1
|
Kuo CY, Lin CH, Lane HY. Targeting D-Amino Acid Oxidase (DAAO) for the Treatment of Schizophrenia: Rationale and Current Status of Research. CNS Drugs 2022; 36:1143-1153. [PMID: 36194364 DOI: 10.1007/s40263-022-00959-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
In the brain, D-amino acid oxidase (DAAO) is a peroxisomal flavoenzyme. Through oxidative deamination by DAAO, D-serine, the main coagonist of synaptic N-methyl-D-aspartate receptors (NMDARs), is degraded into α-keto acids and ammonia; flavin adenine dinucleotide (FAD) is simultaneously reduced to dihydroflavine-adenine dinucleotide (FADH2), which is subsequently reoxidized to FAD, with hydrogen peroxide produced as a byproduct. NMDAR hypofunction is implicated in the pathogenesis of schizophrenia. In previous studies, compared with control subjects, patients with schizophrenia had lower D-serine levels in peripheral blood and cerebrospinal fluid but higher DAAO expression and activity in the brain. Inhibiting DAAO activity and slowing D-serine degradation by using DAAO inhibitors to enhance NMDAR function may be a new strategy for use in the treatment of schizophrenia. The aim of this leading article is to review the current research in DAAO inhibitors.
Collapse
Affiliation(s)
- Chien-Yi Kuo
- Department of Psychiatry, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 404327, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC. .,Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung City, 83301, Taiwan, ROC. .,School of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan, ROC.
| | - Hsien-Yuan Lane
- Department of Psychiatry, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 404327, Taiwan, ROC. .,Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC. .,Department of Psychology, College of Medical and Health Sciences, Asia University, No. 500, Lioufeng Rd., Wufeng Dist., Taichung City, 413305, Taiwan, ROC.
| |
Collapse
|
2
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
3
|
Shindo T, Shikanai H, Watarai A, Hiraide S, Iizuka K, Izumi T. D-serine metabolism in the medial prefrontal cortex, but not the hippocampus, is involved in AD/HD-like behaviors in SHRSP/Ezo. Eur J Pharmacol 2022; 923:174930. [PMID: 35364072 DOI: 10.1016/j.ejphar.2022.174930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 12/26/2022]
Abstract
Attention-deficit/hyperactivity disorder (AD/HD) is a mild neurodevelopmental disorder with inattention, hyperactivity, and impulsivity as its core symptoms. We previously revealed that an AD/HD animal model, juvenile stroke-prone spontaneously hypertensive rats (SHRSP/Ezo) exhibited functional abnormalities in N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex. D-serine is an endogenous co-ligand that acts on the glycine-binding site of NMDA receptors, which is essential for the physiological activation of NMDA receptors. We herein performed neurochemical and pharmacological behavioral experiments to elucidate dysfunctions in D-serine metabolism (namely, biosynthesis and catabolism) associated to AD/HD. The serine enantiomers ratio (D-serine/D-serine + L-serine, DL ratio) in the medial prefrontal cortex (mPFC) and hippocampus (HIP) was lower in SHRSP/Ezo than in its genetic control. The level of D-amino acid oxidase (DAAO, D-serine degrading enzyme) was higher in the mPFC, and the level of serine racemase (SR, D-serine biosynthetic enzyme), was lower in the HIP in SHRSP/Ezo. Thus, changes in these enzymes may contribute to the lower DL ratio of SHRSP/Ezo. Moreover, a microinjection of a DAAO inhibitor into the mPFC in SHRSP/Ezo increased DL ratio and attenuated AD/HD-like behaviors, such as inattention and hyperactivity, in the Y-maze test. Injection into the HIP also increased the DL ratio, but had no effect on behaviors. These results suggest that AD/HD-like behaviors in SHRSP/Ezo are associated with an abnormal D-serine metabolism underlying NMDA receptor dysfunction in the mPFC. These results will contribute to elucidating the pathogenesis of AD/HD and the development of new treatment strategies for AD/HD.
Collapse
Affiliation(s)
- Tsugumi Shindo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan
| | - Hiroki Shikanai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan; Advanced Research Promotion Center, Health Science University of Hokkaido, Japan.
| | - Akane Watarai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan
| | - Sachiko Hiraide
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan
| | - Kenji Iizuka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan
| | - Takeshi Izumi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan; Advanced Research Promotion Center, Health Science University of Hokkaido, Japan
| |
Collapse
|
4
|
Tang H, Jensen K, Houang E, McRobb FM, Bhat S, Svensson M, Bochevarov A, Day T, Dahlgren MK, Bell JA, Frye L, Skene RJ, Lewis JH, Osborne JD, Tierney JP, Gordon JA, Palomero MA, Gallati C, Chapman RSL, Jones DR, Hirst KL, Sephton M, Chauhan A, Sharpe A, Tardia P, Dechaux EA, Taylor A, Waddell RD, Valentine A, Janssens HB, Aziz O, Bloomfield DE, Ladha S, Fraser IJ, Ellard JM. Discovery of a Novel Class of d-Amino Acid Oxidase Inhibitors Using the Schrödinger Computational Platform. J Med Chem 2022; 65:6775-6802. [PMID: 35482677 DOI: 10.1021/acs.jmedchem.2c00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
d-Serine is a coagonist of the N-methyl d-aspartate (NMDA) receptor, a key excitatory neurotransmitter receptor. In the brain, d-serine is synthesized from its l-isomer by serine racemase and is metabolized by the D-amino acid oxidase (DAO, DAAO). Many studies have linked decreased d-serine concentration and/or increased DAO expression and enzyme activity to NMDA dysfunction and schizophrenia. Thus, it is feasible to employ DAO inhibitors for the treatment of schizophrenia and other indications. Powered by the Schrödinger computational modeling platform, we initiated a research program to identify novel DAO inhibitors with the best-in-class properties. The program execution leveraged an hDAO FEP+ model to prospectively predict compound potency. A new class of DAO inhibitors with desirable properties has been discovered from this endeavor. Our modeling technology on this program has not only enhanced the efficiency of structure-activity relationship development but also helped to identify a previously unexplored subpocket for further optimization.
Collapse
Affiliation(s)
- Haifeng Tang
- Schrödinger Inc., New York, New York 10036, United States
| | | | - Evelyne Houang
- Schrödinger Inc., New York, New York 10036, United States
| | - Fiona M McRobb
- Schrödinger Inc., New York, New York 10036, United States
| | - Sathesh Bhat
- Schrödinger Inc., New York, New York 10036, United States
| | - Mats Svensson
- Schrödinger Inc., New York, New York 10036, United States
| | - Art Bochevarov
- Schrödinger Inc., New York, New York 10036, United States
| | - Tyler Day
- Schrödinger Inc., New York, New York 10036, United States
| | | | - Jeffery A Bell
- Schrödinger Inc., New York, New York 10036, United States
| | - Leah Frye
- Schrödinger Inc., New York, New York 10036, United States
| | - Robert J Skene
- Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - James H Lewis
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K
| | - James D Osborne
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K
| | - Jason P Tierney
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K
| | - James A Gordon
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K
| | | | | | | | - Daniel R Jones
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K
| | - Kim L Hirst
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K
| | - Mark Sephton
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K
| | - Alka Chauhan
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K
| | - Andrew Sharpe
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K
| | - Piero Tardia
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K
| | | | - Andrea Taylor
- Charles River Laboratories, Harlow, Essex CM19 5TR, U.K
| | | | | | - Holden B Janssens
- Charles River Laboratories, South San Francisco, California 94080, United States
| | - Omar Aziz
- Charles River Laboratories, Harlow, Essex CM19 5TR, U.K
| | | | - Sandeep Ladha
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K
| | - Ian J Fraser
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K
| | - John M Ellard
- Charles River Laboratories, Saffron Walden, Essex CB10 1XL, U.K.,Charles River Laboratories, Harlow, Essex CM19 5TR, U.K
| |
Collapse
|
5
|
Pei JC, Luo DZ, Gau SS, Chang CY, Lai WS. Directly and Indirectly Targeting the Glycine Modulatory Site to Modulate NMDA Receptor Function to Address Unmet Medical Needs of Patients With Schizophrenia. Front Psychiatry 2021; 12:742058. [PMID: 34658976 PMCID: PMC8517243 DOI: 10.3389/fpsyt.2021.742058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Schizophrenia is a severe mental illness that affects ~1% of the world's population. It is clinically characterized by positive, negative, and cognitive symptoms. Currently available antipsychotic medications are relatively ineffective in improving negative and cognitive deficits, which are related to a patient's functional outcomes and quality of life. Negative symptoms and cognitive deficits are unmet by the antipsychotic medications developed to date. In recent decades, compelling animal and clinical studies have supported the NMDA receptor (NMDAR) hypofunction hypothesis of schizophrenia and have suggested some promising therapeutic agents. Notably, several NMDAR-enhancing agents, especially those that function through the glycine modulatory site (GMS) of NMDAR, cause significant reduction in psychotic and cognitive symptoms in patients with schizophrenia. Given that the NMDAR-mediated signaling pathway has been implicated in cognitive/social functions and that GMS is a potential therapeutic target for enhancing the activation of NMDARs, there is great interest in investigating the effects of direct and indirect GMS modulators and their therapeutic potential. In this review, we focus on describing preclinical and clinical studies of direct and indirect GMS modulators in the treatment of schizophrenia, including glycine, D-cycloserine, D-serine, glycine transporter 1 (GlyT1) inhibitors, and D-amino acid oxidase (DAO or DAAO) inhibitors. We highlight some of the most promising recently developed pharmacological compounds designed to either directly or indirectly target GMS and thus augment NMDAR function to treat the cognitive and negative symptoms of schizophrenia. Overall, the current findings suggest that indirectly targeting of GMS appears to be more beneficial and leads to less adverse effects than direct targeting of GMS to modulate NMDAR functions. Indirect GMS modulators, especially GlyT1 inhibitors and DAO inhibitors, open new avenues for the treatment of unmet medical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- Ju-Chun Pei
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Da-Zhong Luo
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shiang-Shin Gau
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Chia-Yuan Chang
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Nagy LV, Bali ZK, Kapus G, Pelsőczi P, Farkas B, Lendvai B, Lévay G, Hernádi I. Converging Evidence on D-Amino Acid Oxidase-Dependent Enhancement of Hippocampal Firing Activity and Passive Avoidance Learning in Rats. Int J Neuropsychopharmacol 2020; 24:434-445. [PMID: 33305805 PMCID: PMC8130201 DOI: 10.1093/ijnp/pyaa095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND N-methyl-D-aspartate (NMDA) receptor activation requires the binding of a co-agonist on the glycine-binding site. D-serine is the main endogenous co-agonist of NMDA receptors, and its availability significantly depends on the activity of the metabolic enzyme D-amino acid oxidase (DAAO). Inhibition of DAAO increases the brain levels of D-serine and modulates a variety of physiological functions, including cognitive behavior. METHODS Here, we examined the effects of a novel 4-hydroxypyridazin-3(2H)-one derivative DAAO inhibitor, Compound 30 (CPD30), on passive avoidance learning and on neuronal firing activity in rats. RESULTS D-serine administration was applied as reference, which increased cognitive performance and enhanced hippocampal firing activity and responsiveness to NMDA after both local and systemic application. Similarly to D-serine, CPD30 (0.1 mg/kg) effectively reversed MK-801-induced memory impairment in the passive avoidance test. Furthermore, local iontophoretic application of CPD30 in the vicinity of hippocampal pyramidal neurons significantly increased firing rate and enhanced their responses to locally applied NMDA. CPD30 also enhanced hippocampal firing activity after systemic administration. In 0.1- to 1.0-mg/kg doses, CPD30 increased spontaneous and NMDA-evoked firing activity of the neurons. Effects of CPD30 on NMDA responsiveness emerged faster (at 10 minutes post-injection) when a 1.0-mg/kg dose was applied compared with the onset of the effects of 0.1 mg/kg CPD30 (at 30 minutes post-injection). CONCLUSIONS The present results confirm that the inhibition of DAAO enzyme is an effective strategy for cognitive enhancement. Our findings further facilitate the understanding of the cellular mechanisms underlying the behavioral effects of DAAO inhibition in the mammalian brain.
