , 115 Mill Street, Belmont, Massachusetts 02478, United States
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Drug withdrawal-induced depression: Serotonergic and plasticity changes in animal models. Neurosci Biobehav Rev 2012; 36:696-726. [DOI: 10.1016/j.neubiorev.2011.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/06/2011] [Accepted: 10/15/2011] [Indexed: 12/17/2022]
|
29
|
Zhang T, Yan Z, Sromek A, Knapp BI, Scrimale T, Bidlack JM, Neumeyer JL. Aminothiazolomorphinans with mixed κ and μ opioid activity. J Med Chem 2011; 54:1903-13. [PMID: 21351746 DOI: 10.1021/jm101542c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of N-substituted and N'-substituted aminothiazole-derived morphinans (5) were synthesized for expanding the structure-activity relationships of aminothiazolo-morphinans. Although their affinities were somewhat lower than their prototype aminothiazolo-N-cyclopropylmorphinan (3), 3-aminothiazole derivatives of cyclorphan (1) containing a primary amino group displayed high affinity and selectivity at the κ and μ opioid receptors. [(35)S]GTPγS binding assays showed that the aminothiazolomorphinans were κ agonists with mixed agonist and antagonist activity at the μ opioid receptor. These novel N'-monosubstituted aminothiazole-derived morphinans may be valuable for the development of drug abuse medications.
Collapse
Affiliation(s)
- Tangzhi Zhang
- Alcohol & Drug Abuse Research Center, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Sun JF, Wang YH, Li FY, Lu G, Tao YM, Cheng Y, Chen J, Xu XJ, Chi ZQ, Neumeyer JL, Zhang A, Liu JG. Effects of ATPM-ET, a novel κ agonist with partial μ activity, on physical dependence and behavior sensitization in mice. Acta Pharmacol Sin 2010; 31:1547-52. [PMID: 21102484 DOI: 10.1038/aps.2010.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM to investigate the effects of ATPM-ET [(-)-3-N-Ethylaminothiazolo [5,4-b]-N-cyclopropylmethylmorphinan hydrochloride] on physical dependence and behavioral sensitization to morphine in mice. METHODS the pharmacological profile of ATPM-ET was characterized using competitive binding and GTPγS binding assays. We then examined the antinociceptive effects of ATPM-ET in the hot plate test. Morphine dependence assay and behavioral sensitization assay were used to determine the effect of ATPM-ET on physical dependence and behavior sensitization to morphine in mice. RESULTS the binding assay indicated that ATPM-ET ATPM-ET exhibited a high affinity to both κ- and μ-opioid receptors with K(i) values of 0.15 nmol/L and 4.7 nmol/L, respectively, indicating it was a full κ-opioid receptor agonist and a partial μ-opioid receptor agonist. In the hot plate test, ATPM-ET produced a dose-dependent antinociceptive effect, with an ED(50) value of 2.68 (2.34-3.07) mg/kg. Administration of ATPM-ET (1 and 2 mg/kg, sc) prior to naloxone (3.0 mg/kg, sc) injection significantly inhibited withdrawal jumping of mice. In addition, ATPM-ET (1 and 2 mg/kg, sc) also showed a trend toward decreasing morphine withdrawal-induced weight loss. ATPM-ET (1.5 and 3 mg/kg, sc) 15 min before the morphine challenge significantly inhibited the morphine-induced behavior sensitization (P<0.05). CONCLUSION ATPM-ET may have potential as a therapeutic agent for the treatment of drug abuse.
Collapse
|
31
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
32
|
Rodríguez-Arias M, Aguilar MA, Manzanedo C, Miñarro J. Preclinical evidence of new opioid modulators for the treatment of addiction. Expert Opin Investig Drugs 2010; 19:977-94. [PMID: 20629615 DOI: 10.1517/13543784.2010.500612] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE OF THE FIELD Addiction to opiates is one of the most severe forms of substance dependence, and despite a variety of pharmacological approaches to treat it, relapse is observed in a high percentage of subjects. New pharmacological compounds are necessary to improve the outcome of treatments and reduce adverse side effects. Moreover, drugs that act on the opioid system can also be of benefit in the treatment of alcohol or cocaine addiction. AREA COVERED BY THIS REVIEW: Recent preclinical studies of pharmacological agents for the treatment of opiate addiction (2008 to the present date). WHAT THE READER WILL GAIN The reader will be informed of the latest drugs shown in animal models to modify dependence on opiates and the reinforcing effects of these drugs. In addition, reports of the latest studies to test these compounds in models of other drug addictions are reviewed. TAKE HOME MESSAGE The classic clinical pharmacotherapy for opiate dependence, involving mu-opioid receptor agonists or antagonists, has not yielded a high success rate in humans. In pharmacotherapy for opioid dependence, new options are emerging and different pharmacological strategies are now being tested.