Collapse
Affiliation(s)
- Lili Veronika Nagy
- Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary,Szentágothai Research Center, Center for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zsolt Kristóf Bali
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Pécs, Hungary,Grastyán Translational Research Center, University of Pécs, Pécs, Hungary,Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary,Correspondence: Zsolt Kristóf Bali, PhD, Translational Neuroscience Research Group, Grastyán Translational Research Center, 6 Ifjúság út, H-7624, Pécs, Hungary ()
| | - Gábor Kapus
- Pharmacological and Drug Safety Research, Gedeon Richter Plc, Budapest, Hungary
| | - Péter Pelsőczi
- Pharmacological and Drug Safety Research, Gedeon Richter Plc, Budapest, Hungary
| | - Bence Farkas
- Pharmacological and Drug Safety Research, Gedeon Richter Plc, Budapest, Hungary
| | - Balázs Lendvai
- Pharmacological and Drug Safety Research, Gedeon Richter Plc, Budapest, Hungary
| | - György Lévay
- Pharmacological and Drug Safety Research, Gedeon Richter Plc, Budapest, Hungary,Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - István Hernádi
- Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary,Szentágothai Research Center, Center for Neuroscience, University of Pécs, Pécs, Hungary,Grastyán Translational Research Center, University of Pécs, Pécs, Hungary,Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
7
|
Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020; 11:543564. [PMID: 33335484 PMCID: PMC7736077 DOI: 10.3389/fphys.2020.543564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.
Collapse
|
8
|
Liu H, Zhao M, Wang Z, Han Q, Wu H, Mao X, Wang Y. Involvement of d-amino acid oxidase in cerebral ischaemia induced by transient occlusion of the middle cerebral artery in mice. Br J Pharmacol 2019; 176:3336-3349. [PMID: 31309542 PMCID: PMC6692583 DOI: 10.1111/bph.14764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/03/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE d-Amino acid oxidase (DAAO) is a flavine adenine dinucleotide-containing flavoenzyme and specifically catalyses oxidative deamination of d-amino acids. This study aimed to explore the association between increased cerebral DAAO expression or enzymic activity and the development of cerebral ischaemia. EXPERIMENTAL APPROACH A mouse model of transient (90 min) middle cerebral artery occlusion (MCAO) was established, and western blotting, enzymic activity assay, and fluorescent immunostaining techniques were used. KEY RESULTS The expression and enzymic activity of DAAO increased over time in the cortical peri-infarct area of the mice subjected to transient MCAO. The DAAO was specifically expressed in astrocytes, and its double immunostaining with the astrocytic intracellular marker, glial fibrillary acidic protein, in the cortical peri-infarct area was up-regulated following ischaemic insult, with peak increase on Day 5 after MCAO. Single intravenous injection of the specific and potent DAAO inhibitor Compound SUN reduced the cerebral DAAO enzymic activity and attenuated neuronal infarction and neurobehavioural deficits with optimal improvement apparent immediately after the MCAO procedure. The neuroprotective effect was dose dependent, with ED50 values of 3.9-4.5 mg·kg-1 . Intracerebroventricular injection of the DAAO gene silencer siRNA/DAAO significantly reduced cerebral DAAO expression and attenuated MCAO-induced neuronal infarction and behavioural deficits. CONCLUSIONS AND IMPLICATIONS Our results, for the first time, demonstrated that increased cerebral astrocytic DAAO expression and enzymic activity were causally associated with the development of neuronal destruction following ischaemic insults, suggesting that targeting cerebral DAAO could be a potential approach for treatment of neurological conditions following cerebral ischaemia.
Collapse
Affiliation(s)
- Hao Liu
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Meng‐Jing Zhao
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Zi‐Ying Wang
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Qiao‐Qiao Han
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Hai‐Yun Wu
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Xiao‐fang Mao
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Yong‐Xiang Wang
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| |
Collapse
|
9
|
Evans K, Wang X, Roper MG. Chiral micellar electrokinetic chromatographic separation for determination of L- and D-primary amines released from murine islets of Langerhans. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:1276-1283. [PMID: 31073338 PMCID: PMC6502259 DOI: 10.1039/c8ay02471e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
D-amino acids have been located in various tissues including the endocrine portion of the pancreas, the islets of Langerhans. D-Serine (D-Ser), is of particular interest since it is an agonist for the ionotropic N-methyl-D-aspartate receptors. To examine the potential release of D-Ser and other D-amino acids from islets, a chiral micellar electrokinetic chromatography method was developed by derivatizing primary amines with 2,3-naphthalenedicarboxaldehyde and to achieve resolution of the enantiomers, two surfactants were used in the separation, sodium dodecyl sulfate and sodium deoxycholate. With the optimized conditions, 7 of 13 enantiomeric pairs that were tested had greater than baseline resolution, while the resolution of numerous other L-amino acids and small molecules were maintained. For the 17 compounds that were fully resolved, limits of detection were less than 10 nM. The resulting optimized separation method produced high efficiency peaks, with an average of 300,000 theoretical plates per peak and a peak capacity of 120. The method was used to examine the release of small molecules from groups of 50 murine islets of Langerhans. A peak was detected from islets incubated with 20 mM glucose that co-migrated with a D-Ser standard, although its level was below the quantifiable limit.
Collapse
Affiliation(s)
- Kimberly Evans
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306
| | - Xue Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306
| |
Collapse
|
10
|
Szilágyi B, Ferenczy GG, Keserű GM. Drug discovery strategies and the preclinical development of D-amino-acid oxidase inhibitors as antipsychotic therapies. Expert Opin Drug Discov 2018; 13:973-982. [DOI: 10.1080/17460441.2018.1524459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Bence Szilágyi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
11
|
Li YX, Yang JY, Alcantara M, Abelian G, Kulkarni A, Staubli U, Foster AC. Inhibitors of the Neutral Amino Acid Transporters ASCT1 and ASCT2 Are Effective in In Vivo Models of Schizophrenia and Visual Dysfunction. J Pharmacol Exp Ther 2018; 367:292-301. [DOI: 10.1124/jpet.118.251116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/27/2018] [Indexed: 01/01/2023] Open
|
12
|
Szilágyi B, Kovács P, Ferenczy GG, Rácz A, Németh K, Visy J, Szabó P, Ilas J, Balogh GT, Monostory K, Vincze I, Tábi T, Szökő É, Keserű GM. Discovery of isatin and 1H-indazol-3-ol derivatives as d-amino acid oxidase (DAAO) inhibitors. Bioorg Med Chem 2018; 26:1579-1587. [DOI: 10.1016/j.bmc.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/27/2018] [Accepted: 02/03/2018] [Indexed: 01/23/2023]
|
13
|
Orgován Z, Ferenczy GG, Steinbrecher T, Szilágyi B, Bajusz D, Keserű GM. Validation of tautomeric and protomeric binding modes by free energy calculations. A case study for the structure based optimization of D-amino acid oxidase inhibitors. J Comput Aided Mol Des 2018; 32:331-345. [PMID: 29335871 DOI: 10.1007/s10822-018-0097-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/06/2018] [Indexed: 01/16/2023]
Abstract
Optimization of fragment size D-amino acid oxidase (DAAO) inhibitors was investigated using a combination of computational and experimental methods. Retrospective free energy perturbation (FEP) calculations were performed for benzo[d]isoxazole derivatives, a series of known inhibitors with two potential binding modes derived from X-ray structures of other DAAO inhibitors. The good agreement between experimental and computed binding free energies in only one of the hypothesized binding modes strongly support this bioactive conformation. Then, a series of 1-H-indazol-3-ol derivatives formerly not described as DAAO inhibitors was investigated. Binding geometries could be reliably identified by structural similarity to benzo[d]isoxazole and other well characterized series and FEP calculations were performed for several tautomers of the deprotonated and protonated compounds since all these forms are potentially present owing to the experimental pKa values of representative compounds in the series. Deprotonated compounds are proposed to be the most important bound species owing to the significantly better agreement between their calculated and measured affinities compared to the protonated forms. FEP calculations were also used for the prediction of the affinities of compounds not previously tested as DAAO inhibitors and for a comparative structure-activity relationship study of the benzo[d]isoxazole and indazole series. Selected indazole derivatives were synthesized and their measured binding affinity towards DAAO was in good agreement with FEP predictions.