Collapse
Affiliation(s)
- Marta Rodríguez-Arias
- Facultad de Psicología, Departamento de Psicobiología, Unidad de Investigación Psicobiología de las Drogodependencias, Universitat de Valencia, Avda. Blasco Ibáñez 21, Valencia, Spain
| | | | | | | |
Collapse
|
33
|
The role of kappa-opioid receptor activation in mediating antinociception and addiction. Acta Pharmacol Sin 2010; 31:1065-70. [PMID: 20729876 DOI: 10.1038/aps.2010.138] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The kappa-opioid receptor (KOR), a member of the opioid receptor family, is widely expressed in the central nervous system and peripheral tissues. Substantial evidence has shown that activation of KOR by agonists and endogenous opioid peptides in vivo may produce a strong analgesic effect that is free from the abuse potential and the adverse side effects of mu-opioid receptor (MOR) agonists, such as morphine. In addition, activation of the KOR has also been shown to exert an inverse effect on morphine-induced adverse actions, such as tolerance, reward, and impairment of learning and memory. Therefore, the KOR has received much attention in the effort to develop alternative analgesics to MOR agonists and agents for the treatment of drug addiction. However, KOR agonists also produce several severe undesirable side effects such as dysphoria, water diuresis, salivation, emesis, and sedation in nonhuman primates, which may limit the clinical utility of KOR agonists for pain and drug abuse treatment. This article will review the role of KOR activation in mediating antinociception and addiction. The possible therapeutic application of kappa-agonists in the treatment of pain and drug addiction is also discussed.
Collapse
|
34
|
Balboni G, Salvadori S, Trapella C, Knapp BI, Bidlack JM, Lazarus LH, Peng X, Neumeyer JL. Evolution of the Bifunctional Lead μ Agonist / δ Antagonist Containing the Dmt-Tic Opioid Pharmacophore. ACS Chem Neurosci 2010; 1:155-164. [PMID: 20352071 DOI: 10.1021/cn900025j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.28-9.02). Increasing the steric hindrance of the benzyl group (using diphenylmethyl and tetrahydroisoquinoline functionalities) substantially maintained the μ agonist and δ antagonist activities of the lead compound. Finally and quite unexpectedly D-Tic2, considered as a wrong opioid message now; inserted into the reference compound in lieu of L-Tic, provided a μ agonist / δ agonist better than our reference ligand (H-Dmt-Tic-Gly-NH-Ph) and was endowed with the same pharmacological profile.
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliari, I-09124, Cagliari, Italy
| | - Severo Salvadori
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
| | - Claudio Trapella
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
| | - Brian I. Knapp
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Jean M. Bidlack
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Lawrence H. Lazarus
- Medicinal Chemistry Group, Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North 6 Carolina 27709
| | - Xuemei Peng
- Alcohol and Drug Abuse Research Center, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478
| | - John L. Neumeyer
- Alcohol and Drug Abuse Research Center, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478
| |
Collapse
|
35
|
Li F, Yin C, Chen J, Liu J, Xie X, Zhang A. [6,7]-heterocycle-fused 14-hydroxymorphinan derivatives: design, synthesis, and opioid receptor activity. ChemMedChem 2009; 4:2103-10. [PMID: 19847845 DOI: 10.1002/cmdc.200900308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A series of new 14-hydroxymorphinan analogues with a thiazole or imidazo[2,1-b]thiazole fragment as the heterocyclic function fused to ring C were designed and synthesized. These compounds can be viewed as the result of a direct modification at ring C of the 14-hydroxymorphinan scaffold. Among these compounds, three were identified as having potent binding affinity (approximately 1 nM) at both kappa and mu receptors, and acting as agonists at kappa and partial agonists or antagonists at mu receptors. In view of the promising results from studies on compounds with mixed kappa and mu receptor activities, these new compounds warrant further investigation.
Collapse
Affiliation(s)
- Fuying Li
- Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|