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | | | - Bence Szilágyi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary.
| |
Collapse
|
14
|
Qian PP, Wang S, Feng KR, Ren YJ. Molecular modeling studies of 1,2,4-triazine derivatives as novel h-DAAO inhibitors by 3D-QSAR, docking and dynamics simulations. RSC Adv 2018; 8:14311-14327. [PMID: 35540777 PMCID: PMC9079910 DOI: 10.1039/c8ra00094h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/30/2018] [Indexed: 02/01/2023] Open
Abstract
Computational modeling methods were successfully applied to discover new 1,2,4-triazine compounds as potential h-DAAO inhibitors.
Collapse
Affiliation(s)
- Ping Ping Qian
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- China
| | - Shuai Wang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- China
| | - Kai Rui Feng
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- China
| | - Yu Jie Ren
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- China
| |
Collapse
|
15
|
Avellar M, Scoriels L, Madeira C, Vargas-Lopes C, Marques P, Dantas C, Manhães AC, Leite H, Panizzutti R. The effect of D-serine administration on cognition and mood in older adults. Oncotarget 2017; 7:11881-8. [PMID: 26933803 PMCID: PMC4914255 DOI: 10.18632/oncotarget.7691] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/30/2016] [Indexed: 11/25/2022] Open
Abstract
Background D-serine is an endogenous co-agonist of the N-Methyl D-Aspartate Receptor (NMDAR) that plays a crucial role in cognition including learning processes and memory. Decreased D-serine levels have been associated with age-related decline in mechanisms of learning and memory in animal studies. Here, we asked whether D-serine administration in older adults improves cognition. Results D-serine administration improved performance in the Groton Maze learning test of spatial memory and learning and problem solving (F(3, 38)= 4.74, p = 0.03). Subjects that achieved higher increases in plasma D-serine levels after administration improved more in test performance (r2=−0.19 p = 0.009). D-serine administration was not associated with any significant changes in the other cognitive tests or in the mood of older adults (p > 0.05). Methods Fifty healthy older adults received D-serine and placebo in a randomized, double blind, placebo-controlled, crossover design study. We studied the effect of D-serine administration on the performance of cognitive tests and an analogue mood scale. We also collected blood samples to measure D-serine, L-serine, glutamate and glutamine levels. Conclusions D-serine administration may be a strategy to improve spatial memory, learning and problem solving in healthy older adults. Future studies should evaluate the impact of long-term D-serine administration on cognition in older adults.
Collapse
Affiliation(s)
- Marcos Avellar
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, RJ, Brazil.,Institute of Psychiatry, Federal University of Rio de Janeiro, RJ, Brazil
| | - Linda Scoriels
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, RJ, Brazil.,Institute of Psychiatry, Federal University of Rio de Janeiro, RJ, Brazil.,Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Caroline Madeira
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Priscila Marques
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Camila Dantas
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Alex C Manhães
- Institute of Biology Roberto Alcantara Gomes, Biomedical Center, State University of Rio de Janeiro, RJ, Brazil
| | - Homero Leite
- Integrated Unit for Prevention, Adventist Silvestre Hospital, Rio de Janeiro, RJ, Brazil
| | - Rogerio Panizzutti
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, RJ, Brazil.,Institute of Psychiatry, Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Molla G. Competitive Inhibitors Unveil Structure/Function Relationships in Human D-Amino Acid Oxidase. Front Mol Biosci 2017; 4:80. [PMID: 29250527 PMCID: PMC5715370 DOI: 10.3389/fmolb.2017.00080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023] Open
Abstract
D-amino acid oxidase (DAAO) catalyzes the oxidative deamination of several neutral D-amino acids and is the enzyme mainly responsible (together with serine racemase) for degrading D-serine (D-Ser) in the central nervous system of mammals. This D-amino acid, which binds the coagonist site of the N-methyl-D-aspartate receptor, is thus a key neuromodulator of glutamatergic neurotransmission. Altered D-Ser metabolism results in several pathological conditions (e.g., amylotrophic lateral sclerosis or schizophrenia, SZ) for which effective "broad spectrum" pharmaceutical drugs are not yet available. In particular, the correlation between reduced D-Ser concentration and SZ led to a renaissance of biochemical interest in human DAAO (hDAAO). In the last 10 years, public and corporate research laboratories undertook huge efforts to study the structural, enzymatic, and physiological properties of the human flavoenzyme and to identify novel effective inhibitors which, acting as pharmaceutical drugs, could decrease hDAAO activity, thus restoring the physiological concentration of D-Ser. Although, none of the identified hDAAO inhibitors has reached the market yet, from a biochemical point of view, these compounds turned out to be invaluable for gaining a detailed understanding of the structure/function relationships at the molecular level in the mammalian DAAO, in particular of the interaction between ligand and the enzyme. This detailed knowledge, together with several recent studies concerning the interaction of the human enzyme with other protein regulative partners, its subcellular localization, and in vivo degradation, contributed to gaining comprehensive knowledge of the structure, function, and physiopathological role of this important human enzyme.
Collapse
Affiliation(s)
- Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milan, Italy
| |
Collapse
|
17
|
Kutchukian PS, Warren L, Magliaro BC, Amoss A, Cassaday JA, O’Donnell G, Squadroni B, Zuck P, Pascarella D, Culberson JC, Cooke AJ, Hurzy D, Schlegel KAS, Thomson F, Johnson EN, Uebele VN, Hermes JD, Parmentier-Batteur S, Finley M. Iterative Focused Screening with Biological Fingerprints Identifies Selective Asc-1 Inhibitors Distinct from Traditional High Throughput Screening. ACS Chem Biol 2017; 12:519-527. [PMID: 28032990 DOI: 10.1021/acschembio.6b00913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) mediate glutamatergic signaling that is critical to cognitive processes in the central nervous system, and NMDAR hypofunction is thought to contribute to cognitive impairment observed in both schizophrenia and Alzheimer's disease. One approach to enhance the function of NMDAR is to increase the concentration of an NMDAR coagonist, such as glycine or d-serine, in the synaptic cleft. Inhibition of alanine-serine-cysteine transporter-1 (Asc-1), the primary transporter of d-serine, is attractive because the transporter is localized to neurons in brain regions critical to cognitive function, including the hippocampus and cortical layers III and IV, and is colocalized with d-serine and NMDARs. To identify novel Asc-1 inhibitors, two different screening approaches were performed with whole-cell amino acid uptake in heterologous cells stably expressing human Asc-1: (1) a high-throughput screen (HTS) of 3 M compounds measuring 35S l-cysteine uptake into cells attached to scintillation proximity assay beads in a 1536 well format and (2) an iterative focused screen (IFS) of a 45 000 compound diversity set using a 3H d-serine uptake assay with a liquid scintillation plate reader in a 384 well format. Critically important for both screening approaches was the implementation of counter screens to remove nonspecific inhibitors of radioactive amino acid uptake. Furthermore, a 15 000 compound expansion step incorporating both on- and off-target data into chemical and biological fingerprint-based models for selection of additional hits enabled the identification of novel Asc-1-selective chemical matter from the IFS that was not identified in the full-collection HTS.
Collapse
Affiliation(s)
- Peter S. Kutchukian
- Modeling and Informatics, Merck & Co., Inc., MRL, Boston, Massachusetts, United States
| | - Lee Warren
- Neuroscience, Merck & Co., Inc., MRL, West Point, Pennsylvania, United States
| | - Brian C. Magliaro
- Pharmacology, Merck & Co., Inc., MRL, West Point, Pennsylvania, United States
| | - Adam Amoss
- Screening and Protein Sciences, Merck & Co., Inc., MRL, North Wales, Pennsylvania, United States
| | - Jason A. Cassaday
- Screening and Protein Sciences, Merck & Co., Inc., MRL, North Wales, Pennsylvania, United States
| | - Gregory O’Donnell
- Screening and Protein Sciences, Merck & Co., Inc., MRL, North Wales, Pennsylvania, United States
| | - Brian Squadroni
- Screening and Protein Sciences, Merck & Co., Inc., MRL, North Wales, Pennsylvania, United States
| | - Paul Zuck
- Screening and Protein Sciences, Merck & Co., Inc., MRL, North Wales, Pennsylvania, United States
| | - Danette Pascarella
- Pharmacology, Merck & Co., Inc., MRL, West Point, Pennsylvania, United States
| | - J. Chris Culberson
- Modeling and Informatics, Merck & Co., Inc., MRL, West Point, Pennsylvania, United States
| | - Andrew J. Cooke
- Chemistry, Merck & Co., Inc., MRL, West Point, Pennsylvania, United States
| | - Danielle Hurzy
- Chemistry, Merck & Co., Inc., MRL, West Point, Pennsylvania, United States
| | | | - Fiona Thomson
- Neuroscience, Merck & Co., Inc., MRL, West Point, Pennsylvania, United States
| | - Eric N. Johnson
- Screening and Protein Sciences, Merck & Co., Inc., MRL, North Wales, Pennsylvania, United States
| | - Victor N. Uebele
- Screening and Protein Sciences, Merck & Co., Inc., MRL, North Wales, Pennsylvania, United States
| | - Jeffrey D. Hermes
- Screening and Protein Sciences, Merck & Co., Inc., MRL, North Wales, Pennsylvania, United States
| | | | - Michael Finley
- Screening and Protein Sciences, Merck & Co., Inc., MRL, North Wales, Pennsylvania, United States
| |
Collapse
|
18
|
Discovery and analgesic evaluation of 8-chloro-1,4-dihydropyrido[2,3- b ]pyrazine-2,3-dione as a novel potent d -amino acid oxidase inhibitor. Eur J Med Chem 2016; 117:19-32. [DOI: 10.1016/j.ejmech.2016.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 01/10/2023]
|
19
|
Ultimate Translation: Developing Therapeutics Targeting on N-Methyl-d-Aspartate Receptor. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:257-309. [PMID: 27288080 DOI: 10.1016/bs.apha.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are broadly distributed in the central nervous system (CNS), where they mediate excitatory signaling. NMDAR-mediated neurotransmission (NMDARMN) is the molecular engine of learning, memory and cognition, which are the basis for high cortical function. NMDARMN is also critically involved in the development and plasticity of CNS. Due to its essential and critical role, either over- or under-activation of NMDARMN can contribute substantially to the development of CNS disorders. The involvement of NMDARMN has been demonstrated in a variety of CNS disorders, including schizophrenia, depression, posttraumatic stress disorder, aging, mild cognitive impairment and Alzheimer's dementia, amyotrophic lateral sclerosis, and anti-NMDAR encephalitis. Several targets to "correct" or "reset" the NMDARMN in these CNS disorders have been identified and confirmed. With analogy to aminergic treatments, these targets include the glycine/d-serine co-agonist site, channel ionophore, glycine transporter-1, and d-amino acid oxidase. It is still early days in terms of developing novel therapeutics targeting the NMDAR. However, agents modulating NMDARMN hold promise as the next generation of CNS therapeutics.
Collapse
|
20
|
Rojas C, Alt J, Ator NA, Thomas AG, Wu Y, Hin N, Wozniak K, Ferraris D, Rais R, Tsukamoto T, Slusher BS. D-Amino-Acid Oxidase Inhibition Increases D-Serine Plasma Levels in Mouse But not in Monkey or Dog. Neuropsychopharmacology 2016; 41:1610-9. [PMID: 26471255 PMCID: PMC4832022 DOI: 10.1038/npp.2015.319] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/23/2022]
Abstract
D-serine has been shown to improve positive, negative, and cognitive symptoms when used as add-on therapy for the treatment of schizophrenia. However, D-serine has to be administered at high doses to observe clinical effects. This is thought to be due to D-serine undergoing oxidation by D-amino-acid oxidase (DAAO) before it reaches the brain. Consequently, co-administration of D-serine with a DAAO inhibitor could be a way to lower the D-serine dose required to treat schizophrenia. Early studies in rodents to evaluate this hypothesis showed that concomitant administration of structurally distinct DAAO inhibitors with D-serine enhanced plasma and brain D-serine levels in rodents compared with administration of D-serine alone. In the present work we used three potent DAAO inhibitors and confirmed previous results in mice. In a follow-up effort, we evaluated plasma D-serine levels in monkeys after oral administration of D-serine in the presence or absence of these DAAO inhibitors. Even though the compounds reached steady state plasma concentrations exceeding their Ki values by >60-fold, plasma D-serine levels remained the same as those in the absence of DAAO inhibitors. Similar results were obtained with dogs. In summary, in contrast to rodents, DAAO inhibition in monkeys and dogs did not influence the exposure to exogenously administered D-serine. Results could be due to differences in D-serine metabolism and/or clearance mechanisms and suggest that the role of DAAO in the metabolism of D-serine is different across species. These data provide caution regarding the utility of DAAO inhibition for patients with schizophrenia.
Collapse
Affiliation(s)
- Camilo Rojas
- Johns Hopkins Drug Discovery, Baltimore, MD, USA,Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Baltimore, MD, USA
| | - Nancy A Ator
- Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | | | - Ying Wu
- Johns Hopkins Drug Discovery, Baltimore, MD, USA
| | - Niyada Hin
- Johns Hopkins Drug Discovery, Baltimore, MD, USA
| | | | | | - Rana Rais
- Johns Hopkins Drug Discovery, Baltimore, MD, USA,Department of Neurology, Baltimore, MD, USA
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Baltimore, MD, USA,Department of Neurology, Baltimore, MD, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA,Department of Neurology, Baltimore, MD, USA,Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University, 855 North Wolfe, Suite 277, Baltimore, MD 21205, USA, Tel: +1 410 614 0662, Fax: +1 410 614 0659, E-mail:
| |
Collapse
|
21
|
Pritchett D, Taylor AM, Barkus C, Engle SJ, Brandon NJ, Sharp T, Foster RG, Harrison PJ, Peirson SN, Bannerman DM. Searching for cognitive enhancement in the Morris water maze: better and worse performance in D-amino acid oxidase knockout (Dao(-/-)) mice. Eur J Neurosci 2016; 43:979-89. [PMID: 26833794 PMCID: PMC4855640 DOI: 10.1111/ejn.13192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/17/2022]
Abstract
A common strategy when searching for cognitive‐enhancing drugs has been to target the N‐methyl‐d‐aspartate receptor (NMDAR), given its putative role in synaptic plasticity and learning. Evidence in favour of this approach has come primarily from studies with rodents using behavioural assays like the Morris water maze. D‐amino acid oxidase (DAO) degrades neutral D‐amino acids such as D‐serine, the primary endogenous co‐agonist acting at the glycine site of the synaptic NMDAR. Inhibiting DAO could therefore provide an effective and viable means of enhancing cognition, particularly in disorders like schizophrenia, in which NMDAR hypofunction is implicated. Indirect support for this notion comes from the enhanced hippocampal long‐term potentiation and facilitated water maze acquisition of ddY/Dao− mice, which lack DAO activity due to a point mutation in the gene. Here, in Dao knockout (Dao−/−) mice, we report both better and worse water maze performance, depending on the radial distance of the hidden platform from the side wall of the pool. Dao−/− mice displayed an increased innate preference for swimming in the periphery of the maze (possibly due to heightened anxiety), which facilitated the discovery of a peripherally located platform, but delayed the discovery of a centrally located platform. By contrast, Dao−/− mice exhibited normal performance in two alternative assays of long‐term spatial memory: the appetitive and aversive Y‐maze reference memory tasks. Taken together, these results question the proposed relationship between DAO inactivation and enhanced long‐term associative spatial memory. They also have generic implications for how Morris water maze studies are performed and interpreted.
Collapse
Affiliation(s)
- David Pritchett
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Amy M Taylor
- Department of Experimental Psychology, University of Oxford, Tinbergen Building, 9 South Parks Road, Oxford, OX1 3UD, UK
| | | | | | | | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Russell G Foster
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Paul J Harrison
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Tinbergen Building, 9 South Parks Road, Oxford, OX1 3UD, UK
| |
Collapse
|
22
|
Sershen H, Hashim A, Dunlop DS, Suckow RF, Cooper TB, Javitt DC. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model. Neurochem Res 2016; 41:398-408. [PMID: 26857796 DOI: 10.1007/s11064-016-1838-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023]
Abstract
Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol(®)) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor NaB (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level, arguing against a DAAO-mediated effect. However, NaB reduced plasma L-serine and based on reports that NaB also elevates various plasma metabolites, for example aminoisobutyric acid (AIB), a potential effect via the System A amino acid carrier may be involved in the regulation of synaptic glycine level to modulate NMDAR function needs to be investigated. Acute ascorbic acid (300 mg/kg) also inhibited PCP-induced locomotor activity, which was further attenuated in the presence of D-serine (600 mg/kg). Ascorbic acid may have an action at the dopamine membrane carrier and/or altering redox mechanisms that modulate NMDARs, but this needs to be further investigated. The findings support an effect of D-serine on PCP-induced hyperactivity. They also offer suggestions on an interaction of NaB via an unknown mechanism, other than DAAO inhibition, perhaps through metabolomic changes, and find unexpected synergy between D-serine and ascorbic acid that supports combined NMDA glycine- and redox-site intervention. Although mechanisms of these specific agents need to be determined, overall it supports continued glutamatergic drug development.
Collapse
Affiliation(s)
- Henry Sershen
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA. .,NYU Langone Medical Center, Department of Psychiatry, New York, NY, 10016, USA.
| | - Audrey Hashim
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - David S Dunlop
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Raymond F Suckow
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.,New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
| | - Tom B Cooper
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.,New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
| | - Daniel C Javitt
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA. .,Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
23
|
Iwasaki M, Kashiwaguma Y, Nagashima C, Izumi M, Uekusa A, Iwasa S, Onozato M, Ichiba H, Fukushima T. A high-performance liquid chromatography assay with a triazole-bonded column for evaluation ofd-amino acid oxidase activity. Biomed Chromatogr 2015; 30:384-9. [DOI: 10.1002/bmc.3559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Megumi Iwasaki
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Yoshiyuki Kashiwaguma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Chihiro Nagashima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Mao Izumi
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Ayano Uekusa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Sumiko Iwasa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Hideaki Ichiba
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| |
Collapse
|
24
|
Koyama Y. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Front Cell Neurosci 2015. [PMID: 26217185 PMCID: PMC4491615 DOI: 10.3389/fncel.2015.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this paper, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University Tondabayashi, Osaka, Japan
| |
Collapse
|
25
|
Sehgal SA, Mannan S, Kanwal S, Naveed I, Mir A. Adaptive evolution and elucidating the potential inhibitor against schizophrenia to target DAOA (G72) isoforms. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3471-80. [PMID: 26170631 PMCID: PMC4498731 DOI: 10.2147/dddt.s63946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Schizophrenia (SZ), a chronic mental and heritable disorder characterized by neurophysiological impairment and neuropsychological abnormalities, is strongly associated with D-amino acid oxidase activator (DAOA, G72). Research studies emphasized that overexpression of DAOA may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like SZ. In the present study, a hybrid approach of comparative modeling and molecular docking followed by inhibitor identification and structure modeling was employed. Screening was performed by two-dimensional similarity search against selected inhibitor, keeping in view the physiochemical properties of the inhibitor. Here, we report an inhibitor compound which showed maximum binding affinity against four selected isoforms of DAOA. Docking studies revealed that Glu-53, Thr-54, Lys-58, Val-85, Ser-86, Tyr-87, Leu-88, Glu-90, Leu-95, Val-98, Ser-100, Glu-112, Tyr-116, Lys-120, Asp-121, and Arg-122 are critical residues for receptor–ligand interaction. The C-terminal of selected isoforms is conserved, and binding was observed on the conserved region of isoforms. We propose that selected inhibitor might be more potent on the basis of binding energy values. Further analysis of this inhibitor through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful in designing novel therapeutic targets to cure SZ.
Collapse
Affiliation(s)
- Sheikh Arslan Sehgal
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan ; Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Shazia Mannan
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Sumaira Kanwal
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Ishrat Naveed
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Asif Mir
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
26
|
Pritchett D, Hasan S, Tam SKE, Engle SJ, Brandon NJ, Sharp T, Foster RG, Harrison PJ, Bannerman DM, Peirson SN. d-amino acid oxidase knockout (Dao(-/-) ) mice show enhanced short-term memory performance and heightened anxiety, but no sleep or circadian rhythm disruption. Eur J Neurosci 2015; 41:1167-79. [PMID: 25816902 PMCID: PMC4744680 DOI: 10.1111/ejn.12880] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 02/10/2015] [Accepted: 02/23/2015] [Indexed: 12/21/2022]
Abstract
d-amino acid oxidase (DAO, DAAO) is an enzyme that degrades d-serine, the primary endogenous co-agonist of the synaptic N-methyl-d-aspartate receptor. Convergent evidence implicates DAO in the pathophysiology and potential treatment of schizophrenia. To better understand the functional role of DAO, we characterized the behaviour of the first genetically engineered Dao knockout (Dao(-/-) ) mouse. Our primary objective was to assess both spatial and non-spatial short-term memory performance. Relative to wildtype (Dao(+/+) ) littermate controls, Dao(-/-) mice demonstrated enhanced spatial recognition memory performance, improved odour recognition memory performance, and enhanced spontaneous alternation in the T-maze. In addition, Dao(-/-) mice displayed increased anxiety-like behaviour in five tests of approach/avoidance conflict: the open field test, elevated plus maze, successive alleys, light/dark box and novelty-suppressed feeding. Despite evidence of a reciprocal relationship between anxiety and sleep and circadian function in rodents, we found no evidence of sleep or circadian rhythm disruption in Dao(-/-) mice. Overall, our observations are consistent with, and extend, findings in the natural mutant ddY/Dao(-) line. These data add to a growing body of preclinical evidence linking the inhibition, inactivation or deletion of DAO with enhanced cognitive performance. Our results have implications for the development of DAO inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- David Pritchett
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shishikura M, Hakariya H, Iwasa S, Yoshio T, Ichiba H, Yorita K, Fukui K, Fukushima T. Evaluation of human D-amino acid oxidase inhibition by anti-psychotic drugs in vitro. Biosci Trends 2015; 8:149-54. [PMID: 25030849 DOI: 10.5582/bst.2014.01034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is of importance to determine whether antipsychotic drugs currently prescribed for schizophrenia exert D-amino acid oxidase (DAO)-inhibitory effects. We first investigated whether human (h)DAO can metabolize D-kynurenine (D-KYN) to produce the fluorescent compound kynurenic acid (KYNA) by using high-performance liquid chromatography with mass spectrometry, and fluorescence spectrometry. After confirmation of KYNA production from D-KYN by hDAO, 8 first- and second-generation antipsychotic drugs, and 6 drugs often prescribed concomitantly, were assayed for hDAO-inhibitory effects by using in vitro fluorometric methods with D-KYN as the substrate. DAO inhibitors 3-methylpyrazole-5-carboxylic acid and 4H-thieno[3,2-b]pyrrole-5-carboxylic acid inhibited KYNA production in a dose-dependent manner. Similarly, the second-generation antipsychotics blonanserin and risperidone were found to possess relatively strong hDAO-inhibitory effects in vitro (5.29 ± 0.47 μM and 4.70 ± 0.17 μM, respectively). With regard to blonanserin and risperidone, DAO-inhibitory effects should be taken into consideration in the context of their in vivo pharmacotherapeutic efficacy.
Collapse
Affiliation(s)
- Miho Shishikura
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Billard JM. D-Serine in the aging hippocampus. J Pharm Biomed Anal 2015; 116:18-24. [PMID: 25740810 DOI: 10.1016/j.jpba.2015.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
Experimental evidences now indicate that memory formation relies on the capacity of neuronal networks to manage long-term changes in synaptic communication. This property is driven by N-methyl-D-aspartate receptors (NMDAR), which requires the binding of glutamate but also the presence of the co-agonist D-serine at the glycine site. Defective memory function and impaired brain synaptic plasticity observed in aging are rescued by partial agonist acting at this site suggesting that this gating process is targeted to induce age-related cognitive defects. This review aims at compelling recent studies characterizing the role of D-serine in changes in functional plasticity that occur in the aging hippocampus since deficits are rescued by D-serine supplementation. The impaired efficacy of endogenous D-serine is not due to changes in the affinity to glycine-binding site but to a decrease in tissue levels of the amino acid resulting from a weaker expression of the producing enzyme serine racemase (SR). Interestingly, neither SR expression, D-serine levels, nor NMDAR activation is affected in aged LOU/C rats, a model of healthy aging in which memory deficits do not occur. These old animals do not develop oxidative stress suggesting that the D-serine-related pathway could be targeted by the age-related accumulation of reactive oxygen species. Accordingly, senescent rats chronically treated with the reducing agent N-acetyl-cysteine to prevent oxidative damage, show intact NMDAR activation linked to preserved D-serine levels and SR expression. These results point to a significant role of D-serine in age-related functional alterations underlying hippocampus-dependent memory deficits, at least within the CA1 area since the amino acid does not appear as critical in changes affecting the dentate gyrus.
Collapse
Affiliation(s)
- Jean-Marie Billard
- Center of Psychiatry and Neurosciences, Paris Descartes University, Sorbonne Paris City, UMR U894, Paris 75014 France.
| |
Collapse
|
29
|
Schweimer JV, Coullon GSL, Betts JF, Burnet PWJ, Engle SJ, Brandon NJ, Harrison PJ, Sharp T. Increased burst-firing of ventral tegmental area dopaminergic neurons in D-amino acid oxidase knockout mice in vivo. Eur J Neurosci 2014; 40:2999-3009. [PMID: 25040393 DOI: 10.1111/ejn.12667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/19/2014] [Accepted: 06/10/2014] [Indexed: 01/19/2023]
Abstract
d-Amino acid oxidase (DAO) degrades the N-methyl-d-aspartate (NMDA) receptor co-agonist d-serine, and is implicated in schizophrenia as a risk gene and therapeutic target. In schizophrenia, the critical neurochemical abnormality affects dopamine, but to date there is little evidence that DAO impacts on the dopamine system. To address this issue, we measured the electrophysiological properties of dopaminergic (DA) and non-DA neurons in the ventral tegmental area (VTA) of anaesthetised DAO knockout (DAO(-/-) ) and DAO heterozygote (DAO(+/-) ) mice as compared with their wild-type (DAO(+/+) ) littermates. Genotype was confirmed at the protein level by western blotting and immunohistochemistry. One hundred and thirty-nine VTA neurons were recorded in total, and juxtacellular labelling of a subset revealed that neurons immunopositive for tyrosine hydroxylase had DA-like electrophysiological properties that were distinct from those of neurons that were tyrosine hydroxylase-immunonegative. In DAO(-/-) mice, approximately twice as many DA-like neurons fired in a bursting pattern than in DAO(+/-) or DAO(+/+) mice, but other electrophysiological properties did not differ between genotypes. In contrast, non-DA-like neurons had a lower firing rate in DAO(-/-) mice than in DAO(+/-) or DAO(+/+) mice. These data provide the first direct evidence that DAO modulates VTA DA neuron activity, which is of interest for understanding both the glutamatergic regulation of dopamine function and the therapeutic potential of DAO inhibitors. The increased DA neuron burst-firing probably reflects increased availability of d-serine at VTA NMDA receptors, but the site, mechanism and mediation of the effect requires further investigation, and may include both direct and indirect processes.
Collapse
Affiliation(s)
- Judith V Schweimer
- University Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, UK; University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Betts JF, Schweimer JV, Burnham KE, Burnet PWJ, Sharp T, Harrison PJ. D-amino acid oxidase is expressed in the ventral tegmental area and modulates cortical dopamine. Front Synaptic Neurosci 2014; 6:11. [PMID: 24822045 PMCID: PMC4014674 DOI: 10.3389/fnsyn.2014.00011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/09/2014] [Indexed: 12/11/2022] Open
Abstract
D-amino acid oxidase (DAO, DAAO) degrades the NMDA receptor co-agonist D-serine, modulating D-serine levels and thence NMDA receptor function. DAO inhibitors are under development as a therapy for schizophrenia, a disorder involving both NMDA receptor and dopaminergic dysfunction. However, a direct role for DAO in dopamine regulation has not been demonstrated. Here, we address this question in two ways. First, using in situ hybridization and immunohistochemistry, we show that DAO mRNA and immunoreactivity are present in the ventral tegmental area (VTA) of the rat, in tyrosine hydroxylase (TH)-positive and -negative neurons, and in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Second, we show that injection into the VTA of sodium benzoate, a DAO inhibitor, increases frontal cortex extracellular dopamine, as measured by in vivo microdialysis and high performance liquid chromatography. Combining sodium benzoate and D-serine did not enhance this effect, and injection of D-serine alone affected dopamine metabolites but not dopamine. These data show that DAO is expressed in the VTA, and suggest that it impacts on the mesocortical dopamine system. The mechanism by which the observed effects occur, and the implications of these findings for schizophrenia therapy, require further study.
Collapse
Affiliation(s)
- Jill F Betts
- Department of Psychiatry, University of Oxford Oxford, UK ; Department of Pharmacology, University of Oxford Oxford, UK
| | - Judith V Schweimer
- Department of Psychiatry, University of Oxford Oxford, UK ; Department of Pharmacology, University of Oxford Oxford, UK
| | - Katherine E Burnham
- Department of Psychiatry, University of Oxford Oxford, UK ; Department of Pharmacology, University of Oxford Oxford, UK
| | | | - Trevor Sharp
- Department of Pharmacology, University of Oxford Oxford, UK
| | | |
Collapse
|
31
|
Benzoate, a D-amino acid oxidase inhibitor, for the treatment of early-phase Alzheimer disease: a randomized, double-blind, placebo-controlled trial. Biol Psychiatry 2014; 75:678-85. [PMID: 24074637 DOI: 10.1016/j.biopsych.2013.08.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 01/25/2023]
Abstract
BACKGROUND N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission is vital for learning and memory. Hypofunction of NMDAR has been reported to play a role in the pathophysiology of Alzheimer disease (AD), particularly in the early phase. Enhancing NMDAR activation might be a novel treatment approach. One of the methods to enhance NMDAR activity is to raise the levels of NMDA coagonists by blocking their metabolism. This study examined the efficacy and safety of sodium benzoate, a D-amino acid oxidase inhibitor, for the treatment of amnestic mild cognitive impairment and mild AD. METHODS We conducted a randomized, double-blind, placebo-controlled trial in four major medical centers in Taiwan. Sixty patients with amnestic mild cognitive impairment or mild AD were treated with 250-750 mg/day of sodium benzoate or placebo for 24 weeks. Alzheimer's Disease Assessment Scale-cognitive subscale (the primary outcome) and global function (assessed by Clinician Interview Based Impression of Change plus Caregiver Input) were measured every 8 weeks. Additional cognition composite was measured at baseline and endpoint. RESULTS Sodium benzoate produced a better improvement than placebo in Alzheimer's Disease Assessment Scale-cognitive subscale (p = .0021, .0116, and .0031 at week 16, week 24, and endpoint, respectively), additional cognition composite (p = .007 at endpoint) and Clinician Interview Based Impression of Change plus Caregiver Input (p = .015, .016, and .012 at week 16, week 24, and endpoint, respectively). Sodium benzoate was well-tolerated without evident side-effects. CONCLUSIONS Sodium benzoate substantially improved cognitive and overall functions in patients with early-phase AD. The preliminary results show promise for D-amino acid oxidase inhibition as a novel approach for early dementing processes.
Collapse
|
32
|
Identification of a Novel Spinal Dorsal Horn Astroglial d-Amino Acid Oxidase–Hydrogen Peroxide Pathway Involved in Morphine Antinociceptive Tolerance. Anesthesiology 2014; 120:962-75. [DOI: 10.1097/aln.0b013e3182a66d2a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background:
d-Amino acid oxidase (DAAO) is a flavin adenine dinucleotide-dependent peroxisomal flavoenzyme which is almost exclusively expressed within astrocytes in the spinal cord. DAAO catalyzes oxidation of d-amino acids to hydrogen peroxide, which is a stable and less active reactive oxygen species, and may represent a final form of reactive oxygen species. This study tested the hypothesis that the spinal astroglial DAAO–hydrogen peroxide pathway plays an important role in the development of morphine antinociceptive tolerance.
Methods:
Rat and mouse formalin, hot-plate, and tail-flick tests were used, and spinal DAAO expression and hydrogen peroxide level were measured. Sample size of animals was six in each study group.
Results:
Subcutaneous and intrathecal DAAO inhibitors, including 5-chloro-benzo[d]isoxazol-3-ol, AS057278, and sodium benzoate, completely prevented and reversed morphine antinociceptive tolerance in the formalin, hot-plate, and tail-immersion tests, with a positive correlation to their DAAO inhibitory activities. Intrathecal gene silencers, small interfering RNA/DAAO and small hairpin RNA/DAAO, almost completely prevented morphine tolerance. Intrathecal 5-chloro-benzo[d]isoxazol-3-ol and small interfering RNA/DAAO completely prevented increased spinal hydrogen peroxide levels after chronic morphine treatment. Intrathecal nonselective hydrogen peroxide scavenger phenyl-tert-N-butyl nitrone and the specific hydrogen peroxide catalyst catalase also abolished established morphine tolerance. Spinal dorsal horn astrocytes specifically expressed DAAO was significantly up-regulated, accompanying astrocyte hypertrophy after chronic morphine treatment.
Conclusions:
For the first time, the authors’ result identify a novel spinal astroglial DAAO–hydrogen peroxide pathway that is critically involved in the initiation and maintenance of morphine antinociceptive tolerance, and suggest that this pathway is of potential utility for the management of morphine tolerance and chronic pain.
Collapse
|
33
|
Abstract
The potential of flavoproteins as targets of pharmacological treatments is immense. In this review we present an overview of the current research progress on medical interventions based on flavoproteins with a special emphasis on cancer, infectious diseases, and neurological disorders.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
34
|
D-Serine metabolism: new insights into the modulation of D-amino acid oxidase activity. Biochem Soc Trans 2013; 41:1551-6. [DOI: 10.1042/bst20130184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the years, accumulating evidence has indicated that D-serine represents the main endogenous ligand of NMDA (N-methyl-D-aspartate) receptors. In the brain, the concentration of D-serine stored in cells is defined by the activity of two enzymes: serine racemase (responsible for both the synthesis and degradation) and D-amino acid oxidase (which catalyses D-serine degradation). The present review is focused on human D-amino acid oxidase, discussing the mechanisms involved in modulating enzyme activity and stability, with the aim to substantiate the pivotal role of D-amino acid oxidase in brain D-serine metabolism.
Collapse
|
35
|
Abstract
The modulation of synaptic plasticity by NMDA receptor (NMDAR)-mediated processes is essential for many forms of learning and memory. Activation of NMDARs by glutamate requires the binding of a coagonist to a regulatory site of the receptor. In many forebrain regions, this coagonist is d-serine. Here, we show that experimental epilepsy in rats is associated with a reduction in the CNS levels of d-serine, which leads to a desaturation of the coagonist binding site of synaptic and extrasynaptic NMDARs. In addition, the subunit composition of synaptic NMDARs changes in chronic epilepsy. The desaturation of NMDARs causes a deficit in hippocampal long-term potentiation, which can be rescued with exogenously supplied d-serine. Importantly, exogenous d-serine improves spatial learning in epileptic animals. These results strongly suggest that d-serine deficiency is important in the amnestic symptoms of temporal lobe epilepsy. Our results point to a possible clinical utility of d-serine to alleviate these disease manifestations.
Collapse
|
36
|
Hopkins SC, Campbell UC, Heffernan MLR, Spear KL, Jeggo RD, Spanswick DC, Varney MA, Large TH. Effects of D-amino acid oxidase inhibition on memory performance and long-term potentiation in vivo. Pharmacol Res Perspect 2013; 1:e00007. [PMID: 25505561 PMCID: PMC4184572 DOI: 10.1002/prp2.7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/16/2013] [Indexed: 12/11/2022] Open
Abstract
N-methyl-d-aspartate receptor (NMDAR) activation can initiate changes in synaptic strength, evident as long-term potentiation (LTP), and is a key molecular correlate of memory formation. Inhibition of d-amino acid oxidase (DAAO) may increase NMDAR activity by regulating d-serine concentrations, but which neuronal and behavioral effects are influenced by DAAO inhibition remain elusive. In anesthetized rats, extracellular field excitatory postsynaptic potentials (fEPSPs) were recorded before and after a theta frequency burst stimulation (TBS) of the Schaffer collateral pathway of the CA1 region in the hippocampus. Memory performance was assessed after training with tests of contextual fear conditioning (FC, mice) and novel object recognition (NOR, rats). Oral administration of 3, 10, and 30 mg/kg 4H-furo[3,2-b]pyrrole-5-carboxylic acid (SUN) produced dose-related and steady increases of cerebellum d-serine in rats and mice, indicative of lasting inhibition of central DAAO. SUN administered 2 h prior to training improved contextual fear conditioning in mice and novel object recognition memory in rats when tested 24 h after training. In anesthetized rats, LTP was established proportional to the number of TBS trains. d-cycloserine (DCS) was used to identify a submaximal level of LTP (5× TBS) that responded to NMDA receptor activation; SUN administered at 10 mg/kg 3-4 h prior to testing similarly increased in vivo LTP levels compared to vehicle control animals. Interestingly, in vivo administration of DCS also increased brain d-serine concentrations. These results indicate that DAAO inhibition increased NMDAR-related synaptic plasticity during phases of post training memory consolidation to improve memory performance in hippocampal-dependent behavioral tests.
Collapse
Affiliation(s)
| | | | | | - Kerry L Spear
- Sunovion Pharmaceuticals IncMarlborough, Massachusetts
| | | | - David C Spanswick
- Neurosolutions Ltd.Coventry, U.K
- Department of Physiology, Monash UniversityClayton, Victoria, Australia
- Warwick Medical School, University of WarwickCoventry, U.K
| | - Mark A Varney
- Sunovion Pharmaceuticals IncMarlborough, Massachusetts
| | | |
Collapse
|
37
|
Hopkins SC, Heffernan MLR, Saraswat LD, Bowen CA, Melnick L, Hardy LW, Orsini MA, Allen MS, Koch P, Spear KL, Foglesong RJ, Soukri M, Chytil M, Fang QK, Jones SW, Varney MA, Panatier A, Oliet SHR, Pollegioni L, Piubelli L, Molla G, Nardini M, Large TH. Structural, Kinetic, and Pharmacodynamic Mechanisms of d-Amino Acid Oxidase Inhibition by Small Molecules. J Med Chem 2013; 56:3710-24. [DOI: 10.1021/jm4002583] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seth C. Hopkins
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | | | - Lakshmi D. Saraswat
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Carrie A. Bowen
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Laurence Melnick
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Larry W. Hardy
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Michael A. Orsini
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | | | - Patrick Koch
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Kerry L. Spear
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | | | | | - Milan Chytil
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Q. Kevin Fang
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Steven W. Jones
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Mark A. Varney
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Aude Panatier
- Neurocentre Magendie, Inserm U862 and Université de Bordeaux, Bordeaux, F-33077, France
| | - Stephane H. R. Oliet
- Neurocentre Magendie, Inserm U862 and Université de Bordeaux, Bordeaux, F-33077, France
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie
e Scienze della Vita, Università degli Studi dell’Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
- The Protein Factory, Politecnico di Milano, ICRM-CNR and Università degli Studi dell’Insubria, Via Mancinelli 7,
20131 Milano, Italy
| | - Luciano Piubelli
- Dipartimento di Biotecnologie
e Scienze della Vita, Università degli Studi dell’Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
- The Protein Factory, Politecnico di Milano, ICRM-CNR and Università degli Studi dell’Insubria, Via Mancinelli 7,
20131 Milano, Italy
| | - Gianluca Molla
- Dipartimento di Biotecnologie
e Scienze della Vita, Università degli Studi dell’Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
- The Protein Factory, Politecnico di Milano, ICRM-CNR and Università degli Studi dell’Insubria, Via Mancinelli 7,
20131 Milano, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milan, I-20133 Milano, Italy
| | - Thomas H. Large
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| |
Collapse
|
38
|
Hondo T, Warizaya M, Niimi T, Namatame I, Yamaguchi T, Nakanishi K, Hamajima T, Harada K, Sakashita H, Matsumoto Y, Orita M, Takeuchi M. 4-Hydroxypyridazin-3(2H)-one derivatives as novel D-amino acid oxidase inhibitors. J Med Chem 2013; 56:3582-92. [PMID: 23566269 DOI: 10.1021/jm400095b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D-Amino acid oxidase (DAAO) catalyzes the oxidation of d-amino acids including d-serine, a coagonist of the N-methyl-d-aspartate receptor. We identified a series of 4-hydroxypyridazin-3(2H)-one derivatives as novel DAAO inhibitors with high potency and substantial cell permeability using fragment-based drug design. Comparisons of complex structures deposited in the Protein Data Bank as well as those determined with in-house fragment hits revealed that a hydrophobic subpocket was formed perpendicular to the flavin ring by flipping Tyr224 in a ligand-dependent manner. We investigated the ability of the initial fragment hit, 3-hydroxy-pyridine-2(1H)-one, to fill this subpocket with the aid of complex structure information. 3-Hydroxy-5-(2-phenylethyl)pyridine-2(1H)-one exhibited the predicted binding mode and demonstrated high inhibitory activity for human DAAO in enzyme- and cell-based assays. We further designed and synthesized 4-hydroxypyridazin-3(2H)-one derivatives, which are equivalent to the 3-hydroxy-pyridine-2(1H)-one series but lack cell toxicity. 6-[2-(3,5-Difluorophenyl)ethyl]-4-hydroxypyridazin-3(2H)-one was found to be effective against MK-801-induced cognitive deficit in the Y-maze.
Collapse
Affiliation(s)
- Takeshi Hondo
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Glass MJ, Robinson DC, Waters E, Pickel VM. Deletion of the NMDA-NR1 receptor subunit gene in the mouse nucleus accumbens attenuates apomorphine-induced dopamine D1 receptor trafficking and acoustic startle behavior. Synapse 2013; 67:265-79. [PMID: 23345061 DOI: 10.1002/syn.21637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/15/2013] [Indexed: 12/21/2022]
Abstract
The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is coexpressed not only with the dopamine D1 receptor (D1R), but also with the µ-opioid receptor (µ-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the D1R trafficking and behavioral dysfunctions resulting from systemic administration of apomorphine, a D1R and dopamine D2 receptor agonist that impacts prepulse inhibition to auditory-evoked startle (AS). Together, this evidence suggests that the NMDA receptor may regulate D1R trafficking in Acb neurons, including those expressing µ-OR, in animals exposed to auditory startle and apomorphine. We tested this hypothesis by combining spatial-temporal gene deletion technology, dual labeling immunocytochemistry, and behavioral analysis. Deleting NR1 in Acb neurons prevented the increase in the dendritic density of plasma membrane D1Rs in single D1R and dual (D1R and µ-OR) labeled dendrites in the Acb in response to apomorphine and AS. Deleting NR1 also attenuated the decrease in AS induced by apomorphine. In the absence of apomorphine and startle, deletion of Acb NR1 diminished social interaction, without affecting novel object recognition, or open field activity. These results suggest that NR1 expression in the Acb is essential for apomorphine-induced D1R surface trafficking, as well as auditory startle and social behaviors that are impaired in multiple psychiatric disorders.
Collapse
Affiliation(s)
- Michael J Glass
- Brain and Mind Research Institute, Weill Cornell Medical College, New York 10065, USA.
| | | | | | | |
Collapse
|
40
|
Neurodevelopmental role for VGLUT2 in pyramidal neuron plasticity, dendritic refinement, and in spatial learning. J Neurosci 2013; 32:15886-901. [PMID: 23136427 DOI: 10.1523/jneurosci.4505-11.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The level and integrity of glutamate transmission during critical periods of postnatal development plays an important role in the refinement of pyramidal neuron dendritic arbor, synaptic plasticity, and cognition. Presently, it is not clear how excitatory transmission via the two predominant isoforms of the vesicular glutamate transporter (VGLUT1 and VGLUT2) participate in this process. To assess a neurodevelopmental role for VGLUT2 in pyramidal neuron maturation, we generated recombinant VGLUT2 knock-out mice and inactivated VGLUT2 throughout development using Emx1-Cre(+/+) knock-in mice. We show that VGLUT2 deficiency in corticolimbic circuits results in reduced evoked glutamate transmission, release probability, and LTD at hippocampal CA3-CA1 synapses during a formative developmental period (postnatal days 11-14). In adults, we find a marked reduction in the amount of dendritic arbor across the span of the dendritic tree of CA1 pyramidal neurons and reduced long-term potentiation and levels of synaptic markers spinophilin and VGLUT1. Loss of dendritic arbor is accompanied by corresponding reductions in the number of dendritic spines, suggesting widespread alterations in synaptic connectivity. Conditional VGLUT2 knock-out mice exhibit increased open-field exploratory activity yet impaired spatial learning and memory, endophenotypes similar to those of NMDA receptor knock-down mice. Remarkably, the impairment in learning can be partially restored by selectively increasing NMDA receptor-mediated glutamate transmission in adult mice by prolonged treatment with d-serine and a d-amino acid oxidase inhibitor. Our data indicate that VGLUT2 expression is pivotal to the proper development of mature pyramidal neuronal architecture and plasticity, and that such glutamatergic deficiency leads to cognitive malfunction as observed in several neurodevelopmental psychiatric disorders.
Collapse
|
41
|
Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM. D-serine and schizophrenia: an update. Expert Rev Neurother 2012; 12:801-12. [PMID: 22853788 DOI: 10.1586/ern.12.65] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Considering the lengthy history of pharmacological treatment of schizophrenia, the development of novel antipsychotic agents targeting the glutamatergic system is relatively new. A glutamatergic deficit has been proposed to underlie many of the symptoms typically observed in schizophrenia, particularly the negative and cognitive symptoms (which are less likely to respond to current treatments). D-serine is an important coagonist of the glutamate NMDA receptor, and accumulating evidence suggests that D-serine levels and/or activity may be dysfunctional in schizophrenia and that facilitation of D-serine transmission could provide a significant therapeutic breakthrough, especially where conventional treatments have fallen short. A summary of the relevant animal data, as well as genetic studies and clinical trials examining D-serine as an adjunct to standard antipsychotic therapy, is provided in this article. Together, the evidence suggests that research on the next generation of antipsychotic agents should include studies on increasing brain levels of D-serine or mimicking its action on the NMDA receptor.
Collapse
Affiliation(s)
- Emerson A Nunes
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Morrow JA, Gilfillan R, Neale SA. Glutamatergic Approaches for the Treatment of Schizophrenia. DRUG DISCOVERY FOR PSYCHIATRIC DISORDERS 2012. [DOI: 10.1039/9781849734943-00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and plays a key role in most aspects of normal brain function including cognition, learning and memory. Dysfunction of glutamatergic neurotransmission has been implicated in a number of neurological and psychiatric disorders with a growing body of evidence suggesting that hypofunction of glutamatergic neurotransmission via the N-methyl-d-aspartate (NMDA) receptor plays an important role in the pathophysiology of schizophrenia. It thus follows that potentiation of NMDA receptor function via pharmacological manipulation may provide therapeutic utility for the treatment of schizophrenia and a number of different approaches are currently being pursued by the pharmaceutical industry with this aim in mind. These include strategies that target the glycine/d-serine site of the NMDA receptor (glycine transporter GlyT1, d-serine transporter ASC-1 and d-amino acid oxidase (DAAO) inhibitors) together with those aimed at enhancing glutamatergic neurotransmission via modulation of AMPA receptor and metabotropic glutamate receptor function. Such efforts are now beginning to bear fruit with compounds such as the GlyT1 inhibitor RG1678 and mGlu2 agonist LY2140023 proving to have clinical meaningful effects in phase II clinical trials. While more studies are required to confirm long-term efficacy, functional outcome and safety in schizophrenic agents, these agents hold real promise for addressing unmet medical needs, in particular refractory negative and cognitive symptoms, not currently addressed by existing antipsychotic agents.
Collapse
Affiliation(s)
- John A. Morrow
- Neuroscience and Ophthalmology, Merck Research Laboratories 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 USA
| | - Robert Gilfillan
- Discovery Chemistry, Merck Research Laboratories 770 Sumneytown Pike, West Point, Pennsylvania 19486 USA
| | - Stuart A. Neale
- Neurexpert Ltd Ground Floor, 2 Woodberry Grove, North Finchley, London, N12 0DR UK
| |
Collapse
|
43
|
Berry JF, Ferraris DV, Duvall B, Hin N, Rais R, Alt J, Thomas AG, Rojas C, Hashimoto K, Slusher BS, Tsukamoto T. Synthesis and SAR of 1-hydroxy-1H-benzo[d]imidazol-2(3H)-ones as Inhibitors of D-Amino Acid Oxidase. ACS Med Chem Lett 2012; 3:839-843. [PMID: 23243487 DOI: 10.1021/ml300212a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A series of 1-hydroxy-1H-benzo[d]imidazol-2(3H)-ones were synthesized and evaluated for their ability to inhibit human and porcine forms of D-amino acid oxidase (DAAO). Inhibitory potency is largely dependent on the size and position of substituents on the benzene ring with IC(50) values of the compounds ranging from 70 nM to greater than 100 µM. Structure-activity relationships of this new class of DAAO inhibitors will be presented in detail along with comparisons to previously published SAR data from other classes of DAAO inhibitors. Some of these compounds were given to mice orally together with D-serine to assess their effects on plasma D-serine pharmacokinetics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health,
1-8-1 Inohana, Chiba 260-8670, Japan
| | | | | |
Collapse
|
44
|
Malkesman O, Austin DR, Tragon T, Wang G, Rompala G, Hamidi AB, Cui Z, Young WS, Nakazawa K, Zarate CA, Manji HK, Chen G. Acute D-serine treatment produces antidepressant-like effects in rodents. Int J Neuropsychopharmacol 2012; 15:1135-48. [PMID: 21906419 PMCID: PMC3278496 DOI: 10.1017/s1461145711001386] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Research suggests that dysfunctional glutamatergic signalling may contribute to depression, a debilitating mood disorder affecting millions of individuals worldwide. Ketamine, a N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects in approximately 70% of patients. Glutamate evokes the release of D-serine from astrocytes and neurons, which then acts as a co-agonist and binds at the glycine site on the NR1 subunit of NMDA receptors. Several studies have implicated glial deficits as one of the underlying facets of the neurobiology of depression. The present study tested the hypothesis that D-serine modulates behaviours related to depression. The behavioural effects of a single, acute D-serine administration were examined in several rodent tests of antidepressant-like effects, including the forced swim test (FST), the female urine sniffing test (FUST) following serotonin depletion, and the learned helplessness (LH) paradigm. D-serine significantly reduced immobility in the FST without affecting general motor function. Both D-serine and ketamine significantly rescued sexual reward-seeking deficits caused by serotonin depletion in the FUST. Finally, D-serine reversed LH behaviour, as measured by escape latency, number of escapes, and percentage of mice developing LH. Mice lacking NR1 expression in forebrain excitatory neurons exhibited a depression-like phenotype in the same behavioural tests, and did not respond to D-serine treatment. These findings suggest that D-serine produces antidepressant-like effects and support the notion of complex glutamatergic dysfunction in depression. It is unclear whether D-serine has a convergent influence on downstream synaptic plasticity cascades that may yield a similar therapeutic profile to NMDA antagonists like ketamine.
Collapse
Affiliation(s)
- Oz Malkesman
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Structure–function relationships in human d-amino acid oxidase. Amino Acids 2012; 43:1833-50. [DOI: 10.1007/s00726-012-1345-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/16/2012] [Indexed: 01/01/2023]
|
46
|
Rais R, Thomas AG, Wozniak K, Wu Y, Jaaro-Peled H, Sawa A, Strick CA, Engle SJ, Brandon NJ, Rojas C, Slusher BS, Tsukamoto T. Pharmacokinetics of oral D-serine in D-amino acid oxidase knockout mice. Drug Metab Dispos 2012; 40:2067-73. [PMID: 22837388 DOI: 10.1124/dmd.112.046482] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
D-Amino acid oxidase (DAAO) catalyzes the oxidative deamination of D-amino acids including D-serine, a full agonist at the glycine modulatory site of the N-methyl-d-aspartate (NMDA) receptor. To evaluate the significance of DAAO-mediated metabolism in the pharmacokinetics of oral D-serine, plasma D-serine levels were measured in both wild-type mice and transgenic mice lacking DAAO. Although D-serine levels were rapidly diminished in wild-type mice (t(½) = 1.2 h), sustained drug levels over the course of 4 h (t(½) > 10 h) were observed in mice lacking DAAO. Coadministration of D-serine with 6-chlorobenzo[d]isoxazol-3-ol (CBIO), a small-molecule DAAO inhibitor, in wild-type mice resulted in the enhancement of plasma D-serine levels, although CBIO seems to have only temporary effects on the plasma D-serine levels due to glucuronidation of the key hydroxyl group. These findings highlight the predominant role of DAAO in the clearance of D-serine from the systemic circulation. Thus, a potent DAAO inhibitor with a longer half-life should be capable of maintaining high plasma D-serine levels over a sustained period of time and might have therapeutic implications for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Rana Rais
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lu JM, Gong N, Wang YC, Wang YX. D-Amino acid oxidase-mediated increase in spinal hydrogen peroxide is mainly responsible for formalin-induced tonic pain. Br J Pharmacol 2012; 165:1941-1955. [PMID: 21950354 DOI: 10.1111/j.1476-5381.2011.01680.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Spinal reactive oxygen species (ROS) are critically involved in chronic pain. D-Amino acid oxidase (DAAO) oxidizes D-amino acids such as D-serine to form the byproduct hydrogen peroxide without producing other ROS. DAAO inhibitors are specifically analgesic in tonic pain, neuropathic pain and cancer pain. This study examined the role of spinal hydrogen peroxide in pain and the mechanism of the analgesic effects of DAAO inhibitors. EXPERIMENTAL APPROACH Formalin-induced pain behaviours and spinal hydrogen peroxide levels were measured in rodents. KEY RESULTS Formalin injected into the paw increased spinal hydrogen peroxide synchronously with enhanced tonic pain; both were effectively prevented by i.t. fluorocitrate, a selective astrocyte metabolic inhibitor. Given systemically, the potent DAAO inhibitor CBIO (5-chloro-benzo[d]isoxazol-3-ol) blocked spinal DAAO enzymatic activity and specifically prevented formalin-induced tonic pain in a dose-dependent manner. Although CBIO maximally inhibited tonic pain by 62%, it completely prevented the increase in spinal hydrogen peroxide. I.t. catalase, an enzyme specific for decomposition of hydrogen peroxide, completely depleted spinal hydrogen peroxide and prevented formalin-induced tonic pain by 65%. Given systemically, the ROS scavenger PBN (phenyl-N-tert-butylnitrone) also inhibited formalin-induced tonic pain and increase in spinal hydrogen peroxide. Formalin-induced tonic pain was potentiated by i.t. exogenous hydrogen peroxide. CBIO did not increase spinal D-serine level, and i.t. D-serine did not alter either formalin-induced tonic pain or CBIO's analgesic effect. CONCLUSIONS AND IMPLICATIONS Spinal hydrogen peroxide is specifically and largely responsible for formalin-induced pain, and DAAO inhibitors produce analgesia by blocking spinal hydrogen peroxide production rather than interacting with spinal D-serine.
Collapse
Affiliation(s)
- Jin-Miao Lu
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Nian Gong
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Chao Wang
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Targeting glutamate system for novel antipsychotic approaches: Relevance for residual psychotic symptoms and treatment resistant schizophrenia. Eur J Pharmacol 2012; 682:1-11. [DOI: 10.1016/j.ejphar.2012.02.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 01/04/2023]
|
49
|
Lyon L, Saksida LM, Bussey TJ. Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models. Psychopharmacology (Berl) 2012; 220:647-72. [PMID: 22068459 DOI: 10.1007/s00213-011-2536-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/06/2011] [Indexed: 12/12/2022]
Abstract
RATIONALE Spontaneous (novel) object recognition (SOR) is one of the most widely used rodent behavioural tests. The opportunity for rapid data collection has made SOR a popular choice in studies that explore cognitive impairment in rodent models of schizophrenia, and that test the efficacy of drugs intended to reverse these deficits. OBJECTIVES We provide an overview of the many recent studies that have used SOR to explore the mnemonic effects of manipulation of the key transmitter systems relevant to schizophrenia-the dopamine, glutamate, GABA, acetylcholine, serotonin and cannabinoid systems-alone or in combination. We also review the use of SOR in studying memory in genetically modified mouse models of schizophrenia, as well as in neurodevelopmental and lesion models. We end by discussing the construct and predictive validity, and translational relevance, of SOR with respect to cognitive impairment in schizophrenia. RESULTS Perturbation of the dopamine or glutamate systems can generate robust and reliable impairment in SOR. Impaired performance is also seen following antagonism of the muscarinic acetylcholine system, or exposure to cannabinoid agonists. Cognitive enhancement has been reported using alpha7-nicotinic acetylcholine receptor agonists and 5-HT(6) antagonists. Among non-pharmacological models, neonatal ventral hippocampal lesions and maternal immune activation can impair SOR, while mixed results have been obtained with mice carrying mutations in schizophrenia risk-associated genes, including neuregulin and COMT. CONCLUSIONS While SOR is not without its limitations, the task represents a useful method for studying manipulations with relevance to cognitive impairment in schizophrenia, as well as the interactions between them.
Collapse
Affiliation(s)
- L Lyon
- Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | | | | |
Collapse
|
50
|
Pernot P, Maucler C, Tholance Y, Vasylieva N, Debilly G, Pollegioni L, Cespuglio R, Marinesco S. d-Serine diffusion through the blood-brain barrier: effect on d-serine compartmentalization and storage. Neurochem Int 2012; 60:837-45. [PMID: 22465696 DOI: 10.1016/j.neuint.2012.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/08/2012] [Accepted: 03/13/2012] [Indexed: 11/17/2022]
Abstract
d-Serine is a co-agonist of N-methyl-d-aspartate (NMDA) receptors. It has been implicated in the etiology of schizophrenia and has shown efficacy as an adjuvant to reduce positive and negative symptoms of schizophrenia. In addition, d-serine can modulate cognition in animals when administered alone. However, the neurochemical effects of exogenous d-serine on extra- and intra-cellular d-serine brain levels are poorly understood. In this study, we used both high performance liquid chromatography (HPLC) and enzyme-based microelectrode biosensors to quantify d-serine in the rat brain. We demonstrated levels of 2.3-2.8μM in the extracellular medium, 4μM in plasma and 188pmol/mg in brain tissue samples. An intraperitoneal (i.p.) d-serine injection (1g/kg) produced a slow increase in extracellular d-serine concentration in the cortex despite a surge in d-serine up to 13mM in the plasma, indicating poor diffusion through the blood-brain barrier. Using the respective volume fractions of blood, extracellular and intracellular spaces published in the literature, we estimated that d-serine intracellular stores represented more than 99% of total d-serine. These intracellular stores almost doubled 3h after d-serine administration. Overall, our data indicate that d-serine administration increases brain extra- and intra-cellular concentrations despite weak diffusion through the blood-brain barrier. These results pave the way for a better understanding of the neurochemical mechanisms by which d-serine administration modulates cognition.
Collapse
Affiliation(s)
- Pierre Pernot
- Lyon Neuroscience Research Center, Plate-forme technologique AniRA-Neurochem, Team WAKE, Lyon F-69000, France
| | | | | | | | | | | | | | | |
Collapse
|